
Noname manuscript No.
(will be inserted by the editor)

KHE20: An Improved Solver for Nurse Rostering

Jeffrey H. Kingston

Received: date / Accepted: date

Abstract Nurse rostering, the problem of assigning nurses to the shifts of
a hospital ward, has been studied for many years. This paper describes the
KHE20 nurse rostering solver, an improved version of the KHE18 solver. It
uses a time sweep algorithm to find an initial solution, followed by repair
using several methods, principally ejection chains. Experiments are conducted
on four well-known data sets. These show that KHE20 is competitive, taking
breadth of application and running time into account as well as solution cost.
Other experiments are conducted which shed light on the contributions made
by the various parts of the algorithm.
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1 Introduction

Nurse rostering, the problem of assigning nurses to the shifts of a hospital
ward, has been studied for many years. It is an NP-complete problem, and
exact algorithms are out of reach in general, although many smaller instances
have recently been solved to optimality using integer programming [4,35].

Many inexact methods have been tried. Even very recent work covers a
wide range: integer programming [15,28,31,35,39], weighted maxSAT [10,11],
simulated annealing [9,37], hyper-heuristics [2,16,32], variable neighbourhood
search [38], and constraint programming [33]. For less recent work, see [40].

The solver presented here, KHE20, is the 2020 version of the main solver
built by the author on his KHE solver platform [20]. It is an improved version
of the KHE18 solver described in [22]. It runs in polynomial time and aims
to find competitive but not optimal solutions quickly, across a wide range of
instances. It finds an initial solution using a time sweep algorithm (Section 3.2).
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This timetables the first day of the cycle, then the second, and so on. It then
tries several repair methods, notably ejection chains (Section 3.3).

KHE20 has been tested on four data sets (Section 4). Although it has not
found any new best solutions, on its own terms (that is, considering running
time and range of applicability as well as cost) it is competitive.1

2 The nurse rostering problem and its XESTT formulation

Nurse rostering is the problem of assigning shifts to the nurses of a hospital
ward.2 Hospitals operate 24 hours a day, so there are usually at least three
types of shifts: morning, afternoon, and night. Each shift demands a certain
number of nurses, often with specific skills. There may be some flexibility in
how many nurses to assign, and the number typically changes from day to day.

Perhaps the most characteristic feature of the problem is the large array of
requirements that each nurse’s timetable must satisfy. In addition to workload
limits, there are rules such as ‘a nurse must have a day off after a sequence of
night shifts’, ‘a nurse may work at most four days in a row’, and so on.

Instead of the usual formulas, this paper’s formal definition of the nurse
rostering problem is supplied by the XESTT [23] nurse rostering data format.
XESTT is an XML format which is capable of representing the instances
found in all the well-known data sets. It is based on the XHSTT high school
timetabling format [29,30]; the name ‘XESTT’ was chosen to be reminiscent
of ‘XHSTT’, with ‘employee scheduling’ replacing ‘high school’. Full details of
XESTT appear online [17] and will not be repeated here. Instead, this section
offers an overview, and explains the importance of XESTT to the present work.

An XESTT instance consists of the cycle (the sequence of times that events
may be assigned); a set of resources (entities that attend events); a set of events
(meetings); and a set of constraints, specifying conditions that solutions should
satisfy, and penalties to impose when they don’t.

Each event contains a starting time, which may either be preassigned a
time or left open for a solver to assign; a duration, which is a fixed positive
integer giving the number of consecutive times, starting at the starting time,
that the event is running; an optional workload, which is a fixed non-negative
integer representing the workload of the event in arbitrary units, for example
in minutes; and any number of event resources, each specifying one resource

1 Note to referees. This paper is my previous nurse rostering solver paper updated to
take account of two years’ more work. My previous paper [22] was published at PATAT
2018 as an abstract of work in progress and was not submitted for journal publication. This
time around I did consider producing a short paper just describing the updates and giving
the new results, but such a paper would have been so un-self-contained as to be virtually
unreadable. This paper is self-contained, but inevitably there is a lot of overlap with [22]. So
I have placed footnotes like this one at the start of each section, indicating the major changes
from [22]. If this paper is accepted for PATAT 2020 I intend to remove these footnotes from
the conference version. Many small changes lie below the level of description of this paper,
but have nevertheless contributed to the significantly better results.

2 Note to referees. No changes to this section.
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which attends the event for the full duration, which may either be preassigned
a resource or left open for a solver to assign.

In nurse rostering instances, each event represents one shift. Each event
has duration 1; its actual duration in minutes can be expressed as a workload,
if needed. Its starting time is preassigned to a time unique to the shift. For
example, if on each day there is a morning, afternoon, and night shift, then each
day will contain three times, one for each shift. This arrangement is somewhat
artificial, but, as [23] explains, most nurse rostering constraints concern shifts,
not workload in minutes, and this works well in practice. Within an event,
each event resource represents a demand for one nurse.

Sets of times, resources, and events may be defined, called time groups,
resource groups and event groups. Each resource has one resource type, saying
what type of resource it is. In nurse rostering there is just one type, Nurses.

XESTT offers 18 constraint types, but 9 are not used in nurse rostering,
mainly because all the events have preassigned times. Of the 9 types that
are used, 3 are cover constraints, specifying the number of resources that
should attend each event, and the skills those resources should have. The
other 6, called resource constraints here, constrain the timetables of individual
resources, specifying unavailable times, workload limits, unwanted patterns
(such as a day shift immediately following a night shift), and so on.

Each constraint contains a Boolean required flag indicating whether it is
hard or soft, and an integer weight. When a constraint is violated, the degree of
violation is multiplied by the weight to give a cost. Algorithms aim to minimize
firstly the total cost of hard constraints (the hard cost), and secondly the total
cost of soft constraints (the soft cost). In nurse rostering, solutions with non-
zero hard cost are usually considered to be infeasible, that is, useless.

XESTT is important here for two reasons. First, it makes it easy to test
KHE20 on a wide range of instances, because all these instances have been
converted from their original formats to XESTT.

Second, XESTT uses just 9 types of constraints to represent all of the
constraints found in other models. It can do this because its constraints accept
arbitrary time groups, allowing the same type of constraint to deal with days,
night shifts, weekends, and so on. Algorithms like the ejection chain algorithm
in this paper, which handle each constraint type explicitly, have only 9 types
to handle. Without XESTT or something like it, the number of constraint
types would be much larger, and such an approach would hardly be feasible.

3 The KHE20 solver

The KHE20 solver presented here is built on the author’s KHE solver platform
and is available from the KHE web site [20]. It is an improved version of the
KHE18 nurse rostering solver [22] which itself was descended from the KHE14
high school timetabling solver [19]. It is in fact a general timetabling solver,
but because in nurse rostering the times of all events are preassigned, its time
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assignment part does nothing here except convert the time preassignments in
the instances into time assignments in the solutions, taking almost no time.

After time assignment comes resource assignment—the assignment of nurses
to shifts. KHE20 first carries out a construction phase which builds an initial
assignment using time sweep, then continues with a repair phase which tries
several kinds of repairs that improve that assignment. This is run twice (R2),
to enable repairs of one kind to open the way to repairs of other kinds.

A full presentation appears in the KHE documentation [20]. This section
focuses on the main points. Labels, for example the ‘(R2)’ just above, name
aspects of the algorithm whose contributions are investigated in Section 5.

In the KHE platform, instances and solutions are distinct objects. Instances
are immutable after creation, whereas solutions change as solving proceeds. A
solution consists of a set of meets, each representing one event. Within each
meet there are tasks, one for each event resource of the meet’s event. Each task
is, in effect, a variable to which one resource may be assigned; it represents an
indivisible piece of work for one resource. We will use ‘task’ in the following
in preference to ‘shift’, because ‘shift’ can mean both ‘task’ and ‘meet’.

3.1 Resource matching and rematching

Resource matching is KHE’s name for a polynomial time algorithm, based
on weighted bipartite matching, for assigning resources (nurses) to a set of
initially unassigned tasks (shifts).3 Resource rematching is a variant of resource
matching in which the tasks are initially assigned; it changes the assignments.
This section describes both algorithms, starting with resource matching.

Suppose hard constraints limit each resource to at most one task per day,
as is usual in nurse rostering. Each call on resource matching targets one day. It
begins by building a weighted bipartite graph. The graph contains one demand

node for each task of each meet running on that day; each is a demand for one
resource. It also contains one supply node for each resource. An edge joins a
demand node to a supply node when the resource can be assigned to the task
(almost always in nurse rostering; the few exceptions need not detain us). The
cost of the edge is the cost of the solution containing whatever assignments
are currently in force on other days, plus just this one assignment on the
current day. For each demand node there is also a supply node representing
not assigning any resource to its task. The cost of this edge is just the current
solution cost. This usually includes a penalty for not assigning a resource,
which is absent from the edges which do assign one.

If the assignments represented by the edges affect cost independently, a
minimum-cost maximum matching in this graph defines an optimal assignment
of resources to the tasks of the day, because each task demands one resource,
and each resource can be assigned to at most one task. So this matching is
found and the indicated assignments are made.

3 Note to referees. This section contains a new treatment of limit resources constraints.
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When are these assignments independent, in fact? All costs are produced
by constraint violations, so this question can be answered by examining each
of the 9 constraint types, to see whether the costs it generates are independent.
And indeed most of them are. Constraints on the timetable of an individual
resource, for example, are affected only by assignments of that resource, and
there is at most one of those each day. XESTT has just one kind of constraint
whose cost depends on multiple edges: the limit resources constraint. For ex-
ample, a constraint of this type could require at least one senior nurse to be
on duty at all times of the day, which is not the same as requiring one senior
nurse on every shift, because shifts may overlap in time within one day.

The author’s NRConv program tries to avoid generating limit resources
constraints when converting instances from other formats [23]. Only ten of the
many converted instances currently available actually use them. All ten are
Curtois original instances (Section 4.1).

Rather than abandoning matching when limit resources constraints are
present, the algorithm approximates them by adjusting edge weights. Thus,
to encourage one senior nurse to be present, the weights on the edges from
one demand node to the supply nodes for non-senior nurses are increased.
Optimality is preserved in simple cases. After assigning one day, if any of the
limit resources constraints for that day are not satisfied, a brief ejection chain
repair (Section 3.3) is run, focusing on them (CE).

The edge costs are adjusted slightly, to break ties in favour of assigning
resources with more unused workload (CW), in favour of assignments that
do not bring constraints from below their upper limits to their upper limits
(CL), and in favour of shorter runs of consecutive busy days (CB), hoping
that short runs will be more flexible when repairing the timetable later.

Resource rematching of the tasks of one day is just unassignment of those
tasks followed by resource matching. However, KHE offers a form of resource
rematching which targets an arbitrary set of days for reassignment, not just
one. The days need not be consecutive, although in KHE20 they always are.

For each resource r, the tasks initially assigned r on the targeted days
are grouped into a single demand node. Each initially unassigned task on
the targeted days goes into its own demand node. Then resource matching is
applied. The cost of each edge is the cost of the solution containing all of the
assignments on non-targeted days, plus the assignments of the edge’s resource
to all of the tasks of its demand node, adjusted as before.

When there are two or more days, the result is not locally optimal, because
of the grouping. However, it may still be an improvement. Finding a locally
optimal reassignment for an arbitrary set of days is clearly NP-complete.

Being able to target an arbitrary set of days for reassignment is something
of an embarrassment of riches. Even limiting to consecutive days, for multi-
week instances there are still many choices. The author has not attempted a
systematic search of this large space. Instead, KHE20 tries a relatively small
number of resource rematches that seem likely to do well, as explained below.
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3.2 Time sweep assignment

Because of the high density of constraints in nurse rostering, it may be easier
to avoid introducing a problem initially than to remove it later.4 So it makes
sense to try hard to produce a very good initial solution [26].

Many nurse rostering constraints concern what happens over consecutive
days within nurses’ timetables. This suggests that the initial solution should be
constructed day by day—the tasks of the first day assigned first, then the tasks
of the second day, and so on. As each day is assigned, these kinds of constraints
can usually be satisfied. This we call the time sweep method. KHE20 uses it,
assigning each day using resource matching (Section 3.1).

Constraints with minimum limits often produce spurious costs during time
sweep (costs that will disappear as the time sweep moves on). For example,
if busy days should come in groups of at least two, then the first assignment
after a free day will attract a spurious cost. KHE20 avoids this by informing
constraints that the days after the current day should be treated like days
after the end of the cycle often are: the constraint should not assume that
they are either assigned or not assigned unless there is good reason (such as a
preassignment, or a request for a day off) and make its best estimate of cost (a
lower bound on the true cost) accordingly (CS). See [24] for a full description.

The great weakness of time sweep—its inability to look ahead—is mitigated
by including repairs in the construction stage. After each day is assigned, that
day and the preceding day are jointly reassigned using resource rematching
(Section 3.1), then that day and the two preceding days are jointly reassigned,
and so on, up to a small limit (currently four days) and subject to a time
limit (CR). Also, after the whole time sweep has ended, each day from first
to last is individually rematched (CI). This may produce small changes that
coordinate better with the assignments now present on following days. It is
acknowledged that the choice of sets of days to rematch is fairly arbitrary here.

The only previous use of time sweep known to the author is [26], which
finds initial solutions one week at a time in chronological order. It cites a recent
aircrew scheduling paper [34] as its inspiration. The general idea seems to be
well known, although not the details described here and in Section 3.1.

3.3 Ejection chain repair

After constructing an initial solution using time sweep, KHE20 repairs it using
several methods.5 Only two are significant in either the amount of improvement
achieved or in running time. One of these is resource rematching (Section 3.1),
applied to a small number of fairly large sets of consecutive days, up to seven
(RM). The other is the subject of this section: ejection chain repair (EE).

4 Note to referees. Only minor changes here.
5 Note to referees. Major changes here. The ejection chain repairs were still evolving at

the time of the previous paper, and the description there was impressionistic. This time
around there is a full description of a settled set of repairs.



KHE20: An Improved Solver for Nurse Rostering 7

A defect in a solution is one violation of a constraint. For example, if nurse
N2 should work at most two weekends but in fact works three, that is a defect.

A repair is a change to a solution which removes a defect. For example,
unassigning one of nurse N2’s busy weekends repairs the defect just described.

An ejection chain is like a path in a graph where each node represents one
defect and each edge represents one repair. Starting from some defect, the first
repair removes that defect but introduces one new defect. The second repair
removes that defect but introduces another new defect, and so on. If some
repair removes a defect without introducing a new defect, then the chain ends
successfully: the solution has been improved. Or if the repair of one defect
introduces two or more new defects, then the chain ends unsuccessfully: the
repair has to be undone, with no improvement. (More precisely, a chain ends
successfully whenever the current solution cost is less than it was at the start
of the chain; new defects are acceptable, if their cost is low. A chain may
be extended whenever a repair introduces a new defect whose removal would
make the current solution cost less than it was at the start of the chain.)

There are usually several ways to repair a defect. For example, nurse N2’s
defect can be repaired by unassigning any one of the three busy weekends. So
finding a successful chain involves a search tree: if the first repair does not
begin a successful chain, then the second is tried, and so on recursively.

The main loop of the ejection chain repair algorithm visits each defect of
the current solution and attempts to remove it by searching a tree of ejection
chains, stopping at the first successful chain, if any. It cycles around the defects
until a complete cycle of attempts has failed, at which point it terminates.

There are several ways to limit the method to polynomial time. The usual
one, which KHE20 uses, is to refuse to visit the same part of the solution twice
while repairing a given defect [18,19]. There is also a time limit (Section 3.5).

Each type of constraint gives rise to one type of defect (or two: maximum
and minimum limit violations are repaired differently). For each defect, a set
of repairs suited to its type is tried, making the chains polymorphic.

It is not hard to discover suitable repairs, as was just done for nurse N2’s
busy weekends. We do this now in general, working from the bottom up.

At the lowest level, just one basic operation can change a solution: the task
move, which changes the assignment of task s from resource r1 to resource r2,
where r1 6= r2. Here r1 may be NULL, in which case the task move is also a
task assignment; or r2 may be NULL, making it also a task unassignment. One
repair is (can only be) a set of these basic operations.

Several authors (see below) use a swap of the timetables of two resources
over several consecutive days as their main repair operation. KHE20 also has
a single main repair operation, called the task-set swap. Let r1 and r2 be two
resources such that r1 6= r2; either may be NULL, but not both. Let S1 be a
set of tasks assigned to r1 (unassigned if r1 is NULL). Let S2 be a set of tasks
assigned to r2 (unassigned if r2 is NULL). The operation moves the tasks of S1

to r2 and the tasks of S2 to r1. S1 must be non-empty, but S2 may be empty,
in which case the operation is also called a task-set move.
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Two conditions on when a task-set swap may be applied are imposed, to
save time by avoiding swaps that are unlikely to be useful. First, none of
the tasks involved may be preassigned. Second, r1 (when non-NULL) must not
attend two tasks on the same day afterwards, and the same for r2.

In some ways, the task-set swap is more general than the timetable swap:
since r1 or r2 may be NULL, tasks may become assigned or unassigned; and S1

and S2 need not be on the same days. One can also show formally that every
timetable swap is also a task-set swap, by setting S1 to r1’s tasks on some
days, and S2 to r2’s tasks on the same days. However, KHE20 usually only
swaps tasks on consecutive busy days. More general timetable swaps, involving
(say) a mixture of busy and free days spread over a week, can reduce cost, but
they do not closely target specific defects, as needed by ejection chains.

Most defects can be repaired with a single task move. For example, if a
resource is busy for too many consecutive days, moving any one of its tasks on
those days to any other resource removes the defect. Occasionally more than
one task move is needed—for example, to free up one of N2’s busy weekends.

Suppose some defect can be repaired by moving a set of tasks S from r1
to r2. This initial repair might succeed, but there are several common reasons
why it might fail. KHE20 tries to anticipate these problems by expanding the
initial repair into a set of alternative repairs. Each of these repairs is a task-set
move or swap that includes the original moves, and so repairs the defect, but
adds other moves that may help the repair to succeed.

One common reason for failure is that the repair is too disruptive of the
timetables of r1 and r2 on the days near S. KHE20 counters this by a form
of expansion called widening (EW), which adds task moves from r1 to r2 of
tasks on days adjacent to the days of S. One repair is tried for each set of up to
max(|S|, 4) tasks on consecutive busy days for r1 (days with unassigned tasks
if r1 is NULL) that include S. Often the full range cannot be used, because r1
is free or preassigned on nearby days, or r2 is busy.

Another common reason for failure is that r2 is busy on some of the days of
S, so that the move would give r2 two tasks on the same day. This is countered
by a form of expansion called reversing (ER), which moves r2’s tasks on the
days of S to r1, that is, swaps their timetables, although only on consecutive
days when both resources are busy. Widening is used with reversing, as before
except that only days when both resources are busy are included.

A third common reason for failure is that all nurses are working at or
near their global or local workload limits, so that the move underloads r1 or
overloads r2. This is countered by a third form of expansion called balancing

(EB), which applies to each unreversed repair after widening. It identifies a set
of tasks currently assigned r2 (unassigned tasks if r2 is NULL) on consecutive
days when r1 is free, and moves those tasks from r2 to r1. The number of tasks
is the same as the number being moved the other way, since the aim is to keep
the workloads of the two resources unchanged. If r2 is not NULL, only tasks
at the ends of sequences of consecutive busy days for r2 are tried. For each
widened task-set move, the number of alternative repairs tried by balancing



KHE20: An Improved Solver for Nurse Rostering 9

is at most 12. Days as close as possible to (but not overlapping with) S are
tried, since they are more likely to keep local workload limits balanced.

To summarise: whenever a move of S from r1 to r2 is tried, widening and
balancing are also tried when r2 is free on the days of S, and widening and
reversing are also tried when r2 is busy on the days of S. If S contains several
tasks and r2 is free on some of their days and busy on others, the repair is
blocked, that is, not tried. It is also blocked when r2 is busy but the reverse
move would reinstate the defect that the initial move removed. While not
strictly necessary, this is in the spirit of ejection chains and saves time by
avoiding evidently poor repairs. These cases are detailed below.

Nurse rostering often has optional tasks: tasks that may be left unassigned
without cost. When moving tasks from one resource to another, optional tasks
in the way of the move are treated like free time, and unassigned as part of it.

It remains to describe how, for each kind of defect, a set of alternative
initial repairs is found.

If some constraint’s cost function is a step function (if the constraint has
the same cost for any non-zero degree of violation), then a repair must reduce
the degree of violation to zero to reduce cost. The following repairs do not yet
understand this. Constraints with step cost functions are rare, and violations
of them of degree 2 or more are even rarer, which excuses this deficiency.

XESTT has three cover constraints (Section 2). Their defects always consist
of some tasks and resources, such that too few or too many of the tasks are
assigned the resources. If a meet is understaffed, the tasks are the meet’s and
the resources are all nurses. If there are too many trainees at 3pm, the tasks
are those running at 3pm and the resources are the trainees. And so on.

A task move is needed which changes the assignment of one of the tasks,
so as to increase or decrease the number assigned the resources, as required.
All such moves are tried, expanded using widening, reversing, and balancing
as above. Reversing blocks when the task it moves back is part of the defect.

Suppose that a task which prefers to be unassigned is assigned resource r.
Then, proceeding as just described, the only repair tried is the unassignment
of the task, possibly widened. But the task was probably assigned because r

needed to be busy at its time, in which case these repairs will lead to nothing if
r needs to be busy for more than one reason. So in this case, for each other task
running at the same time, KHE20 tries to move that task to r. The original
task will be treated like free time and unassigned, as explained above.

XESTT offers six types of resource constraints, but most resource defects
consist of a resource r and a set of sets of times, such that r is busy for too
many or too few sets. (A resource is busy for a set of times when it is busy at
one or more of the times.) For example, when r is busy six days in a row, but
the limit is five, for each day d the times of d make one set. For nurse N2 and
the three busy weekends, for each weekend w the times of w make one set.

What is needed here is one task move which makes r busy during a free set
of times, or one or more task moves which make r free during a busy set. All
such repairs are tried, expanded as usual. Reversing blocks when the reverse
move makes r busy during the set of times that the initial move aims to free
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up. For example, if the aim is to make r free on some day, all reversing is
blocked; but if the aim is to ensure that r does not work the night shift on
some day, only reverse moves that assign a night shift to r are blocked.

In some unwanted pattern constraints, some of the sets of times need to
be free and others need to be busy. Some repairs need to increase or decrease
the number of busy times within a set of times, not make the set busy or free.
These are simple variants and cause no problems.

The author knows of three other uses of ejection chains in nurse rostering.
The first two are fairly old and use data sets that are not in use today, making
their results hard to evaluate. The first [12] includes a repair which swaps the
timetables of two resources over one week. The second [27] uses chains of task
moves as repairs in a tabu search framework. The chains are rather different
from those used here: each is generated at random in a way that preserves
coverage, but without checking other costs until the whole chain is generated.
Reference [27] cites [1] as a source for these chains—a very early use.

The third previous use of ejection chains [3,4,7] is much more recent. Its
basic repair swaps the timetables of two resources over a variable number of
consecutive days. It allocates equal running time to each top-level search. Its
results are compared with KHE20’s in Section 4.

The present paper’s ejection chain algorithm is adapted from recent work
in high school timetabling [18,19]. Its polymorphism seems to be new to nurse
rostering. The works cited just above bundle defects together by resource and
search for repairs which reduce the total cost of one bundle. It is hard to say a

priori whether this is advantageous or not: on the one hand, it is less affected
by high constraint density; on the other, it reduces the precision with which
repairs can address specific defects. One paper [3] adds precision by selecting
repairs which focus on parts of the resource’s timetable where defects lie.

3.4 Task grouping

The KHE platform allows tasks to be grouped (GR).6 Assigning a resource
to one element of a group assigns it to all. This was included to support high
school timetabling: the lessons of one course should be assigned a common
teacher. It has also proved useful in nurse rostering.

For example, in instance COI-GPost (Section 4.1), a nurse who takes a
Friday night task should also take the following Saturday and Sunday night
tasks, because constraints penalize Friday night tasks before free weekends,
incomplete weekends (working on Saturday or Sunday but not both), and day
tasks after night tasks. Then the Monday and Tuesday night tasks can be
grouped, as can the Wednesday and Thursday night tasks, owing to limits
(minimum 2 and maximum 3) on the number of consecutive night tasks.

6 Note to referees. In this section the description of profile grouping is new, although
KHE18 used it. The special treatment of equal minimum and maximum limits is new, as is
the division into separate instances where possible.
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KHE20 has a grouping phase which runs before time sweep. Its first step is
combinatorial grouping. For each sequence of k consecutive days (k is arbitrary;
KHE20 tries 2 and 3), and for each task s on the first or last of these days,
carry out one trial as follows. Find all combinations of tasks and free time over
the k days which include s. If only one combination has zero cost, group its
tasks. Only count costs that depend only on the days of the trial and are the
same for all resources.

If nurses must have a certain number of weekends off, that may only be
achievable if all their working weekends are complete, even without an explicit
‘complete weekends’ constraint. KHE20 detects this and similar cases and uses
them to reduce the number of combinations, making grouping more likely.

One grouping may lead to another. For example, if complete weekends are
required, and a day task cannot follow a night task, then the Saturday night
tasks may be grouped with the Sunday night tasks, but only after that does
it become possible to group the Saturday and Sunday day tasks.

The second step is profile grouping. Suppose there is a constraint, applicable
to every nurse, requiring each nurse’s tasks of a certain type (night tasks, for
example) to occur in consecutive sequences of length at least k, where k ≥ 2.
Now suppose that ni tasks of this type need to be assigned on day i, and
ni+1 of them need to be assigned on day i+1. (The ni form the profile of the
constraint.) If ni+1 > ni, then ni+1 − ni sequences of k or more night tasks
must begin on day i + 1, and so this many night tasks may be grouped with
night tasks on the following k − 1 days. Similary, if ni+1 < ni, then ni − ni+1

sequences of k or more night tasks must end on day i, and so this many night
tasks may be grouped with night tasks on the preceding k − 1 days.

The grouping of the Monday and Tuesday (and Wednesday and Thursday)
night tasks in instance COI-GPost, mentioned earlier, is the result of profile
grouping. The previously grouped Friday, Saturday, and Sunday night tasks
already have maximum length and so are omitted from the profile.

When the constraint concerns several types of tasks, for example when
it constrains the number of consecutive busy days, profile grouping is not
usually tried, because it is not clear which types of tasks to group with which.
An exception is made, however, when the constraint’s minimum and maximum
limits are equal. Such constraints can have a profound effect, as the reader can
see by imagining repairing one sequence of busy days of incorrect length in
an otherwise perfect timetable, when there is no freedom to vary the number
of resources assigned to each meet: the defect has to be moved, step by step,
to the start or end of the timetable, where typically the constraint does not
apply. So KHE20 performs profile grouping in these cases, using a form of
combinatorial grouping to choose the tasks to group together.

Grouped tasks must accept similar resources. It would not do, for example,
to group one which requires a senior nurse with one which requires a trainee. In
practice, this is easy to ensure; if not, the grouping is omitted. In some cases,
assigning certain nurses (trainees, perhaps) can be seen to be an independent
problem. In those cases KHE20 divides the instance into (in effect) separate
instances. Full details appear in the KHE documentation [20].
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This paper’s algorithms handle grouped tasks correctly. For example, each
task-set swap (Section 3.3) contains either all the tasks of a group, or none.

A grouping will occasionally be inadvisable for some unexpected reason.
So KHE20 applies the groupings during the initial time sweep and first repair
phase, but then removes them, so that if something else is needed there is a
chance to find it during the second repair phase. The author has observed a
few cases where omitting to remove groupings led to infeasible solutions.

3.5 Making good use of available running time

Running time is a major issue for the larger instances, so it must be used well.7

KHE20 is not suited to a single global time limit, because it has many repair
phases: two for each day during construction, and two at the end. These yield
diminishing returns as running time increases, so it would be a mistake for
KHE20 to spend all its time on one and have nothing left for the others.

KHE20 limits each day during time sweep (including that day’s repairs)
to 2 seconds, each day’s rematch at the end of time sweep to 1 second, the
first repair phase to 120 seconds, and the second to 60 seconds. In both repair
phases, resource rematching is limited to half the available time, leaving the
rest for the other repair methods, mainly ejection chains. A six-week instance
should take about 5 minutes to solve at most, which seems reasonable, given
KHE20’s aim of finding good but not optimal solutions quickly.

The ejection chain algorithm of [7] imposes a time limit on each search for
a chain that repairs one defect. KHE20 imposes a limit of 120 on the number
of recursive calls when repairing one defect, which has a similar effect.

Actual running time need not match the limits exactly. On the one hand,
many phases end of their own accord well before their time limit. On the other,
the time limits are soft: instead of being interrupted, each phase consults wall
clock time periodically and decides for itself whether to stop. Actual running
times are reported in the results tables of Section 4.

An unfortunate consequence of having many small time limits is a loss
of repeatability in the experiments. One can always verify that the solutions
found have the costs claimed, but when a large instance is solved twice with
the same random seed the solutions are usually different, owing (as the author
has verified) to time limits being reached at slightly different points in the run.

3.6 Randomization

Randomization is not stressed in algorithmic solvers like it is in, for example,
metaheuristic ones.8 Still, including some randomization allows the algorithm
to be run with different seeds to obtain different results. Doing this and keeping
the best solution is a simple way to trade off solution quality and running time.

7 Note to referees. This section is new. KHE18 had only a single time limit.
8 Note to referees. Nothing new here.
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Resource matching randomizes by cycling through the resources starting
from a random point when creating supply nodes, causing ties in edge weights
to be broken differently, at least at the start of time sweep when many resources
have equal available workload. Ejection chain repair randomizes by trying
alternative repairs starting at a random point. These methods are not deep,
but they seem to work, judging from the spread of solution costs they produce.

4 Results

This section presents the results of running KHE20 on several well-known sets
of instances, after conversion to XESTT by the NRConv program [21,23], with
comparisons with previous results.9 The converted instances and results are
available, in the form of XESTT archive files, at [21].

Two versions of the solver are tested. The first, KHE20, runs the solver
once and produces one solution. The second, KHE20x8, runs it 8 times, with
a different random seed on each run, and keeps the best solution. All solves
were run on the author’s machine, a quad-core 3.6GHz Intel Core i7-4790.

The KHE20x8 results are produced in parallel using 4 threads. For each
instance, four solves are started initially, one per thread. New solves are started
in these threads as old ones end, until 8 solves have been started. Once started,
a solve runs until it stops itself. After all solves are complete, the running time
of the best solution is set to the total wall clock time since solving the instance
began, and the four threads start again on the next instance.

The KHE20 results are produced by saving separately the result of the first
solve initiated by each KHE20x8 test, with its individual running time. When
done this way, the average running time per instance is about one second
longer than when the instances are solved sequentially. This is presumably
due to contention for shared resources, such as the memory bus or memory
allocator. It is small enough to ignore for the sake of speeding up the testing.

Time spent reading and writing the instances and solutions is not included
in the running time, since all are read together at the start of the run, and all
are written together at the end. The largest archive, CQ14, takes 8.1 seconds
to read at the start and 1.9 seconds to write at the end. When distributed
fairly over its 24 instances this extra time is negligible.

Each result table was generated by the author’s HSEval program from an
XESTT archive file and included with no hand editing. A blank entry indicates
that there is no solution for the instance of its row in the solution group of
its column. If there are multiple solutions, one with minimum running time
among all solutions with minimum cost is shown. The minimum solution costs
in each row appear in bold. Any solutions with non-zero hard cost are shown

9 Note to referees. There are only minor changes to the text here, but the results are much
better. For example, in Table 1, the average cost of KHE20x8’s solutions is 665, whereas
it was 4637 before; 11 of KHE20x8’s solutions are best solutions now, whereas only 3 were
before. The results overall are competitive now; before, they were not. Section 4.3 is new.
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Table 1 Results for the Curtois original instances. Column Misc shows the best solutions
from XESTT archive file COI.xml. The other columns show the results from the two versions
of the solver described in this paper. Here and elsewhere, running times are in seconds. This
table is derived from XESTT archive file KHE20-2020-01-20-COI.xml, available at [21].

Instances (27) Misc KHE20 KHE20x8

Cost Time Cost Time Cost Time
COI-Ozkarahan 0 - 0 0.0 0 0.0
COI-Musa 175 - 175 0.4 175 0.8
COI-Millar-2.1 0 1.0 0 0.0 0 0.1
COI-Millar-2.1.1 0 - 0 0.0 0 0.1
COI-LLR 301 10.0 302 1.2 302 4.0
COI-Azaiez 0 600.0 1 0.4 0 0.8
COI-GPost 5 - 13 0.5 12 0.9
COI-GPost-B 3 - 5 0.5 5 1.0
COI-QMC-1 13 - 18 0.8 16 2.7
COI-QMC-2 29 - 29 2.3 29 4.3
COI-WHPP 5 - 3003 5.8 3000 12.7
COI-BCV-3.46.2 894 17840.0 896 6.5 894 16.0
COI-BCV-4.13.1 10 - 10 0.5 10 1.3
COI-SINTEF 0 - 0 0.2 0 0.5
COI-ORTEC01 270 105.0 350 1.8 330 5.3
COI-ORTEC02 270 - 355 2.3 300 7.4
COI-ERMGH 779 124.0 809 299.5 808 598.0
COI-CHILD 149 - 149 238.6 149 494.1
COI-ERRVH 2001 - 2248 292.1 2148 597.2
COI-HED01 136 - 167 3.0 151 10.6
COI-Valouxis-1 20 - 100 0.4 80 1.2
COI-Ikegami-2.1 0 13.0 0 5.4 0 11.7
COI-Ikegami-3.1 2 21600.0 18 10.5 8 21.2
COI-Ikegami-3.1.1 3 2820.0 8 10.2 8 31.9
COI-Ikegami-3.1.2 3 2820.0 13 12.2 7 25.6
COI-BCDT-Sep 100 - 270 2.8 230 5.1
COI-MER 7081 36002.7 9282 282.0 9282 566.4
Average 454 675 43.7 665 89.7

as ‘inf.’ (infeasible). No costs are reported on trust; all are calculated from the
solutions in the archive file, and hence verified, by HSEval.

Running times are shown (in seconds) where present in the archive. HSEval
cannot verify them. KHE20 and KHE20x8 running times are as defined above.

Care is needed with the average costs at the foot of each table, since costs
are sensitive to the scale of the constraint weights. For example, constraints
that measure workload in minutes may produce costs in the thousands.

4.1 The Curtois original instances

The Curtois original instances are the instances available online at [8] under the
heading ‘Original instances.’ Their XESTT versions appear in XESTT archive
file COI.xml at [21], along with the solutions posted with the instances. Nearly
all of these solutions are optimal, according to Table 3 of [4].
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Table 2 Results for the Long and Medium instances of the First International Timetabling
Competition. The GOAL column shows the solutions from the GOAL research group web
site [36], which the GOAL group has shown to be virtually optimal. The other columns show
the results from the two versions of the author’s solver. This table is derived from XESTT
archive file KHE20-2020-01-20-INRC1-Long-And-Medium.xml, available at [21].

Instances (30) GOAL KHE20 KHE20x8

Cost Time Cost Time Cost Time
INRC1-L01 197 - 200 64.4 197 170.5
INRC1-L02 219 - 228 39.3 225 96.2
INRC1-L03 240 - 242 52.2 241 109.6
INRC1-L04 303 - 306 54.8 306 108.3
INRC1-L05 284 - 287 37.0 286 97.9
INRC1-LH01 346 - 377 111.8 364 249.9
INRC1-LH02 89 - 105 73.5 95 150.2
INRC1-LH03 38 - 46 45.8 46 122.0
INRC1-LH04 22 - 37 71.8 31 102.9
INRC1-LH05 41 - 57 37.7 51 113.4
INRC1-LL01 235 - 258 91.5 253 234.5
INRC1-LL02 229 - 262 100.9 247 213.8
INRC1-LL03 220 - 272 97.8 256 210.9
INRC1-LL04 222 - 258 93.8 256 202.1
INRC1-LL05 83 - 88 13.4 85 35.1
INRC1-M01 240 - 245 6.0 245 19.4
INRC1-M02 240 - 248 3.7 245 10.1
INRC1-M03 236 - 243 6.4 242 12.1
INRC1-M04 237 - 244 5.0 241 12.3
INRC1-M05 303 - 315 8.2 310 17.3
INRC1-MH01 111 - 145 19.2 121 46.4
INRC1-MH02 221 - 246 24.5 245 46.2
INRC1-MH03 34 - 43 9.5 38 25.0
INRC1-MH04 78 - 89 15.8 85 36.4
INRC1-MH05 119 - 133 9.3 133 31.8
INRC1-ML01 157 - 183 10.7 174 16.2
INRC1-ML02 18 - 31 2.4 29 4.5
INRC1-ML03 29 - 46 2.6 36 6.2
INRC1-ML04 35 - 41 5.1 41 13.3
INRC1-ML05 107 - 139 6.8 132 20.0
Average 164 180 37.4 175 84.5

Table 1 compares KHE20 with the solutions posted at [8]. It is important to
analyse what is happening, and not simply take these results at face value. For
example, in every solution of COI-WHPP with cost below 1000, some nurses must
take night shifts only, and the rest must take non-night shifts only—hardly a
real-world scenario. Taking this kind of analysis into account, the author rates
KHE20x8 as competitive, except that in four instances the running time is
slow for an algorithm with no pretensions to optimality.

Another instructive instance is COI-BCDT-Sep. It prefers night shifts to
occur in blocks of three, but because of a slight peculiarity (a block of four
night shifts starting on a Wednesday is acceptable), that is not expressed in
the usual way, and so profile grouping (Section 3.4) is not triggered. By adding



16 Jeffrey H. Kingston

Table 3 Results for the Sprint instances of the First International Timetabling Competi-
tion. This table is derived from XESTT archive file KHE20-2020-01-20-INRC1-Sprint.xml,
available at [21]. Other details as for Table 2.

Instances (30) GOAL KHE20 KHE20x8

Cost Time Cost Time Cost Time
INRC1-S01 56 - 58 1.2 57 2.2
INRC1-S02 58 - 60 0.5 58 2.5
INRC1-S03 51 - 52 2.1 52 2.7
INRC1-S04 59 - 61 1.0 59 3.1
INRC1-S05 58 - 58 1.2 58 2.3
INRC1-S06 54 - 54 1.5 54 2.5
INRC1-S07 56 - 57 1.1 57 2.0
INRC1-S08 56 - 56 1.1 56 2.5
INRC1-S09 55 - 57 0.8 56 2.1
INRC1-S10 52 - 53 1.6 53 3.1
INRC1-SH01 32 - 36 0.3 34 0.6
INRC1-SH02 32 - 37 0.2 37 0.5
INRC1-SH03 62 - 65 0.9 63 1.4
INRC1-SH04 66 - 68 1.1 68 2.9
INRC1-SH05 59 - 68 0.3 59 1.1
INRC1-SH06 130 - 139 0.4 136 1.3
INRC1-SH07 153 - 156 0.3 156 1.1
INRC1-SH08 204 - 215 1.2 210 2.9
INRC1-SH09 338 - 343 3.4 342 5.7
INRC1-SH10 306 - 332 0.5 327 1.6
INRC1-SL01 37 - 42 0.7 39 1.6
INRC1-SL02 42 - 45 0.4 44 1.3
INRC1-SL03 48 - 51 0.6 51 2.1
INRC1-SL04 73 - 88 0.7 80 1.9
INRC1-SL05 44 - 47 1.6 47 2.6
INRC1-SL06 42 - 45 0.7 42 1.4
INRC1-SL07 42 - 47 0.7 43 1.9
INRC1-SL08 17 - 20 0.3 20 0.8
INRC1-SL09 17 - 29 0.3 23 1.0
INRC1-SL10 43 - 47 0.3 45 1.4
Average 78 83 0.9 81 2.0

the ‘missing’ constraint by hand, the author was able to induce KHE20x8 to
produce a solution of cost 180.

Other tests, not reported in detail here, show that the time limits are about
right. For the instances with longer running times, halving the limits increases
cost significantly. Doubling them can reduce cost; for example KHE20x8 then
produces a solution to COI-MER of cost 8254, taking 19 minutes [25].

4.2 The First International Nurse Rostering Competition

The First International Nurse Rostering Competition instances are available
from the competition web site [13]. Their converted versions appear in files
INRC1-Long-And-Medium.xml and INRC1-Sprint.xml [21], with the GOAL
research group’s solutions [36], proved by GOAL to be virtually optimal.
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Table 4 Results for the Second International Timetabling Competition 4-week instances.
The LOR17 column shows the solutions obtained from the authors of [26]. This table is
derived from XESTT archive file KHE20-2020-01-20-INRC2-4.xml, available at [21].

Instances (20) LOR17 KHE20 KHE20x8

Cost Time Cost Time Cost Time
INRC2-4-030-1-6291 1695 - 1980 5.6 1835 26.5
INRC2-4-030-1-6753 1890 - 2180 12.0 2065 29.9
INRC2-4-035-0-1718 1425 - 1815 17.2 1710 54.1
INRC2-4-035-2-8875 1155 - 1565 19.1 1440 36.4
INRC2-4-040-0-2061 1685 - 2095 13.3 1985 48.5
INRC2-4-040-2-6106 1890 - 2300 17.2 2110 40.1
INRC2-4-050-0-0487 1505 - 1925 28.7 1770 71.9
INRC2-4-050-0-7272 1500 - 1905 30.2 1825 61.8
INRC2-4-060-1-6115 2505 - 2970 53.7 2895 153.2
INRC2-4-060-1-9638 2750 - 3395 75.8 3150 149.1
INRC2-4-070-0-3651 2435 - 3070 59.6 2850 165.0
INRC2-4-070-0-4967 2175 - 2915 75.2 2695 173.3
INRC2-4-080-2-4333 3340 - 3900 90.3 3835 189.9
INRC2-4-080-2-6048 3260 - 3955 97.9 3920 189.0
INRC2-4-100-0-1108 1245 - 1670 103.7 1670 212.1
INRC2-4-100-2-0646 1950 - 2560 110.8 2300 264.8
INRC2-4-110-0-1428 2440 - 2995 111.0 2815 250.6
INRC2-4-110-0-1935 2560 - 3090 140.3 2950 261.7
INRC2-4-120-1-4626 2170 - 2890 113.2 2740 291.2
INRC2-4-120-1-5698 2220 - 2840 165.0 2800 325.4
Average 2090 2601 67.0 2468 149.7

Tables 2 and 3 show that KHE20x8’s results are competitive in cost and
faster in running time. The tables do not give running times for the GOAL
solutions, because the GOAL solution files do not contain any; but the GOAL
web site has a table of running times. About 10 instances, from the Long and
Medium sets, have running times of about 4 hours. Many others, including all
the Sprint instances, have running times under one minute, often well under.

Another source of virtually optimal solutions to these instances is the
branch and price algorithm whose results are reported in Table 5 of [4]. The
author has not tried to obtain these solutions. Their reported running times
are better than the GOAL ones, never exceeding about 10 minutes.

4.3 The Second International Nurse Rostering Competition

The Second International Nurse Rostering Competition [5,6] was notable for
requiring its instances to be solved week by week, as occurs in the real world.
However, here we solve a set of conventional 4-week and 8-week instances
from the competition that have been tackled by several authors [26,37]. Their
converted versions appear in files INRC2-4.xml and INRC2-8.xml at [21], along
with some solutions produced by the authors of [26].

The results appear in Tables 4 and 5. There is no running time information
in the solution files obtained from other authors. Reference [26] gives a formula
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Table 5 Results for the Second International Timetabling Competition 8-week instances.
This table is derived from XESTT archive file KHE20-2020-01-20-INRC2-8.xml, available at
[21]. Other details as for Table 4.

Instances (20) LOR17 KHE20 KHE20x8

Cost Time Cost Time Cost Time
INRC2-8-030-1-27093606 2125 - 2895 66.1 2695 140.4
INRC2-8-030-1-67535629 1735 - 2365 46.9 2255 121.1
INRC2-8-035-0-62987798 2570 - 3755 71.6 3745 178.3
INRC2-8-035-1-08161720 2330 - 3595 91.3 3505 180.7
INRC2-8-040-0-06892664 2635 - 4205 109.1 3700 197.6
INRC2-8-040-2-50487172 2495 - 3610 82.4 3605 197.1
INRC2-8-050-1-17857418 4990 - 6425 117.4 6110 338.6
INRC2-8-050-1-97538831 5000 - 6215 142.8 5865 307.3
INRC2-8-060-0-62990813 2425 - 3815 138.6 3670 328.6
INRC2-8-060-2-10340391 2590 - 4285 153.3 3920 364.3
INRC2-8-070-0-33923752 4660 - 6010 195.4 6010 394.2
INRC2-8-070-0-93072110 4770 - 6175 187.2 6175 393.7
INRC2-8-080-1-44993605 4225 - 6355 276.7 6020 547.4
INRC2-8-080-2-04091962 4495 - 6400 277.0 6400 546.5
INRC2-8-100-0-01789154 2145 - 4045 246.9 3900 490.3
INRC2-8-100-1-24793928 2250 - 4320 257.8 4240 517.8
INRC2-8-110-0-21172647 4010 - 5600 238.0 5290 495.7
INRC2-8-110-0-32494137 3575 - 5025 226.8 4805 470.0
INRC2-8-120-0-09945103 2670 - 4670 236.5 4455 476.3
INRC2-8-120-1-72645202 3125 - 5110 223.9 4890 515.1
Average 3241 4744 169.3 4563 360.0

that was used to determine the running time limit; it is about 20 minutes for
the largest 4-week instances, and 40 minutes for the largest 8-week instances.
Reference [37] used a running time limit of 2750 seconds (about 45 minutes).

KHE20x8 is arguably competitive for the 4-week instances (18% worse in
cost on average, but much faster), but not the 8-week ones (41% worse). The
algorithm of [26] makes effective use of long running times, to optimally reas-
sign large parts of the solution. Long running times and large neighbourhoods
also feature in [37]. Hand analysis suggests that repairing the remaining defects
in KHE20’s solutions might require larger neighbourhoods than it explores.

To further investigate this issue, another test was run in which the running
time limits were doubled. This produced solutions that were 37% worse in cost
on average. The detailed results of this test may be found online [25].

4.4 The 2014 Curtois and Qu instances

The instances tested here are the 24 instances published in 2014 by Curtois
and Qu [7,8]. Converted versions appear in file CQ14.xml, which also holds
four sets of solutions received from Curtois via private correspondence.

These four sets of solutions were made by the solvers reported on in Table 2
of [7]: ejection chains (10 minutes), ejection chains (60 minutes), branch and
price, and Gurobi. But they differ from the solutions presented in Table 2 of
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Table 6 Solution costs for the instances published in 2014 by Curtois and Qu [7,8]. The
CQ-EJ10, CQ-EJ60, CQ-BP, and CQ-GR columns show the four sets of solutions from
XESTT archive CQ14.xml, corresponding to the ejection chain (10 mins), ejection chain (60
mins), Branch and Price, and Gurobi 5.6.3 columns of Table 2 of [7]. The last two columns
show the results from the two versions of the author’s solver. Owing to the fragmentary
results for the last 5 instances, averages are taken over the first 19 instances only. This table
is derived from XESTT archive file KHE20-2020-01-20-CQ14.xml, available at [21].

Instances (24) CQ-EJ10 CQ-EJ60 CQ-BP CQ-GR KHE20 KHE20x8
CQ14-01 1114 607 607 607 607
CQ14-02 1019 837 828 831 828
CQ14-03 1001 1003 1001 1001 1001
CQ14-04 1716 1718 1716 1716 1723 1720
CQ14-05 1144 1358 1160 1143 1342 1239
CQ14-06 1952 2258 1952 1950 2153 2066
CQ14-07 1056 1269 1058 1056 1163 1078
CQ14-08 2133 1314 1308 1323 1429 1429
CQ14-09 1449 439 439 555 453
CQ14-10 4870 4631 4631 4750 4665
CQ14-11 3443 3661 3443 3463 3457
CQ14-12 5476 4040 4046 4040 4205 4081
CQ14-13 11432 1486 1388 2314 2205
CQ14-14 2286 1300 1280 1726 1414
CQ14-15 12050 4378 4039 4941 4649
CQ14-16 3926 3225 3323 3233 inf. 3766
CQ14-17 7801 5872 5851 6611 6410
CQ14-18 10002 4969 4760 inf. 5503
CQ14-19 14788 3715 3218 3461 3461
Average 4666 2418 2633
CQ14-20 inf. inf.
CQ14-21 inf. inf.
CQ14-22 inf. inf.
CQ14-23 44819 17428 inf. inf.
CQ14-24 48777 inf. inf.

[7], for reasons explained in [23]: the solutions received were not exactly those
reported in the table, and some were omitted owing to extreme overstaffing of
shifts, which this author chose to disallow in the XESTT versions.

The results appear in Tables 6 and 7. KHE20x8 is competitive in cost with
CQ-EJ60, CQ-BP, and CQ-GR, except on one instance (CQ14-13), and its
running time is very much less than theirs. KHE20x8 is clearly superior to
CQ-EJ10 on cost, and its running time is less on average.

Again, longer run times can help. In instance CQ14-13, unassigned shifts
cost 100 each, and they are the cause of most of the extra cost in KHE20x8’s
solution. Allowing KHE20x8 to run to completion produced a solution of cost
1656 in 29.6 minutes.

There are more recent results for these instances [8,10,11]. Reference [8]
has slightly better results than any shown here, with lower bounds. The bounds
show that many of the results are optimal, although the last five instances,
which are much larger than the others, still have significant optimality gaps.
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Table 7 Running times in seconds for the instances published in 2014 by Curtois and Qu.
Details as for Table 6, only showing running times instead of solution costs.

Instances (24) CQ-EJ10 CQ-EJ60 CQ-BP CQ-GR KHE20 KHE20x8
CQ14-01 0.0 0.4 - 0.1 0.3
CQ14-02 30.0 3600.0 - 0.7 2.5
CQ14-03 2.6 3600.0 - 1.9 2.8
CQ14-04 8.2 3600.0 1.5 - 1.3 3.2
CQ14-05 76.8 3600.0 25.6 - 3.6 10.1
CQ14-06 88.8 3600.0 10.5 - 11.6 13.9
CQ14-07 262.1 3600.0 93.7 - 9.8 24.0
CQ14-08 600.0 3600.0 11831.1 - 31.2 62.1
CQ14-09 0.6 635.2 - 51.6 91.1
CQ14-10 600.0 863.2 - 39.4 103.2
CQ14-11 171.4 3600.0 - 48.7 130.7
CQ14-12 600.0 1526.1 1336.4 - 67.3 147.1
CQ14-13 30.1 3600.1 - 194.5 385.4
CQ14-14 600.0 3600.3 - 128.5 294.8
CQ14-15 30.1 3600.0 - 180.5 360.9
CQ14-16 30.0 2965.7 265.0 - 166.6 316.3
CQ14-17 600.0 3600.1 - 180.4 360.9
CQ14-18 30.0 3600.0 - 180.3 360.7
CQ14-19 30.0 3600.0 - 180.8 361.8
Average 199.5 77.8 159.6
CQ14-20 183.1 369.9
CQ14-21 192.9 386.7
CQ14-22 187.1 378.2
CQ14-23 3601.0 - 207.8 420.5
CQ14-24 - 294.4 578.5

5 Aspects of KHE20

This section investigates eleven aspects of KHE20, to see whether they make
useful contributions.10 For each aspect, the results of running KHE20x8 with
and without the aspect are compared. Only the Curtois original instances are
tested, but they are very varied instances, so that if some aspect benefits the
algorithm significantly, the results on them should make that clear.

There is a supplement to this paper online, containing the detailed results of
these tests [25]. Only summaries of those results appear here. In what follows,
‘KHE20’ refers to the algorithm without omissions.

The first test investigates omitting task grouping (aspect GR from Section
3.4), and of omitting suppression of spurious costs during time sweep (CS
from Section 3.2). The results are similar to KHE20’s. Omitting GR never
produces a lower cost solution. Omitting CS produces a lower cost solution in
six instances, but overall, KHE20 produces more best solutions. The effect of
GR and CS was larger earlier in this project; as the ejection chain algorithm
has improved, the need for them has diminished.

10 Note to referees. This section is new.
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The second test investigates omitting three repair steps during construc-
tion: ejection chain repair of limit resources defects after assigning each day
(CE from Section 3.1), resource rematching after each day (CR from Section
3.2), and resource rematching each day individually at the end (CI from Sec-
tion 3.2). The results are similar to KHE20’s.

The third test investigates omitting the three edge adjustments in resource
matching (Section 3.1): favouring nurses with more available workload (CW),
assignments that bring fewer constraints to their maximum limits (CL), and
shorter runs of consecutive busy days (CB). Again the results are similar to
KHE20’s, although KHE20 does best.

The fourth test investigates omitting aspects of the repair phases: the whole
second repair phase (R2 from the start of Section 3), resource rematching from
both phases (RM from Section 3.3), and ejection chain repair from both phases
(EE from Section 3.3). This shows that ejection chains have a major impact,
and that the second repair phase is also important on some instances. There
is some evidence that, for some instances, time spent on resource rematching
might be better spent on ejection chains.

The fifth test investigates omitting widening (EW), reversing (ER), and
balancing (EB) from ejection chain repair (Section 3.3). KHE20 is clearly
best here, producing the lowest average cost and the largest number of best
solutions. Omitting balancing speeds up the algorithm significantly and is
beneficial in a few instances, but it is clearly inferior overall.

The sixth test tries different amounts of widening (where KHE20 uses 4).
It shows that KHE20 is doing about the right amount of widening.

The seventh test tries different amounts of balancing (where KHE20 uses
12). There is some evidence that KHE20 does too much balancing, although
this area needs more study. Balancing is likely to be of more benefit to some
instances—those whose workload limits are tight—than others. For solves that
reach the time limit, balancing repairs lack variety compared with other repairs
that could be tried in the limited time.

To summarize the results. Several of the aspects have not demonstrated
any value in these tests. Testing them on all archives might prove definitively
that they could be removed. On the other hand, all aspects seem to be doing no
harm, and, given the wide variation among instances, most of them probably
do good sometimes. ‘Biodiversity’ produces robustness in algorithms as it does
in the natural world, so the author is in no hurry to remove any aspects.

The supplementary paper also contains some tests which run KHE20 with
its running time limits doubled. These are the source of some of the remarks in
Section 4 about the effect of longer running times. Doubling the running time
produces significantly better solutions for some large instances. More often,
however, the improvement is only modest.

In any case, the author does not advocate longer running times, because
KHE20 is intended to run quickly. The real value of these experiments is in
showing what the current ejection chain repair operations are capable of, when
more time is available.
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6 Conclusion

This paper has presented KHE20, a nurse rostering solver which aims to find
very good but not optimal solutions quickly across a wide range of instances.
Polynomial-time methods are used: time sweep for the initial assignment, and
ejection chains for repair. There are no parameters to tune. The algorithm has
many detailed aspects which, taken together, improve it significantly.

Tests on four well-known data sets have shown that KHE20, or rather
KHE20x8, is always competitive in running time, and usually in cost. There
are some weak results, notably on the INRC2 8-week instances. But it must
be remembered that none of the algorithms against which KHE20 is compared
here have been tested as widely as KHE20 has. It is not known how any of
them would perform on all four data sets.

The author has not yet investigated in detail the poor performance of
KHE20 on the INRC2 8-week instances. This is the obvious next step. Other
investigations of this kind, carried out over the last two years, have driven the
improvements which have brought the algorithm to its current level.

Very often, one can observe the solver working hard on repairs that an
intelligent observer can dismiss as hopeless. Future work could usefully focus
on targeting repairs better. That would improve cost as well as running time,
especially for solves that reach the time limit.

One can see from the leading recent papers [4,35] that provably optimal
solutions to realistic instances are becoming available using methods based on
integer programming. There is still a role for algorithmic methods, however,
in finding good solutions for large instances with reliably fast running times.
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