
Noname manuscript No.

(will be inserted by the editor)

Timetable Construction: The Algorithms and Complexity

Perspective

Jeffrey H. Kingston

the date of receipt and acceptance should be inserted later

Abstract This paper advocates approaching timetable construction from the algorithms and

complexity perspective, in which analysis of the specific problem under study is used to find

efficient algorithms for some of its aspects, or to relate it to other problems. Examples are

given of problem analyses leading to relaxations, phased approaches, very large-scale neigh-

bourhood searches, bipartite matchings, ejection chains, and connections with standard NP-

complete problems. Although a thorough treatment is not possible in a paper of this length,

it is hoped that the examples will encourage timetabling researchers to explore further with

a view to utilizing some of the techniques in their own work.

Keywords Timetabling · Algorithms · NP-completeness

1 Introduction

When tackling a problem, a researcher utilizes a certain perspective, or set of techniques,

which he or she understands and has experience with. There is a tendency to stay within

one’s own perspective, which, though natural, may not be the most scientific thing to do.

One of the strengths of the PATAT conference series is that its contributors bring a vari-

ety of perspectives to the timetabling problems they study, thereby exposing its participants

to healthy doses of unfamiliar techniques. Judging by the contributions to the most recent

conference (Burke and Gendreau 2008), the field is strongly dominated by local search,

especially simulated annealing (Dowsland 1993; Kirkpatrick et al. 1983) and tabu search

(Glover and Laguna 1998); but there are also papers written from the integer programming

perspective, and indeed their number is growing as integer programming packages improve.

Other perspectives are also represented, although on a smaller scale: constraint program-

ming, machine learning, and cooperating agents are three examples.

Some of the most interesting papers apply techniques from one perspective to problems

that had previously been studied only from another. For example, the Travelling Tournament

Jeffrey H. Kingston

School of Information Technologies

The University of Sydney, NSW 2006, Australia

http://www.it.usyd.edu.au/~jeff

E-mail: jeff@it.usyd.edu.au

Problem (Easton et al. 2003) was formulated by researchers associated with the integer

programming perspective, but good solutions were later obtained with local search (Ribeiro

and Urrutia 2004). And, in the reverse direction, two simplified university course timetabling

data sets, compiled by researchers who typically use local search, were recently solved to

optimality using an integer programming formulation (Burke et al. 2008).

This paper advocates the algorithms and complexity perspective on timetable construc-

tion. In general terms, a researcher who utilizes the algorithms and complexity perspective

will devote considerable time to analysing the specific problem under study. The outcome

of this problem analysis might be the discovery that some aspect of the problem is amenable

to efficient solution, leading to the design of an algorithm which exploits that fact. In other

cases, the outcome might be the discovery of a close connection with another NP-complete

problem, which can be helpful in pointing to a body of relevant prior work.

Although problem analysis is practised by all researchers, it is less emphasised in some

other perspectives. Researchers who use local search, for example, typically devote most

of their time to empirical work and parameter tuning. Indeed, the idea of basing a solution

approach on detailed properties of the problem under study may even be deprecated, as tying

the algorithm too closely to specific conditions that could change.

It is emphatically not the aim of this paper to show that algorithms and complexity

techniques will always be superior, or even that they will always yield anything useful. They

are too dependent on specific properties of particular problems for that. Nor does it aim to

depreciate the advantages of other perspectives. A great strength of metaheuristics is the

ease with which they can be applied to a wide range of problems. The integer programming

perspective has the major advantage of emphasising lower as well as upper bounds: either

an optimal solution is found, or a lower bound is produced which gives some indication of

how close to optimality the solution lies.

What this paper does do is offer examples where algorithms and complexity techniques

prove to be useful, sufficient, I hope, to show that they are worth adding to the mental toolkit

of the timetabling researcher. The topics covered are relaxation, the phased approach, very

large-scale neighbourhood search, bipartite matching, ejection chains, and NP-completeness

analysis. Although this paper includes a few original constructions and experiments, it is of-

fered more as a tutorial than as a research contribution. A thorough treatment is not possible

in a paper of this length, but it is hoped that the examples will encourage researchers to

explore further with a view to utilizing some of the techniques in their own work.

2 Relaxation

One way to find problems of low complexity within an NP-complete problem is to relax the

NP-complete problem: loosen some of its constraints, or discard them altogether. Although

the solution of the resulting relaxed problem is not usually a solution of the original problem,

it may contain useful information. In particular, the cost of an optimal solution of the relaxed

problem is a lower bound on the cost of any solution of the original problem.

Finding relaxations requires problem analysis. On the one hand, the relaxed problem

must be sufficiently close to the original for its solution to be relevant; on the other, it must

be efficiently solvable, since otherwise nothing is gained by using it.

Relaxation is an important part of the integer programming perspective. The archetypal

relaxation replaces the integrality constraints of an integer program (which specify that each

variable xi must be assigned an integer in some range ai...bi) with linear constraints (which

specify that each variable xi must be assigned some value in the range ai ≤ xi ≤ bi, with

fractional values allowed), replacing an integer program, which in general describes an NP-

complete problem, by a linear program which can be solved in polynomial time (Martin

2007). Another well-known technique is Lagrangean relaxation (Beasley 1993), in which

different versions of the relaxed problem are solved repeatedly.

Relaxation is useful for determining whether a problem is likely to have a feasible solu-

tion. For example, the nurse rostering problem has many complex constraints on the layout

of each nurse’s shifts. Discarding them leaves a much simpler problem, solvable by bipartite

matching (Sect. 5), which checks whether there are enough nurses of the right kinds to cover

the required work. There is little point in starting a long solution process if not.

3 The phased approach

The phased approach divides the problem into parts, called phases, and solves them one by

one. Each phase has only limited information about the other phases, so there is little hope

of the overall solution being optimal.

Problem analysis is needed to find a decomposition into phases which are efficiently

solvable separately, and independent enough to satisfy concerns about the loss of optimality.

Room assignment is often a good candidate for making into a separate phase. When all

events have duration 1, this can be done without loss of optimality. During time assignment,

one merely tests, using bipartite matching (Sect. 5), whether the events assigned to each time

can be assigned rooms, without committing specific rooms to specific events. The actual

assignments are made separately at the end.

Large problems, such as whole-university course timetabling and student sectioning

problems, are typically solved in phases (Carter 2000; Murray et al. 2007). Their size, and

the complexity of the whole process, can make phasing a practical necessity in such cases.

A key module in a student sectioning system is a branch-and-bound algorithm for finding

the best possible timetable for one student, holding the rest of the timetable fixed. One run

of such an algorithm constitutes one phase.

A few scattered examples exist where the results of a later phase are fed back to a sub-

sequent run of an earlier phase. For example, in unpublished work by staff of the University

of Sydney more than a decade ago, after timetabling each student as just described, a second

pass over the student list was made, and each student was removed and re-timetabled. The

result was a much improved distribution of students into sections. This idea qualifies as an

example of very large-scale neighbourhood search, to be described next.

4 Very large-scale neighbourhood search

Very large-scale neighbourhood (VLSN) search (Ahuja et al. 2002) is a form of local search.

To move from one solution to its neighbour, a large piece of the solution is deassigned, then

reassigned in a different and hopefully improved way.

Although the reassignment can be carried out by any simple constructive heuristic, the

method is particularly interesting when problem analysis identifies a piece to deassign whose

reassignment may be carried out optimally.

Several examples of the application of VLSN search to timetabling problems are given

in Meyers and Orlin (2007). The point is made there that in some cases where other local

search methods proceed by swaps, a more general and potentially more effective VLSN

search based on the ‘cyclic exchange neighbourhood’ is possible. This author has used the

Avail W1 W2 R1 R2 M8 F5 M3 M4 W5 W6 R8 F2 T3 T4 R5 R6 W8 F3

Art01 0 12-3A-P 7CKO2-112-3A-Photograph 7AS2-1 History 8CKO2-1 8CKO4-2

Art02 4 7CKO2-111-3A/1 11-3A/12-3A-Cera 10-4-Art 12-1-VisualArts

Art03 0 7CKO1-1 7AS1-1 8CKO1-1 8CKO3-2

Unassigned

M1 M2 T5 T6 W7 F4 M5 M6 T1 T2 R7 F1 W3 W4 R3 R4 M7 T7 F6 F7 F8 T8

Art01 11-4-VisualArt 12-2-Photography-2U 11-6-Photography Sport StaffMe

Art02 8AS3-3 7AS3-3 9-4Art-1 9-4Art-1 7CKO4-2 10-4-Art 10-4-Art 8AS2-1

Art03 7CKO3-2 8AS1-1

Unassigned 12-4B-VisualDesign 12-4B-Visu

Fig. 1 Part of a high school timetable, showing the assignments of the school’s three Art teachers. Each

teacher occupies one row, with a fourth row holding one Art class which failed to be assigned. Each column

holds one of the 40 times of the cycle, except the column adjacent to the teachers’ names, which shows the

remaining available workload of the teachers.

12-3A 7AS2 8CK02 8CK04 11-4 12-2 Sport

7CK02 10-4 12-1 8AS3 7AS3 9-4 8AS2

11-3A 11-6 7CK04

Fig. 2 The clash graph for the meetings assigned to teachers Art01 and Art02 in Fig. 1, slightly simplified,

and showing one 2-colouring.

cyclic exchange neighbourhood in high school teacher assignment, to permute the assign-

ments at a given set of times among the teachers. It was effective in removing some kinds

of defects (Kingston 2008). For variety, this paper offers a different example, again from

teacher assignment.

The literature contains a smattering of timetabling papers which improve their resource

assignments by deassigning all the work assigned to two resources and then reassigning that

work to those same two resources. This clearly qualifies as VLSN search, and when the

resources are high school teachers, the reassignment can be done to optimality in practice.

Take the example of teachers Art01 and Art02 in Fig. 1. These make good candidates

for deassignment and reassignment, because they are qualified to teach similar kinds of

classes, and they share a split assignment (occupying times W1 and W2) whose removal is

desirable. A split assignment is a case where one teacher teaches one subject to one class at

some times, and another teaches that subject to that class at other times.

Deassign the meetings assigned to the two teachers and build their clash graph, in which

each deassigned meeting is a node and two nodes are joined by an edge whenever their

meetings share at least one time (Fig. 2). A clash-free reassignment is a 2-colouring of this

graph. Each of the graph’s K connected components can be coloured independently, and

has two distinct 2-colourings; in various special cases there are fewer, making at most 2K

distinct colourings altogether. In practice, K is small enough to permit an exhaustive search

for a colouring that does not exceed the teachers’ workload limits. For safety, the author’s

implementation imposes a fixed upper limit on the number of colourings tried.

On real instances this method runs quickly, but its results are disappointing, averaging

only about one improvement per instance. Still, it might be useful in other resource assign-

ment problems, such as nurse rostering, where similarly qualified resources work together.

Fig. 3 A bipartite graph (left), and the same graph with a maximum matching, shown in bold (right).

Clashes

0 20 40 60 80 100
0

200

400

600

Thousands of moves

Fig. 4 Performance of tabu search on a bipartite matching problem with 3686 demand nodes and 5378 supply

nodes, taken from a real instance of a high school timetabling problem, whose optimal solution is known (by

applying the standard polynomial-time algorithm) to have 5 unmatched demand nodes, or equivalently (if

every demand node is assigned) 5 clashes. After 100000 moves, starting from an initial greedy solution with

585 clashes, the best solution found had 11 clashes. The neighbourhood was all single moves of a demand

node’s assignment from one supply node in its domain to another. A move was tabu if it involved a demand

node that had been moved recently; the tabu list length was 1500 demand nodes. About ten values for tabu

list length were tried; results improved as the length was increased to 1500, and then worsened.

5 Bipartite matching

A bipartite graph is an undirected graph whose nodes may be divided into two sets, such

that every edge connects a node of one set to a node of the other. A matching in an undirected

graph (bipartite or otherwise) is a subset of the edges such that no two edges touch the same

node. A maximum matching is a matching containing as many edges as possible (Fig. 3).

The bipartite matching problem is the problem of finding a maximum matching in a bipartite

graph. There is a standard polynomial-time algorithm for this problem, used in timetabling

for more than forty years (Csima and Gotlieb 1964; Gotlieb 1962; de Werra 1971).

In timetabling, it is usual for one of the two sets of nodes to represent variables (events,

meetings, etc.) demanding something to be assigned to them, while the other set represents

entities (times, resources, etc.) which are available to supply these demands. Accordingly,

these two sets will be referred to as the demand nodes and the supply nodes. A maximum

matching assigns one distinct supply node to as many demand nodes as possible.

One application of bipartite matching to timetabling is to assign rooms to meetings after

the meetings’ times are fixed. At each time, build a bipartite graph with one demand node

for each demand for a room at that time, and one supply node for each room available at that

time, and connect each demand node to those supply nodes representing rooms which are

qualified to satisfy the demand (rooms which are large enough and contain the appropriate

facilities). Then a maximum matching gives an optimal assignment of rooms at that time.

Fig. 4 documents a case where a standard local search method (tabu search) could not

find an optimal solution to a large, real instance of the bipartite matching problem, even

Fig. 5 Augmenting paths (at left) and the effect of applying them (at right). The first augmenting path carries

out a simple assignment; the second carries out two assignments and one deassignment; and so on. In each

case the size of the matching increases by one. No matching edge may initially touch the first or last node.

Path length

0 1000 2000 3000 4000
0

2

4

6

Augmenting path

Fig. 6 This graph shows how the length of augmenting paths increases as the bipartite matching algorithm

proceeds. The bipartite graph from Fig. 4 was used. For each value of k from k = 1 to 3686−5, the length of

the longest of the first k augmenting paths found is shown, defining length to be the number of demand nodes

on the path. At first, the paths are short (at most 2 demand nodes), but by the end of the algorithm they have

length 4 or 5. Breadth-first search was used to find these paths, so this shows that some steps near the end

require at least 4 or 5 coordinated reassignments of demand nodes in order to reduce solution cost.

when several settings of its parameters were tried and ample time was allowed. Thus, when

instances of bipartite matching problems lie within timetabling problems, it may be advanta-

geous to solve them directly using the polynomial-time algorithm, as was done, for example,

by the winning entry in the First International Timetabling Competition (Kostuch 2005).

The performance of tabu search on this problem raises a question: if the problem is

difficult, then how can the standard algorithm solve it to optimality so quickly? Can that

algorithm be applied to other problems, perhaps to NP-complete problems? To answer these

questions it is necessary to examine the standard algorithm in detail.

The algorithm is the augmenting path method. Starting at each unmatched demand node

in turn, it searches the graph for a path from that node to a supply node, from there back to the

demand node currently assigned that supply node, from there to a different supply node, and

so on, ending at a currently unmatched supply node. Then making each non-matching edge

on the path into a matching edge, and each matching edge on the path into a non-matching

edge, increases the size of the matching by one (Fig. 5). A theorem guarantees that each node

has to be searched through only once, so the cost of finding an augmenting path is bounded

above by the total size of the graph. Another theorem guarantees that after each unmatched

demand node has been taken as the starting point, the matching is maximum. These results

are proved in many text books, for example Papadimitriou and Steiglitz (1982).

The secret of the success of this algorithm is revealed in Fig. 6. At first, it finds very

short augmenting paths, such as any local search algorithm could easily find. But towards

the end, the paths become longer, until, on large examples such as the one used in the figure,

at least 4 or 5 coordinated reassignments of demand nodes to supply nodes are required to

improve the solution. This is difficult for local search algorithms based on simple moves and

swaps: they become trapped in what seem to them to be large, featureless plateaus.

To dispel any idea that this algorithm is difficult to implement, here is the key procedure,

for searching for an augmenting path out of a given demand node, and applying it if found:

bool Augment(DEMAND_NODE demand_node, int visit_num)

{

int i; SUPPLY_NODE supply_node;

for(i = 0; i < demand_node->domain_size; i++)

{

supply_node = demand_node->domain[i];

if(supply_node->visit_num < visit_num)

{

supply_node->visit_num = visit_num;

if(supply_node->supply_asst == NULL ||

Augment(supply_node->supply_asst, visit_num))

{

supply_node->supply_asst = demand_node;

demand_node->demand_asst = supply_node;

return true;

}

}

}

return false;

}

Additional code is needed for initialization and trying each demand node in turn.

6 Ejection chains

It is not hard to see how to apply the augmenting path method of the previous section to

assignment-type problems other than bipartite matching. Start at any point where an assign-

ment is required but is currently missing. Mark all elements of the instance unvisited. Try to

assign a valid value at the starting point. If that can be done directly, do it; otherwise, find all

ways in which a valid value can be assigned, at the cost of one deassignment at some other

point. For each of these ways, make the indicated deassignment and assignment, mark the

elements involved as visited to ensure that they will not be touched again during the current

search, and continue trying to reassign the deassigned element, using the same method re-

cursively. If the search ever reaches an element that can be assigned directly, it does so and

terminates, having completed a chain of assignments and deassignments which amount to

an augmenting path. Repeat until no further progress occurs.

This idea was given the name ejection chains by Glover (the inventor of tabu search),

who applied it successfully to the travelling salesman problem (Glover 1996). Similar ideas

had probably been used earlier. For example, the widely used Kempe chain method from

graph colouring, dating from the work of A. B. Kempe in 1879, could be described as an

ejection chain method, although it differs in detail from the method presented here. An

accessible account appears in Dowsland (1993).

In general, theorems which guarantee effectiveness (as in the bipartite matching case)

will not be available; nevertheless, ejection chains preserve the other virtue of the augment-

ing path method, namely its ability to explore large plateaus.

A key restriction of the ejection chain method as formulated here is that only one deas-

signment is permitted for each assignment, ensuring that the structures searched are limited

to paths. Although more complex augmenting structures, such as trees, could be permitted,

they complicate the implementation and seem less likely to pay off than paths. See Müller

et al. (2005) for a simple method which can explore such structures.

This author has used ejection chains to improve the assignment of teachers to meetings

in high school timetabling problems, after the meetings’ times are assigned. Each meeting

may contain several time blocks spread through the week, and may request a teacher of a

particular kind. Vertex colouring may be embedded in this problem, making it NP-complete.

First, an initial assignment is made by taking each teacher in turn and applying a branch-

and-bound tree search (with a fixed upper limit on the number of nodes searched, for safety)

to pack as much workload as possible into the teacher, assigning only meetings for which

the teacher is qualified, and avoiding clashes and hard workload limit overloads. Next, from

each unassigned meeting the algorithm searches for ejection chains as described above.

Finally, split assignments are introduced, in which the classes of unassigned meetings are

split between two or more qualified teachers. Split assignments are undesirable, so it is

important to minimize the number of unassigned meetings at the point they are resorted to.

A full description has been given elsewhere (Kingston 2008).

It is interesting to compare the performance of this algorithm with a standard local search

(tabu search). It is not clear how to do so fairly, however, since the author’s algorithm never

introduces a clash or a hard workload limit overload, preferring to leave a meeting unas-

signed, whereas tabu search assigns a teacher to every meeting, at the cost of some clashes

and hard workload limit overloads. There is no simple and fair means of interconversion as

there was for the bipartite matching problem studied earlier.

When run on a typical instance, the author’s algorithm produced a resource assignment

in which there were 22 unassigned meetings after the initial assignment, and 15 after the

ejection chain phase. This was a significant improvement, since it meant that 7 fewer meet-

ings required split assignments. For comparison only, this solution was extended greedily to

one in which every meeting had an assignment, and that solution had 34 clashes and hard

workload limit overloads.

The best run of tabu search (Fig. 7) on the same instance produced 23 clashes and hard

workload limit overloads. Again for comparison only, this solution was reduced greedily to

one in which there were no clashes or hard workload limit overloads, and that solution had

22 unassigned meetings. Even if we call these results a draw, the ejection chain method still

has considerable advantages: it runs much faster, and there are no parameters to tune.

7 NP-completeness analysis

Sometimes the outcome of problem analysis is not an idea for an efficient algorithm, but

instead the discovery of a connection with another NP-complete problem. Even this appar-

ently negative result may be useful, however, in suggesting that prior work on the other

problem may be relevant, either directly or with some adaptations.

Two examples of this occur in examination timetabling, one well-known, the other less

so. The well-known example is the connection with vertex colouring. Algorithms from the

Cost

0 10 20 30 40
0

20

40

60

80

Hundreds of moves

Fig. 7 Performance of tabu search on a typical teacher assignment problem (bghs93 from Kingston 2008)

with 305 teacher slots totalling 1275 times. The cost measure was the total number of clashes and hard

workload limit overloads. After 4000 moves, starting from an initial greedy solution with cost 79, the best

solution found had cost 23. The neighbourhood was all moves of one assignment from one qualified teacher

to another. A move was tabu if its slot had been moved recently; the tabu list length was 50, which gave the

best result of about ten values tried.

3

3

4

4

0

0

3
3

1

1

0

0

4

4

1

1

0

0

2

2

3

3

4

4

0

0

3
3

1

1

0

0

4

4

1

1

0

0

2

2

Fig. 8 A clash graph, showing a minimum matching (left), and a travelling salesman path (right).

vertex colouring literature, such as the saturation degree heuristic and Kempe chains, have

been adapted to examination timetabling in many papers.

To uncover the less well-known connection, it is necessary first to dispose of the ‘no-

clashes’ constraint that points to vertex colouring. This may be done, for example, by a

phased approach whose first phase clusters examinations so that there are as many clusters

as time slots. For simplicity, this discussion will assume from now on that there are as many

examinations as time slots, and that the aim is to assign one examination to each time slot.

With clashes out of the way, the remaining problem is to minimize cases of students hav-

ing examinations too close together in time. This requirement can be formalized in several

ways, two of which will be examined here.

Construct the familiar clash graph, where each examination (or cluster of examinations)

is represented by a node, and each pair of nodes is joined by an edge weighted by the

number of students who attend the examinations of both nodes. One formulation is to have

two examination time slots on each day, and aim to minimize the number of cases of stu-

dents attending two examinations on the same day. This corresponds to finding a maximum

matching of minimum total weight in the clash graph, which can be done in polynomial time

(Papadimitriou and Steiglitz 1982). Another formulation does not consider the division of

time slots into days, but merely their sequencing in time, and aims to minimize the number

of cases of students having consecutive examinations. This corresponds to finding a trav-

elling salesman path (like a travelling salesman tour, but with no requirement to end at the

starting point) in the clash graph. These constructions are illustrated in Fig. 8.

It is not suggested that these ideas provide an immediate solution to the examination

timetabling problem. Rather, they make connections with other work that might bear fruit

when suitably adapted. For example, to the author’s knowledge, no attempt has been made

to adapt the work of Glover (1996) on ejection chain neighbourhoods for the travelling

salesman problem to examination timetabling.

8 Conclusion

This paper has highlighted the algorithms and complexity perspective on timetable construc-

tion, and shown by example that its use can be beneficial.

It is difficult to offer guidance in the application of the techniques advocated here, since

they must be adapted to specific details of the problems under study. Familiarity with the

list of standard algorithms and NP-complete problems is a prerequisite. In searching for

algorithmic ideas, a focus on sets of related variables is often rewarding: the schedules of

all sports teams in a given local area, the room requirements for all meetings at a given

time, and so on. Indeed, where algorithms and complexity techniques have advantages, these

seem to be due to their ability to handle sets of related variables together, rather than one by

one as local search and integer programming solvers do. This point is illustrated repeatedly

throughout this paper.

There is no practical barrier to combining algorithms and complexity techniques with

other perspectives in timetabling research; the possibilities are limited only by our ingenuity.

There is however one point of philosophical disagreement that should not be glossed over.

Metaheuristics are general approaches to optimization problems, easily applied to any

problem. Integer programming, too, is a general approach. From the algorithms and com-

plexity perspective, generalization is bad, not good, because it brings with it a corresponding

weakening of the tools available to solve the problems. For example, the consequences of

treating bipartite matching as a general optimization problem were demonstrated in Sect. 5.

Thus, the algorithms and complexity perspective tends to lead the researcher towards spe-

cific details; other perspectives often lead in the opposite direction.

Problem analysis is a very hit-and-miss process, but it does have the advantage of being

open-ended. One can always hope to find a new algorithm, or a new connection with another

problem. And when something does turn up, the payoff can be large. For these reasons, the

algorithms and complexity perspective will continue to have a place in timetabling research.

References

Ahuja R, Ergun Ö, Orlin J, Punnen A (2002) A survey of very large-scale neighbourhood

search techniques. Discrete Applied Mathematics, 123:75–102

Beasley JE (1993) Lagrangean relaxation. In Reeves CR (ed.), Modern Heuristic Techniques

for Combinatorial Problems, Blackwell

Burke EK, Gendreau M (2008) Proceedings, PATAT2008 (Seventh international conference

on the Practice and Theory of Automated Timetabling, Montreal)

Burke EK, Marecek J, Parkes AJ, Rudová H (2008) A branch-and-cut procedure for Udine

course timetabling. In: Proceedings, PATAT2008 (Seventh international conference on the

Practice and Theory of Automated Timetabling, Montreal)

Carter MW (2000) A comprehensive course timetabling and student scheduling system at

the University of Waterloo. In Practice and Theory of Automated Timetabling III (Third

International Conference, PATAT2000, Konstanz, Germany, Selected Papers), Springer

Lecture Notes in Computer Science 2079:64–81

Csima J, Gotlieb CC (1964) Tests on a computer method for constructing school timetables.

Communications of the ACM 7:160–163

Dowsland KA (1993) Simulated annealing. In Reeves CR (ed.), Modern Heuristic Tech-

niques for Combinatorial Problems, Blackwell

Easton K, Nemhauser G, Trick M (2003) Solving the travelling tournament problem: a com-

bined integer programming and constraint programming approach. In: Practice and The-

ory of Automated Timetabling IV (Fourth International Conference, PATAT2002, Gent,

Belgium, August 2002, Selected Papers), Springer Lecture Notes in Computer Science

2740:100-109

Glover F (1996) Ejection chains, reference structures and alternating path methods for trav-

eling salesman problems. Discrete Applied Mathematics 65:223–253

Glover F, Laguna M (1998) Tabu Search, Kluwer

Gotlieb CC (1962) The construction of class-teacher timetables. Proc. IFIP Congress, 73–77

Kingston JH (2008) Resource assignment in high school timetabling. In: PATAT2008 (Sev-

enth international conference on the Practice and Theory of Automated Timetabling,

Montreal)

Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimization by simulated annealing. Science

220:671–680

Kostuch P (2005) The university course timetabling problem with a three-phase approach.

In: Practice and Theory of Automated Timetabling V (5th International Conference,

PATAT 2004, Pittsburgh, PA), Springer Lecture Notes in Computer Science 3616:109–

125

Martin RK (1999) Large scale linear and integer optimization: a unified approach. Kluwer

Meyers C, Orlin JB (2007) Very large-scale neighbourhood search techniques in timetabling

problems. In: Practice and Theory of Automated Timetabling VI (Sixth International Con-

ference, PATAT2006, Brno, Czech Republic), Springer Lecture Notes in Computer Sci-

ence 3867:24–39

Müller T, Rudová H, Barták R (2005) Minimal perturbation problem in course timetabling.

In: Practice and Theory of Automated Timetabling V (5th International Conference,

PATAT 2004, Pittsburgh, PA), Springer Lecture Notes in Computer Science 3616:126–

146

Murray K, Müller T, Rudová H (2007) Modeling and solution of a complex university course

timetabling problem. In: Practice and Theory of Automated Timetabling VI (Sixth In-

ternational Conference, PATAT2006, Brno, Czech Republic), Springer Lecture Notes in

Computer Science 3867:189–209

Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complex-

ity. Prentice-Hall

Ribeiro CC, Urrutia S (2004) Heuristics for the mirrored travelling tournament problem. In:

Proceedings, PATAT 2004 (5th International Conference on the Practice and Theory of

Automated Timetabling, Pittsburgh, PA), 323–341

De Werra D (1971) Construction of school timetables by flow methods. INFOR – Canadian

Journal of Operations Research and Information Processing 9:12–22

