Noname manuscript No.
(will be inserted by the editor)

KHE14: An Algorithm for High School Timetabling

Jeffrey H. Kingston

Received: date / Accepted: date

Abstract This paper presents work in progress on KHE14, an algorithm for
high school timetabling. Most of KHE14’s components, including timetabling
structures, the global tixel matching, and polymorphic ejection chains, have
been published previously, so are described only briefly. A few components,
notably many of the augment functions called by the ejection chain algorithm,
are new, so are described in detail. The paper includes experiments on the
standard XHSTT-2013 data set, performed in February 2014.

Keywords High school timetabling - Ejection chains

1 Introduction

High school timetabling is one of the three major timetabling problems found
in academic institutions, along with university course timetabling and exam-
ination timetabling. Automated methods for its solution have been studied
from the early days of computers [19] to the present day [15].

An XML format called XHSTT was introduced recently to represent real
instances and solutions of the high school problem [8,16]. XHSTT was used in
the Third International Timetabling Competition [18], the first competition
to include high school timetabling. An XHSTT data set called XHSTT-2013
is currently being promoted as a benchmarking standard [17]. It contains 24
instances from real high schools in 11 countries around the world.

This paper presents work in progress on KHE14, an algorithm for high
school timetabling, with experiments on XHSTT-2013 made in February 2014.

KHE14 is built on the author’s KHE high school timetabling platform [12],
and distributed with it. It has many parts, developed by the author in a series
of papers over the last ten years [6,7,9-11]. All this cannot be repeated here.

J. Kingston
School of Information Technologies, The University of Sydney, Australia
E-mail: jeff@it.usyd.edu.au

2 Jeffrey H. Kingston

So although this paper describes KHE14 completely, it does so only at a high
level. Details are explained only when they are new and significant; otherwise
they are just mentioned, with a reference to the papers just cited, or to the
KHE documentation [12], which has full details and is the final authority.

Sect. 2 gives a brief specification of the problem. Sects. 3-7 present the
components of KHE14, with experiments related to the components. Sect. 8
brings the components together into the full KHE14 algorithm and contains
experiments that evaluate it generally.

All experiments use the XHSTT-2013 data set [16], as downloaded on
4 February 2014, and were performed on the author’s desktop machine, an
Intel i5 quad-core running Linux. Individual solutions were produced single
threaded; multiple solutions for one instance were produced in parallel. The
DK-HG-12 instance is not tested, because it is not realistic; it has 411 demand
defects (Sect. 4) before solving starts (connected with resources Student539
and R36, for example). Instances NK-KP-05 and NK-KP-09 are not tested
because their run times are inconveniently long at present. KHE14 does solve
these instances, but it takes approximately one hour on each.

2 Problem specification

This paper uses the XHSTT specification of the high school timetabling prob-
lem. XHSTT instances contain four parts: the cycle, which is the chronological
sequence of times that may be assigned to events; resources, which are enti-
ties that attend events (teachers, rooms, students, or classes, where classes
are groups of students who mostly attend the same events); events, which are
meetings, each of fixed duration (number of times), and containing any num-
ber of event resources, each specifying one resource that attends the event;
and constraints, which specify conditions that solutions should satisfy, and
the penalty costs to impose when they don’t.

XHSTT currently offers 16 constraint types (Table 1). Whatever its type,
each constraint may be marked required, in which case it is called a required
or hard constraint, and its cost (a non-negative integer) contributes to a total
called the infeasibility value in XHSTT, and the hard cost here. Otherwise the
constraint is called non-required or soft, and its cost contributes to a different
total called the objective value in XHSTT and the soft cost here.

A solver assigns starting times to events, except for preassigned events
(events whose starting time is given by the instance), trying to minimize first
hard cost and then soft cost. It may also be required to split events of long
duration into smaller events, called sub-events in XHSTT and meets in KHE
and in this paper. And it may be required to assign resources to unpreassigned
event resources: often rooms, occasionally teachers, never (in practice) students
or classes. A full specification appears online [8]; further details are given as
needed throughout this paper.

Table 2 gives some idea of the instances of the XHSTT-2013 data set. They
vary greatly in difficulty, in ways that such a table cannot fully capture.

KHE14: An Algorithm for High School Timetabling 3

Table 1 The 16 constraints, with informal definitions, grouped by what they apply to.

FEvent constraints

Split Events constraint Split event into limited number of meets
Distribute Split Events constraint Split event into meets of limited durations
Assign Time constraint Assign time to event
Prefer Times constraint Assign time from given set
Spread Events constraint Spread events evenly through the cycle
Link Events constraint Assign same time to several events
Order Events constraint Assign times in chronological order

Event resource constraints
Assign Resource constraint Assign resource to event resource
Prefer Resources constraint Assign resource from given set

Avoid Split Assignments constraint Assign same resource to several event resources
Resource constraints

Avoid Clashes constraint Avoid clashes involving resource
Avoid Unavailable Times constraint ~ Make resource free at given times
Limit Idle Times constraint Limit resource’s idle times

Cluster Busy Times constraint Limit resource’s busy days

Limit Busy Times constraint Limit resource’s busy times each day
Limit Workload constraint Limit resource’s total workload

Table 2 The number of times, teachers, rooms, classes (groups of students), individual
students, and events in the instances of XHSTT-2013. There are 24 instances altogether.

Instance Times Teachers Rooms Classes Students Events
AU-BG-98 40 56 45 30 387
AU-SA-96 60 43 36 20 296
AU-TE-99 30 37 26 13 308
BR-SA-00 25 14 6 63
BR-SM-00 25 23 12 127
BR-SN-00 25 30 14 140
DK-FG-12 50 90 68 279 1120
DK-HG-12 50 100 70 523 1471
DK-VG-09 60 46 52 163 928
ES-SS-08 35 66 4 21 225
FI-MP-06 35 25 25 14 280
FI-PB-98 40 46 34 31 387
FI-WP-06 35 18 13 10 172
GR-H1-97 35 29 66 372
GR-P3-10 35 29 84 178
GR-PA-08 35 19 12 262
1T-14-96 36 61 38 748
KS-PR-11 62 101 63 809
NL-KP-03 38 75 41 18 453 1156
NL-KP-05 37 78 42 26 498 1235
NL-KP-09 38 93 53 48 1166
UK-SP-06 25 68 67 67 1227
ZA-LW-09 148 19 2 16 185

ZA-WD-09 42 40 30 278

4 Jeffrey H. Kingston

3 Timetabling structures

KHE evaluates constraints continuously as the solution changes during solving,
using efficient incremental methods, and makes the resulting costs available to
solvers, which use them to guide the solve as usual. If requested, KHE can also
add structures to the solution which ensure that violations of some constraints
cannot occur, and it can add other structures which encourage regularity:
patterns of assignment that make timetables more uniform. Regularity has no
direct effect on cost, but it may make good solutions easier to find [11].

KHE14’s first, structural phase, is mainly devoted to adding the structures
explained in this section. These are all optional as far as the KHE platform is
concerned; KHE14 chooses to use them, but other algorithms need not.

KHE14 does not use any information that could be called metadata. For
example, sets of times may be identified in XHSTT as days, but KHE14 does
not use that information. Nor does it treat student resources (say) differently
merely because they are called students. Instead, it examines which resources
are preassigned, which sets of times and resources appear in constraints, and
so on, taking its cues from the structure alone.

Many elements of the instance influence KHE14’s structures: avoid clashes
constraints (constraining events which share a preassigned resource to be dis-
joint in time), time preassignments, link events constraints, split events and
distribute split events constraints, spread events constraints (influencing how
many meets events split into), prefer times constraints, prefer resources con-
straints, and avoid split assignments constraints. These are taken in decreasing
cost order; each either influences the structures, or is ignored if inconsistent
with previous elements. The KHE documentation [12] explains in detail how
they affect the result and how they interact. It would take too long to repeat
that here. Instead, the following explains the structures that emerge.

Courses are sets of events during which the same students meet the same
teacher to study the same subject. Spread events constraints may be present
to encourage a course’s meets to spread evenly through the cycle, and avoid
split assignments constraints may be present to encourage those meets to be
assigned the same teacher (if not preassigned) or room.

XHSTT offers a spectrum of ways to define courses. At one extreme, the
exact set of events required is given. For example, if a Mathematics course
needs to occur five times per week in events of durations 2, 1, 1, 1, and 1,
then five events with these durations would be given, along with split events
constraints which ensure that each event produces one meet. At the other
extreme, a single event of the total duration required is given, along with split
events and distribute split events constraints which say how that total may
be split into meets. In the Mathematics example, a single event of duration 6
would be given, along with constraints saying that meets of duration 1 or 2
are required. This handles a situation frequently found in real instances, where
the total duration is fixed, but how it is to be split up is more flexible.

The structural phase splits events into meets whose durations depend on
the parts of the instance listed above, and groups the meets into sets that KHE

KHE14: An Algorithm for High School Timetabling 5

calls nodes. One node contains the meets of one course, at least to begin with.
The structural phase creates nodes heuristically, as follows. Meets derived
from the same event go into the same node. When two events contain the
same preassigned resources and are connected by a spread events or avoid
split assignments constraint, they are taken to belong to the same course, so
their meets also go into the same node. Grouping meets into nodes does not
constrain their assignments, but it acts as a hint to solvers that the meets
should be assigned times together, and opens the door to various methods of
promoting regularity, which work with nodes, not meets.

Link events constraints, specifying that certain events should be assigned
the same times, give rise to a different structure. KHE allows one meet to be
assigned to another instead of to a time, meaning that any time assigned to the
other meet is in fact assigned to both. The structural phase makes assignments
of meets to other meets which ensure that link events constraints cannot be
violated. Meets assigned to other meets are not included in nodes, which (by
convention) tells solvers that their assignments should not be changed.

Assigning one meet to another supports hierarchical timetabling, in which
a timetable for a few meets is built and later incorporated into a larger one.
This promotes regularity, so the structural phase spends time searching for
useful hierarchical structures, as described in [6,7].

Each meet contains a set of times called its domain. Only times from its
domain may be assigned to a meet. KHE14 chooses domains based on prefer
times constraints. The duration of a meet also affects its domain: a meet of
duration 2 cannot be assigned the last time in the cycle as its starting time,
and so on. KHE represents domains both as bit sets, for efficient assignability
testing, and as lists of times, for efficient iteration over all legal assignments.

A meet contains one task for each event resource in the event that it is
derived from. Each task is a demand for one resource at each of the times the
meet is running, either preassigned (the usual case for student and class tasks)
or not (the usual case for room tasks). Unpreassigned tasks specify the type of
resource required (teacher, room, etc.), and there are usually prefer resources
constraints which encourage the solution to assign a specific kind of resource,
such as a Mathematics teacher or a Science laboratory.

Each task contains a set of resources called its domain. Only resources from
its domain may be assigned to a task. KHE14 chooses domains based on prefer
resources constraints.

Avoid split assignments constraints, which specify that certain tasks should
be assigned the same resources, are handled structurally by KHE14. One of
the tasks is chosen to be the leader task, and the others are assigned it instead
of a resource, meaning that whatever resource is assigned to the leader task is
to be considered as assigned to them too.

The XHSTT specification says that hard constraint violations, while per-
mitted, should be few in good solutions, but that soft constraint violations
are normal and to be expected [8]. So additional structures must be used with
caution, especially when derived from soft constraints. KHE14 uses an heuris-
tic strategy: it includes them at first, but removes them towards the end, so

6 Jeffrey H. Kingston

Table 3 Encouraging regularity between forms: -RF and +RF denote without it and with
it. KHE14 uses +RF. In all tables in this paper, columns headed C: contain solution costs.
Hard costs appear to the left of the decimal point; soft costs appear as five-digit integers to
the right of the point. The minimum costs in each row are highlighted. Columns headed T:
contain run times in seconds. All tables and graphs (including captions) were generated by
KHE and incorporated unchanged. They can be regenerated by any user of KHE.

Instance C:-RF C:+RF | T:-RF T:+RF
AU-BG-98 9.00583 12.00491 17.1 25.4
AU-SA-96 4.00015 16.00014 35.1 72.2
AU-TE-99 1.00158 4.00124 0.8 3.4
BR-SA-00 1.00090 1.00057 0.7 0.8
BR-SM-00 30.00123 29.00093 4.4 6.3
BR-SN-00 5.00249 4.00243 1.6 2.8
DK-FG-12 0.02370 0.02248 94.0 180.9
DK-HG-12

DK-VG-09 12.03206 12.03349 393.9 368.4
ES-SS-08 0.02367 0.01362 4.4 15.6
FI-MP-06 0.00118 3.00132 1.5 8.0
FI-PB-98 0.00051 6.00039 1.7 6.3
FI-WP-06 0.00086 0.00078 1.7 1.3
GR-H1-97 0.00000 0.00000 0.5 5.9
GR-P3-10 4.00078 2.00088 16.6 22.7
GR-PA-08 0.00029 0.00040 2.4 6.9
1T-14-96 0.00602 0.00494 4.6 8.1
KS-PR-11 0.00160 0.00150 10.7 77.1
NL-KP-03 0.03825 0.04774 86.4 193.1
NL-KP-05

NL-KP-09

UK-SP-06 0.00196 0.00102 14.0 29.5
ZA-LW-09 29.00000 26.00000 16.9 18.9
ZA-WD-09 5.00000 9.00000 6.3 24.2
Average 4.00681 5.00660 34.0 51.3

that later repair operations are not limited by them. The original constraints
are not forgotten: even when violations are allowed, they are still penalized.

The author has used a structural phase like the one described here for
many years [6,7]. KHE14’s version, described briefly here and fully in the KHE
documentation [12], is more robust than its predecessors: it resolves conflicting
requirements using priorities as explained above, and it takes full account of
all interactions between requirements.

Testing the effectiveness of adding structures that encourage regularity is
complicated by the fact that there are several kinds of regularity and several
ways to encourage it [11], not all of which can be disabled at present. Table 3
investigates regularity between forms. For example, if the classes of the Year
11 form attend English for 6 times per week in meets of durations 2, 1, 1, 1,
and 1, and the classes of the Year 12 form attend Mathematics for 6 times
per week in meets of the same durations, then encouraging regularity between
forms encourages these two courses (or others with the same meet durations)
to be simultaneous. The results show no clear advantage in cost, and a clear
disadvantage in running time. It is too soon to abandon regularity between
forms, but the evidence of Table 3 is tending against it.

KHE14: An Algorithm for High School Timetabling 7

4 The global tixel matching

A timetabling problem is a market in which resources are demanded by events
and supplied to them. The unit of supply is one resource at one time, called a
supply tizel. The term ‘tixel’ has been coined by the author by analogy with
the ‘pixel’, one cell of a graphical display.

Each event demands a number of tixels of certain types. For example, a
typical event called 7A-English, in which class 7A studies English for 6 times
per cycle, demands 18 tixels: six tixels of class resource 74, six tixels of teachers
qualified to teach English, and six of ordinary classrooms. This event is said
to contain 18 demand tizels.

The market is represented by an unweighted bipartite graph. Each demand
tixel is a node, each supply tixel is a node; an edge joins demand tixel d to
supply tixel s when s may be assigned to d. For example, a demand tixel de-
manding class resource 74 would be connected to the supply tixels for resource
7A (one for each time in the cycle). A demand tixel demanding an English
teacher would be connected to each supply tixel of each English teacher.

Each demand tixel requires only one supply tixel. Each supply tixel can be
assigned to only one demand tixel, otherwise there would be a timetable clash.
Accordingly, a set of assignments is a matching in this graph: a set of edges
such that no two edges share an endpoint. There is an efficient algorithm for
finding a maximum matching (one with as many edges as possible) [14].

There may be many maximum matchings, but they all fail to assign supply
tixels to the same number of demand tixels, and since that number is the
important thing, it is convenient to pretend that there is just one maximum
matching. The author calls it the global tizel matching. The important number
is a lower bound on the number of unassigned demand tixels in any solution,
given the decisions already made. The matching defines an assignment which
maximises the number of tixels assigned, but it is not useable directly, because
it violates many constraints.

When a meet is assigned, the sets of edges connected to its demand tixels
(their domains) shrink. For example, the six tixels demanding resource 74 in
the meets of event 7A-English are initially connected to all the supply tixels
for 7A (one for each time of the cycle), but after times are assigned, each
becomes associated with a particular time, and is connected to just the supply
tixel for 74 at that time. Tixel domains also change when the domain of a
meet or task is changed. KHE keeps them up to date automatically.

Use of the global tixel matching is optional. KHE14 installs it during its
structural phase and retains it until the end. It uses it in two ways. First, while
times are being assigned, each unmatched demand tixel adds hard cost 1 to
the total cost, guiding the solver away from assignments that would lead to
problems later. For example, assigning 6 Science meets to some time, demand-
ing 6 Science laboratories then, will be penalized if there are only 5 Science
laboratories, even though no room assignments are made. Second, while re-
sources are being assigned, only assignments that do not increase the number
of unmatched demand tixels are permitted (until the end, when a last-ditch

8 Jeffrey H. Kingston

attempt is made to assign any remaining unassigned tasks). The rationale is
that unmatched demand tixels lead inevitably to defects, and if their number
is allowed to increase, there is little hope of reducing it again.

Additional demand tixels are added based on hard unavailable times, limit
busy times, and limit workload constraints. For example, if teacher Smith is
limited to at most 7 busy times out of the 8 times on Monday, then one demand
tixel demanding Smith at a Monday time is added. The text of this section
is adapted from [10], which contains much more detail: how these additional
tixels are defined, how to implement the matching efficiently, and so on.

5 Polymorphic ejection chains

Like most timetabling solvers, KHE14 first constructs, then repairs. Most of
the repair work is done by ejection chains. An ejection chain is a sequence
of one or more repair operations (also called repairs), which are often simple
operations such as moves and swaps. The first repair removes one defect (a
specific fault in the solution) but may introduce another; the next repair re-
moves that defect but may introduce another; and so on. A key point is that
the defects that appear as a chain grows are not known to have resisted attack
before. It might be possible to repair one of them without introducing another,
bringing the chain to a successful end.

Ejection chains are not new. They are the augmenting paths of matching
algorithms, and they occur naturally to anyone who tries to repair a timetable
by hand. They were brought into focus and named by Glover [3], in work on
the travelling salesman problem. In timetabling, they have been applied to
nurse rostering [2], resource assignment [10], and time repair [4,5,11].

A key insight of [11] is that ejection chains are naturally polymorphic: each
defect along one chain can have a different type from the others, calling for a
correspondingly different type of repair. Thus, any number of types of defects,
and any number of types of repairs, can be handled together. In KHE, there is
one defect type for each constraint type, representing one specific point in the
solution where a constraint of that type is not satisfied, plus one defect type
representing one specific unmatched demand tixel in the global tixel matching.

An ejection chain algorithm uses a set of functions, one for each kind
of defect, called augment functions since they are based on the function for
finding an augmenting path in bipartite matching [14]. An augment function
is passed a specific defect of the type it handles, and it tries a set of alternative
repairs on it. Each repair removes the defect, but may create new defects. If no
significant new defects appear, the augment function terminates successfully,
having reduced the solution cost. If one significant new defect appears (one
whose removal would reduce the solution cost below its value when the chain
began; it may cost more than the previous defect), it makes a recursive call
to the appropriate augment function for that defect in an attempt to remove
it. In this way a chain of coordinated repairs is built up. If the recursive call
does not succeed in improving the solution, or was not attempted because two

KHE14: An Algorithm for High School Timetabling 9

Table 4 Effectiveness of variants of KHE14’s ejection chain algorithm. Each pair of char-
acters represents one complete restart of the algorithm: a digit denotes a maximum chain
length (u means unlimited); + denotes allowing entities to be revisited along one chain, and
- denotes not allowing it. KHE14 uses 1+,u-. Other details as previously.

Instance C:u- C:l4,u- C:14,24,u- Tiu- Til4u- T:14,24u-
AU-BG-98 9.00571 12.00491 8.00500 22.6 25.4 24.4
AU-SA-96 14.00024 16.00014 17.00027 81.1 72.6 76.2
AU-TE-99 2.00130 4.00124 2.00090 3.9 3.5 3.1
BR-SA-00 1.00072 1.00057 1.00054 1.0 0.8 1.5
BR-SM-00 25.00135 29.00093 27.00135 10.1 6.4 10.8
BR-SN-00 4.00252 4.00243 5.00246 3.7 2.9 2.0
DK-FG-12 0.02390 0.02248 0.02347 | 160.8 180.2 302.9
DK-HG-12

DK-VG-09 12.03206 12.03349 12.03498 544.1 375.8 756.8
ES-SS-08 1.02081 0.01362 1.02639 17.1 16.0 43.1
FI-MP-06 4.00120 3.00132 3.00117 12.8 7.8 9.0
FI-PB-98 5.00051 6.00039 4.00056 5.5 6.3 4.7
FI-WP-06 0.00049 0.00078 0.00079 1.5 1.3 1.2
GR-H1-97 0.00000 0.00000 0.00000 6.2 5.9 5.9
GR-P3-10 2.00047 2.00088 0.00009 37.5 22.6 12.4
GR-PA-08 0.00035 0.00040 0.00040 6.2 7.2 6.9
IT-14-96 1.01111 0.00494 0.00512 7.8 8.1 8.0
KS-PR-11 0.00130 0.00150 0.00135 77.6 77.0 78.2
NL-KP-03 0.03707 0.04774 0.04547 232.2 197.8 226.2
NL-KP-05

NL-KP-09

UK-SP-06 2.00144 0.00102 0.00182 46.8 30.0 34.9
ZA-LW-09 25.00000 26.00000 26.00000 18.1 20.2 18.7
ZA-WD-09 11.00000 9.00000 9.00000 26.5 24.0 18.9
Average 5.00678 5.00660 5.00724 63.0 52.0 78.4

or more significant new defects appeared, the augment function undoes the
repair and continues with alternative repairs. It could try to remove a whole
set of new defects, but that would rarely succeed in practice.

The main loop of the algorithm repeatedly iterates over the defects of the
solution, or over a subset of them that it is expedient to target, and calls
the augment function on each. It terminates when one complete pass over all
defects yields no reduction in solution cost.

KHE offers two methods for preventing the tree of repairs searched by an
augment function from growing to exponential size: either the length of the
chains is limited to at most some fixed constant, or else it is unlimited, but
entities visited while searching for one chain are marked, and revisiting them
is prohibited, limiting the size of one search to the size of the solution.

Table 4 investigates these options for limiting the search. KHE14’s choice
has the lowest average cost and run time, but there is no clear signal.

Entities are marked in a way that prevents repairs on other chains, or
further along the same chain, from targeting that entity, while allowing any
number of alternative repairs of the entity to be tried where it is marked. Only
the first entity changed by each repair is marked. Other entities changed by it
are neither checked for being marked nor marked. This is important, since one

10 Jeffrey H. Kingston

4000

3000

2000 —

1000 —

0+ - T \
0 10 20 30 40
Chain length
Fig. 1 For each chain length, the number of successful chains of that length found during
time repair, over all tested instances of XHSTT-2013. There were 6322 successful chains

altogether, and their average length was 3.5. All successful chains of length greater than 39
are shown as having length 39. The longest successful chain had length 140.

50
40
30+
20+
10

O —
0 10 20 30 40
Chain length

Fig. 2 For each chain length, the number of successful chains of that length found during
resource repair, over all tested instances of XHSTT-2013. There were 321 successful chains
altogether, and their average length was 11.5. All successful chains of length greater than
39 are shown as having length 39. The longest successful chain had length 105.

of them is likely to be targeted next. As long as at least one entity is marked
by each repair, the size of the search will be limited as desired.

KHE14 makes two kinds of calls to the ejection chain algorithm: time repair
calls, which repair time assignments, and resource repair calls, which repair
resource assignments. Fig. 1 shows how long successful time repair chains are,
and Fig. 2 does the same for resource repair. Most are short, but some are
long. The average length of resource repair chains is surprisingly high. It was
shown in [11] that chain lengths tend to increase as the algorithm progresses.

The text of this section is adapted from [11], which also explains how
ejection chains are implemented in KHE. The user writes one augment function
for each defect type, which iterates over the alternative repairs, applying and
unapplying each in turn. KHE supplies the main loop, chaining together of
individual repairs, testing for success, and dynamic dispatch by defect type.

KHE14: An Algorithm for High School Timetabling 11

6 Repair operations

A repair operation, or just repair, is a change to the solution made in the hope
of removing a specific defect. This section presents the repairs used by KHE14’s
ejection chain algorithms. A detailed description of two unusual repairs is given
first, followed by a brief description of the full set. Sect. 7 explains how they
are used to repair the various kinds of defects.

Node swaps. A node is a set of meets, grouped together because they make
up one course (Sect. 3). Suppose two nodes have meets of the same durations
(one of duration 2 and four of duration 1, say). A node swap swaps the starting
times of corresponding meets in those nodes.

Pairs of swappable nodes are common, since it simplifies planning if many
courses have equal duration, and courses of equal duration often split into
meets of equal durations. Nodes are only swapped when they have the same
preassigned resources, so swapping avoids introducing clashes involving those
resources. Swapping nodes has some advantages over swapping meets: it pre-
serves regularity, and tends not to create new spread events defects.

Kempe meet moves. These begin with the move of a meet from its current
time £; to some other time t5. If that causes clashes between preassigned
resources at to, the other meets involved in the clashes are moved to t;, any
clashes produced by those moves cause more meets to be moved to to, and so
on until there are no new clashes and no more moves.

When a Kempe meet move succeeds, the result is usually a simple move or
swap. Having a single operation which could turn out to be either is convenient,
since it allows a solver to try moving a problem meet to each time to, whether
the affected resources are free then or not.

Node swaps and Kempe meet moves are implemented more generally than
described here, including support for hierarchical timetabling and preserving
regularity. Kempe meet moves can swap meets of different durations when
they are adjacent in time. A full description appears in [11], except for one
recent improvement, in how regularity is preserved [12].

Turning now to the full list of repair operations, let a wvariable be a meet
or a task, considered as an entity requiring a time or resource to be assigned
to it. An assignment is a change to a variable from unassigned to assigned. A
move is a change to a variable from one assignment to a different assignment.
An unassignment is a change to a variable from assigned to unassigned.

When the change is an assignment or move, the new value of the variable
is likely to create conflicts (timetable clashes) with other variables. There are
at least four ways to handle these conflicts. The basic way is to do nothing,
leaving it to the ejection chain algorithm to notice the resulting defects and try
to repair them. The ejecting way is to unassign conflicting variables. This will
be better than the basic way if it produces a single defect (an assign time or
assign resource defect) rather than several defects whose common cause may
not be clear to the ejection chain algorithm. The swap way, applicable only
to moves, is to move the conflicting variables in the opposite direction. The

12 Jeffrey H. Kingston

Kempe way, also applicable only to moves, is to continue swapping back and
forth to remove conflicts, as explained above for Kempe meet moves.

Ignoring unassignment, which seems to be not useful alone, this makes
six operations altogether: basic assignment, ejecting assignment, basic move,
ejecting move, swap, and Kempe move. Applying them to meets and tasks
gives twelve operations. KHE14 uses most of them, plus two operations which
are sets of these ones treated as a unit: node swaps and ejecting task-set moves,
which are sets of ejecting task moves to a common resource.

An ejecting move is a Kempe move that ends early, as soon as the variables
to be moved in the opposite direction are unassigned. It often makes sense to
first try a Kempe move, then fall back on an ejecting move; this is similar to
trying a particular reassignment of the unassigned variables first. The term
Kempe/ejecting move refers to a sequence of one or two repairs, first a Kempe
move, then an optional ejecting move with the same parameters. The ejecting
move is omitted when the Kempe move (successful or not) does not try to move
anything back in the opposite direction, since the two repairs are identical then.

Kempe meet moves are useful because instances often contain preassigned
class resources which are busy for all or most of the cycle. Moving a meet
containing such a resource practically forces another meet to move the other
way, so it makes sense to get on and do it. Kempe task moves are less useful
because they apply to unpreassigned resources, such as teachers and rooms,
which are less constrained. Ejecting moves seem more appropriate for them.

Table 5 investigates various combinations of Kempe, ejecting, and basic
meet moves. The results here are clear: Kempe meet moves are helpful, and
the Kempe/ejecting combination is better than the Kempe/basic alternative
when run time is included in the comparison.

These repair operations are not original to this paper. The author has used
node swaps and Kempe meet moves before [11], and ejecting task moves [10],
but not ejecting meet moves.

7 Repairing defects

This section explains how the ejection chain algorithm repairs defects using
the repair operations of Sect. 6. For each kind of defect, this section defines a
set of repairs. The augment function for that kind of defect applies the first of
these repairs, calls a KHE function to test for success and recurse, then either
returns ‘success’ immediately or unapplies that repair and tries the next, and
so on, returning ‘no success’ when all repairs are tried without success.

KHE has objects called monitors, each monitoring one point of application
of one constraint, or one demand tixel in the global tixel matching. Each mon-
itor contains a cost. When some part of the solution changes, KHE notifies the
monitors affected by that part, and they revise their evaluation and perhaps
change their cost. Any cost changes are reported and cause the overall solution
cost to change. For example, when a time is assigned to a meet, any affected

KHE14: An Algorithm for High School Timetabling 13

Table 5 Kempe, ejecting, and basic moves during time assignment. Where the main text
states that Kempe meet moves are tried, K means to try them and X means to omit them.
Where it states that ejecting meet moves are tried, E means to try them and B means to
try basic meet moves instead. KHE14 uses KE. Other details as previously.

Instance C:KE C:KB C:XE C:XB | T:KE T:KB T:XE T:XB
AU-BG-98 12.00491 19.00390 11.00490 19.00473 26.5 39.5 188 419
AU-SA-96 16.00014 4.00013 25.00106 34.00060 73.9 4176 52.3 1122

AU-TE-99 4.00124 9.00133 8.00172 11.00153 3.5 10.1 4.0 3.3
BR-SA-00 1.00057 3.00075 1.00081 6.00066 0.8 0.6 1.3 0.3
BR-SM-00 29.00093 28.00093 32.00120 26.00084 6.4 1.5 4.8 1.2
BR-SN-00 4.00243 7.00258 10.00267 11.00231 2.8 1.8 4.5 0.8

DK-FG-12 0.02248 0.01893 0.02359 0.02565 1929 370.0 122.5 88.1
DK-HG-12
DK-VG-09 12.03349 12.03077 12.03424 14.03683 384.5 698.4 297.6 133.8
ES-55-08 0.01362 0.02662 0.01771 0.04053 15.8 304 13.0 15.0

FI-MP-06 3.00132 1.00123 2.00107 6.00120 7.5 9.7 8.3 8.1
FI-PB-98 6.00039 2.00173 7.00022 6.00144 6.3 9.9 7.4 5.9
FI-WP-06 0.00078 1.00069 0.00036 3.00102 1.2 3.4 2.8 1.6
GR-H1-97 0.00000 0.00000 2.00000 2.00000 5.9 5.9 6.2 6.0
GR-P3-10 2.00088 0.00074 12.00150 1.00105 22.7 9.0 59.2 7.0
GR-PA-08 0.00040 0.00035 0.00043 2.00111 5.7 6.4 8.1 5.5
1T-14-96 0.00494 1.00711 0.00605 0.00651 8.4 7.6 8.0 5.9

KS-PR-11 0.00150 0.00294 0.00149 2.01257 776 821 79.6 80.2
NL-KP-03 0.04774 0.04111 0.03340 0.04635 205.5 922.5 327.0 161.8
NL-KP-05
NL-KP-09
UK-SP-06 0.00102 2.00084 5.00324 12.00608 28.9 146.5 176.7 28.7
ZA-LW-09 26.00000 30.00000 29.00000 31.00000 18.0 13.7 182 15.1
ZA-WD-09 9.00000 11.00000 9.00001 17.00000 23.6 349 88.0 109
Average 5.00660 6.00679 7.00646 9.00909 53.3 1344 62.3 349

assign time and prefer times monitors are notified, and they change their cost
accordingly. Concretely, a defect is a monitor whose cost is non-zero.

Monitors may be grouped: joined into sets treated as single monitors whose
cost is the sum of the individual costs. KHE14’s grouped monitors have the
same kind and monitor the same thing in reality (examples appear below), and
are repaired by repairing any one member of the group. Monitors may also be
detached: fixed to cost 0 regardless of their true cost. Grouping and detaching
are used to prevent the algorithm from being confused by apparently distinct
defects which really point to the same problem. Such defects could cause a
chain to end when there is a worthwhile repair to continue with.

(One application of ejection chains to timetabling [4] found a way to exploit
a coarser grouping than any used here: it groups all defects related to one
resource. The elements of such a group may have different types, so it does
not make sense to perform repairs specific to any one type. Instead, all moves
of a meet to which the resource is assigned to a time when the resource is free
are tried. From those moves which introduce at most one new conflict, the 20
best are selected and used as the set of repairs for the group.)

As mentioned earlier, there are two categories of calls on the ejection chain
repair function: time repair calls, which repair the assignments of times to

14 Jeffrey H. Kingston

meets, and resource repair calls, which repair the assignments of resources
to tasks. Each category has its own augment functions, and its own way of
grouping and detaching monitors. Both categories are defined below.

Demand defects. These are cases of unmatched demand tixels in the global
tixel matching (Sect. 4), usually indicating that the demand for some set of
resources at some time exceeds their supply then. The defect is not really the
one unmatched tixel, but rather the whole set of demand tixels that contribute
to the excess demand. Given the nondeterminism of the global tixel matching,
any one of these could be reported as the defect. Repair operations use KHE
functions to visit them all, and, in effect, repair the set, not the individual.

During time repair, demand monitors lying within tasks of the same meet
are grouped, so that multiple demand defects that can be repaired by moving
that meet are perceived as a single defect. Defects are handled by trying all
repairs that move any of the meets contributing to the excess demand away
from the problem time. Kempe/ejecting meet moves are tried first, then node
swaps between nodes with similar preassigned resources. For example, 6 Sci-
ence meets running simultaneously when there are only 5 Science laboratories
will generate one demand defect which will cause repairs to be tried that move
any of the 6 meets away from the problem time. Simple clashes also produce
demand defects, and are repaired in the same way.

Demand monitors derived from the same avoid unavailable times, limit
busy times, or workload limit monitor are grouped. If any of these are involved
in a demand defect (if they contribute to the excess demand), then the repairs
just given are not well targeted, because they could move a contributing meet
to a different time within the times whose limit has been exceeded, or swap a
meet back into those times. So different repairs are tried in that case: ejecting
meet moves that move any of the contributing meets away from the times
whose limit has been exceeded. For example, if teacher Smith is preassigned
to tasks which give him 8 busy times on Monday when he is limited to 7, the
demand monitor derived from this limit will contribute to the excess demand,
causing ejecting moves to be tried that move meets preassigned to Smith away
from Monday. Similarly, a demand monitor derived from an avoid unavailable
times monitor will cause ejecting moves away from the unavailable times.

During resource repair, demand defects are handled differently. They do
not contribute to the cost of the solution, and they are not repaired. Instead,
ejection chains which increase their number are not applied (except right at
the end, when a last-ditch attempt is made to assign any remaining unassigned
tasks). The reason for this is as follows.

At the start of each call to the resource repair ejection chain algorithm,
the number of demand defects is equal to what it was at the end of time
assignment. This is because no resource assignments are accepted which in-
crease this number, and resource assignments which decrease it are impossible,
since a resource assignment reduces the domains of demand nodes, reducing
the choice of matchings. (If resource repairs changed meet assignments, that
could reduce the number of demand defects; but it is not likely to, because
similar changes were tried during time repair, at a point when fewer resources

KHE14: An Algorithm for High School Timetabling 15

were assigned so more choices were open.) Repair of demand defects is not at-
tempted, then, because it is doomed to failure. This also explains why chains
which increase the number of demand defects are not applied: such an increase
would be almost impossible to reverse later. This argument is from [10].

Split events defects and distribute split events defects. These are cases of
events split into too few or too many meets, or into meets whose durations are
not wanted. Event splitting is handled by the structural phase (Sect. 3), and
these defects are ignored during time and resource repair.

Assign time defects. These are cases of meets not assigned a time. There are
usually none when time repair begins, because the initial time assignment usu-
ally assigns a time to every meet; but ejecting meet moves create them. They
are handled during time repair only, by trying all ejecting meet assignments
to times in the meet’s domain. Kempe meet moves are not possible (there is
no original time). Assign time monitors whose events are joined by link events
constraints handled structurally are grouped; they monitor the same thing.

It is important to assign a time to every meet, so assign time defects are
also treated during time repair like demand defects are treated during resource
repair: ejection chains may unassign meets temporarily as they go, but no chain
is applied which, in the end, increases the total cost of assign time defects.

Prefer times defects. These are cases of meets assigned unwanted times:
for example, a Physics meet that prefers a morning time but is assigned
an afternoon time. They are handled during time repair only, by trying all
Kempe/ejecting meet moves of the meet to a preferred time. Prefer times mon-
itors whose events are joined by link events constraints handled structurally
are grouped when they request the same times.

Spread events defects. These are cases where the meets of a course are
spread unevenly through the cycle. For example, two might occur on Monday,
and none on Thursday. They are handled during time repair only, by trying
all Kempe/ejecting meet moves which remove the defect (in the example, all
moves of a Monday meet to a Thursday time). Spread events monitors whose
events are joined by link events constraints handled structurally are grouped.

Link events defects. These are cases where events which should occur at the
same time do not. Like event splitting, event linking is handled structurally
(Sect. 3), and these defects are ignored during time and resource repair.

Order events defects. These are cases where events should appear in a
particular time order, but they don’t. KHE14 ignores these defects, because
there are no order events constraints in the XHSTT-2013 data set. However,
it is easy to find repairs that remove them, so there will be no problem in
handling them in future. Order events monitors whose events are joined by
link events constraints handled structurally are grouped.

Assign resource defects. These are cases where a task is not assigned a
resource. They are handled during resource repair, by trying all ejecting task
assignments to resources in the task’s domain. Assign resource monitors whose
tasks are joined by avoid split assignments constraints handled structurally are
grouped while those structures are present.

16 Jeffrey H. Kingston

Prefer resources defects. These are cases where a task is assigned a resource
it does not prefer: for example, the room task of a Science meet assigned an
ordinary classroom instead of a Science laboratory. They are handled during
resource repair, by trying all ejecting task moves to the preferred resources.
Kempe task moves are possible, but (as discussed above) they seem unlikely to
be useful and have not been tried. Prefer resources monitors whose tasks are
joined by avoid split assignments constraints handled structurally are grouped
while those structures remain in place, if they request the same resources.

Awvoid split assignments defects. These are cases where tasks are assigned
different resources, when they want the same resource. For example, a Music
event split into five meets, four taught by Smith and one taught by Brown, is
an avoid split assignments defect, also called a split assignment.

Structures which prohibit split assignments are present for most of KHE14,
but near the end they are removed and split assignments are constructed
(they are usually better than nothing). These split assignments are repaired
by taking each pair of resources assigned to the tasks, finding the subset of the
tasks assigned those resources, and trying each ejecting task-set move of that
subset to a resource from the domain of one of them. These are the smallest
repairs capable of reducing cost, which is prudent, given the difficulty.

A promising alternative kind of repair, not yet implemented, is to pick one
of the resources currently assigned to some of the tasks, whose workload limit
permits it to be assigned to all of them, and try to move the meets of the
other tasks to times when that resource is free. Previous phases would need
to ensure that split assignments were concentrated in meets that demand few
resources, making them more likely to be movable.

Avoid clashes defects. These are cases where a resource attends two meets
at the same time. During time repair, avoid clashes monitors are detached:
demand monitors do their job and more. During resource repair, they are
handled by trying all ejecting task moves of the clashing tasks to resources in
their domains. There is no confusion with demand defects, because of the way
that demand monitors are handled during resource repair (see above).

Avoid clashes monitors for resources of the same type are grouped when
they are derived from the same constraint, all the event resources of their type
are preassigned, and the resources are preassigned to the same events, so follow
the same timetable. The saving can be significant: in the NL-KP-03 instance,
for example, there are 453 resources representing individual students, but only
297 groups, or 285 when link events constraints are taken into account.

Avoid unavailable times defects. These are cases where a resource attends a
meet at a time when it is unavailable. An avoid unavailable times constraint is
the same as a limit busy times constraint whose set of times is the unavailable
times, and whose Maximum attribute is 0. So these defects are handled as
described below for limit busy times defects, including grouping.

Limit idle times defects. These are cases where a resource’s timetable con-
tains an idle time: a time when the resource is not busy (attending an event),
but is busy earlier that day and later. During time repair, they are handled by
taking each meet assigned to the resource which occurs at the beginning or end

KHE14: An Algorithm for High School Timetabling 17

of one of its days, and trying each ejecting move of it to a time that reduces the
number of idle times and does not cause clashes. A move to any non-clashing
time between the first and last busy times on any day is acceptable. If the meet
is adjacent to an idle time, then moving it far away will remove that idle time,
so it may also be moved to just before the first busy time of any day, and just
after the last busy time of any day, provided that first or last busy time is not
one when the meet itself is currently running. Limit idle times monitors are
grouped in the same way as avoid clashes monitors. During resource repair,
limit idle times defects are ignored; repairing them then is future work.

Cluster busy times defects. These are cases where a resource is busy on
too few or too many days. During time repair, if the problem is too few days,
then all ejecting moves are tried which move a meet from a day in which it
is not the only meet to a day in which it is. If the problem is too many days
(the usual case), then ejection chains will struggle in general, because a cost
reduction only occurs when a day becomes completely free, which may require
several meet moves. The present repair tries all ejecting moves of meets which
are alone in their day to days when other meets are present. Some defects can
be repaired in this way, but many cannot; repairing those is future work, as
are repairs during resource repair. Cluster busy times monitors are grouped in
the same way as avoid clashes monitors.

Limit busy times defects. These are cases where a resource is overloaded or
underloaded during some set of times, typically one day. For example, teacher
Jones might expect to be busy for only at most 7 of the 8 times on any day;
anything more is a limit busy times defect.

Break each limit busy times monitor into two monitors, one monitoring
underloads and the other overloads. During time repair, overload monitors
that give rise to demand monitors that do all their work are detached. Other
overload monitors and all underload monitors are not. They are handled by
trying all ejecting meet moves of one of the resource’s meets from inside the
set of times to outside it, or vice versa, depending on whether the defect is an
overload or an underload.

During resource repair, all these monitors are attached. There is no con-
fusion with demand monitors, as explained above for avoid clashes defects.
Overloads are handled by trying all ejecting task moves which unassign the
resource from any meet running during the set of times. Underloads are ig-
nored; repairing them during resource repair is future work. Limit busy times
monitors are grouped in the same way as avoid clashes monitors.

Limit workload defects. These are similar to limit busy times defects whose
times are the whole cycle, and are handled in the same way, including grouping.

Repairs targeted at specific defects are rare in the timetabling literature.
About half of all this is previous work [10,11]; the rest may be new.

Which augment functions are most effective? Finding a good measure of
effectiveness is not easy. For example, virtually any defect can be removed if
enough mayhem is visited on its surroundings, so success in removing defects,
taken in isolation, is a poor measure. One simple approach, not claimed to be
perfect, is to say that a call on an augment function is effective when it returns

18 Jeffrey H. Kingston

Table 6 Effectiveness of time augment functions. For each time augment function, the
number of calls to the function, the number of successful calls, and the ratio of the two as
a percentage, over all tested instances of XHSTT-2013. Only non-zero rows are shown.

Augment function Total Successful Percent
Assign time 3770681 12890 0.3
Spread events 440720 3723 0.8
Ordinary demand 177379 797 0.4
Workload demand 8439 63 0.7
Avoid unavailable 48428 367 0.8
Limit idle 847642 3447 0.4
Cluster busy 253699 333 0.1
Limit busy 652935 737 0.1

Table 7 Effectiveness of resource augment functions. For each resource augment function,
the number of calls to the function, the number of successful calls, and the ratio of the two
as a percentage, over all tested instances of XHSTT-2013. Only non-zero rows are shown.

Augment function Total Successful Percent
Assign resource 500023 2032 0.4
Avoid splits 6946 182 2.6
Avoid clashes 94 0 0.0
Limit busy 24523 133 0.5
Limit workload 170855 1343 0.8

true, meaning that it lies on a chain that improved the solution, and ineffective
when it returns false. The ratio of effective to effective plus ineffective calls,
expressed as a percentage, measures the effectiveness of the function.

Table 6 presents the number of calls on each time repair augment function
used by KHE14 when solving XHSTT-2013, and their effectiveness, measured
as just described. Table 7 does the same for resource repair. Interpretation is
problematical, but it seems, for example, that the time repair functions for
cluster busy times and limit busy times defects are relatively ineffective.

Which repairs are most effective? Again, finding a good measure is not
easy. For example, on any given defect one kind must be tried first, and this
gives it more opportunities to both succeed and fail than the others. Again, a
simple approach is used: the successful calls on a given augment function are
attributed to the repairs that caused the successes.

Table 8 is like Table 6 except that it contains one row for each kind of
repair of each kind of time defect, measured in this way. Some of the results
are quite interesting: the tiny number of successful node swaps, for example.
The corresponding results for resource repairs are omitted, since each resource
repair augment function tries just one kind of repair operation.

8 The algorithm

This section describes the KHE14 algorithm at a high level. An implementation
is available online (function KheGeneralSolve2014 of [12]).

KHE14: An Algorithm for High School Timetabling 19

Table 8 Effectiveness of time repair operations. For each time augment function and repair
operation, the number of calls on that repair operation made by that augment function, the
number of successful calls, and the ratio of the two as a percentage, over all tested instances
of XHSTT-2013. Only non-zero rows are shown.

Augment function : Repair operation Total Successful Percent
Assign time : Basic meet assignment 3 3 100.0
Assign time : Ejecting meet assignment 3770675 12884 0.3
Assign time : Basic meet move 3 3 100.0
Spread events : Basic meet move 1 0 0.0
Spread events : Ejecting meet move 254101 249 0.1
Spread events : Kempe meet move 186618 3474 1.9
Ordinary demand : Basic meet move 27 2 7.4
Ordinary demand : Ejecting meet move 121656 64 0.1
Ordinary demand : Kempe meet move 54942 726 1.3
Ordinary demand : Node swap 754 5 0.7
Workload demand : Ejecting meet move 8439 63 0.7
Avoid unavailable : Ejecting meet move 48428 367 0.8
Limit idle : Ejecting meet move 847642 3447 0.4
Cluster busy : Ejecting meet move 253699 333 0.1
Limit busy : Ejecting meet move 652935 737 0.1

KHE14 proceeds in phases (major steps). First comes the structural phase.
It constructs an initial solution with no time or resource assignments, converts
resource preassignments (in the instance) into resource assignments (in the
solution), adds additional structure as described in Sect. 3, and adds the global
tixel matching as described in Sect. 4.

Next comes the time assignment phase, which assigns a time to each meet.
It has been described fully elsewhere [6,7,11]; here is an overview. For each
resource to which a hard avoid clashes constraint applies it builds one layer, the
set of all nodes containing meets preassigned that resource. After discarding
layers that are redundant because they are subsets of other layers, and sorting
so that (heuristically) the most difficult layers come first, it assigns times to the
meets of each layer in turn. The algorithm for assigning times to the meets
of one layer is heuristic and complex. It tries for regularity with previously
assigned layers, and exploits the fact that the meets of one layer should not
overlap in time, by maintaining a minimum-cost matching of meets to times.

A node may lie in several layers, if its meets contain several preassigned
resources. Such a node is handled with the first layer it lies in, and the result
is not changed when assigning subsequent layers. So when a layer’s turn comes
to be assigned, all its nodes may be already assigned. Such layers are skipped.

After each unskipped layer is assigned, an ejection chain repair (Sect. 5)
is applied. Its main loop is targeted at the defects of the layer just assigned,
but its recursive calls may spread into earlier layers. After all layers have been
assigned and repaired, another ejection chain repair is carried out, targeted
at the entire time assignment. Then the structures which enforce regularity in
time are removed and yet another ejection chain time repair is run.

Next come the resource assignment phases, one for each type of resource
(teacher, room, etc.). These phases are sorted heuristically so that the most

20 Jeffrey H. Kingston

Table 9 Effectiveness of KHE14 and KHE14x8. Details as previously. Different solutions
to one instance vary in run time, so finding eight solutions on a quad-core machine often
takes more than twice as long as finding one.

Instance C:KHE14 C:KHE14x8 | T:KHE14 T:KHE14x8
AU-BG-98 12.00491 4.00524 24.9 43.8
AU-SA-96 16.00014 6.00006 72.2 172.3
AU-TE-99 4.00124 2.00140 3.6 7.6
BR-SA-00 1.00057 1.00051 0.8 1.9
BR-SM-00 29.00093 22.00129 6.4 15.2
BR-SN-00 4.00243 4.00243 2.9 6.7
DK-FG-12 0.02248 0.02046 175.5 404.0
DK-HG-12

DK-VG-09 12.03349 12.03257 373.1 919.4
ES-SS-08 0.01362 0.01287 14.8 31.1
FI-MP-06 3.00132 0.00125 7.7 16.4
FI-PB-98 6.00039 1.00024 6.1 12.9
FI-WP-06 0.00078 0.00041 1.2 5.4
GR-H1-97 0.00000 0.00000 6.2 13.2
GR-P3-10 2.00088 0.00006 22.8 51.8
GR-PA-08 0.00040 0.00021 7.2 19.5
IT-14-96 0.00494 0.00197 7.9 20.1
KS-PR-11 0.00150 0.00116 76.4 173.3
NL-KP-03 0.04774 0.03919 190.4 698.7
NL-KP-05

NL-KP-09

UK-SP-06 0.00102 0.00056 30.3 88.2
ZA-LW-09 26.00000 16.00000 21.7 34.5
ZA-WD-09 9.00000 6.00000 25.0 50.1
Average 5.00660 3.00580 51.3 132.7

difficult come first. In practice, teachers are assigned first (if needed), then
rooms; students and classes are not assigned, since they are all preassigned,
and so were assigned during the structural phase.

Each resource assignment phase has three parts. In the first part, which
in practice assigns most tasks, violations of avoid split assignments and prefer
resources constraints are prohibited structurally, and assignments that increase
the number of demand defects (Sect. 4) are rejected. A resource assignment
algorithm is called that tries to assign a resource to each unpreassigned task
of the current type. If there are avoid split assignments constraints, a resource
packing algorithm which follows a bin packing paradigm is used. Otherwise
a constructive heuristic is used, more effectively than usual because of the
guidance provided by the global tixel matching. These algorithms are described
in detail in [10], where resource packing was found to be the best of three
plausible resource assignment algorithms for teacher assignment. This first
part ends with a call on the ejection chain resource repair algorithm, targeted
at the event resource and resource defects of the current type.

The second part of the phase is only carried out for those types of resources
whose event resources are subject to avoid split assignments constraints. It
removes structures that prevent split assignments, finds split assignments for
unassigned tasks (using a construction heuristic specialized for them), and

KHE14: An Algorithm for High School Timetabling 21

Table 10 Event defects in the solutions produced by KHE14x8. Each column shows the
number of defects of one kind of event constraint. A dash indicates that the instance contains
no constraints of that type. The columns appear in the same order as the rows of Table 1.

Instance SS DS PT SE LE OE
AU-BG-98 0 0
AU-SA-96
AU-TE-99
BR-SA-00
BR-SM-00
BR-SN-00
DK-FG-12
DK-HG-12
DK-VG-09
ES-SS-08
FI-MP-06
FI-PB-98
FI-WP-06
GR-H1-97
GR-P3-10
GR-PA-08
IT-14-96
KS-PR-11
NL-KP-03
NL-KP-05
NL-KP-09
UK-SP-06
ZA-LW-09
ZA-WD-09
Total

>
<

[el el e R i en)
[el o)
OO OO OO
1 O oo OO
o oo
|

QOO0 1 O OO OO
o l 1
[eNeoleloNoNoBololel o=}
OO O 1 OO
e=] OO O |

1 1 [

Sl O
|
o[= w o
!

(o] Revl el]
1

oo O
o

262

calls ejection chain repair again. Then it tries two VLSN search algorithms
[1,13] which sometimes find small improvements. One rearranges the resource
assignments within a given set of times using min-cost flow, the other unassigns
and optimally reassigns pairs of resources [9]. The details are in [12] as usual;
they are omitted here because these algorithms are peripheral to the main
thrust of this paper, which is already overlong.

The third part is a last-ditch attempt to assign as many of the remaining
unassigned tasks as possible. It removes all structural prohibitions, removes
the prohibition on increasing the number of unmatched demand tixels, and
calls the ejection chain repair algorithm a third time.

The final cleanup phase carries out some minor tidying up. It calls a KHE
operation which ensures that the reported cost is the official cost. For example,
any demand defects that were contributing to the cost before this call will not
do so afterwards. Whenever two meets derived from the same event have ended
up adjacent in time, this phase merges them into one when that is possible
and reduces cost. It also unassigns tasks and meets when that reduces cost.

Table 9 shows the overall performance of KHE14 and its variant KHE14x8,
which runs KHE14 8 times in parallel and keeps a best solution. Random
numbers are not used; instead, each run is given a different diversifier (a small
fixed integer). It is used in several places, to vary the starting point of list

22 Jeffrey H. Kingston

Table 11 Event resource and resource defects produced by KHE14x8. Details as previously.

Instance AR PR AS | AC AU LI CB LB LW
AU-BG-98 2 0 42 2 0 - - 18 0
AU-SA-96 1 0 0 3 0 - - 0 0
AU-TE-99 0 0 12 2 0 - - 1 0
BR-SA-00 - - - 1 0 8 2 - -
BR-SM-00 - - - 11 1 8 11 - -
BR~SN-00 - - - 4 0 16 16 - -
DK-FG-12 0 0 - 0 0 56 113 64 -
DK-HG-12

DK-VG-09 0 0 - 2 - 52 47 32 -
ES-SS-08 0 0 - 0 5 - 0 0 -
FI-MP-06 - - - 0 10 20 - 6 -
FI-PB-98 - - - 0 0 12 - 0 -
FI-WP-06 - - - 0 - 13 - 8 -
GR-H1-97 - - - 0 0 - - - -
GR-P3-10 - - - 0 0 0 - 3 -
GR-PA-08 - - - 0 0 7 - 0 -
IT-14-96 - - - 0 6 31 1 2 -
KS-PR-11 - - - 0 0 54 - 0 -
NL-KP-03 0 0 - 0 7 334 15 51 -
NL-KP-05

NL-KP-09

UK-SP-06 0 - - 0 0 25 - - -
ZA-LW-09 - - - 1 - - - - -
ZA-WD-09 - - - 3 0 - - - -
Total 3 0 54 29 29 636 205 185 0

traversals, and to break ties. For example, ejection chain algorithms sort their
initial defects by decreasing cost; the diversifier influences the order of defects
of equal cost. These solutions are available from the KHE web page [12]. An
analysis of the remaining defects appears in Tables 10 and 11.

9 Conclusion

No overall conclusion can be drawn yet. KHE14 is work in progress and has
not reached its full potential; and solutions to XHSTT-2013 created by other
solvers were not available at the time of writing. Individual solutions are, but
comparing with them ignores an essential requirement of a good solver, namely
robustness over many instances, so is deliberately not done here.

The author is currently exploring ideas for improvements in all phases
of KHE14. Very recently he modified the structural phase to restrict meet
domains to discourage cluster busy times defects. This produced a solution to
instance NL-KP-03 with 9 cluster busy times defects and cost 0.02804, much
better than the 15 and 0.04774 reported in the tables. The algorithm that
assigns times to the meets of one layer was designed without regard to cluster
busy times and limit idle times constraints, so it needs revision. That should
help speed up the Dutch instances, since at present the time repair algorithm
is being overwhelmed by hundreds of limit idle times defects.

KHE14: An Algorithm for High School Timetabling 23

References

1. R. Ahuja, O. Ergun, James B. Orlin, and A. Punnen, A survey of very large-scale neigh-
bourhood search techniques, Discrete Applied Mathematics, 123, 75-102 (2002)

2. Kathryn A. Dowsland, Nurse scheduling with tabu search and strategic oscillation, Eu-
ropean Journal of Operational Research, 106, 393-407 (1998)

3. Fred Glover, Ejection chains, reference structures and alternating path methods for trav-
eling salesman problems, Discrete Applied Mathematics, 65, 223-253 (1996)

4. Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar, A case study for
timetabling in a Dutch secondary school, Practice and Theory of Automated Timetabling
VI (Springer Lecture Notes in Computer Science 3867), 267-279, (2007)

5. Myoung-Jae Kim and Tae-Choong Chung, Development of automatic course timetabler
for university, Proceedings of the 2nd International Conference on the Practice and Theory
of Automated Timetabling (PATAT’97), 182-186 (1997)

6. Jeffrey H. Kingston, A tiling algorithm for high school timetabling, Practice and Theory
of Automated Timetabling V (Springer Lecture Notes in Computer Science 3616), 208-225
(2005)

7. Jeffrey H. Kingston, Hierarchical timetable construction, Practice and Theory of Au-
tomated Timetabling VI (Springer Lecture Notes in Computer Science 3867), 294-307
(2007)

8. Jeffrey H. Kingston, The HSEval High School Timetable Evaluator, URL
http://www.it.usyd.edu.au/~jeff/hseval.cgi (2010)

9. Jeffrey H. Kingston, Timetable construction: the algorithms and complexity perspective,
Annals of Operations Research, DOI 10.1007/s10479-012-1160-z (2012)

10. Jeffrey H. Kingston, Resource assignment in high school timetabling, Annals of Opera-
tions Research, 194, 241-254 (2012)

11. Jeffrey H. Kingston, Repairing high school timetables with polymorphic ejection chains,
Annals of Operations Research, DOI 10.1007/s10479-013-1504-3

12. Jeffrey H. Kingston, KHE web site, http://www.it.usyd.edu.au/~ jeff/khe (2014)

13. Carol Meyers and James B. Orlin, Very large-scale neighbourhood search techniques
in timetabling problems Practice and Theory of Automated Timetabling VI (Springer
Lecture Notes in Computer Science 3867), 24-39 (2007)

14. Christos. H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity, Prentice-Hall (1982)

15. Nelishia Pillay, An overview of school timetabling research, PATAT10 (Eighth interna-
tional conference on the Practice and Theory of Automated Timetabling, Belfast, August
2010), 321-335 (2010)

16. Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngas, Cimmo Nurmi,
Gerhard Post, David Ranson, and Henri Ruizenaar, An XML format for benchmarks in
high school timetabling, Annals of Operations Research, 194, 385-397 (2012)

17. Gerhard Post, XHSTT web site, http://www.utwente.nl/ctit/hstt/ (2011)

18. Gerhard Post, Luca Di Gaspero, Jeffrey H. Kingston, Barry McCollum, and Andrea
Schaerf, The Third International Timetabling Competition, PATAT 2012 (Ninth interna-
tional conference on the Practice and Theory of Automated Timetabling, Son, Norway,
August 2012), 479-484 (2012)

19. G. Schmidt and T'. Stréhlein, Timetable construction—an annotated bibliography, The
Computer Journal, 23, 307-316, (1980)

