Noname manuscript No.
(will be inserted by the editor)

KHE18: A Solver for Nurse Rostering (Abstract)

Jeffrey H. Kingston

Received: date / Accepted: date

Abstract The problem of assigning nurses to the shifts of a hospital ward,
known as nurse rostering, has been studied for many years. This paper presents
work in progress on the KHE18 nurse rostering solver. A time sweep algorithm
is used to make an initial assignment, followed by repair using several methods,
including ejection chains. Results are presented for several standard data sets.

Keywords Nurse rostering - Time sweep - Ejection chains - XESTT

1 Introduction

The problem of assigning nurses to the shifts of a hospital ward, known as nurse
rostering, has been studied for many years. It is an NP-complete problem, and
exact algorithms are out of reach in general, although many smaller instances
have recently been solved to optimality with integer programming [4,30].

Many inexact methods have been tried. Even very recent work covers a wide
range: integer programming [14,24,27,30], variable neighbourhood search [32],
simulated annealing [9], weighted maxSAT [10], hyper-heuristics [2,15,28], and
constraint programming [29]. For less recent work, consult [33].

The solver presented here, KHE18, is the 2018 version of the main solver
built by the author on his KHE timetabling platform [19]. It runs in polynomial
time and aims to find a good but not optimal solution quickly. It uses a time
sweep algorithm for constructing an initial solution (Section 3.1). This assigns
nurses to the first day of the cycle, then to the second, and so on. After that,
it tries several repair methods, including ejection chains (Section 3.2).

KHE]18 is work in progress. It has been tested on three data sets (Section 4).
It runs quickly and has found some solutions as good as, or nearly as good as,
the best in the literature; but overall its results are not yet competitive.

J. Kingston (http://jeffreykingston.id.au)
School of Information Technologies, The University of Sydney, Australia
E-mail: jeff@it.usyd.edu.au

2 Jeffrey H. Kingston

2 The nurse rostering problem and its XESTT formulation

Nurse rostering is the problem of assigning shifts to the nurses of a hospital
ward. Hospitals operate 24 hours a day, so there are usually at least three
types of shifts: morning, afternoon, and night. Each shift demands a certain
number of nurses, often with specific skills. There may be some flexibility in
how many nurses to assign, and the number typically changes from day to day.

Perhaps the most characteristic feature of the problem is the complex array
of requirements that each nurse’s timetable must satisfy. In addition to limits
on total workload, rules such as ‘a nurse must have a day off after a sequence
of night shifts’, ‘a nurse may work at most four days in a row’ and so on are
very common, and highly variable, both between and within instances.

Instead of the usual formulas, this paper’s formal definition of the nurse
rostering problem is supplied by the XESTT [21] nurse rostering data format.
XESTT is an XML format which is capable of representing the instances
found in all the well-known data sets. It is based on the XHSTT high school
timetabling format [25,26]; the name ‘XESTT’ was chosen to be reminiscent
of ‘XHSTT’, with ‘employee scheduling’ replacing ‘high school’. Full details of
XESTT appear online [16] and will not be repeated here. Instead, this section
offers an overview, and explains the importance of XESTT to the present work.

An XESTT instance consists of the cycle (the sequence of times that events
may be assigned); a set of resources (entities that attend events); a set of events
(meetings); and a set of constraints, specifying conditions that solutions should
satisfy, and penalties to impose when they don’t.

Each event contains a starting time, which may either be preassigned a
time or left open for a solver to assign; a duration, which is a fixed positive
integer giving the number of consecutive times, starting at the starting time,
that the event is running; an optional workload, which is a fixed non-negative
integer representing the workload of the event in arbitrary units, for example
in minutes; and any number of event resources, each specifying one resource
which attends the event for the full duration, which may either be preassigned
a resource or left open for a solver to assign.

In nurse rostering instances, each event represents one shift. Each event
has duration 1; its actual duration in minutes can be expressed as a workload,
if needed. Its starting time is preassigned to a time unique to the shift. For
example, if on each day there is a morning, afternoon, and night shift, then each
day will contain three times, one for each shift. This arrangement is somewhat
artificial, but, as [21] explains, most nurse rostering constraints concern shifts,
not workload in minutes, and this works best in practice. Within an event,
each event resource represents a demand for one nurse.

Sets of times, resources, and events may be defined, called time groups,
resource groups and event groups. Each resource has one resource type, saying
what type of resource it is. In nurse rostering there is just one type, Nurses.

XESTT offers 18 constraint types, but 9 are not used in nurse rostering,
mainly because all the events have preassigned times and duration 1. Of the 9
types that are used, 3 are cover constraints, specifying the number of resources

KHE18: A Solver for Nurse Rostering (Abstract) 3

that should attend each event, and the skills those resources should have. The
other 6, called resource constraints here, constrain the timetables of individual
resources, specifying unavailable times, workload limits, unwanted patterns
(such as a day shift immediately following a night shift), and so on.

Each constraint contains a Boolean required flag indicating whether it is
hard or soft, and an integer weight. When a constraint is violated, the degree of
violation is multiplied by the weight to give a cost. Algorithms aim to minimize
firstly the total cost of hard constraints (the hard cost), and secondly the total
cost of soft constraints (the soft cost). In nurse rostering, solutions with non-
zero hard cost are usually considered to be infeasible, that is, useless.

XESTT is important here for two reasons. First, it makes it easy to test
KHE18 on a wide range of instances, because all these instances have been
converted from their original formats to XESTT.

Second, XESTT uses just 9 types of constraints to represent all of the
constraints found in other models. An algorithm like the ejection chain repair
algorithm in this paper, which handles each constraint type explicitly, has
only 9 kinds to handle. Also, all XESTT constraints are represented in a
uniform way (in object-oriented terms, the 18 constraint types are subtypes
of an abstract Constraint superclass). Without XESTT or something like it,
the number of constraint types would be effectively endless, and an approach
that handles each constraint type explicitly would hardly be feasible.

3 The KHE18 solver

The KHE1S solver presented here is built on the author’s KHE solve platform
and is available from the KHE web site [19]. It is descended from the KHE14
high school timetabling solver [18]. It is in fact a general timetabling solver,
but because in nurse rostering the times of all events are preassigned, its time
assignment part does nothing here except to convert the time preassignments
in the instances into assignments in the solutions, taking almost no time.
After time assignment comes resource assignment—the assignment of nurses
to shifts. KHE18 first constructs an initial assignment using time sweep, then
continues with a number of repairs which improve that initial assignment.
Space precludes a complete presentation, although that is available online, in
the KHE documentation [19]. Instead, this section focuses on the main points.

3.1 Time sweep assignment

Because of the high density of constraints in nurse rostering, it is often easier to
avoid introducing a problem during construction of the initial solution than to
remove it later. So it makes sense to try hard to produce a very good solution
during the initial construction phase.

Many nurse rostering constraints concern what happens over consecutive
days within nurses’ timetables. This suggests that the initial solution should

4 Jeffrey H. Kingston

be constructed day by day—the shifts of the first day assigned first, then the
shifts of the second day, and so on. As each day is assigned, these kinds of
constraints can usually be satisfied. This we call the time sweep method. The
assignment of resources to the shifts of one day can often be made in a locally
optimum manner in polynomial time using weighted bipartite matching. The
rest of this section describes KHE18’s implementation of this approach.

The algorithm first checks that a hard constraint limits each nurse to at
most one shift per day (if not, it applies itself to individual shifts, rather than
to days). Then, for each day it builds a weighted bipartite graph. The graph
contain one demand node for each event resource of each event (shift) on that
day, since each event resource is a demand for one nurse. It also contains one
supply node for each nurse available for assignment. An edge joins a demand
node to a supply node when the nurse can be assigned to the shift (which is
practically always; the few exceptions need not detain us here). The cost of
the edge is the cost of the solution containing all the assignments on previous
days, plus just this one assignment on the current day. There is also one
supply node for each demand node, representing non-assignment of a nurse to
the demand node’s event resource. The cost of this edge is just the current
solution cost. This will usually include a penalty for not assigning a resource,
which will be absent from the edges which do assign one. Assuming that the
assignments represented by the edges have an independent effect on solution
cost, a minimum-cost maximum matching in this graph represents a locally
optimal assignment of nurses to the event resources of the day.

When are these assignments independent, in fact? All costs are produced
by constraint violations, so this question can be answered by examining each
of the 9 constraint types, to see whether the costs it generates are independent.
And indeed most of them are. Constraints on the timetable of an individual
nurse, for example, are affected only by assignments of that nurse, and there
is at most one of those each day. XESTT has just one kind of constraint whose
cost depends on multiple edges: the limit resources constraint. For example, a
constraint of this type could require at least one nurse with a certain specialty
to be on duty at all times of the day, which is not the same as requiring one
such nurse on every shift, because shifts may overlap in time within one day.

Accordingly, when limit resources constraints are present, the algorithm
finds a matching using a simple constructive heuristic (for each event resource
in turn, calculate the cost of each possible assignment, and also the cost of
non-assignment, and choose the alternative of least cost). Solution quality has
been observed to deteriorate when this has to be done.

To encourage an even distribution of workload, the edge costs are adjusted
slightly to break ties in favour of assigning resources with more unused work-
load. This has been observed to significantly improve solution quality. Two
other adjustments are also included: one which favours assignments that do
not bring constraints from below their upper limits to their upper limits, and
another that favours shorter runs of consecutive busy days (reasoning that
they will offer more flexibility when repairing the timetable later). Both have

KHE18: A Solver for Nurse Rostering (Abstract) 5

been observed to give marginal further improvements. These observations need
to be tested by large-scale experiments, which have not yet been carried out.

Constraints with minimum limits often produce spurious costs during time
sweep (costs that will disappear as the time sweep moves on). For example, if
busy days should come in groups of at least 2 consecutive days, then the first
assignment after a free day will attract a spurious cost. KHE18 avoids this by
informing constraints that the days after the current day should be treated like
days after the end of the cycle often are: the constraint should not assume that
they are either assigned or not assigned, and make its best estimate of cost
(a lower bound on the true cost) accordingly. This turns off most minimum
limits. A full description, with formulas, is given elsewhere [22].

The great weakness of time sweep—its inability to look ahead—is mitigated
by including repairs in the construction stage. After each day is assigned, a
few preceding days are individually unassigned and reassigned, using weighted
bipartite matching if possible. This may produce small changes that coordinate
better with the assignments now present on following days.

The author is unable to cite previous work using time sweep. The general
idea is well known, although whether the details described above have been
tried is not known. They make a significant difference.

3.2 Ejection chain repair

After constructing an initial solution using time sweep, KHE18 repairs it using
several methods. The most significant, in the amount of improvement attained
and in running time, is ejection chain repair.

A defect in a solution is one violation of a constraint. For example, if nurse
N2 should work at most 2 weekends but in fact works 3, that is a defect.

A repair is a change to the solution which removes a defect. For example,
unassigning one of nurse N2’s busy weekends repairs the defect just described.

An ejection chain is a sequence of repairs. Starting from some defect, the
first repair repairs that defect but introduces one new defect. The second repair
repairs that defect, but introduces another new defect, and so on. If some repair
repairs a defect without introducing a new defect, then the chain ends and the
solution has been improved. Or if the repair of one defect introduces two or
more new defects, the chain has to be undone, with no improvement.

There are usually several ways to repair a defect. For example, nurse N2’s
defect can be repaired by unassigning any one of the three busy weekends. So
finding a successful chain involves a search tree: if the first repair does not
begin a successful chain, then the second is tried, and so on recursively.

The main loop of the ejection chain repair algorithm visits each defect of
the current solution and attempts to remove it by searching a tree of ejection
chains, stopping at the first successful chain, if any. It cycles around the defects
until a complete cycle of attempts has failed, at which point no further progress
is possible and the algorithm terminates. Alternatively, it terminates when one
of its periodical checks reveals that the soft time limit has been reached.

6 Jeffrey H. Kingston

There are several strategies for limiting the method to polynomial time.
The usual one, which KHE18 uses, is to refuse to visit the same part of the
solution twice while trying to remove a given defect [17,18].

Each of the 9 kinds of constraints gives rise to one type of defect (or one
might say two types, because a maximum limit violation is repaired differently
from a minimum limit violation). For each defect, a set of repairs tailored to its
type is tried, making the chains polymorphic. Space precludes a full description
of these sets of repairs, which in any case are still evolving. They will be defined
at [19] when settled. Meanwhile, here is a general overview.

The basic operations underlying all repairs are shift assignment, which
assigns resource r to unassigned shift s, shift unassignment, which unassigns
resource r from shift s, and shift move, which changes the assignment of shift
s from resource r1 to resource ro. One repair is a set of these basic operations.

For example, if the defect is the appearance of day shift so immediately
following night shift s; in the timetable of resource r, then the obvious repairs
to try are shift moves of s; from r to any other resource, and shift moves of
s to any other resource. If the problem is the appearance of 6 consecutive
busy days in the timetable of resource r when the maximum limit is 4, the
most likely repairs are moving the first two shifts to some other resource, and
moving the last two shifts to some other resource. And so on.

The author is currently investigating some quite complex repairs, such as
swapping two sequences of days so as not to change total workloads. Unlike
high school timetabling, in nurse rostering the constraint density is very high,
so a repair that removes one defect often introduces several others. When
that happens the ejection chain algorithm terminates that branch of its search
immediately, so one aims to design repairs that are likely to produce few new
defects. This is challenging and suggests that ejection chains might be less
effective in nurse rostering than in high school timetabling [18].

The author is aware of three previous uses of ejection chains in nurse ros-
tering. The first [11] is older than the data sets in use today, making its results
hard to evaluate. It includes a repair which swaps one week’s work between
two resources. The second [3,4,7] is recent. Its basic repair swaps a variable
number of consecutive days’ work between two resources. It allocates equal
running time to each top-level repair. Its results are compared with ours in
Section 4. The third [23] uses ejection chains as individual moves within a tabu
search framework. Each chain is generated at random in a way that preserves
coverage, but otherwise without checking cost until the whole chain has been
generated. It cites [1] as a source for these kinds of chains—a very early use.

This paper’s ejection chain algorithm derives from recent work in high
school timetabling [17,18]. Its polymorphism seems new to nurse rostering.
The works cited above bundle defects together by resource and search for
repairs which reduce the total cost of one bundle. It is hard to say a priori
whether this is advantageous or not: on the one hand, it reduces the precision
with which repairs can address specific defects; on the other, it is less affected
by high constraint density. One paper [3] adds precision by selecting repairs
which focus on those parts of the resource’s timetable where defects lie.

KHE18: A Solver for Nurse Rostering (Abstract) 7

3.3 Grouping event resources

The KHE solve platform allows event resources to be grouped together, in
which case assigning a resource to one of them automatically assigns it to
all. This feature was added in support of high school timetabling, where the
lessons of one course spread through the week need to be assigned a common
teacher. However, it has proved useful in nurse rostering as well.

For example, in instance COI-GPost (Section 4.1), a nurse who takes a
Friday night shift should also take the following Saturday night and Sunday
night shifts, owing to constraints which penalize Friday night shifts before
free weekends, incomplete weekends (working on Saturday or Sunday but not
both), and day shifts after night shifts. Then whoever takes the Monday night
shift should also take the Tuesday night shift, and whoever takes the Wednes-
day night shift should also take the Thursday night shift, owing to a minimum
limit of 2 and a maximum of 3 on the number of consecutive night shifts.

KHE18’s method of finding such combinations is very simple. For each shift
s, find all combinations of shifts and free time over 2 and 3 consecutive days
starting with s. If only one of these combinations has zero cost, group its shifts
together so that they will always be assigned the same resource. Of course,
such groupings might turn out to be unadvisable for some deep reason. So
KHE18 applies the groupings during the initial time sweep and the first repair
cycle, but then it removes them, so that if something else is needed there is a
chance to find it in a later repair cycle.

3.4 Randomization

Randomization is not stressed in algorithmic solvers like it is in, for example,
metaheuristic ones. Still, including some randomization allows the algorithm
to be run with different seeds to obtain different results. Doing this and keeping
the best solution is a simple way to trade off solution quality and running time.
The time sweep algorithm randomizes by choosing a random resource as
the first to be given a supply node, cycling through the resources from there.
This causes ties in edge weights to be broken differently, at least at the start
when many resources have equal unused workload. The ejection chain repair
algorithm randomizes by trying alternative repairs starting at a random point.
For example, when a shift is to be moved to some other resource, it traverses
the list of resources from a random point. These methods are not deep, but
they seem to work, judging from the spread of solution costs they produce.

4 Results
This section presents the results of running KHE18 on several well-known

sets of instances, after conversion to XESTT by the NRConv program [20,21],
with comparisons with previous results. The converted instances and results

8 Jeffrey H. Kingston

are available, in the form of XESTT archive files, at [20]. These results are
work in progress and are likely to be superseded as KHE18 is improved.

Two versions of the solver are tested. The first, KHE18, runs the solver
once and produces one solution. The second, KHE18x8, runs the solver 8 times,
with a different random seed on each run, and keeps the best solution.

All solves are run on the author’s machine, a quad-core 3.6GHz Intel Core
i7-4790. All runs have a time limit of 300 seconds per instance. The limit is soft:
instead of being interrupted, each potentially slow part of the solver consults
wall clock time periodically and does as little as possible after the time limit.

KHE18x8 runs in parallel using 4 threads. Four solves are started initially,
one per thread. New solves are started in these threads as old ones end, until all
solves have been started or the whole run reaches the time limit. So KHE18x8
could start as few as 4 solves. Once started, a solve runs until it stops itself.

Each result table was generated by the author’s HSEval program from an
XESTT archive file and included with no hand editing. In each table, a blank
entry indicates that there is no solution for the instance of its row in the
solution group of its column. If there are multiple solutions, the solution with
minimum running time among all solutions with minimum cost is shown.

The costs are not reported on trust; they are calculated from the solutions
in the archive file, and hence verified, by HSEval. Only soft costs are shown;
any solutions with non-zero hard cost are shown as ‘inf.’.

Running times in seconds are reported where present in the archive. HSEval
cannot verify them. KHE18 and KH18x8’s running times are wall clock times.

At the foot of each table is a row of averages. This is good for comparing
running times, but for costs it is sensitive to the scale of the constraint weights.
Multiplying each weight in one instance by 10, say, would greatly increase the
influence of that instance on the average, without changing anything funda-
mental. So average cost is useful mainly for instances with similar weights,
such as those of the First International Nurse Rostering Competition.

4.1 The Curtois original instances

The Curtois original instances are the instances available online at [8] under the
heading ‘Original instances.” Their XESTT versions appear in XESTT archive
file COI.xml at [20], along with the solutions posted with the instances.

This author does not know where these solutions came from originally.
Most of them have the same costs as the solutions reported for the branch and
price algorithm in Table 3 of [4], which also contains lower bounds showing that
nearly all of them are optimal. However, their running times, where recorded in
the solution files, are different. They may come from several solvers, in which
case caution is needed in comparing their running times with KHE18’s.

Table 1 compares KHE18’s solutions with those from [8]. It shows that even
KHE18x8 is not yet competitive. Still, there are hopeful signs: the optimal or
near-optimal solutions for instances such as C0OI-Millar-2.1.1, COI-LLR, and
COI-BCV-3.46.2, and the moderate running times. More work is needed.

KHE18: A Solver for Nurse Rostering (Abstract) 9

Table 1 Results for the Curtois original instances. Column Misc shows the best solutions
from XESTT archive file COI.xml. The other columns show the results from the two versions
of the author’s solver described in this paper. This table is derived from XESTT archive file
KHE18-2018-05-22-C0I.xml, at [20]. Here and elsewhere, running times are in seconds.

Instance Misc KHE18 KHE18x8
Cost Time Cost Time Cost Time
COI-Ozkarahan 0 - 200 0.1 100 0.2
COI-Musa 175 - 191 0.4 185 1.3
COI-Millar-2.1 0 1.0 400 0.0 400 0.1
COI-Millar-2.1.1 0 - 0 0.0 0 0.1
COI-LLR 301 10.0 302 0.4 301 1.4
COI-Azaiez 0 600.0 31 0.7 26 2.9
COI-GPost 5 - 25 0.5 10 2.0
COI-GPost-B 3 - 1021 0.3 1015 2.1
COI-QMC-1 13 - 37 0.6 33 2.1
COI-QMC-2 29 - 52 0.8 46 2.9
COI-WHPP 5 - 3010 20.6 3009 47.1
COI-BCV-3.46.2 894 17840.0 900 3.7 896 10.1
COI-BCV-4.13.1 10 - 20 0.2 10 0.6
COIL-SINTEF 0 - 9 0.3 8 1.1
COI-ORTECO01 270 105.0 1485 0.9 1465 8.5
COI-ORTEC02 270 - 480 12.2 415 22.5
COI-ERMGH 779 124.0 2276 300.4 2330 300.5
COI-CHILD 149 - 2686 296.2 2391 504.7
COI-ERRVH 2001 - 67253 300.2 60139 300.5
COI-HEDO1 136 - 182 1.1 179 3.7
COI-Valouxis-1 20 - 1500 0.7 1500 2.6
COlI-Tkegami-2.1 0 13.0 113 2.3 4 6.6
COlI-Tkegami-3.1 2 21600.0 550 12.5 247 24.3
COI-Tkegami-3.1.1 3 2820.0 748 8.8 346 36.4
COlI-Ikegami-3.1.2 3 2820.0 365 12.0 254 30.9
COI-BCDT-Sep 100 - 560 3.7 560 9.4
COI-MER 7081 36002.7 55774 300.3 49327 300.7
Average 454 5191 47.4 4637 60.2

4.2 The First International Nurse Rostering Competition

The instances from the First International Nurse Rostering Competition are
available from the competition web site [12]. Their converted versions appear in
archive files INRC1-Long-And-Medium.xml and INRC1-Sprint.xml [20], with
the solutions from the GOAL research group web site [31], which the GOAL
group has proved to be virtually optimal.

The results appear in Tables 2 and 3. These tables do not give running
times for the GOAL solutions, because no running times appear in the solution
files downloaded from the GOAL site. However, the site itself contains a table
that does give running times. About 10 of the instances, from the Long and
Medium sets, have running times of about 4 hours. Many others, including all
the Sprint instances, have running times under one minute, often well under.

Another source of virtually optimal solutions to these instances is the
branch and price algorithm whose results are reported in Table 5 of [4]. The

10 Jeffrey H. Kingston

Table 2 Results for the Long and Medium instances of the First International Timetabling
Competition. The GOAL column shows the solutions from the GOAL research group web
site [31], which the GOAL group has shown to be virtually optimal. The other columns show
the results from the two versions of the author’s solver. This table is derived from XESTT
archive file KHE18-2018-05-22-INRC1-Long-And-Medium.xml, available at [20].

Instance GOAL KHE18 KHE18x8
Cost Time Cost Time Cost Time
INRC1-L01 197 - 204 13.3 199 33.9
INRC1-L02 219 - 235 12.4 231 31.8
INRC1-L03 240 - 240 11.4 240 33.3
INRC1-L04 303 - 307 17.3 304 43.2
INRC1-L05 284 - 291 26.9 286 61.1
INRC1-LHO1 346 - 444 18.4 386 45.2
INRC1-LHO02 89 - 118 18.7 109 43.3
INRC1-LHO03 38 - 67 5.3 60 15.1
INRC1-LHO04 22 - 53 4.8 40 14.1
INRC1-LHO5 41 - 93 9.3 71 25.4
INRC1-LLO1 235 - 290 11.2 283 33.9
INRC1-LL02 229 - 272 11.1 272 32.3
INRC1-LL03 220 - 307 7.3 296 24.0
INRC1-LL04 222 - 309 7.4 309 38.5
INRC1-LL05 83 - 103 4.4 98 12.9
INRC1-MO1 240 - 248 7.2 247 21.4
INRC1-M02 240 - 250 6.8 246 21.6
INRC1-MO03 236 - 244 6.7 244 16.1
INRC1-M04 237 - 245 7.4 244 18.4
INRC1-M05 303 - 315 9.6 311 25.7
INRC1-MHO1 111 - 168 3.6 144 10.4
INRC1-MHO02 221 - 270 6.5 253 17.0
INRC1-MHO03 34 - 53 4.5 53 10.5
INRC1-MH04 78 - 92 3.6 89 14.6
INRC1-MHO05 119 - 148 3.7 138 12.5
INRC1-MLO1 157 - 190 2.7 184 9.0
INRC1-MLO02 18 - 34 2.6 30 8.1
INRC1-ML03 29 - 46 2.2 44 6.7
INRC1-ML04 35 - 55 2.7 47 8.6
INRC1-MLO5 107 - 150 4.1 145 23.7
Average 164 195 8.4 187 23.7

author has not tried to obtain these solutions. Their reported running times
are better than the GOAL ones, never exceeding about 10 minutes.

KHE’s results on these instances are quite good. The KHE18x8 results on
INRC1-LO1 to INRC1-LO5 are very good: optimum and near-optimum costs,
found in under about one minute each. This is competitive with [4] and [31].

4.3 The 2014 Curtois and Qu instances
The instances tested here are the 24 instances published in 2014 by Curtois

and Qu [7,8]. Converted versions appear in file CQ14.xml, which also holds
four sets of solutions received from Curtois via private correspondence.

KHE18: A Solver for Nurse Rostering (Abstract) 11

Table 3 Results for the Sprint instances of the First International Timetabling Competi-
tion. This table is derived from XESTT archive file KHE18-2018-05-22-INRC1-Sprint.xml,
available at [20]. Other details as for Table 2.

Instance GOAL KHE18 KHE18x8
Cost Time Cost Time Cost Time
INRC1-S01 56 - 59 0.6 59 2.5
INRC1-S02 58 - 60 0.6 60 2.1
INRC1-S03 51 - 57 0.6 54 2.1
INRC1-S04 59 - 64 0.6 63 1.9
INRC1-S05 58 - 62 0.8 60 2.7
INRC1-S06 54 - 60 0.7 56 1.4
INRC1-S07 56 - 59 0.6 59 2.3
INRC1-S08 56 - 59 0.8 58 2.2
INRC1-S09 55 - 57 0.6 57 2.3
INRC1-S10 52 - 54 0.6 54 1.5
INRC1-SHO1 32 - 38 0.8 34 1.9
INRC1-SHO02 32 - 43 0.6 37 1.8
INRC1-SHO03 62 - 69 1.1 68 3.0
INRC1-SH04 66 - 75 1.5 73 4.2
INRC1-SH05 59 - 66 1.1 66 3.6
INRC1-SH06 130 - 191 0.6 183 2.4
INRC1-SHO7 153 - 183 1.0 181 2.4
INRC1-SHO08 204 - 242 1.1 237 3.2
INRC1-SH09 338 - 375 1.3 348 4.1
INRC1-SH10 306 - 319 0.8 319 2.3
INRC1-SLO1 37 - 46 1.0 45 3.0
INRC1-SL02 42 - 46 1.0 46 2.6
INRC1-SL03 48 - 56 1.0 56 4.1
INRC1-SL04 73 - 91 0.6 91 2.3
INRC1-SL05 44 - 48 0.9 47 3.6
INRC1-SL06 42 - 46 0.6 44 1.5
INRC1-SLO7 42 - 58 0.6 52 1.6
INRC1-SLO8 17 - 20 0.2 18 0.5
INRC1-SL09 17 - 22 0.1 22 0.6
INRC1-SL10 43 - 51 0.3 50 1.5
Average 78 89 0.8 87 2.4

These four sets of solutions were made by the solvers reported on in Table 2
of [7], namely ejection chains (10 mins), ejection chains (60 minutes), branch
and price, and Gurobi. However, they differ from the solutions presented in
Table 2 of [7], for reasons explained in [21]: the solutions received were not
exactly the ones reported on in the table, and some had to be omitted owing
to extreme overstaffing of shifts, which is strictly speaking legal but which this
author chose not to allow in the XESTT versions of the instances.

Another source of solutions to these instances is [10]. They are not com-
petitive, so adding them to CQ14.xml has not been a priority.

The results appear in Tables 4 and 5. The author has only just begun
to tackle these instances, and the results are not competitive, although there
is some promise in the generally modest running times, and in the fact that
the first four infeasible solutions in the KHE18x8 column are only a few hard

12 Jeffrey H. Kingston

Table 4 Results for the instances published in 2014 by Curtois and Qu [7,8]. The CQ-BP
and CQ-GR columns show two of the four sets of solutions from XESTT archive CQ14.xml,
corresponding to the Branch and Price and Gurobi 5.6.3 columns of Table 2 of [7]. The other
columns show the results from the two versions of the author’s solver. This table is derived
from XESTT archive file KHE18-2018-05-22-CQ14.xm1, available at [20].

Instance CQ-BP CQ-GR KHE18 KHE18x8
Cost Time Cost Time Cost Time Cost Time
CQ14-01 607 0.4 607 - 710 0.2 710 0.6
CQ14-02 828 - 1036 0.6 1036 2.6
CQ14-03 1001 - 1218 1.1 1119 3.2
CQ14-04 1716 1.5 1716 - 2439 0.6 2134 2.5
CQ14-05 1160 25.6 1143 - 2253 1.6 2062 5.3
CQ14-06 1952 10.5 1950 - inf. 3.3 2975 11.0
CQ14-07 1058 93.7 1056 - 1897 4.2 1589 13.3
CQ14-08 1308 11831.1 1323 - inf. 11.1 inf. 30.7
CQ14-09 439 - 818 20.7 544 45.9
CQ14-10 4631 - inf. 17.6 5637 41.2
CQ14-11 3443 - inf. 15.4 4037 53.9
CQ14-12 4046 1336.4 4040 - 5581 134.3 5581 250.8
CQ14-13 1388 - 3438 300.1 3551 300.5
CQ14-14 1280 - inf. 17.5 2608 38.8
CQ14-15 4039 - inf. 46.6 6471 100.6
CQ14-16 3323 265.0 3233 - inf. 7.2 inf. 29.3
CQ14-17 5851 - inf. 28.6 inf. 84.3
CQ14-18 4760 - inf. 25.6 inf. 58.5
CQ14-19 3218 - inf. 105.2 6355 346.2
CQ14-20 inf. 300.2 inf. 300.5
CQ14-21 inf. 301.0 inf. 301.2
CQ14-22 inf. 300.5 inf. 301.0
CQ14-23 17428 - inf. 300.9 inf. 302.0
CQ14-24 48777 - inf. 301.8 inf. 308.5
Average 93.6 122.2

constraint violations away from feasibility. The later instances are very large,
and even finding a feasible solution is challenging.

5 Conclusion

This paper has presented KHE18, a solver for nurse rostering which aims to
produce very good but not optimal solutions quickly across a wide range of
instances. Polynomial-time methods are used, including time sweep for the
initial assignment, and ejection chains for repair.

This paper reports on work in progress. At present, KHE18 is producing
some very good solutions, but overall its results are not competitive, except in
running time. What is needed now is more analysis of its behaviour, leading,
hopefully, to new insights which can be incorporated into the algorithm.

One can see from the leading recent papers [4,30] that provably optimal
solutions to realistic instances are becoming available using methods based on
integer programming. There is still a role for algorithmic methods, however,

KHE18: A Solver for Nurse Rostering (Abstract) 13

Table 5 Results for the instances published recently by Curtois and Qu [7,8]. As for Table 4,
only showing the CQ-EJ10 and CQ-EJ60 columns, corresponding to the ejection chain (10
mins) and ejection chain (60 mins) columns of Table 2 of [7].

Instance CQ-EJ10 CQ-EJ60 KHE18 KHE18x8
Cost Time Cost Time Cost Time Cost Time
CQ14-01 1114 0.0 710 0.2 710 0.6
CQ14-02 1019 30.0 837 3600.0 1036 0.6 1036 2.6
CQ14-03 1001 2.6 1003 3600.0 1218 1.1 1119 3.2
CQ14-04 1716 8.2 1718 3600.0 2439 0.6 2134 2.5
CQ14-05 1144 76.8 1358 3600.0 2253 1.6 2062 5.3
CQ14-06 1952 88.8 2258 3600.0 inf. 3.3 2975 11.0
CQ14-07 1056 262.1 1269 3600.0 1897 4.2 1589 13.3
CQ14-08 2133 600.0 1314 3600.0 inf. 11.1 inf. 30.7
CQ14-09 1449 0.6 439 635.2 818 20.7 544 45.9
CQ14-10 4870 600.0 4631 863.2 inf. 17.6 5637 41.2
CQ14-11 3443 171.4 3661 3600.0 inf. 15.4 4037 53.9
CQ14-12 5476 600.0 4040 1526.1 5581 134.3 5581 250.8
CQ14-13 11432 30.1 1486 3600.1 3438 300.1 3551 300.5
CQ14-14 2286 600.0 1300 3600.3 inf. 17.5 2608 38.8
CQ14-15 12050 30.1 4378 3600.0 inf. 46.6 6471 100.6
CQ14-16 3926 30.0 3225 2965.7 inf. 7.2 inf. 29.3
CQ14-17 7801 600.0 5872 3600.1 inf. 28.6 inf. 84.3
CQ14-18 10002 30.0 4969 3600.0 inf. 25.6 inf. 58.5
CQ14-19 14788 30.0 3715 3600.0 inf. 105.2 6355 346.2
CQ14-20 inf. 300.2 inf. 300.5
CQ14-21 inf. 301.0 inf. 301.2
CQ14-22 inf. 300.5 inf. 301.0
CQ14-23 44819 3601.0 inf. 300.9 inf. 302.0
CQ14-24 inf. 301.8 inf. 308.5
Average 93.6 122.2

in finding good solutions for large instances with reliably fast running times.
It is not clear to this author that very large instances like the last few of the
2014 Curtois and Qu instances really do need to be solved in the real world.
However, if they do, that would be another role for algorithmic methods.

Note. Shortly after submitting the original version of this paper the author
inadvertently allowed his software to overwrite the archive files holding its
results. Those results cannot now be verified, so in this version of the paper he
has replaced them with results produced on 22 May 2018. These can be verified,
using archive files accessible from the XESTT web site [20]. The algorithm has
not changed significantly, but code tuning has allowed it to do more within
the same time limit, producing better results on the larger instances.

References

1. J. L. Arthur and A. Ravindran A multiple objective nurse scheduling model, AIIE Trans-
actions 13(1), pages 55-60 (1981).

2. Shahriar Asta and Ender Ozcan, A tensor-based approach to nurse rostering, In Ender
Ozcan, Edmund Burke, and Barry McCollum (eds.), PATAT 2014 (Tenth international

14 Jeffrey H. Kingston

conference on the Practice and Theory of Automated Timetabling, York, UK, August
2014), 442-445 (2014)

3. Edmund K. Burke, Tim Curtois, Rong Qu, and Greet Vanden Berghe, A time predefined
variable depth search for nurse rostering, INFORMS Journal on Computing, 25(3), 411419
(2013), accessed via http://eprints.nottingham.ac.uk/28283/1/J0C12vds.pdf

4. Edmund K. Burke and Tim Curtois, New approaches to nurse rostering benchmark in-
stances, European Journal of Operational Research 237, 71-81 (2014)

5. Sara Ceschia, Nguyen Thi Thanh Dang, Patrick De Causmaecker, Stephaan Haspeslagh,
and Andrea Schaerf, Second international nurse rostering competition (INRC-II), problem
description and rules. oRR abs/1501.04177 (2015). URL http://arxiv.org/abs/1501.04177

6. Sara Ceschia, Nguyen Thi Thanh Dang, Patrick De Causmaecker, Stephaan Haspeslagh,
and Andrea Schaerf, Second international nurse rostering competition (INRC-II) web site,
URL http://mobiz.vives.be/inrc2/.

7. Tim Curtois and Rong Qu, Computational results on new staff scheduling benchmark
instances URL http://www.cs.nott.ac.uk/ psztc/NRP/ (2014)

8. Tim Curtois, Employee Shift Scheduling Benchmark Data Sets,
http://www.cs.nott.ac.uk/ psztc/NRP/ (2016)

9. Nguyen Thi Thanh Dang, Sara Ceschia, Andrea Schaerf, Patrick De Causmaecker,
and Stefaan Haspeslagh, Solving the multi-stage nurse rostering problem, PATAT 2016
(Eleventh international conference on the Practice and Theory of Automated Timetabling,
Udine, Italy, August 2016), 473-475 (2016)

10. Emir Demirovic, Nysret Musliu, and Felix Winter, Modeling and solving staff scheduling
with partial weighted maxSAT, PATAT 2016 (Eleventh international conference on the
Practice and Theory of Automated Timetabling, Udine, Italy, August 2016), 109-125
(2016)

11. Kathryn A. Dowsland, Nurse scheduling with tabu search and strategic oscillation,
European Journal of Operational Research 106, 393-407 (1998)

12. Stefaan Haspeslagh, Patrick De Causmaecker, Martin Stlevik, and Andrea Schaerf,
First international nurse rostering competition website, URL: http://www.kuleuven-
kortrijk.be/nrpcompetition (2010)

13. Stefaan Haspeslagh, Patrick De Causmaecker, Martin Stlevik, and Andrea Schaerf, The
first international nurse rostering competition 2010, Annals of Operations Research, 218,
221-236 (2014)

14. Han Hoogeveen and Tim van Weelden, Personalized nurse rostering through linear pro-
gramming, In Ender ézcan, Edmund Burke, and Barry McCollum (eds.), PATAT 2014
(Tenth international conference on the Practice and Theory of Automated Timetabling,
York, UK, August 2014), 476-478 (2014)

15. Ahmed Kheiri, Ender Ozcan, Rhyd Lewis, and Jonathan Thompson, A sequence-based
selection hyper-heuristic: a case study in nurse rostering, PATAT 2016 (Eleventh inter-
national conference on the Practice and Theory of Automated Timetabling, Udine, Italy,
August 2016), 503-505 (2016)

16. Jeffrey H. Kingston, The HSEval High School Timetable Evaluator, URL
http://jeffreykingston.id.au/cgi-bin/hseval.cgi (2010)

17. Jeffrey H. Kingston, Repairing high school timetables with polymorphic ejection chains,
Annals of Operations Research, DOI 10.1007/s10479-013-1504-3 .

18. Jeffrey H. Kingston, KHE14: An algorithm for high school timetabling, In Ender Ozcan,
Edmund Burke, and Barry McCollum (eds.), PATAT 2014 (Tenth international conference
on the Practice and Theory of Automated Timetabling, York, UK, August 2014), 269-291

19. Jeffrey H. Kingston, KHE web site, http://jeffreykingston.id.au/khe (2014)

20. Jeffrey H. Kingston, XESTT web site, http://jeffreykingston.id.au/xestt (2017)

21. Jeffrey H. Kingston, Gerhard Post, and Greet Vanden Berghe, A unified nurse rostering
model based on XHSTT, PATAT 2018 (Twelfth international conference on the Practice
and Theory of Automated Timetabling, Vienna, August 2018)

22. Jeffrey H. Kingston, Modelling history in nurse rostering, PATAT 2018 (Twelfth in-
ternational conference on the Practice and Theory of Automated Timetabling, Vienna,
August 2018)

23. M. J. Louw, I. Nieuwoudt, and J. H. Van Vuuren, Finding good nursing duty sched-
ules: a case study. Technical report, Department of Applied Mathematics, Stellenbosch
University, South Africa (2005). Received from Tim Curtois and held by this author.

KHE18: A Solver for Nurse Rostering (Abstract) 15

24. Antonn Noviék, Roman Vaclavk, Premysl Sucha, and Zdenek Hanzdlek, Nurse rostering
problem: tighter upper bound for pricing problem in branch and price approach, MISTA
2015 (7th Multidisciplinary International Conference on Scheduling: Theory and Applica-
tions), Prague, August 2015, 759-763

25. Gerhard Post, XHSTT web site, http://www.utwente.nl/ctit/hstt/ (2011)

26. Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngéds, Cimmo Nurmi,
Gerhard Post, David Ranson, and Henri Ruizenaar, An XML format for benchmarks in
high school timetabling, Annals of Operations Research, 194, 385-397 (2012)

27. Florian Mischek and Nysret Musliu, Integer programming and heuristic approaches for
a multi-stage nurse rostering problem, PATAT 2016 (Eleventh international conference on
the Practice and Theory of Automated Timetabling, Udine, Italy, August 2016), 245-262
(2016)

28. Christopher Rae and Nelishia Pillay, Investigation into an evolutionary algorithm hyper-
heuristic for the nurse rostering problem, In Ender Ozcan, Edmund Burke, and Barry
McCollum (eds.), PATAT 2014 (Tenth international conference on the Practice and Theory
of Automated Timetabling, York, UK, August 2014), 527-532 (2014)

29. Erfan Rahimian, Kerem Akartunali, and John Levine, A Hybrid Constraint Integer
Programming Approach to Solve Nurse Scheduling Problems, MISTA 2015 (7th Multi-
disciplinary International Conference on Scheduling: Theory and Applications), Prague,
August 2015, 429-442

30. Haroldo G. Santos, Tilio A. M. Toffolo, Rafael A. M. Gomes, and Sabir Ribas, Integer
programming techniques for the nurse rostering problem, Annals of Operations Research
239, 225-251 (2016)

31. Haroldo G. Santos, Tulio A. M. Toffolo, Rafael A. M. Gomes, and Sabir Ribas,
http://www.goal.ufop.br/nrp/

32. Pieter Smet and Greet Vanden Berghe, Variable neighbourhood search for rich person-
nel rostering problems, MISTA 2015 (7th Multidisciplinary International Conference on
Scheduling: Theory and Applications), Prague, August 2015, 928-930

33. J. Van den Bergh, J. Belien, P. De Bruecker, E. Demeulemeester and L. De Boeck, Per-
sonnel scheduling: a literature review, European Journal of Operational Research, 226(3),
367-385, (2013).

