
A User’s Guide to the

NRConv

Nurse Rostering Converter

Jeffrey H. Kingston

jeff@it.usyd.edu.au

Version 2.9 (December 2023)

Contents

Chapter 1. Introduction 1

Part A: The NRC Nurse Rostering Model

Chapter 2. NRC Archives and Solution Groups 3

2.1. Archives 3

2.2. Solution groups 4

2.3. Writing archives 5

Chapter 3. NRC Instances and Solutions 6

3.1. Overview 6

3.2. Debug functions 7

3.3. Instance objects 7

3.3.1. Creation, metadata, and archives 7

3.3.2. Day names, days, day-sets, and day-set sets 9

3.3.3. The cycle and the days of the week 10

3.3.4. Shift types and shift-type sets 11

3.3.5. Shifts, shift-sets, and shift-set sets 11

3.3.6. Workers, worker-sets, and worker-set sets 12

3.3.7. Contracts and skills 13

3.3.8. Demands, demand-sets, patterns, and constraints 14

3.4. Days 15

3.4.1. The cycle and the days of the week 15

3.4.2. Days 16

3.4.3. Day-sets 18

3.4.4. Day-set sets 19

3.5. Time intervals 20

3.6. Shift types 21

3.6.1. Shift types 21

3.6.2. Shift-type sets 22

3.7. Shifts 23

3.7.1. Shifts 23

3.7.2. Shift-sets 25

3.7.3. Shift-set sets 26

3.8. Workers 26

3.8.1. Workers 26

3.8.2. Worker-sets 28

3.8.3. Worker-set sets 30

3.8.4. Worker-set trees 30

3.9. Constraints 31

3.9.1. Penalties and costs 31

3.9.2. Bounds 33

3.9.3. Demands 37

3.9.4. Demand-sets 40

3.9.5. Demand constraints 41

3.9.6. Patterns 43

3.9.7. Pattern sets 44

3.9.8. Worker constraints 45

3.9.9. Examples of worker constraints 48

3.9.10. Adding history to worker constraints 51

3.10. Solutions 52

Chapter 4. Implementation Notes 53

4.1. Optimizing worker constraints 53

4.2. Converting demands into XESTT constraints 55

4.3. Optimizing demand constraints 55

Part B: The NRConv Executable

Chapter 5. NRConv and its Converters 60

5.1. Instance models and solution models 60

5.2. The Curtois original instances 61

5.3. The First International Nurse Rostering Competition model 64

5.4. The Second International Nurse Rostering Competition model 65

5.5. The Second International Nurse Rostering Competition static model .. 66

5.6. The Curtois-Qu 2014 model 67

iii

Chapter 1. Introduction

This document describes NRConv, a program for converting instances of nurse rostering

problems from various existing formats into a common XML format called XESTT.

In NRConv’s view of the world, there are three kinds of models. They all model instances

of nurse rostering problems, and solutions to those instances, but they do it in different ways.

A source model is one of the models (concretely, file formats) that NRConv converts. At

present NRConv can convert four source models: the Curtois ‘original instances’ model, the

first international nurse rostering competition model, the second international nurse rostering

competition model, and the Curtois-Qu 2014 model. However, NRConv is designed to minimize

the work needed to add new source models.

The intermediate model, also called the NRC model after the software platform that im-

plements it, represents the concepts underlying source models, including metadata, days, shifts,

cover, patterns, and so on. If something in some source model is not in the intermediate model,

then either the intermediate model needs to be extended, or else the source model is beyond the

scope of NRConv. The intermediate model also includes its own versions of the XESTT concepts

of archive (a set of instances and solution groups) and solution group (a set of solutions). There

is no file format for the intermediate model; its values are held only in memory.

Finally, there is the target model, XESTT. Its main concepts are archives, instances, times,

resources,events, constraints, solution groups, and solutions. It lies in memory, in objects defined

by the KHE platform which implements XESTT, and it also has a file format version. The user

of NRConv does not need to be a KHE expert, because NRConv uses it only behind the scenes.

There are two parts to NRConv, a platform called NRC and the converters. NRC defines

many types and functions,culminating in type NRC_ARCHIVE, representing a set of instances and a

set of solution groups in the intermediate model, and function NrcArchiveWrite, which converts

an NRC_ARCHIVE object into a target model archive and writes it by calling KheArchiveWrite.

Each converter is a function which reads instance and solution files in one source model and

converts what it reads into intermediate model objects. Since the intermediate model understands

all the source model concepts, this conversion should be straightforward, a matter of reading

the source model file and generating calls to the NRC platform. After this is done, the converter

completes the conversion to the target model by calling NrcArchiveWrite.

NRConv is written in C, and is packaged with the author’s KHE distribution, which is

a gzipped tar file. To install it you need to get that file, unzip it, untar it, modify makefile

slightly to say where you want the final nrconv binary to be copied to, and run make. After

compiling, execute the nrconv binary with no command line options to get a comprehensive

usage message.

1

Part A

The NRC Nurse Rostering Model

2

Chapter 2. NRC Archives and Solution

Groups

The subject of this part is the NRC nurse rostering model. As explained in the introduction, the

NRC model is an intermediate model, lying between the source models, which are existing nurse

rostering models such as the First International Timetabling Competition model, and the target

model, XESTT. By calling the functions defined in this part, a converter can convert instances

and solutions in its model into the intermediate model; and then one call on NrcArchiveWrite

converts that into XESTT and writes it as an XESTT archive.

This chapter describes types NRC_ARCHIVE and NRC_SOLN_GROUP, representing archives

(sets of instances and solution groups) and solution groups (sets of solutions) in the intermediate

model. Nurse rostering data formats do not seem to have features for grouping instances and

solutions, beyond, say, the use of a zip file containing several instances. So these features of NRC

are copied directly from the corresponding XESTT features.

2.1. Archives

An archive is a collection of instances together with groups of solutions to those instances. There

may be any number of instances and solution groups. To create a new, empty archive, call

NRC_ARCHIVE NrcArchiveMake(char *id, HA_ARENA_SET as);

Here id is an identifier for the archive, and as is an arena set, used to gain efficient access to heap

memory. You can safely pass NULL for arena set; to find out how to pass a non-NULL value, and

why you might want to do that, read the KHE User’s Guide. Function

char *NrcArchiveId(NRC_ARCHIVE archive);

returns the Id attribute.

Archive metadata may be set and retrieved by calling

void NrcArchiveSetMetaData(NRC_ARCHIVE archive, char *name,
char *contributor, char *date, char *description, char *remarks);

void NrcArchiveMetaData(NRC_ARCHIVE archive, char **name,
char **contributor, char **date, char **description, char **remarks);

where remarks, being optional, may be NULL.

Initially an archive contains no instances and no solution groups. Solution groups are added

automatically as they are created, because every solution group lies in exactly one archive. An

instance may be added to an archive by calling

bool NrcArchiveAddInstance(NRC_ARCHIVE archive, NRC_INSTANCE ins);

3

4 Chapter 2. NRC Archives and Solution Groups

NrcArchiveAddInstance returns true if it succeeds in adding ins to archive, and false

otherwise, which can only be because archive already contains an instance with the same Id as

ins. The instance will appear after any instances already present. An instance may be deleted

from an archive (but not destroyed) by calling

void NrcArchiveDeleteInstance(NRC_ARCHIVE archive, NRC_INSTANCE ins);

NrcArchiveDeleteInstance aborts if ins is not in archive. If there are any solutions for

ins in archive, they are deleted too. The gap left by deleting the instance is filled by shuffling

subsequent instances up one place.

To visit the instances of an archive, call

int NrcArchiveInstanceCount(NRC_ARCHIVE archive);
NRC_INSTANCE NrcArchiveInstance(NRC_ARCHIVE archive, int i);

The first returns the number of instances in archive, and the second returns the i’th of those

instances, counting from 0 as usual in C. There is also

bool NrcArchiveRetrieveInstance(NRC_ARCHIVE archive, char *id,
NRC_INSTANCE *ins);

If archive contains an instance with the given id, this function sets ins to that instance and

returns true; otherwise it leaves *ins untouched and returns false. In the same way,

int NrcArchiveSolnGroupCount(NRC_ARCHIVE archive);
NRC_SOLN_GROUP NrcArchiveSolnGroup(NRC_ARCHIVE archive, int i);
bool NrcArchiveRetrieveSolnGroup(NRC_ARCHIVE archive, char *id,
NRC_SOLN_GROUP *soln_group);

visit the solution groups of an archive, and retrieve a solution group by id.

2.2. Solution groups

A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool NrcSolnGroupMake(NRC_ARCHIVE archive, char *id,
NRC_SOLN_GROUP *soln_group);

Parameter archive is compulsory. The solution group will be added to the archive. Parameter

id is an identifier for the solution group. If the operation is successful, then true is returned with

*soln_group set to the new solution group; if it is unsuccessful (which can only be because id

is already the Id of a solution group of archive), then false is returned with *soln_group set

to NULL. To retrieve these attributes, call

NRC_ARCHIVE NrcSolnGroupArchive(NRC_SOLN_GROUP soln_group);
char *NrcSolnGroupId(NRC_SOLN_GROUP soln_group);

Solution group metadata may be set and retrieved by calling

2.2. Solution groups 5

void NrcSolnGroupSetMetaData(NRC_SOLN_GROUP soln_group,
char *contributor, char *date, char *description, char *publication,
char *remarks);

void NrcSolnGroupMetaData(NRC_SOLN_GROUP soln_group,
char **contributor, char **date, char **description, char

**publication,
char **remarks);

where publication and remarks, being optional, may be NULL.

Initially a solution group has no solutions. These are added and deleted by calling

void NrcSolnGroupAddSoln(NRC_SOLN_GROUP soln_group, NRC_SOLN soln);
void NrcSolnGroupDeleteSoln(NRC_SOLN_GROUP soln_group, NRC_SOLN soln);

A solution can only be added when its instance lies in the solution group’s archive.

To visit the solutions of a solution group, call

int NrcSolnGroupSolnCount(NRC_SOLN_GROUP soln_group);
NRC_SOLN NrcSolnGroupSoln(NRC_SOLN_GROUP soln_group, int i);

Solutions have no Ids, so there is no NrcSolnGroupRetrieveSoln function. When solution i is

deleted, NrcSolnGroupSolnCount decreases by 1, solution i+1 becomes solution i, and so on.

2.3. Writing archives

To convert an archive to XESTT format and write it to a file, call

void NrcArchiveWrite(NRC_ARCHIVE archive, bool with_reports, FILE *fp);

File fp must be open for writing UTF-8 characters, and it remains open after the call returns. If

with_reports is true, each written solution contains a Report section evaluating the solution.

The initial tag will be <EmployeeScheduleArchive>.

NrcArchiveWrite converts the NRC archive into a KHE archive and writes that archive

using KheArchiveWrite.

At present,NRC does not check that the names of its entities are distinct. If two entities with

conflicting names are given to NRC, they will be accepted at the time, but NrcArchiveWrite will

exit with an error message when the KHE conversion reports the problem.

Chapter 3. NRC Instances and Solutions

An instance is a particular case of the nurse rostering problem, for a particular ward and a

particular period of time. A solution is a solution to a particular instance, saying which workers

to assign to which shifts. This chapter describes the NRC_INSTANCE and NRC_SOLN data types,

which represents instances and solutions as defined by the NRC model.

3.1. Overview

NRC instances contain days, shifts, workers, and constraints (unlike KHE instances, which

contain times, resources, events, and constraints). These data types are strongly interconnected,

so we begin by giving informal definitions of most of them, as an overview.

NRC_INSTANCE represents one instance of the nurse rostering problem: one case of it, for a

particular hospital ward and a particular interval of time.

NRC_DAY represents one day: not a generic day like ‘Friday’,but a particular day like ‘Friday

18 November 2016’, although its calendar date need not be known to the instance.

NRC_DAY_SET represents one day-set, which is a set (actually a sequence) of days. An

example of a day-set is the cycle, containing all the days of the instance.

NRC_DAY_SET_SET represents one day-set set: a set (again, actually a sequence) of day-sets.

An example of a day-set set is the one containing one day-set for each day of the week. Its first

day-set contains all the Sundays, its second contains all the Mondays, and so on.

NRC_SHIFT_TYPE represents a shift type: a generic shift like the day shift or night shift.

NRC_SHIFT_TYPE_SET represents a shift-type set: a set of shift types.

NRC_SHIFT represents a shift, which is a particular shift such as the night shift on 18

November 2016. Each shift is characterised by a day plus a shift type.

NRC_SHIFT_SET represents a shift-set: a set of shifts. For example, the shifts whose day is

18 November 2016 form a shift-set, as do the shifts whose shift type is the night shift.

NRC_SHIFT_SET_SET represents a shift-set set, which is a set of shift-sets.

NRC_WORKER represents one worker, NRC’s term for a nurse or employee.

NRC_WORKER_SET represents one worker-set: a set of workers. The leading examples of

worker-sets are the sets of workers that share a particular contract, and the sets of workers that

share a particular skill. Indeed, contracts and skills are represented in NRC by worker-sets.

NRC_WORKER_SET_SET represents one worker-set set: a set of worker-sets. For example,

the set of all contracts is a worker-set set.

NRC_WORKER_SET_TREE is a tree of worker-sets, where children are subsets of their parents,

and siblings are disjoint. It is used when analysing overlapping cover requirements.

NRC_DEMAND represents one demand, describing a demand for one worker made by a shift,

including the penalty for when a worker is not assigned, and the default penalty to apply when a

worker without the appropriate skill is assigned. One shift may have any number of demands.

6

3.1. Overview 7

NRC_DEMAND_SET represents one demand-set, a set of demands. One can add a demand-set

to a shift, which is the same as adding each of its demands separately, only more convenient.

NRC_POLARITY is used by patterns and constraints to say that what counts about a shift-set

is whether a worker is busy for at least one of its shifts, or free for all of them.

NRC_PATTERN represents a pattern: a sequence of shift-sets, each with a polarity. A pattern

may be used to define a worker constraint which, for example, applies a penalty when the pattern

appears within a worker’s timetable.

NRC_CONSTRAINT represents one worker constraint: a rule about what a worker may do,

which if broken in some solution adds a penalty to that solution’s cost.

NRC_SOLN represents one solution: a collection of assignments to the demands of the shifts

of one instance.

3.2. Debug functions

Many of NRC’s entities have functions included to help with debugging. These functions all

work in the same way. Their interface has this form:

void NrcEntityDebug(NRC_ENTITY e, int indent, FILE *fp);

where NRC_ENTITY stands for an NRC type like NRC_SHIFT, NRC_WORKER, and so on. This

produces a debug print of e onto file fp, which must be open for writing 8-bit characters.

If indent >= 0, the print will be indented indent spaces and occupy one or more complete

lines (that is, it will end with a newline). One debug function often calls another, in which case

it adds 2 to the indent, producing a neatly formatted result.

If indent < 0, the print will not be indented and will contain no newlines. It will usually

be abbreviated, perhaps by printing just the object’s name rather than its contents.

3.3. Instance objects

This section describes instance objects: how to create them, and how to visit their components.

(Whenever NRC makes an object that is part of an instance, that object is not only created and

returned to the user, it is also added to the instance. So one can visit every object via functions

on the instance.) Operations for creating components appear in later sections.

3.3.1. Creation, metadata, and archives

To make a new, empty instance, start by calling

NRC_INSTANCE NrcInstanceMakeBegin(char *id, char *worker_word,
HA_ARENA_SET as);

Parameter id is an identifier identifying the instance, returned by

char *NrcInstanceId(NRC_INSTANCE ins);

Parameter worker_word is the name to give to the single XESTT resource type. Good choices

8 Chapter 3. NRC Instances and Solutions

are "Worker", "Nurse", "Employee", and so on. This value is also used when NRC decides to

assign its own names to the workers (Section 3.8). Parameter as may be NULL, or it may be an

arena set, as for NrcArchiveMake; indeed, it would almost certainly be the same arena set.

After adding all the elements of the instance, but before adding any of its solutions, call

void NrcInstanceMakeEnd(NRC_INSTANCE ins);

NRC will abort if this is omitted.

Functions

HA_ARENA NrcInstanceArenaBegin(NRC_INSTANCE ins);
void NrcInstanceArenaEnd(NRC_INSTANCE ins, HA_ARENA a);

provide a convenient interface for obtaining and releasing a memory arena, recycled through

the arena set passed to NrcInstanceMake. Consult the KHE User’s Guide for more information

about memory arenas, arena sets, and memory management generally.

NRC needs to know what penalty is wanted when a worker is assigned twice to the same

shift. The default value is

NrcPenalty(true, 1, NRC_COST_FUNCTION_LINEAR, ins)

which, as Section 3.9.1 explains, makes avoiding clashes a hard constraint with weight 1.1 If this

is not correct for some reason, it can be changed, and the value retrieved, by

void NrcInstanceSetAvoidClashesPenalty(NRC_INSTANCE ins, NRC_PENALTY p);
NRC_PENALTY NrcInstanceAvoidClashesPenalty(NRC_INSTANCE ins);

There is also

NRC_PENALTY NrcInstanceZeroPenalty(NRC_INSTANCE ins);

which is a convenient way to obtain a penalty with weight 0.

Instance metadata may be set and retrieved by calling

void NrcInstanceSetMetaData(NRC_INSTANCE ins, char *name,
char *contributor, char *date, char *country, char *description,
char *remarks);

void NrcInstanceMetaData(NRC_INSTANCE ins, char **name,
char **contributor, char **date, char **country, char **description,
char **remarks);

where remarks, being optional, may be NULL.

For the convenience of functions that reorganize archives, an instance may lie in any

number of archives. To add an instance to an archive and delete it from an archive, call functions

NrcArchiveAddInstance and NrcArchiveDeleteInstance from Section 2.1. To visit the

1When a constraint which limits a worker to a most one shift per day is added, what it actually does is limit the number

of times during that day when the worker may be busy to one. A worker who is assigned twice to the same shift is still

only busy for one time, so NRC must generate a separate constraint, called an avoid clashes constraint, which prevents

this. It does this without being asked, using this penalty for the constraint’s penalty.

3.3. Instance objects 9

archives containing a given instance, call

int NrcInstanceArchiveCount(NRC_INSTANCE ins);
NRC_ARCHIVE NrcInstanceArchive(NRC_INSTANCE ins, int i);

in the usual way.

3.3.2. Day names, days, day-sets, and day-set sets

By default, the seven days of the week have their usual English names. To change this, call

void NrcInstanceSetDayNames(NRC_INSTANCE ins, char *short_names,
char *long_names);

The first parameter contains the short names of the seven days, separated by colons, and

beginning with the name of Sunday (which is how the Unix mktime function does it). The second

parameter is the same except that it contains long names. For example, the call

NrcInstanceSetDayNames(ins, "Sun:Mon:Tue:Wed:Thu:Fri:Sat",
"Sunday:Monday:Tuesday:Wednesday:Thursday:Friday:Saturday");

does not need to be made, because it sets the day names to their default values.

Do not try to use NrcInstanceResetDayNames to begin the cycle on a day of the week other

than Sunday. Setting parameter first_day_index of NrcCycleMake (Section 3.4) to a value

other than 0 is the right way to do that.

To retrieve the day names, use

int NrcInstanceDayNameCount(NRC_INSTANCE ins);
char *NrcInstanceShortDayName(NRC_INSTANCE ins, int i);
char *NrcInstanceLongDayName(NRC_INSTANCE ins, int i);

The first day name (the one for Sunday) has index 0, the second (for Monday) has index 1, and

so on. NrcInstanceDayNameCount always returns 7.

The day objects created make up a day-set called the cycle. For visiting them, see Section

3.3.3 below. To visit all the day-sets created within an instance, including the cycle, use

int NrcInstanceDaySetCount(NRC_INSTANCE ins);
NRC_DAY_SET NrcInstanceDaySet(NRC_INSTANCE ins, int i);

The day-sets are numbered from 0, so the code for visiting them all is

for(i = 0; i < NrcInstanceDaySetCount(ins); i++)
{
ds = NrcInstanceDaySet(ins, i);
... visit ds ...

}

This is a standard arrangement throughout NRC. Similarly, call

10 Chapter 3. NRC Instances and Solutions

int NrcInstanceDaySetSetCount(NRC_INSTANCE ins);
NRC_DAY_SET_SET NrcInstanceDaySetSet(NRC_INSTANCE ins, int i);

to visit all the day-set sets created within ins.

3.3.3. The cycle and the days of the week

The cycle (the sequence of all the days of the instance) is a day-set stored in the instance. Once

a cycle has been added, by calling NrcCycleMake or NrcCalendarCycleMake (Section 3.4.2),

the following operations become available. To retrieve the entire cycle as a day-set, call

NRC_DAY_SET NrcInstanceCycle(NRC_INSTANCE ins);

To visit the days in chronological order, call

int NrcInstanceCycleDayCount(NRC_INSTANCE ins);
NRC_DAY NrcInstanceCycleDay(NRC_INSTANCE ins, int i);

NrcInstanceCycleDayCount returns the number of days, and NrcInstanceCycleDay returns

the i’th day. As usual in NRC, counting starts from 0, so the code to visit each day is

for(i = 0; i < NrcInstanceCycleDayCount(ins); i++)
{
day = NrcInstanceCycleDay(ins, i);
... visit day ...

}

There is also

bool NrcInstanceCycleRetrieveDay(NRC_INSTANCE ins, char *ymd,
NRC_DAY *d);

which retrieves a day from the cycle by its calendar date. If the cycle contains a day whose

year-month-day name is ymd, this function sets *d to one such day and returns true; if not, it

sets *d to NULL and returns false. The date string must contain three non-negative integers

separated by hyphens; a copy, normalized to a four-digit year and two-digit month and day, is

used when retrieving.

At the same time a cycle is added to an instance,day-sets representing the 7 days of the week

are also added. These are stored in a day-set set, and may be retrieved in that form by

NRC_DAY_SET_SET NrcInstanceDaysOfWeek(NRC_INSTANCE ins);

They may also be visited individually by calling

int NrcInstanceDaysOfWeekDaySetCount(NRC_INSTANCE ins);
NRC_DAY_SET NrcInstanceDaysOfWeekDaySet(NRC_INSTANCE ins, int i);

NrcInstanceDaysOfWeekDaySetCount returns the number of day-sets representing days of

the week (always 7), and NrcInstanceDaysOfWeekDaySet returns the i’th of these day-sets,

counting from 0 as usual. There is also

3.3. Instance objects 11

bool NrcInstanceDaysOfWeekRetrieveDaySet(NRC_INSTANCE ins,
char *long_name, NRC_DAY_SET *ds);

which retrieves one of these day sets by long name. Irrespective of how the cycle was created,

the first of these day-sets holds the Sunday days, the second holds the Monday days, and so on.

3.3.4. Shift types and shift-type sets

Functions for creating and querying shift types and shift-type sets are given in Section 3.6. To

retrieve all the shift types of the instance as a shift-type set, call

NRC_SHIFT_TYPE_SET NrcInstanceAllShiftTypes(NRC_INSTANCE ins);

To visit the shift types of an instance one by one, call

int NrcInstanceShiftTypeCount(NRC_INSTANCE ins);
NRC_SHIFT_TYPE NrcInstanceShiftType(NRC_INSTANCE ins, int i);

counting from 0 in the usual way. To retrieve a shift type by name, call

bool NrcInstanceRetrieveShiftType(NRC_INSTANCE ins, char *name,
NRC_SHIFT_TYPE *st);

As usual, if there is a shift type with the given name, this sets *st to that shift type and returns

true, otherwise it sets *st to NULL and returns false. Function

bool NrcInstanceRetrieveShiftTypeByLabel(NRC_INSTANCE ins, char *label,
NRC_SHIFT_TYPE *st);

is the same, except that it searches for a shift type with a non-NULL label equal to label.

To visit the shift-type sets of an instance, call

int NrcInstanceShiftTypeSetCount(NRC_INSTANCE ins);
NRC_SHIFT_TYPE_SET NrcInstanceShiftTypeSet(NRC_INSTANCE ins, int i);

in the usual way. If a shift-type set has a non-NULL name, it may be retrieved by calling

bool NrcInstanceRetrieveShiftTypeSet(NRC_INSTANCE ins, char *name,
NRC_SHIFT_TYPE_SET *sts);

in the usual way.

3.3.5. Shifts, shift-sets, and shift-set sets

The shifts of an instance are stored in the instance as a shift-set. To retrieve this shift-set call

NRC_SHIFT_SET NrcInstanceAllShifts(NRC_INSTANCE ins);

To visit the shifts one by one, call

int NrcInstanceShiftCount(NRC_INSTANCE ins);
NRC_SHIFT NrcInstanceShift(NRC_INSTANCE ins, int i);

12 Chapter 3. NRC Instances and Solutions

as usual. (In many cases, however, a better way to visit each shift is to visit each day, and then

visit each shift on that day.) Also, functions

NRC_SHIFT_SET NrcInstanceDailyStartingShiftSet(NRC_INSTANCE ins);
NRC_SHIFT_SET NrcInstanceWeeklyStartingShiftSet(NRC_INSTANCE ins);

return the set of shifts which are first in each day, and first in each week. These are useful

values for the starting_ss parameter of NrcConstraintMake (Section 3.9.8). To visit all

shift-sets, call

int NrcInstanceShiftSetCount(NRC_INSTANCE ins);
NRC_SHIFT_SET NrcInstanceShiftSet(NRC_INSTANCE ins, int i);

and to visit all shift-set sets, call

int NrcInstanceShiftSetSetCount(NRC_INSTANCE ins);
NRC_SHIFT_SET_SET NrcInstanceShiftSetSet(NRC_INSTANCE ins, int i);

in the usual way. There are also

NRC_SHIFT_SET_SET NrcInstanceDaysShiftSetSet(NRC_INSTANCE ins);

which returns a shift-set set containing one shift-set for each day of the cycle, holding the shifts

of that day, and

NRC_SHIFT_SET_SET NrcInstanceShiftsShiftSetSet(NRC_INSTANCE ins);

which returns a shift-set set containing one shift-set for each shift, holding that shift.

3.3.6. Workers, worker-sets, and worker-set sets

Functions for creating and querying workers, worker-sets, and worker-set sets are given in

Section 3.8. The workers of an instance are held in a worker-set in the instance called the staffing.

It may be retrieved by calling

NRC_WORKER_SET NrcInstanceStaffing(NRC_INSTANCE ins);

For convenience, its elements may be visited directly by

int NrcInstanceStaffingWorkerCount(NRC_INSTANCE ins);
NRC_WORKER NrcInstanceStaffingWorker(NRC_INSTANCE ins, int i);

There is also

bool NrcInstanceStaffingRetrieveWorker(NRC_INSTANCE ins,
char *name, NRC_WORKER *w);

which retrieves a worker with the given name from the staffing, setting *w to that worker and

returning true if successful, and setting *w to NULL and returning false otherwise.

It can be convenient sometimes to have access to an empty worker set:

NRC_WORKER_SET NrcInstanceEmptyWorkerSet(NRC_INSTANCE ins);

3.3. Instance objects 13

Adding a worker to the result of this function will cause strange errors.

To visit all the worker-sets of an instance (including the staffing), call

int NrcInstanceWorkerSetCount(NRC_INSTANCE ins);
NRC_WORKER_SET NrcInstanceWorkerSet(NRC_INSTANCE ins, int i);

in the usual way. There is also

bool NrcInstanceRetrieveWorkerSet(NRC_INSTANCE ins, char *name,
NRC_WORKER_SET *ws);

which retrieves a worker-set with the given name from the instance, setting *ws to that worker-set

and returning true if successful, and setting *ws to NULL and returning false otherwise.

To visit all the worker-set sets of an instance, call

int NrcInstanceWorkerSetSetCount(NRC_INSTANCE ins);
NRC_WORKER_SET_SET NrcInstanceWorkerSetSet(NRC_INSTANCE ins, int i);

in the usual way.

3.3.7. Contracts and skills

Several nurse rostering models offer contracts, which are sets of constraints. A worker can be

made subject to a contract, which means that the contract’s constraints apply to that worker. At

least one model allows a worker to be subject to more than one contract.

In NRC, a worker-set is used to model each contract. Its name is the name of the contract,

perhaps with "Contract-" prepended, and its members are the workers subject to the contract.

The contract’s constraints are not stored in the worker-set. Instead, each constraint has a

worker-set attribute saying which workers it applies to. When there are contracts, this would

be the worker-set for the contract that the constraint lies within. When there are no contracts,

it would be something else—the set of all workers returned by NrcInstanceStaffing above,

perhaps, or NrcWorkerSingletonWorkerSet(w), the worker-set containing just worker w.

Each NRC instance holds a worker-set set called the contracts, intended to hold the set of

all contracts, although what it actually holds is up to the user. This worker-set set is not consulted

when generating an instance; it is there only for the convenience of the user. (Exception: for

documentation, a KHE resource group is generated for each contract, even if it is not used.)

To add a contract to the contracts, call

void NrcInstanceContractsAddContract(NRC_INSTANCE ins,
NRC_WORKER_SET contract_ws);

To retrieve the contracts as a worker-set set, call

NRC_WORKER_SET_SET NrcInstanceContracts(NRC_INSTANCE ins);

To visit the contracts one by one, call

int NrcInstanceContractsContractCount(NRC_INSTANCE ins);
NRC_WORKER_SET NrcInstanceContractsContract(NRC_INSTANCE ins, int i);

14 Chapter 3. NRC Instances and Solutions

To retrieve a contract by name, call

bool NrcInstanceContractsRetrieveContract(NRC_INSTANCE ins,
char *name, NRC_WORKER_SET *contract_ws);

If the contracts contain a contract with the given name, this sets *contract_ws to a contract with

that name and returns true, otherwise it sets *contract_ws to NULL and returns false.

It is acceptable to define the contract at one time and add workers to it later. Indeed, this is

what usually happens, given that contracts are defined at one point in the source file and workers

declare their adherence to a contract at another.

Most nurse rostering models offer skills. A skill is some capability that a worker has, such

as being a senior nurse, or a CPR expert. A worker may have any number of skills. A demand for

a worker may require that a worker with a particular skill be assigned. If a worker without that

skill is assigned, there is a penalty, which may vary depending on which worker is assigned.

Again, in NRC a worker-set is used to model each skill. Its name is the name of the skill,

and its elements are the workers who have that skill. Each demand has an optional worker-set

attribute specifying the skill that workers satisfying that demand should have.

Each NRC instance holds a worker-set set called the skills, intended to hold the set of

all skills, although what it actually holds is up to the user. This worker-set set is not consulted

when generating an instance; it is there only for the convenience of the user. (Exception: for

documentation, a KHE resource group is generated for each skill, even if it is not used.)

Operations entirely analogous to those for the contracts are offered for the skills:

void NrcInstanceSkillsAddSkill(NRC_INSTANCE ins,
NRC_WORKER_SET skill_ws);

NRC_WORKER_SET_SET NrcInstanceSkills(NRC_INSTANCE ins);
int NrcInstanceSkillsSkillCount(NRC_INSTANCE ins);
NRC_WORKER_SET NrcInstanceSkillsSkill(NRC_INSTANCE ins, int i);
bool NrcInstanceSkillsRetrieveSkill(NRC_INSTANCE ins,
char *name, NRC_WORKER_SET *skill_ws);

The contracts and skills may well be the only worker-sets the user needs. There is nothing to

prevent a worker from lying within two or more contracts, or two or more skills. Indeed, this is

quite normal, at least for skills.

3.3.8. Demands, demand-sets, patterns, and constraints

Functions for creating and querying demands, demand-sets, patterns, pattern sets, and constraints

are given in Section 3.9. All these objects are stored in the instance. Demands may be visit-

ed by

int NrcInstanceDemandCount(NRC_INSTANCE ins);
NRC_DEMAND NrcInstanceDemand(NRC_INSTANCE ins, int i);

and demand-sets may be visited by

3.3. Instance objects 15

int NrcInstanceDemandSetCount(NRC_INSTANCE ins);
NRC_DEMAND_SET NrcInstanceDemandSet(NRC_INSTANCE ins, int i);

in the usual way. Patterns may be visited by

int NrcInstancePatternCount(NRC_INSTANCE ins);
NRC_PATTERN NrcInstancePattern(NRC_INSTANCE ins, int i);

in the usual way, and patterns with a non-NULL name may be retrieved by calling

bool NrcInstanceRetrievePattern(NRC_INSTANCE ins, char *name,
NRC_PATTERN *p);

The stored patterns are not used privately by NRC; in particular, they do not become unwanted

unless they are added to worker constraints. Pattern sets are may be visited by

int NrcInstancePatternSetCount(NRC_INSTANCE ins);
NRC_PATTERN_SET NrcInstancePatternSet(NRC_INSTANCE ins, int i);

Pattern sets have no names so there is no retrieve operation.

Demand constraints and worker constraints are stored in the instance, and may be

visited by

int NrcInstanceDemandConstraintCount(NRC_INSTANCE ins);
NRC_DEMAND_CONSTRAINT NrcInstanceDemandConstraint(NRC_INSTANCE ins,
int i);

and

int NrcInstanceConstraintCount(NRC_INSTANCE ins);
NRC_CONSTRAINT NrcInstanceConstraint(NRC_INSTANCE ins, int i);

in the usual way.

3.4. Days

In informal discourse, a day could be a specific day, such as 23 July 2016, or it could be a day of

the week, such as Friday. In NRC and this documentation, the term day always refers to a specific

day, represented by an object of type NRC_DAY.

3.4.1. The cycle and the days of the week

There is no NRC function for creating one day. Instead, there is a function for creating the cycle,

the set of all days of an instance:

void NrcCycleMake(NRC_INSTANCE ins, int day_count, int first_day_index);

NrcCycleMake adds to ins a cycle of day_count days. Parameter first_day_index says which

day of the week the first day is on: 0 means that the first day is a Sunday, 1 means that the first

day is a Monday, and so on.

16 Chapter 3. NRC Instances and Solutions

Although the days created by NrcCycleMake are specific days, they are not associated with

calendar dates. To get days with calendar dates, call NrcCalendarCycleMake instead:

bool NrcCalendarCycleMake(NRC_INSTANCE ins,
char *start_ymd, char *end_ymd, char **err_str);

NrcCalendarCycleMake creates a cycle with first day start_ymd and last day end_ymd, where

the two strings are given in YYYY-MM-DD format. (Actually, the format is just three non-negative

integers separated by hyphens; but the dates actually stored are normalized to the format shown.)

The Unix mktime function is used to find out which day of the week start_ymd is on, and other

important facts such as the number of days in each month. The two days are arbitrary except

that there must be at least one day in the cycle. Value true is returned if successful; otherwise

false is returned and err_str is set to an error message explaining what went wrong. This will

be some problem with start_ymd or end_ymd, such as being formatted wrongly or specifying a

non-existent date.

NrcCycleMake and NrcCalendarCycleMake may only be called after the last call to

NrcShiftTypeMake (Section 3.6.1). A call to NrcShiftTypeMake after the cycle is made will

cause NRConv to exit with an error message.

3.4.2. Days

A day in NRC is an object of type NRC_DAY representing a specific day, such as Monday 21

November 2016, although the calendar date of the day need not be known.

There is no function for creating an individual day. Instead, functions NrcCycleMake

and NrcCalendarCycleMake (Section 3.4.1) are called, to make all the days at once. The days

created by these functions can be accessed using functions NrcInstanceCycleDayCount and

NrcInstanceCycleDay (Section 3.3.3).

The basic attributes of a day may be found by calling

NRC_INSTANCE NrcDayInstance(NRC_DAY d);
char *NrcDayYMD(NRC_DAY d);
char *NrcDayShortName(NRC_DAY d);
char *NrcDayLongName(NRC_DAY d);

NrcDayInstance returns the enclosing instance. NrcDayYMD returns the date of day d in

YYYY-MM-DD format if the day was created by NrcCalendarCycleMake, or "-" otherwise.

NrcDayShortName and NrcDayLongName return the name of the day in either short and

long form, consisting of a week number followed by a short or long day name as defined by

NrcInstanceSetDayNames (Section 3.3.2). For example, 1Mon is the short name of the day

which represents the Monday of the first week of the cycle.

Several functions return integer indexes defining the position of the day in the cycle:

int NrcDayIndexInCycle(NRC_DAY d);
int NrcDayWeekInCycle(NRC_DAY d);
int NrcDayIndexInWeek(NRC_DAY d);

NrcDayIndexInCycle returns the index of d in the cycle: 0 for the first day, 1 for the second,

3.4. Days 17

and so on. NrcDayWeekInCycle returns the number of the week that d lies in. The first 7 days

of the cycle have week number 1, the second 7 days have week number 2, and so on, irrespective

of the day of the week the cycle begins on. NrcDayIndexInWeek returns the index of d’s day of

the week: 0 for Sunday, 1 for Monday, and so on (which is how the Unix mktime function does

it). NRC does not have an NRC_WEEK data type.

Functions

NRC_DAY NrcDayPrev(NRC_DAY d);
NRC_DAY NrcDayNext(NRC_DAY d);

return the day preceding d in the cycle, or NULL when d is the first day, and the day following d

in the cycle, or NULL when d is the last day.

A surprisingly useful function is

NRC_DAY_SET NrcDayDayOfWeek(NRC_DAY d);

which returns d’s day of the week. NRC does not have a data type for day of the week. Instead,

a day of the week is represented by an NRC_DAY_SET object holding a set of days—all the days

that fall on the same day of the week. The day set objects returned by NrcDayDayOfWeek are

created by NrcCycleMake and NrcCalendarCycleMake while they are creating the days; the user

does not need to create them. Another function that returns a day-set is

NRC_DAY_SET NrcDaySingletonDaySet(NRC_DAY d);

The result is a a day-set containing just d.

Function

NRC_SHIFT_SET NrcDayShiftSet(NRC_DAY d);

returns a shift-set containing the shifts of d. There is one of these for each shift type, in the order

that the shift types were added to the instance. For convenience,

int NrcDayShiftCount(NRC_DAY d);
NRC_SHIFT NrcDayShift(NRC_DAY d, int i);

can be used to visit this shift-set’s shifts directly. Function

NRC_SHIFT NrcDayShiftFromShiftType(NRC_DAY d, NRC_SHIFT_TYPE st);

returns the shift with day d and type st, i.e. NrcDayShift(d, NrcShiftTypeIndex(st)), and

NRC_SHIFT_SET NrcDayShiftSetFromShiftTypeSet(NRC_DAY d,
NRC_SHIFT_TYPE_SET sts);

does this for each element of sts, producing a shift-set. There is also

NRC_SHIFT_SET_SET NrcDayShiftSetSet(NRC_DAY d);

which returns a shift-set set containing one shift-set for each shift on day d, namely the singleton

shift-set holding that shift.

18 Chapter 3. NRC Instances and Solutions

To produce a debug print of day d, call

void NrcDayDebug(NRC_DAY d, int indent, FILE *fp);

This works as explained in Section 3.2.

3.4.3. Day-sets

A day-set is a set (more precisely, a sequence) of days. Although any days can make up a day-set,

the most likely combinations are adjacent days (for example, the days of a weekend) and days

that share the same day of the week (for example, the set of all Mondays in the cycle).

NrcCycleMake and NrcCalendarCycleMake make day-sets: one holding the cycle as a

whole, and one for each of the seven days of the week (the day-set of all Mondays, the day-set

of all Tuesdays, and so on). Day-sets can also be created by the user, by calling

NRC_DAY_SET NrcDaySetMake(NRC_INSTANCE ins, char *short_name,
char *long_name);

void NrcDaySetAddDay(NRC_DAY_SET ds, NRC_DAY d);

in the usual way. Both names must be non-NULL. Functions

NRC_INSTANCE NrcDaySetInstance(NRC_DAY_SET ds);
char *NrcDaySetShortName(NRC_DAY_SET ds);
char *NrcDaySetLongName(NRC_DAY_SET ds);

return the attributes of day-set ds, functions

int NrcDaySetDayCount(NRC_DAY_SET ds);
NRC_DAY NrcDaySetDay(NRC_DAY_SET ds, int i);

visit the days in the order they were inserted,

bool NrcDaySetContainsDay(NRC_DAY_SET ds, NRC_DAY d);

returns true when ds contains d, and

bool NrcDaySetRetrieveDay(NRC_DAY_SET ds, char *ymd, NRC_DAY *d);

retrieves a day from ds by its ymd value. The date string must contain three non-negative integers

separated by hyphens; a copy, normalized to a four-digit year and two-digit month and day, is

used when retrieving. Function

bool NrcDaySetsOverlap(NRC_DAY_SET ds1, NRC_DAY_SET ds2);

returns true when ds1 and ds2 have a non-empty intersection. And

NRC_DAY_SET NrcDaySetDifference(NRC_DAY_SET ds1, NRC_DAY_SET ds2);

returns a new day-set containing the days of ds1 that are not in ds2.

Function

3.4. Days 19

NRC_SHIFT_SET NrcDaySetShiftSet(NRC_DAY_SET ds);

returns a shift-set containing all the shifts on all the days of ds, while

NRC_SHIFT_SET NrcDaySetStartingShiftSet(NRC_DAY_SET ds);

returns a shift-set containing the first shift on each day of ds. This helps when constructing

suitable values for the starting_ss parameter of NrcConstraintMake (Section 3.9.8). If any

of the shift-sets of the days of ds is empty, NrcDaySetStartingShiftSet aborts. Also,

NRC_SHIFT_SET_SET NrcDaySetShiftSetSet(NRC_DAY_SET ds);

returns a shift-set set containing one shift-set for each day of ds, holding that day’s shifts. And

NRC_SHIFT_SET NrcDaySetShiftSetFromShiftTypeSet(NRC_DAY_SET ds,
NRC_SHIFT_TYPE_SET sts);

returns a shift-set containing all shifts whose day is in ds and whose shift type is in sts.

Function

void NrcDaySetDebug(NRC_DAY_SET ds, int indent, FILE *fp);

produces a debug print of ds onto fp, as explained in Section 3.2.

3.4.4. Day-set sets

A day-set set is a set (more precisely, a sequence) of day-sets. For example, 1Sat is a day,

{1Sat, 1Sun} is a day-set representing one weekend, and

{{1Sat, 1Sun}, {2Sat, 2Sun}, {3Sat, 3Sun}, {4Sat, 4Sun}}

is a day-set set representing (possibly) the set of all weekends in the cycle.

To create a day-set set and add day-sets to it, the functions are

NRC_DAY_SET_SET NrcDaySetSetMake(NRC_INSTANCE ins, char *short_name,
char *long_name);

void NrcDaySetSetAddDaySet(NRC_DAY_SET_SET dss, NRC_DAY_SET ds);

Functions

NRC_INSTANCE NrcDaySetSetInstance(NRC_DAY_SET_SET dss);
char *NrcDaySetSetShortName(NRC_DAY_SET_SET dss);
char *NrcDaySetSetLongName(NRC_DAY_SET_SET dss);

return the attributes of a day-set set, and

int NrcDaySetSetDaySetCount(NRC_DAY_SET_SET dss);
NRC_DAY_SET NrcDaySetSetDaySet(NRC_DAY_SET_SET dss, int i);
bool NrcDaySetSetRetrieveDaySet(NRC_DAY_SET_SET dss,
char *long_name, NRC_DAY_SET *ds);

are used to visit the day-sets of a day-set set in the order they were inserted, and to retrieve a

20 Chapter 3. NRC Instances and Solutions

day-set from a day-set set by long name. And

void NrcDaySetSetDebug(NRC_DAY_SET_SET dss, int indent, FILE *fp);

produces a debug print of dss onto fp, as explained in Section 3.2.

3.5. Time intervals

A time interval is an interval of time, consisting of a start time and an end time, measured in

seconds since midnight. These are not absolute intervals like ‘10am to 11am on 7 April 2007’,

but rather generic ones, like ‘10am to 11am’.

As is common in nurse rostering, an end time may be smaller than a start time, meaning that

the interval spans midnight. Strictly speaking, then, what is representable is a time interval that

starts at any time of day and ends less than 24 hours later, on the same day or the following day.

Before considering operations on time intervals proper, here are two more basic functions.

The first converts a string in HH:MM:SS or HH:MM format into an integer number of seconds:

bool NrcHMSToSecs(char *hms, int *res);

It returns true and sets *res to the number of seconds if successful, and returns false and sets

*res to -1 if not successful (because hms has a format problem). The second function,

char *NrcSecsToHMS(int secs, HA_ARENA a);

converts an integer number of seconds to a string in HH:MM:SS format stored in arena a.

To create a time interval, call

NRC_TIME_INTERVAL NrcTimeIntervalMake(int start_secs, int end_secs,
NRC_INSTANCE ins);

The new object will be stored in the arena of ins and deleted when the instance is deleted. There

are 24 * 60 * 60 seconds in a day, so start_secs and end_secs must satisfy

0 <= start_secs < 24 * 60 * 60
0 < end_secs <= 24 * 60 * 60

Disallowing start_secs == 24 * 60 * 60 and end_secs == 0 ensures that there is only one

way to represent any non-empty interval, including intervals that start or end at midnight.

Function

bool NrcTimeIntervalMakeFromHMS(char *start_hms, char *end_hms,
NRC_TIME_INTERVAL *res, NRC_INSTANCE ins);

converts start_hms and end_hms using NrcHMSToSecs above, and makes a time interval from

them, returning true and setting *res to it if successful, and returning false and setting *res

to NULL if unsuccessful, because start_hms or end_hms has a format problem or is out of range.

As occurs in instances, end_hms may be 00:00:00, which is taken to mean 24:00:00.

The two basic queries are

3.5. Time intervals 21

int NrcTimeIntervalStartSecs(NRC_TIME_INTERVAL ti);
int NrcTimeIntervalEndSecs(NRC_TIME_INTERVAL ti);

There are also set operations on time intervals:

bool NrcTimeIntervalEqual(NRC_TIME_INTERVAL ti1, NRC_TIME_INTERVAL ti2);
bool NrcTimeIntervalDisjoint(NRC_TIME_INTERVAL ti1, NRC_TIME_INTERVAL ti2);
bool NrcTimeIntervalSubset(NRC_TIME_INTERVAL ti1, NRC_TIME_INTERVAL ti2);

These return true when ti1 and ti2 are equal, or disjoint, or when ti1 is a subset of ti2. These

operations consider intervals to be open, that is, to not include their endpoints. So when one

interval’s end time equals another’s start time, the two intervals are disjoint. They also understand

what it means when end_secs < start_secs, and act accordingly. Function

NRC_SHIFT_SET NrcTimeIntervalShiftSet(NRC_TIME_INTERVAL ti, NRC_DAY d);

returns a shift-set containing those shifts which have time intervals which intersect with (are not

disjoint with) time interval ti on day d. The shifts of the result do not necessarily all come from

day d; some may come from the previous day if they span midnight and there is a previous day,

while others may come from the next day if ti spans midnight and there is a next day. Finally,

char *NrcTimeIntervalShow(NRC_TIME_INTERVAL ti, HA_ARENA a);

returns a string, stored in arena a, representing time interval ti.

3.6. Shift types

In informal discourse, a shift could be a specific shift, such as the night shift on 23 July 2016, or

it could be a generic shift, such as the night shift. In NRC, a generic shift is called a shift type,

and a specific shift is called a shift. There is one shift of each shift type on each day.

3.6.1. Shift types

A shift type is a generic shift, such as ‘the day shift’or ‘the night shift’. To make one, call

NRC_SHIFT_TYPE NrcShiftTypeMake(NRC_INSTANCE ins, char *name,
int workload);

This creates a new shift type object with the given name and workload, adds it to ins, and returns

it. The workload is a value in arbitrary units (for example, in minutes), describing how much

work a shift of this type is. It is only needed when there are worker constraints that limit total

workload. When it is not needed, NRC_NO_WORKLOAD (a synonym for 1) should be passed.

Some shift types have a label as well as a name. Function

void NrcShiftTypeUseLabelInEventName(NRC_SHIFT_TYPE st, char *label);

adds a label to st and ensures that it is used in event names.

To retrieve the attributes of a shift type, call

22 Chapter 3. NRC Instances and Solutions

NRC_INSTANCE NrcShiftTypeInstance(NRC_SHIFT_TYPE st);
char *NrcShiftTypeName(NRC_SHIFT_TYPE st);
char *NrcShiftTypeLabel(NRC_SHIFT_TYPE st);
int NrcShiftTypeWorkload(NRC_SHIFT_TYPE st);
int NrcShiftTypeIndex(NRC_SHIFT_TYPE st);

NrcShiftTypeLabel returns NULL if NrcShiftTypeUseLabelInEventName has not been called

on st. NrcShiftTypeIndex returns st’s index in the instance (0 for the first shift type added, 1

for the second, and so on). There is also

NRC_SHIFT_TYPE_SET NrcShiftTypeSingletonShiftTypeSet(NRC_SHIFT_TYPE st);

which returns a shift-type set containing just st.

Two functions give access to the shifts of type st:

NRC_SHIFT_SET NrcShiftTypeShiftSet(NRC_SHIFT_TYPE st);
NRC_SHIFT_SET_SET NrcShiftTypeShiftSetSet(NRC_SHIFT_TYPE st);

NrcShiftTypeShiftSet returns a shift-set containing all shifts which have st for their shift

type, in increasing day order. NrcShiftTypeShiftSetSet is similar, except that each shift lies

in its own singleton shift set.

There is no NrcShiftTypeDebug function, because a shift type is essentially just its name.

Use NrcShiftTypeName instead.

There is one shift for each shift type on each day. Shift types must be added before days.

Later, when days are added, by NrcCycleMake or NrcCalendarCycleMake (Section 3.4), one

shift of each type is added to each day.

A shift type may optionally contain a time interval. It is not used by NRC, but it may be

useful to the user. The operations for setting and retrieving it are

void NrcShiftTypeAddTimeInterval(NRC_SHIFT_TYPE st, NRC_TIME_INTERVAL ti);
NRC_TIME_INTERVAL NrcShiftTypeTimeInterval(NRC_SHIFT_TYPE st);

NrcShiftTypeTimeInterval returns NULL when st’s time interval has not been set.

The author hesitated over whether to include shift types, since a shift-set with the name of

the shift type does most of what a shift type does. However, to construct that shift-set one needs

some way to identify what is common to its shifts—a name, presumably;but then that is the name

of a shift type, not of a shift. More importantly, with shift types available, NRC can make the

individual shifts itself, and guarantee a uniform structure of one shift of each type on each day.

This uniformity matters, for example, when implementing patterns. If some of these shifts do

not need to be covered on some days (for example, if the early shift does not need to be staffed

on Sundays), one can just add no demands to those shifts.

3.6.2. Shift-type sets

A shift-type set is a set of shift types. It is created in the usual way:

3.6. Shift types 23

NRC_SHIFT_TYPE_SET NrcShiftTypeSetMake(NRC_INSTANCE ins, char *name);
void NrcShiftTypeSetAddShiftType(NRC_SHIFT_TYPE_SET sts, NRC_SHIFT_TYPE st);

The name is optional (may be NULL). Its attributes are returned by

NRC_INSTANCE NrcShiftTypeSetInstance(NRC_SHIFT_TYPE_SET sts);
char *NrcShiftTypeSetName(NRC_SHIFT_TYPE_SET sts);

and its shift types are visited by

int NrcShiftTypeSetShiftTypeCount(NRC_SHIFT_TYPE_SET sts);
NRC_SHIFT_TYPE NrcShiftTypeSetShiftType(NRC_SHIFT_TYPE_SET sts, int i);

There are also

bool NrcShiftTypeSetContainsShiftType(NRC_SHIFT_TYPE_SET sts,
NRC_SHIFT_TYPE st);

which returns true when sts contains st,

bool NrcShiftTypeSetEqual(NRC_SHIFT_TYPE_SET sts1,
NRC_SHIFT_TYPE_SET sts2);

which returns true when sts1 and sts2 contain the same shift types, and

bool NrcShiftTypeSetDisjoint(NRC_SHIFT_TYPE_SET sts1,
NRC_SHIFT_TYPE_SET sts2);

which returns true when they are disjoint. Finally,

NRC_SHIFT_TYPE_SET NrcShiftTypeSetMerge(NRC_SHIFT_TYPE_SET sts1,
NRC_SHIFT_TYPE_SET sts2);

returns a new shift-type set containing the set union of sts1 and sts2. Shift-type sets are mainly

used when constructing patterns (Section 3.9.6).

3.7. Shifts

3.7.1. Shifts

There are no functions for creating individual shifts. Instead, NRC automatically creates one

shift, of type NRC_SHIFT, for each shift type on each day. These shifts can be accessed as

elements of the shift-sets returned by NrcShiftTypeShiftSet and NrcDayShiftSet, or using

NrcInstanceShiftCount and NrcInstanceShift.

To retrieve the basic attributes of a shift, call

NRC_INSTANCE NrcShiftInstance(NRC_SHIFT s);
NRC_DAY NrcShiftDay(NRC_SHIFT s);
NRC_SHIFT_TYPE NrcShiftType(NRC_SHIFT s);

The shift’s index in the list of all shifts held by the instance is

24 Chapter 3. NRC Instances and Solutions

int NrcShiftIndex(NRC_SHIFT s);

This is equal to the shift’s day’s index multiplied by the number of shift types, plus the shift’s

shift type’s index. In other words, as indexes increase we run through the shifts of the first day

in shift type order, then the shifts of the second day, and so on.

Function

char *NrcShiftName(NRC_SHIFT s);

returns the name that s will have in the converted instance, based on the day and shift type.

There is also

NRC_SHIFT_SET NrcShiftSingletonShiftSet(NRC_SHIFT s);

which returns a shift-set containing just s.

A shift has an optional workload, measured in arbitrary units, for example minutes:

int NrcShiftWorkload(NRC_SHIFT s);

The workload of a shift is the workload of its shift type, and this cannot be changed.

To add a demand (Section 3.9.3) to a shift, specifying that a worker, optionally with a certain

skill, needs to be assigned to that shift, call

void NrcShiftAddDemand(NRC_SHIFT s, NRC_DEMAND d);

Any number of demands may be added in this way; their total number is the total number of

workers demanded by the shift. There are also the convenience functions

void NrcShiftAddDemandMulti(NRC_SHIFT s, NRC_DEMAND d, int multiplicity);
void NrcShiftAddDemandSet(NRC_SHIFT s, NRC_DEMAND_SET ds);

NrcShiftAddDemandMulti adds d to s multiplicity times, while NrcShiftAddDemandSet

adds the demands of ds individually to s. The fact that these demands arrived in a group is not

remembered. To visit the demands of shift s, call

int NrcShiftDemandCount(NRC_SHIFT s);
NRC_DEMAND NrcShiftDemand(NRC_SHIFT s, int i);

as usual. Demands are immutable objects and may be shared by several shifts, and added to

the same shift several times, when several workers with the same characteristics are wanted.

In fact, behind the scenes NRC forces you to share demands: the demand object returned by

NrcDemandMake is only new when there is no existing demand with the same attributes. This

helps to reduce the size of the generated XESTT file, as it turns out.

Workers can be preassigned to shifts by calling

void NrcShiftAddPreassignment(NRC_SHIFT s, NRC_WORKER w);

To visit these preassignments, call

3.7. Shifts 25

int NrcShiftPreassignmentCount(NRC_SHIFT s);
NRC_WORKER NrcShiftPreassignment(NRC_SHIFT s, int i);

as usual. This works in simple cases, but be warned that the implementation is rough and ready.

At present there is no way to indicate that the preassigned worker should fill a particular role or

satisfy the demand for a particular skill. And if the preassignments cannot all be included in the

XESTT event which is the result of converting the shift, NRC aborts with an error message.

Function

void NrcShiftDebug(NRC_SHIFT s, int indent, FILE *fp);

produces a debug print of s onto fp, as explained in Section 3.2.

3.7.2. Shift-sets

A shift-set is a set of shifts. To make a shift-set, use

NRC_SHIFT_SET NrcShiftSetMake(NRC_INSTANCE ins, char *name);
void NrcShiftSetAddShift(NRC_SHIFT_SET ss, NRC_SHIFT s);

as usual; or to add the shifts of another shift-set ss2 to shift-set ss all at once, call

void NrcShiftSetAddShiftSet(NRC_SHIFT_SET ss, NRC_SHIFT_SET ss2);

To retrieve the attributes, call

NRC_INSTANCE NrcShiftSetInstance(NRC_SHIFT_SET ss);
char *NrcShiftSetName(NRC_SHIFT_SET ss);
int NrcShiftSetShiftCount(NRC_SHIFT_SET ss);
NRC_SHIFT NrcShiftSetShift(NRC_SHIFT_SET ss, int i);

There is also

bool NrcShiftSetContainsShift(NRC_SHIFT_SET ss, NRC_SHIFT s);

which returns true when ss contains s.

Function

bool NrcShiftSetUniform(NRC_SHIFT_SET ss, int *offset);

returns true when ss is uniform: when successive shifts are the same distance apart. A shift set

containing the shifts of one day is uniform, but so is a shift set containing the first shift on each

day. If the shift set is uniform, *offset is set to the gap between successive shifts.

A different kind of uniformity is tested by

bool NrcShiftSetsUniform(NRC_SHIFT_SET ss1, NRC_SHIFT_SET ss2, int *offset);

Here ss1 and ss2 do not have to be uniform in the previous sense. Instead, ss2 has to be equal

to ss1 except shifted by *offset. Finally,

bool NrcShiftSetsEqual(NRC_SHIFT_SET ss1, NRC_SHIFT_SET ss2);

26 Chapter 3. NRC Instances and Solutions

is a conventional equality test, equivalent to uniformity with an offset of 0.

The shifts of a shift-set may be arbitrary, but often they will be all the shifts of a particular

day, or all the shifts with a particular shift type. These shift-sets are constructed automatically

by NRC, and are obtained by calling NrcDayShiftSet and NrcShiftTypeShiftSet.

Function

void NrcShiftSetDebug(NRC_SHIFT_SET ss, int indent, FILE *fp);

produces a debug print of ss onto fp with the given indent, as described in Section 3.2.

3.7.3. Shift-set sets

A shift-set set is a set of shift-sets. To make a shift-set set, call

NRC_SHIFT_SET_SET NrcShiftSetSetMake(char *name);
void NrcShiftSetSetAddShiftSet(NRC_SHIFT_SET_SET sss, NRC_SHIFT_SET ss);

To retrieve the name and the shift-sets, call

char *NrcShiftSetSetName(NRC_SHIFT_SET_SET sss);
int NrcShiftSetSetShiftSetCount(NRC_SHIFT_SET_SET sss);
NRC_SHIFT_SET NrcShiftSetSetShiftSet(NRC_SHIFT_SET_SET sss, int i);

in the usual way.

Function

NRC_SHIFT_SET NrcShiftSetSetStartingShiftSet(NRC_SHIFT_SET_SET sss);

returns a shift-set containing the first shift from each shift-set of sss. This helps when

constructing values for the starting_ss parameter of NrcConstraintMake (Section 3.9.8). If

any of the shift-sets of sss is empty, NrcShiftSetSetStartingShiftSet aborts. Function

void NrcShiftSetSetDebug(NRC_SHIFT_SET_SET sss, int indent, FILE *fp);

produces a debug print of sss onto fp, as explained in Section 3.2.

3.8. Workers

A worker is one person capable of filling shifts. The term ‘worker’has been preferred to ‘nurse’

because it is more general, and to ‘employee’because it is shorter.

3.8.1. Workers

To create a worker with a given name, call

NRC_WORKER NrcWorkerMake(NRC_INSTANCE ins, char *name);

The new object is added to ins and returned. The basic attributes may be retrieved by

3.8. Workers 27

NRC_INSTANCE NrcWorkerInstance(NRC_WORKER w);
char *NrcWorkerName(NRC_WORKER w);

as usual. There is also

char *NrcWorkerConvertedName(NRC_WORKER w);

This returns the name that will be used to identify w in the converted instances and solutions. This

could be just NrcWorkerName(w), but it could also be the value of the worker_word parameter

of NrcInstanceMake followed by a number, if NRC decides that NrcWorkerName(w) is not

suitable as it stands (if it begins with a digit, or is very long).

The author would have preferred to omit this function. But sometimes one wants to create

an entity with the name of worker w as part of its name, and then NrcWorkerConvertedName(w)

is best, not NrcWorkerName(w), since NRC does not convert the names of other entities.

Function

int NrcWorkerIndex(NRC_WORKER w);

which returns the index of w in the instance (the number of previously created workers), and

NRC_WORKER_SET NrcWorkerSingletonWorkerSet(NRC_WORKER w);

which returns a worker-set (Section 3.8.2) containing just w.

To say that a worker wants a particular shift, shift-set, or day off, call

extern void NrcWorkerAddShiftOff(NRC_WORKER w, NRC_SHIFT s, NRC_PENALTY p);
extern void NrcWorkerAddShiftSetOff(NRC_WORKER w, NRC_SHIFT_SET ss,

NRC_PENALTY p);
extern void NrcWorkerAddDayOff(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);

Requesting a shift-set or day off means requesting that no shift of that shift-set or day be

assigned. The p parameters give the penalty for failing to satisfy the request. These penalties

may differ from one request to another, even for the same worker. Similarly, to say that a worker

wants a particular shift, shift-set, or day on, call

void NrcWorkerAddShiftOn(NRC_WORKER w, NRC_SHIFT s, NRC_PENALTY p);
void NrcWorkerAddShiftSetOn(NRC_WORKER w, NRC_SHIFT_SET ss, NRC_PENALTY p);
void NrcWorkerAddDayOn(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);

Requesting a shift-set or day on means requesting that some shift of that shift-set or day be

assigned, without caring which. By calling NrcShiftAddPreassignment (Section 3.7.1), a

resource may also be preassigned to a shift—essentially an unbreakable shift-on request. Also,

void NrcWorkerAddStartDay(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);
void NrcWorkerAddEndDay(NRC_WORKER w, NRC_DAY d, NRC_PENALTY p);

say that w is only available starting at day d, or ending at day d. The given penalties apply to every

assignment before the start day or after the end day.

Some models include history: information about what a worker did before the current

instance began. NRC offers these two functions for handling a worker’s history:

28 Chapter 3. NRC Instances and Solutions

void NrcWorkerAddHistory(NRC_WORKER w, char *name, int value);
bool NrcWorkerRetrieveHistory(NRC_WORKER w, char *name, int *value);

NrcWorkerAddHistory associates value with name within w, and NrcWorkerRetrieveHistory

sets *value to the value associated with name within w, or returns false if there is no value

associated with name. For example,

NrcWorkerAddHistory(w, "WeekendsWorked", 10);

says that w has worked 10 weekends before the current instance begins.

NRC does not understand what the names mean or use history itself; it simply stores it so

that the user can retrieve it later when generating constraints (Section 3.9.10).

Although only integer values may be stored, it is easy to get around this. For example, the

leading model which includes history mainly uses integers, but it does include one shift type.

This may be stored as the index of the shift type in the instance.

Function

void NrcWorkerDebug(NRC_WORKER w, int indent, FILE *fp);

produces a debug print of w onto fp, as explained in Section 3.2.

3.8.2. Worker-sets

A worker-set is a set of workers. To create a new, empty worker-set, call

NRC_WORKER_SET NrcWorkerSetMake(NRC_INSTANCE ins, char *name);

where name is a unique name for the worker-set (it may not be NULL). To retrieve these two

attributes, call

NRC_INSTANCE NrcWorkerSetInstance(NRC_WORKER_SET ws);
char *NrcWorkerSetName(NRC_WORKER_SET ws);

To add a worker to a worker-set, call

void NrcWorkerSetAddWorker(NRC_WORKER_SET ws, NRC_WORKER w);

A worker-set may contain any number of workers, and a worker may lie in any number of

worker-sets. There is also

void NrcWorkerSetAddWorkerSet(NRC_WORKER_SET ws1, NRC_WORKER_SET ws2);

which adds the workers of ws2 to ws1.

To visit the workers of a worker-set, call

int NrcWorkerSetWorkerCount(NRC_WORKER_SET ws);
NRC_WORKER NrcWorkerSetWorker(NRC_WORKER_SET ws, int i);

with the first worker having index 0 as usual. However, the workers are not stored in the order

they are added; they are stored in order of increasing NrcWorkerIndex. This is done to facilitate

comparisons between worker sets to see whether they have the same workers. There is also

3.8. Workers 29

bool NrcWorkerSetContainsWorker(NRC_WORKER_SET ws, NRC_WORKER w);

This returns true when ws contains w. And there is also

bool NrcWorkerSetRetrieveWorker(NRC_WORKER_SET ws, char *name,
NRC_WORKER *w);

If ws contains a worker with the given name, it sets *w to one such worker and returns true.

Otherwise it sets *w to NULL and returns false.

There is nothing to prevent the same worker from being added twice. Function

bool NrcWorkerSetHasNoDuplicates(NRC_WORKER_SET ws);

returns true when this has not occurred in ws.

Functions

bool NrcWorkerSetEqual(NRC_WORKER_SET ws1, NRC_WORKER_SET ws2);
bool NrcWorkerSetDisjoint(NRC_WORKER_SET ws1, NRC_WORKER_SET ws2);
bool NrcWorkerSetSubset(NRC_WORKER_SET ws1, NRC_WORKER_SET ws2);

return true when ws1’s set of workers is equal to ws2’s (the name, and the order in which the

workers were added, may differ),when ws1 and ws2 have no workers in common,and when every

worker in ws1 is also in ws2.

In principle, NRC should offer the usual set operations on worker sets. At present, only one

is implemented:

NRC_WORKER_SET NrcWorkerSetComplement(NRC_WORKER_SET ws);

It returns a worker set containing the workers not in ws. Care is needed because this function

uses a particular convention for naming these worker sets, which is to add a ‘!’ at the start of the

name of the uncomplemented set (the ‘complement name’). Here are the details.

If ws contains all workers, the result is NrcInstanceEmptyWorkerSet(ins). And if ws is

empty, then the result is NrcInstanceStaffing(ins). In these cases names do not matter.

If the name of ws does not begin with ‘!’, then NrcWorkerSetComplement tries to retrieve

a worker set with the complement name from the instance. If it succeeds, it assumes that this is

the complement and returns it. If it fails, it builds the complement worker-set worker by worker

and adds it, with the complement name, to the instance.

If the name of ws begins with ‘!’, then NrcWorkerSetComplement tries to retrieve a worker

set with the same name minus the ‘!’from the instance. If it fails, it aborts. Otherwise it assumes

that this is the complement and returns it.

Function

void NrcWorkerSetDebug(NRC_WORKER_SET ws, int indent, FILE *fp);

produces a debug print of ws onto fp, as explained in Section 3.2.

NRC will abort if an attempt is made to create two worker-sets with the same name. Most

worker-sets represent skills and contracts (Section 3.3.6), and name clashes are easily avoided

there. The result of NrcWorkerSingletonWorkerSet(w) is created the first time it is called for;

30 Chapter 3. NRC Instances and Solutions

its name is w’s name. NRC also creates its own worker-sets, one with name "RG:All" holding

all workers, and others to do with penalizing the assignment of workers to shifts they are not

qualified for. These last have obscure names that do not clash with each other and are unlikely

to clash with others. In short, you can forget about worker-set name clashes until you get one.

Worker-sets have a useful property: they can be used (passed to worker constraints, for ex-

ample) before workers are added to them. This applies to all worker-sets: the staffing worker-set

(holding all workers), contract and skill worker-sets, whatever. As long as the workers are added

eventually, before NrcArchiveWrite, everything works; but see Section 5.4 for a caveat.

3.8.3. Worker-set sets

A worker-set set is a set of worker-sets. To define one, call functions

NRC_WORKER_SET_SET NrcWorkerSetSetMake(NRC_INSTANCE ins);
NRC_INSTANCE NrcWorkerSetSetInstance(NRC_WORKER_SET_SET wss);
void NrcWorkerSetSetAddWorkerSet(NRC_WORKER_SET_SET wss, NRC_WORKER_SET ws);

in the usual way. To visit the elements of a worker-set set, call functions

int NrcWorkerSetSetWorkerSetCount(NRC_WORKER_SET_SET wss);
NRC_WORKER_SET NrcWorkerSetSetWorkerSet(NRC_WORKER_SET_SET wss, int i);

The first element has index 0 as usual. There is also

bool NrcWorkerSetSetRetrieveWorkerSet(NRC_WORKER_SET_SET wss,
char *name, NRC_WORKER_SET *ws);

If wss contains a worker-set with the given name, this function sets *ws to that worker-set and

returns true. Otherwise it sets *ws to NULL and returns false. Function

void NrcWorkerSetSetDebug(NRC_WORKER_SET_SET wss, int indent, FILE *fp);

produces a debug print of wss onto fp, as explained in Section 3.2.

3.8.4. Worker-set trees

A worker-set tree is a tree whose nodes are sets of worker-sets from a common instance ins,

subject to the following conditions:

• The worker-sets that share any given node contain the same workers;

• The root of the tree contains NrcInstanceStaffing(ins), the set of all workers;

• The worker-sets of a node are subsets of the worker-sets of its parent, if any;

• The worker-sets of sibling nodes are disjoint.

This structure turns out to be useful when disentangling cover requirements for overlapping

skills, although the preferred approach at present is to leave them entangled and use limit

resources constraints. To create a worker-set tree, call

3.8. Workers 31

NRC_WORKER_SET_TREE NrcWorkerSetTreeMake(NRC_INSTANCE ins);

The result has one node, containing one worker-set: NrcInstanceStaffing(ins). To add a

worker-set to a tree, call

bool NrcWorkerSetTreeAddWorkerSet(NRC_WORKER_SET_TREE wst,
NRC_WORKER_SET ws, NRC_WORKER_SET *incompatible_ws);

This will search wst for the unique appropriate place to insert ws, returning true and inserting

ws there if that place exists, and returning false and not inserting ws otherwise. In the latter

case, *incompatible_ws is set to an incompatible worker-set, one which prevents insertion of

ws because ws and *incompatible_ws are not disjoint, and nor is either a subset of the other.

To visit the worker-sets stored in the root of worker-set tree wst, call

int NrcWorkerSetTreeRootWorkerSetCount(NRC_WORKER_SET_TREE wst);
NRC_WORKER_SET NrcWorkerSetTreeRootWorkerSet(NRC_WORKER_SET_TREE wst,
int i);

as usual. To visit the children of wst, call

int NrcWorkerSetTreeChildCount(NRC_WORKER_SET_TREE wst);
NRC_WORKER_SET_TREE NrcWorkerSetTreeChild(NRC_WORKER_SET_TREE wst,
int i);

in the usual way. The tree lies in its instance’s arena and will be freed when its instance is

freed. Finally,

void NrcWorkerSetTreeDebug(NRC_WORKER_SET_TREE wst, int indent, FILE *fp);

produces a debug print of wst onto fp with the given indent.

3.9. Constraints

A constraint is a rule which constrains a solution. If the rule is violated by some solution,a cost is

added to the solution’s cost. The cost of a solution is the total cost of all constraint violations.

A constraint may be hard, meaning that any cost is added to a total called the hard cost, or

soft, meaning that it is added to a total called the soft cost. So the cost of a solution is actually

this pair of values. A solution with non-zero hard cost is often considered infeasible.

In nurse rostering there are two kinds of constraints: demand constraints (often called

cover constraints), which specify the numbers and skills of workers needed by shifts, and worker

constraints, which give rules that the timetables of individual workers must follow: a limit on the

number of shifts worked, no morning shift on the day after a night shift, and so on. Both kinds

are described in this section, although in the NRC model they are not closely related.

3.9.1. Penalties and costs

The cost of a violation of a constraint is a function of two things: the degree of violation of the

constraint, also called the deviation, and the penalty associated with the constraint.

32 Chapter 3. NRC Instances and Solutions

Most constraints are not simply violated or not; rather, they are violated to some degree.

For example, if some constraint requires worker Smith to work at most 18 shifts, the degree of

violation is the amount by which the number of shifts Smith works exceeds 18, or 0 if it does

not. The degree of violation is always a non-negative integer.

The penalty is a triple of values: hard, a Boolean value which is true when the constraint

is hard, and false when it is soft (in NRC, every constraint can be hard or soft); weight, a

non-negative integer; and cost_fn, a value of type

typedef enum {
NRC_COST_FUNCTION_STEP,
NRC_COST_FUNCTION_LINEAR,
NRC_COST_FUNCTION_QUADRATIC

} NRC_COST_FUNCTION;

Let the degree of violation (a non-negative number) be x. When x = 0, the cost is 0. When x > 0,

the cost depends on the cost function. When cost_fn is NRC_COST_FUNCTION_STEP it is w, the

penalty weight. When cost_fn is NRC_COST_FUNCTION_LINEAR (the usual value) the cost is wx.

When cost_fn is NRC_COST_FUNCTION_QUADRATIC the cost is w 2x . This cost is added to the

total hard cost or soft cost, depending on whether hard is true or false.

A penalty is represented by a non-NULL value of type NRC_PENALTY. It would ordinarily be

created by a function called NrcPenaltyMake, but a briefer name has been chosen in this case:

NRC_PENALTY NrcPenalty(bool hard, int weight,
NRC_COST_FUNCTION cost_fn, NRC_INSTANCE ins);

A negative weight causes NrcPenalty to abort, while if weight > 1000, it is silently reduced to

1000 (the largest legal XESTT weight). Also, if weight == 0, hard is silently set to false and

cost_fn to NRC_COST_FUNCTION_LINEAR. To create a penalty with weight zero, it may be easier

to call NrcInstanceZeroPenalty (Section 3.3.1) than to make a fresh one using NrcPenalty.

The attributes of a penalty may be retrieved by calls to

bool NrcPenaltyHard(NRC_PENALTY p);
int NrcPenaltyWeight(NRC_PENALTY p);
NRC_COST_FUNCTION NrcPenaltyCostFn(NRC_PENALTY p);

as usual. There is also

bool NrcPenaltyEqual(NRC_PENALTY p1, NRC_PENALTY p2);

which returns true when p1 and p2 have equal attributes, and

bool NrcPenaltyLessThan(NRC_PENALTY p1, NRC_PENALTY p2);

which returns true when p1 is less than p2. NrcPenaltyLessThan is somewhat complicated.

It aborts if p1 and p2 have different cost functions. It returns true when their hardnesses differ

and p1’s is soft, and when their hardnesses are equal and p1’s weight is less than p2’s.

The sum of two penalties is returned by

3.9. Constraints 33

NRC_PENALTY NrcPenaltyAdd(NRC_PENALTY p1, NRC_PENALTY p2,
NRC_INSTANCE ins);

If either p1 or p2 has weight 0, NrcPenaltyAdd returns the other. Otherwise, if one of p1 and p2

is hard and the other is soft, then NrcPenaltyAdd returns the hard one. This is arguably not exact,

but the inexactness does not matter. Otherwise, if the cost functions differ, NrcPenaltyAdd

aborts. Otherwise, the result is a new penalty object, stored in ins’s arena, whose hardness and

cost function are those of p1 and p2, and whose weight is the sum of the weights of p1 and p2,

reduced as usual to 1000 if necessary.

To help with debugging, functions

char *NrcCostFnShow(NRC_COST_FUNCTION cost_fn);
char *NrcPenaltyShow(NRC_PENALTY p);

display a cost function or penalty as a string, for example "step" and "h10q". NrcPenaltyShow

begins with "h" or "s", follows with the weight, and ends with "s", "q", or nothing, the latter

meaning NRC_COST_FUNCTION_LINEAR.

3.9.2. Bounds

A bound is a set of integer minimum or maximum limits, together with penalties which are to

be applied when the value of some quantity (not specified by the bound itself) falls short of a

minimum limit or exceeds a maximum limit. Together, these define a function which maps each

non-negative value of the quantity to a non-negative cost.

For several good reasons, bounds are not as general as they could be. For example, they

do not implement arbitrary piecewise linear functions. Instead, they focus on things needed in

practice. To create a bound which initially limits nothing (defining the zero function), call

NRC_BOUND NrcBoundMake(NRC_INSTANCE ins);

The instance may be retrieved by

NRC_INSTANCE NrcBoundInstance(NRC_BOUND b);

To add a minimum, maximum, or preferred limit to a bound, call

bool NrcBoundAddMin(NRC_BOUND b, int min_value, bool allow_zero,
NRC_PENALTY below_min_penalty);

bool NrcBoundAddMax(NRC_BOUND b, int max_value,
NRC_PENALTY above_max_penalty);

bool NrcBoundAddPreferred(NRC_BOUND b, int preferred_value,
NRC_PENALTY below_preferred_penalty,
NRC_PENALTY above_preferred_penalty);

Each of these functions can be called at most once on a given bound b. Each returns true when

the limit is consistent with all other limits previously added to b.

NrcBoundAddMin says that if the value x of the quantity being limited is below min_value,

then penalty below_min_penalty applies to min_value - x. When allow_zero is true, if x

is 0, then, as a special case, no penalty applies.

34 Chapter 3. NRC Instances and Solutions

NrcBoundAddMax says that if the value x of the quantity being limited is above max_value,

then penalty above_max_penalty applies to x - max_value.

NrcBoundAddPreferred says that if the value x is below preferred_value, then

penalty below_preferred_penalty applies to preferred_value - x, while if it is above

preferred_value, then above_preferred_penalty applies to x - preferred_value.

When there is both a minimum value and a maximum value, false is returned if the

maximum value is less than the minimum value.

When there is both a minimum and a preferred value, false is returned if the preferred

value is smaller than the minimum value. The preferred penalty applies from the preferred value

exclusive down to the minimum value inclusive. This interval is empty when the preferred value

equals the minimum value. Below the minimum value, only the minimum penalty applies.

When there is both a maximum and a preferred value, false is returned if the preferred

value is larger than the maximum value. The preferred penalty applies from the preferred value

exclusive up to the maximum value inclusive. This interval is empty when the preferred value

equals the maximum value. Above the maximum value, only the maximum penalty applies.

A preferred limit is not just a minimum limit plus a maximum limit; it applies with lower

priority than a minimum or maximum limit, as can be seen when its value is equal to a minimum

or maximum limit. This is one of the good reasons why the bound type is not more general.

There is one last rule. When there is both a preferred limit and a maximum limit, both

penalties must be linear, and the weight of the maximum penalty must be substantially larger

than the weight of the preferred penalty (for how much larger, see below.) As usual, false is

returned when these conditions do not hold. A corresponding rule applies when there is both a

preferred limit and a minimum limit.

This rule is made because, above the maximum limit, both constraints will be violated in

XESTT, whereas in a bound, only the maximum penalty applies. (This is to agree with the

Curtois original instances.) Accordingly, the weight of the maximum penalty must be reduced

by the weight of the preferred penalty, and a constant adjustment must be added, using a

constraint with a step cost function. The Appendix to this section has the details.

For convenience, there are also functions that make a bound object and add one limit to it:

NRC_BOUND NrcBoundMakeMin(int min_value, bool allow_zero,
NRC_PENALTY below_min_penalty, NRC_INSTANCE ins);

NRC_BOUND NrcBoundMakeMax(int max_value,
NRC_PENALTY above_max_penalty, NRC_INSTANCE ins);

NRC_BOUND NrcBoundMakePreferred(int preferred_value,
NRC_PENALTY below_preferred_penalty,
NRC_PENALTY above_preferred_penalty, NRC_INSTANCE ins);

The first limit cannot be inconsistent, so these functions do not need to return a Boolean result.

Further limits may be added as usual. And functions

3.9. Constraints 35

bool NrcBoundMin(NRC_BOUND b, int *min_value, bool *allow_zero,
NRC_PENALTY *below_min_penalty);

bool NrcBoundMax(NRC_BOUND b, int *max_value,
NRC_PENALTY *above_max_penalty);

bool NrcBoundPreferred(NRC_BOUND b, int *preferred_value,
NRC_PENALTY *below_preferred_penalty,
NRC_PENALTY *above_preferred_penalty);

return true when a minimum, maximum, or preferred limit has been added to b, setting the other

parameters to its attributes if so. Finally, to display a bound for debugging there is

char *NrcBoundShow(NRC_BOUND b);

The result is stored in static memory and will be overwritten by the next call to NrcBoundShow.

Appendix. Here is what needs to be done when there is both a preferred limit and a

maximum limit. We assume that both penalties are linear, and that either both are hard or both

are soft. The desired penalty function is

f (x) = 0 x ≤ x1

= w1(x − x1) x1 < x ≤ x2

= w2(x − x2) x2 < x

where x1 is the preferred limit, w1 is the penalty weight for exceeding x1, x2 is the maximum limit,

w2 is the penalty weight for exceeding x2, and x, x1, and x2 are integers.

We can’t just use the obvious two constraints,because the cost will be w1(x − x1) + w2(x − x2)
for x2 < x, not w2(x − x2). Our first attempt at a fix is to reduce w2 by w1 to compensate, giving

g1(x) = 0 x ≤ x1

= w1(x − x1) x1 < x ≤ x2

= w1(x − x1) + (w2 − w1)(x − x2) x2 < x

This is implementable with two constraints. The first two parts are correct, but the third is

w1(x − x1) + (w2 − w1)(x − x2) = w1x − w1x1 + w2(x − x2) − w1x + w1x2

= w2(x − x2) + w1(x2 − x1)

which differs from the needed w2(x − x2) by the constant value w1(x2 − x1).
A constant can be compensated for using a constraint with a step cost function; but

w1(x2 − x1) is positive, so the weight would need to be negative, which is not allowed. To fix this

problem, we start the second constraint from x2 + 1rather than x2:

g2(x) = 0 x ≤ x1

= w1(x − x1) x1 < x ≤ x2 + 1

= w1(x − x1) + (w2 − w1)(x − (x2 + 1)) x2 + 1 < x

36 Chapter 3. NRC Instances and Solutions

Now the third part is

w1(x − x1) + (w2 − w1)(x − (x2 + 1)) = w1x − w1x1 + w2x − w2x2 − w2 − w1x + w1x2 + w1

= w2(x − x2) + w1(x2 − x1 + 1) −w2

which gives a negative constant as desired, provided w2 is sufficiently large. This leads to

g3(x) = 0 x ≤ x1

= w1(x − x1) x1 < x ≤ x2 + 1

= w1(x − x1) + (w2 − w1)(x − (x2 + 1)) + (w2 − w1(x2 − x1 + 1)) x2 + 1 < x

However, there is now a problem at x = x2 + 1: we have f (x2 + 1) = w2(x2 + 1−x2) = w2, whereas

g3(x2 + 1) = w1(x2 + 1−x1). But this can be fixed by including x2 + 1in the step, giving

g4(x) = 0 x ≤ x1

= w1(x − x1) x1 < x ≤ x2

= w1(x − x1) + (w2 − w1(x2 − x1 + 1)) x2 < x ≤ x2 + 1

= w1(x − x1) + (w2 − w1(x2 − x1 + 1)) + (w2 − w1)(x − (x2 + 1)) x2 + 1 < x

This is implementable by three constraints: a linear constraint with maximum limit x1 and

weight w1; a step constraint with maximum limit x2 and weight w2 − w1(x2 − x1 + 1); and a linear

constraint with maximum limit x2 + 1and weight w2 − w1.

As a final check, we verify that g4(x) = f (x). For x ≤ x1, both functions are 0. For

x1 < x ≤ x2, both functions are w1(x − x1). For x2 < x ≤ x2 + 1, that is, for x = x2 + 1, we have

f (x) = f (x2 + 1) = w2(x2 + 1−x2) = w2, while g4(x) = w1(x2 + 1−x1) + (w2 − w1(x2 − x1 + 1)) = w2.

Finally, for x2 + 1 < x, we have f (x) = w2(x − x2), while

g4(x) = w1(x − x1) + (w2 − w1(x2 − x1 + 1)) + (w2 − w1)(x − (x2 + 1))

= w1x − w1x1 + w2 − w1x2 + w1x1 − w1 + w2(x − x2) − w2 − w1x + w1x2 + w1

= w2(x − x2)

So there we are.

There are a few obvious special cases. When x1 = x2, replacing x1 by x2 in f (x) gives

f (x) = 0 x ≤ x2

= w1(x − x2) x2 < x ≤ x2

= w2(x − x2) x2 < x

The second case is empty, so this reduces to a single constraint; the preferred limit can be ignored.

This is true for all penalty functions. When the weight given above for the step constraint is

negative, that constraint cannot be implemented and this conversion fails. When it is 0 the step

constraint can be omitted as usual.

3.9. Constraints 37

Essentially the same analysis applies when there is both a minimum limit and a preferred

limit. Assume for now that allow_zero is not requested. The desired penalty function is

f (x) = 0 x ≥ x1

= w1(x1 − x) x1 > x ≥ x2

= w2(x2 − x) x2 > x

where x1 is the preferred limit, w1 is the penalty weight for falling short of x1, x2 is the minimum

limit, w2 is the penalty weight for falling short of x2, and x, x1, and x2 are integers. Function

h4(x) = 0 x ≥ x1

= w1(x1 − x) x1 > x ≥ x2

= w1(x1 − x) + (w2 − w1(x1 − x2 + 1)) x2 > x ≥ x2 − 1

= w1(x1 − x) + (w2 − w1(x1 − x2 + 1)) + (w2 − w1)((x2 − 1) −x) x2 − 1 > x

does the trick. It is implementable by three constraints: a linear constraint with minimum limit

x1 and weight w1; a step constraint with minimum limit x2 and weight w2 − w1(x1 − x2 + 1); and a

linear constraint with minimum limit x2 − 1and weight w2 − w1.

Constraints with 0 limits are dropped before applying this formula. Even then, x2 − 1 = 0is

possible, in which case the third constraint does nothing and is omitted.

It does not matter whether or not the preferred limit requests allow_zero, because it is

overridden by the minimum limit. If the minimum limit requests allow_zero, that is easily

handled by requesting allow_zero in each generated constraint.

A different approach to the general problem of multiple limits would be to extend XESTT to

allow cost functions which are arbitrary piecewise step, linear and quadratic functions. However,

that would substantially increase the complexity of XESTT for the sake of an uncommon case

which adds very little, considered from the point of view of the institution being modelled.

In instance file Musa.ros, lines 306 and 453 form a case where there is a minimum value

and a preferred value, with x1 = 3, w1 = 5, x2 = 1, and w2 = 7. This fails the formula given above,

but it is somewhat illogical, because it gives values f (3) = 0, f (2) = 5, f (1) = 10, and f (0) = 7.
Rather than reject the instance, NRConv chooses to ignore the minimum limit (with a warning

message) and carry on. Musa.ros contains 14 essentially identical instances of this problem.

3.9.3. Demands

A demand is an object of type NRC_DEMAND, defining a request for one worker to be assigned to

an unspecified shift, and the penalties to apply when the assignment is defective.

In this section, the term worker assignment will denote the assignment, or non-assignment,

of a worker to fulfill the request represented by a demand object. If there are W workers, there are

W + 1distinct worker assignments: one for each worker, and one representing non-assignment.

A demand object represents a function that associates a penalty with each worker assignment.

Adding a demand to a shift is done separately,by NrcShiftAddDemand (Section 3.7.1). One

demand may be added any number of times to one shift, or several shifts. Demand objects are

immutable after creation, so doing it this way is safe. It helps the implementation to reduce the

38 Chapter 3. NRC Instances and Solutions

length of the generated file. The penalties apply independently to each occurrence of the demand

object. To apply penalties across sets of demands, use demand constraints (Section 3.9.5).

Some models specify an optimum number of workers but no maximum. For them,one must

decide on some maximum (twice the optimum, perhaps), and add that many demands. This is

because XESTT requires each event to contain a definite fixed number of event resources.

Creation of a demand object begins with a call to

NRC_DEMAND NrcDemandMakeBegin(NRC_INSTANCE ins);

Initially, every worker assignment has a penalty with weight 0; no distinction is made between

this and having no penalty at all. Then comes a sequence of calls to penalizer functions which

associate penalties with worker assignments; we’ll return to them in a moment. After they are

done, creation is ended, including marking d as immutable, by a compulsory call to

void NrcDemandMakeEnd(NRC_DEMAND d);

Any subsequent calls to d’s penalizer functions, or to NrcDemandMakeEnd, will abort.

We turn now to the penalizer functions. There are three of them:

void NrcDemandPenalizeNonAssignment(NRC_DEMAND d,
NRC_PENALTY_TYPE ptype, NRC_PENALTY p);

void NrcDemandPenalizeWorkerSet(NRC_DEMAND d, NRC_WORKER_SET ws,
NRC_PENALTY_TYPE ptype, NRC_PENALTY p);

void NrcDemandPenalizeNotWorkerSet(NRC_DEMAND d, NRC_WORKER_SET ws,
NRC_PENALTY_TYPE ptype, NRC_PENALTY p);

NrcDemandPenalizeNonAssignment associates p with non-assignment, so that p is incurred if

no assignment is made to the demand. NrcDemandPenalizeWorkerSet associates p with each

worker assignment of a worker from ws, so that p is incurred if an assignment of a worker from

ws is made to the demand. NrcDemandPenalizeNotWorkerSet associates p with each worker

assignment of a worker not from ws (but not with non-assignment), so that p is incurred if an

assignment of a worker not from ws is made to the demand. As usual, worker sets whose workers

will be added later may be passed to these functions.

In all three functions, parameter ptype has type

typedef enum {
NRC_PENALTY_REPLACE,
NRC_PENALTY_ADD,
NRC_PENALTY_UNIQUE

} NRC_PENALTY_TYPE;

and says how to combine the new penalty with the existing penalty for each affected worker

assignment. If ptype is NRC_PENALTY_REPLACE, the new penalty replaces the existing one; if

ptype is NRC_PENALTY_ADD, the new and existing penalties are added using NrcPenaltyAdd

(Section 3.9.1); and if ptype is NRC_PENALTY_UNIQUE, the existing penalty must have weight 0

(otherwise the program aborts) and is replaced. NRC_PENALTY_UNIQUE does not mean that the

new penalty cannot be replaced later.

3.9. Constraints 39

For example, suppose that the penalty for non-assignment is p, and the penalty for assigning

a worker from outside worker set ws1 is p1. Then the appropriate calls are

NrcDemandPenalizeNonAssignment(d, NRC_PENALTY_UNIQUE, p);
NrcDemandPenalizeNotWorkerSet(d, ws1, NRC_PENALTY_UNIQUE, p1);

Or suppose we prefer that the demand not be assigned at all. The call is

NrcDemandPenalizeWorkerSet(d, NrcInstanceStaffing(ins),
NRC_PENALTY_UNIQUE, p);

This says that any assignment of an actual worker attracts penalty p.

The First International Nurse Rostering Competition associatesa penalty with each contract.

This is to be applied whenever any nurse subject to that contract is unpreferred. Suppose there

are two contracts, one for nurses ws1 with penalty p1, the other for nurses ws2 with penalty p2.

Then if the preferred worker set for some demand is ws, the appropriate calls are

NrcDemandPenalizeNonAssignment(d, NRC_PENALTY_UNIQUE, hard_p);
NrcDemandPenalizeWorkerSet(d, ws1, NRC_PENALTY_UNIQUE, p1);
NrcDemandPenalizeWorkerSet(d, ws2, NRC_PENALTY_UNIQUE, p2);
NrcDemandPenalizeWorkerSet(d, ws, NRC_PENALTY_REPLACE, p0);

This first installs penalty hard_p for non-assignment (in INRC1 this is a hard cost of 1). It then

adds a penalty for each worker in each contract, after which all worker assignments should have

a penalty. But then it replaces the penalties for the preferred workers by p0, a zero penalty.

Calling NrcDemandPenalizeWorkerSet with an empty worker set does nothing (unless

workers are added to the worker set later). Calling NrcDemandPenalizeNotWorkerSet with a

worker set containing every worker also does nothing.

Calling NrcDemandPenalizeWorkerSet with a worker set containing every worker is the

same as calling NrcDemandPenalizeNotWorkerSet with an empty worker set: both penalize

the assignment of any worker. When this is wanted, it is best to pass the sets provided by NRC:

NrcInstanceStaffing(ins) and NrcInstanceEmptyWorkerSet(ins) from Section 3.3.6.

Doing that will make the generated XESTT file easier to read.

Behind the scenes, a unique name is created for each demand, and used in the generated

XESTT file as part of the names of roles and event groups. The name is based on the calls made

when constructing the demand. For example,

NA=h1+NW0=s100

is the name of a demand in which non-assignment has hard cost 1 (NA=h1) and assigning a

worker not from worker set 0 has soft cost 100 (NW0=s100). This name is returned by

char *NrcDemandName(NRC_DEMAND d);

but this only works after NrcDemandMakeEnd(d) has been called.

The instance that a demand is for may be retrieved by

NRC_INSTANCE NrcDemandInstance(NRC_DEMAND d);

40 Chapter 3. NRC Instances and Solutions

Its penalizers may be retrieved by

int NrcDemandPenalizerCount(NRC_DEMAND d);
void NrcDemandPenalizer(NRC_DEMAND d, int i, NRC_PENALIZER_TYPE *pt,
NRC_WORKER_SET *ws, NRC_PENALTY_TYPE *ptype, NRC_PENALTY *p);

where NRC_PENALIZER_TYPE is

typedef enum {
NRC_PENALIZER_NON_ASSIGNMENT,
NRC_PENALIZER_WORKER_SET,
NRC_PENALIZER_NOT_WORKER_SET

} NRC_PENALIZER_TYPE;

Its members correspond to the three functions given above. NrcDemandPenalizer sets *ws to

NULL when *pt is NRC_PENALIZER_NON_ASSIGNMENT.

As we know, d holds one penalty for each worker, and one for non-assignment. Function

NRC_PENALTY NrcDemandWorkerPenalty(NRC_DEMAND d, NRC_WORKER w);

returns the penalty associated with worker w, or NrcInstanceZeroPenalty if no penalty has

been associated with w. Passing NULL for w returns the penalty for non-assignment. It may only

be called after NrcDemandMakeEnd(d) has been called and before conversion to XESTT.

Finally, function

void NrcDemandDebug(NRC_DEMAND d, int multiplicity, int indent, FILE *fp);

produces a debug print of d onto fp with the given indent, as explained in Section 3.2. As a

convenience to some callers, if multiplicity is at least 2 it is included in the print.

3.9.4. Demand-sets

Demand-sets are sets of demands, defined in the usual way:

NRC_DEMAND_SET NrcDemandSetMake(NRC_INSTANCE ins);
void NrcDemandSetAddDemand(NRC_DEMAND_SET ds, NRC_DEMAND d);

There is also the trivial helper function

void NrcDemandSetAddDemandMulti(NRC_DEMAND_SET ds, NRC_DEMAND d,
int multiplicity);

which calls NrcDemandSetAddDemand(ds, d) multiplicity times. It is quite normal for one

demand object to be added to a demand set multiple times, this way or otherwise; it just means

that that many identical demands are being made.

Demand-sets make it easy to build up the total requirements for one shift into a single object.

There might be a minimum, preferred, and maximum number of workers required, similarly to

what is represented by a bound. This function develops this idea:

3.9. Constraints 41

NRC_DEMAND_SET NrcDemandSetMakeFromBound(NRC_INSTANCE ins,
NRC_BOUND b, int count, NRC_WORKER_SET preferred_ws,
NRC_PENALTY not_preferred_penalty);

It returns a new demand-set containing count demands. It would be too tedious to describe all

the cases, but suppose the bound contains a min_value, preferred_value, and max_value.

Then the first min_value demands penalize non-assignment by the penalty for being below

min_value; the next preferred_value - min_value demands also penalize non-assignment,

but by the penalty for being below preferred_value; the next max_value - preferred_value

demands penalize assignment of a worker,by the penalty for being above preferred_value; and

the last count - max_value demands also penalize assignment of a worker, but by the penalty

for being above max_value. In addition, if preferred_ws is non-NULL, all the demands penalize

the assignment of a worker not in preferred_ws by not_preferred_penalty. The penalties

must all be linear, and all allow_zero attributes must be false.

For example, the following handles the Second International Nurse Rostering Competition,

whose shifts have a hard minimum cover and a soft optimum (preferred) cover:

p1 = NrcPenalty(true, 1, NRC_COST_FUNCTION_LINEAR, ins);
p2 = NrcPenalty(false, 30, NRC_COST_FUNCTION_LINEAR, ins);
p3 = NrcPenalty(false, 0, NRC_COST_FUNCTION_LINEAR, ins);
b = NrcBoundMakeMin(min_cover, false, p1);
NrcBoundAddPreferred(b, opt_cover, p2, p3);
dms = NrcDemandSetMakeFromBound(ins, b, opt_cover * 2, ws, p1);

This is much easier and clearer than adding the demands individually. To add a maximum cover,

for example, just add a maximum value to the bound.

The instance that a demand-set is for is returned by

NRC_INSTANCE NrcDemandSetInstance(NRC_DEMAND_SET ds);

To visit the demands of a demand-set, in the order they were added, call

int NrcDemandSetDemandCount(NRC_DEMAND_SET ds);
NRC_DEMAND NrcDemandSetDemand(NRC_DEMAND_SET ds, int i);

The same demand may be returned multiple times; there is no memory in the demand-set of how

its demands were added. Function

void NrcDemandSetDebug(NRC_DEMAND_SET ds, int indent, FILE *fp);

produces a debug print of ds onto fp, as explained in Section 3.2.

3.9.5. Demand constraints

The usual way to specify the workers required by shifts is to add demands to the shifts, as just

explained. However, some constraints (notably in the Curtois original instances) apply to the

whole set of workers that attend some shift, or even to the set of workers that attend a set of shifts

(when the constraint is on the workers that attend during some time period). In some cases these

constraints can be decomposed into constraints on individual demands, but not always.

42 Chapter 3. NRC Instances and Solutions

For these awkward cases an alternative approach is offered. First, specify a maximum

number of workers that may be assigned to each shift, using unconstrained demands like this:

NrcInstanceDemandBegin(ins);
dm = NrcInstanceDemandEnd(ins);
dms = NrcDemandSetMake(ins);
NrcDemandSetAddDemandMulti(dms, dm, total_cover);
NrcShiftAddDemandSet(s, dms);

or equivalently like this:

dms = NrcDemandSetMakeFromBound(ins, NrcBoundMake(ins), total_cover,
NULL, NULL);

NrcShiftAddDemandSet(s, dms);

This ensures that shift s can be assigned up to total_cover workers, without any constraint on

how many assignments there should be, or on the assigned workers’ skills. Second, call

NRC_DEMAND_CONSTRAINT NrcDemandConstraintMake(NRC_BOUND b,
NRC_SHIFT_SET ss, NRC_WORKER_SET ws, char *name);

This adds a constraint to ss’s instance which limits the total number of demands from an

arbitrary set of shifts that may be assigned workers from a given set. Functions

NRC_BOUND NrcDemandConstraintBound(NRC_DEMAND_CONSTRAINT dc);
NRC_SHIFT_SET NrcDemandConstraintShiftSet(NRC_DEMAND_CONSTRAINT dc);
NRC_WORKER_SET NrcDemandConstraintWorkerSet(NRC_DEMAND_CONSTRAINT dc);
char *NrcDemandConstraintName(NRC_DEMAND_CONSTRAINT dc);

retrieve the four attributes of demand constraint dc.

Parameter b is a bound object (Section 3.9.2) which specifies any combination of minimum,

maximum, or preferred limits on the number of assignments. It may be a freshly created object

with no limits when passed to NrcDemandConstraintMake; the limits may be added to it later.

Parameter ss is the set of shifts whose assignments are being constrained. For example, if

the constraint is on a single shift s, then ss would be NrcShiftSingletonShiftSet(s).

Parameter ws is the set of workers. The constraint is only interested in assignments of these

workers; assignments of other workers do not influence it. If the constraint is on the total number

of assignments irrespective of skill, then ws would be NrcInstanceStaffing(ins).

Parameter name does not influence the meaning of the constraint; rather, it helps to identify

the constraint in evaluation prints. It does not have to be unique. It should indicate what is being

constrained but not the actual limits, because NRC adds that information to the name.

There is also the usual debug function,

void NrcDemandConstraintDebug(NRC_DEMAND_CONSTRAINT dc,
int indent, FILE *fp);

which produces a debug print of dc onto fp with the given indent.

NRC demand constraints are converted to XESTT limit resources constraints, or in some

3.9. Constraints 43

cases to assign resource and prefer resources constraints, which are preferable because they

constrain each event resource independently—a fact which can have practical consequences, for

example for time sweep assignment algorithms. For the details, consult Section 4.3.

3.9.6. Patterns

Patterns are used in several nurse rostering models to say that some sequences of shift types—a

morning shift following a night shift, for example—should be forbidden, or penalized.

Given that a worker takes at most one shift per day, the choices on each day are one of its

shifts or nothing. Denote the shift types by 1, 2, and 3, and denote the absence of a shift (a free

day) by 0. Using regular expression notation, an arbitrary subset of these choices is represented

by enclosing them in brackets. For example, [02] means ‘a shift of type 2 or nothing.’ In source

models, a pattern is a sequence of these terms, representing the choices on consecutive days. For

example, [3][1] means ‘an early shift following a night shift’.

A pattern matches a worker’s timetable at any day where the worker has a sequence of

shifts or days off, each of which matches the corresponding term of the pattern. For example,

if a worker’s timetable contains a shift of type 3 on day 1Wed and a shift of type 1 on day 1Thu,

then pattern [3][12] matches that timetable at 1Wed.

The empty term [] is allowed, but it never matches, which makes it useless in practice. On

the other hand, [0123] says that we don’t care what happens on that day, which can be useful.

NRC supports patterns. A pattern is created by

NRC_PATTERN NrcPatternMake(NRC_INSTANCE ins, char *name);

where name is optional (may be NULL). To retrieve the attributes, call

NRC_INSTANCE NrcPatternInstance(NRC_PATTERN p);
char *NrcPatternName(NRC_PATTERN p);

To add a term to a pattern, call

void NrcPatternAddTerm(NRC_PATTERN p, NRC_SHIFT_TYPE_SET sts,
NRC_POLARITY po);

As shown, a term consists of a shift-type set and a polarity, of type

typedef enum {
NRC_NEGATIVE,
NRC_POSITIVE

} NRC_POLARITY;

These attributes will be explained shortly. To visit the terms of a pattern, call

int NrcPatternTermCount(NRC_PATTERN p);
void NrcPatternTerm(NRC_PATTERN p, int i, NRC_SHIFT_TYPE_SET *sts,

NRC_POLARITY *po);

in the usual way. There is also

44 Chapter 3. NRC Instances and Solutions

bool NrcPatternIsUniform(NRC_PATTERN p);

which returns true when p is uniform: when all its terms contain equal shift-type sets and equal

polarities. Unwanted patterns can be implemented more efficiently when they are uniform.

Type NRC_POLARITY has just one operation:

NRC_POLARITY NrcPolarityNegate(NRC_POLARITY po);

which returns negative for positive and positive for negative.

A term t matches the timetable of worker w on day d if either t’s polarity is NRC_POSITIVE

and w works a shift on day d whose type is one of the types of t’s shift-type set, or else t’s polarity

is NRC_NEGATIVE and w does not work a shift on day d whose type is one of the types of t’s

shift-type set. This second case includes not working at all. A pattern matches w’s timetable on

day d if its first term matches on day d, its second term matches on the day after d, and so on.

A term which does not contain 0 is represented by a shift-type set containing its shift

types, with polarity NRC_POSITIVE. A term which contains 0 is represented by a shift-type set

containing the complement of the term’s non-0 shift types, with polarity NRC_NEGATIVE. The

reader can easily verify that this does what is wanted. In particular, the don’t-care term [0123]

is represented by an empty shift-type set with negative polarity. This term always matches.

Creating a pattern does not make it unwanted: it has to be added to a worker constraint,

using function NrcConstraintAddPattern (Section 3.9.8). The constraint holds information

about the cost of violations, and which days the pattern is allowed to match with.

All patterns are stored in the instance, and are accessible by NrcInstancePatternCount,

NrcInstancePattern, and NrcInstanceRetrievePattern (Section 3.3.8). Function

void NrcPatternDebug(NRC_PATTERN p, int indent, FILE *fp);

produces a debug print of p onto fp, as explained in Section 3.2.

3.9.7. Pattern sets

A pattern set is a set of patterns. To make an initially empty pattern set, call

NRC_PATTERN_SET NrcPatternSetMake(NRC_INSTANCE ins);

Functions

NRC_INSTANCE NrcPatternSetInstance(NRC_PATTERN_SET ps);
int NrcPatternSetIndexInInstance(NRC_PATTERN_SET ps);

return the pattern set’s instance, and its index in the instance.

To add a pattern to a pattern set, call

void NrcPatternSetAddPattern(NRC_PATTERN_SET ps, NRC_PATTERN p);

This may be done any number of times. To visit the patterns of a pattern set, call

int NrcPatternSetPatternCount(NRC_PATTERN_SET ps);
NRC_PATTERN NrcPatternSetPattern(NRC_PATTERN_SET ps, int i);

3.9. Constraints 45

in the usual way.

The function that makes pattern sets non-trivial is

NRC_PATTERN_SET NrcPatternSetReduce(NRC_PATTERN_SET ps);

This returns a new pattern set whose patterns match at the same points as ps’s patterns do, but

usually using fewer patterns. To see the use for this, consider this excerpt from one of the recent

Curtois and Qu instances:

a4,720,a1|a2|a3|a4|d1|d2|d3|d4|d5
d1,480,a1|a2|a3
d2,480,a1|a2|a3
d3,600,a1|a2|a3|a4
d4,720,a1|a2|a3|a4|d1|d2|d3|d4|d5

Ignoring the workload limits, this gives for each shift type (not all are shown here) a list of other

shift types that may not follow it, so it defines a set of patterns. The reduced set is

a4|d4,720,a1|a2|a3|a4|d1|d2|d3|d4|d5
d1|d2,480,a1|a2|a3
d3,600,a1|a2|a3|a4

These patterns match at the same points as the originals, but there are fewer of them, leading

to smaller generated instances. The function merges pairs of patterns with the same length and

equal elements and polarities except at one place, where the elements must be disjoint and the

polarities must be equal.

Instead of building then reducing, it may be simpler to reduce while building, by calling

void NrcPatternSetMergePattern(NRC_PATTERN_SET ps, NRC_PATTERN p);

It is like NrcPatternSetAddPattern except that it first tries to merge p into an existing pattern

of ps, only adding it as a separate pattern as a last resort. Finally,

void NrcPatternSetDebug(NRC_PATTERN_SET ps, int indent, FILE *fp);

produces a debug print of ps in the usual way.

3.9.8. Worker constraints

A worker constraint is a constraint on the timetables of individual workers. Worker constraints

all seem to have a similar form: they contain a set of shift-sets, and for each worker they

determine whether the worker is busy or free during each shift-set, calculate totals of busy and

free shift-sets, and assign a penalty proportional to the amount by which the totals fall short of

a given minimum limit or exceed a given maximum limit. There are variations: when there is

a non-zero minimum limit, in some cases a total of 0 is nevertheless not penalized; sometimes

the total workload (measured in minutes, say) is limited rather than the number of shifts; some

constraints are repeated along the cycle (every weekend, for example); some apply to sequences

of consecutive shift-sets, others are just concerned with totals, not with ordering; and so on.

Nevertheless NRC offers a single interface for all worker constraints.

46 Chapter 3. NRC Instances and Solutions

A shift is busy for a worker when the worker works that shift. A shift is free for a worker

when it is not busy for the worker. A shift-set is busy for a worker when at least one of its shifts

is busy for the worker. A shift-set is free for a worker when it is not busy for the worker.

When a shift-set is added to a constraint, a polarity (Section 3.9.6) is added with it, saying

whether the shift-set is to be treated positively or negatively. Informally, we say that a shift-set is

positive when its associated polarity is positive, and negative otherwise. However, it is the usage

of the shift-set within the constraint which is positive or negative, not the shift-set itself.

When a constraint is applied to a particular worker, a shift-set within it is active when it is

positive and busy for the worker,or negative and free for the worker. Otherwise it is inactive. The

constraint calculates the total number of active shift-sets, and compares it with the limits. If all

shift-sets are positive, this constrains busy shift-sets; if all are negative, it constrains free shift-sets.

Mixtures of positive and negative are legal, and useful for implementing unwanted patterns.

To create a worker constraint, initially with no shift-sets, call

NRC_CONSTRAINT NrcConstraintMake(NRC_INSTANCE ins, char *name,
NRC_WORKER_SET ws, NRC_CONSTRAINT_TYPE type, NRC_BOUND bound,
NRC_SHIFT_SET starting_ss);

This returns a new constraint and also adds it to ins. The type should really be called

NRC_WORKER_CONSTRAINT, but NRC_CONSTRAINT is shorter. To retrieve the attributes, call

NRC_INSTANCE NrcConstraintInstance(NRC_CONSTRAINT c);
char *NrcConstraintName(NRC_CONSTRAINT c);
NRC_WORKER_SET NrcConstraintWorkerSet(NRC_CONSTRAINT c);
NRC_CONSTRAINT_TYPE NrcConstraintType(NRC_CONSTRAINT c);
NRC_BOUND NrcConstraintBound(NRC_CONSTRAINT c);
NRC_SHIFT_SET NrcConstraintStartingShiftSet(NRC_CONSTRAINT c);

Parameter name is the name given to XESTT constraints derived from this constraint. A good

choice here is an informal source model description, expressed positively, that is, as what is

wanted rather than what is to be avoided: "At most 4 busy weekends" and so on. Names

mainly appear as entries in tables of defects, where there are other entries giving the details, so

a short, informal phrase is best. There is no need for names to be distinct. NRC will ensure that

the XESTT constraints it generates have distinct Ids, which is a different thing.

Parameter ws says which workers the constraint applies to. For example, ws could hold the

workers who share a contract containing this constraint. If the constraint is for a single worker

w, then ws is NrcWorkerSingletonWorkerSet(w) (Section 3.8.1). Worker constraints which are

equal apart from ws are merged by NrcArchiveWrite into a single XESTT constraint.

Parameter type determines what is constrained, and has type

typedef enum {
NRC_CONSTRAINT_ACTIVE,
NRC_CONSTRAINT_CONSECUTIVE,
NRC_CONSTRAINT_WORKLOAD

} NRC_CONSTRAINT_TYPE;

NRC_CONSTRAINT_ACTIVE means that the constraint is on the number of active shift-sets;

3.9. Constraints 47

NRC_CONSTRAINT_CONSECUTIVE means that the constraint is on the number of consecutive active

shift-sets;1 and NRC_CONSTRAINT_WORKLOAD means that the constraint is on the total workload of

the shifts of one shift-set.

Parameter bound says whether the constraint is a minimum limit, a minimum limit in which

zero is allowed, or a maximum limit, or a combination, and includes penalties for when the limit

is violated (Section 3.9.2).

Lastly,starting_ss repeats the constraint along the cycle. If it is NULL, the constraint is ap-

plied only once. If it is non-NULL, the distance from its first shift to each of its other shifts defines

a distance along the cycle to repeat the constraint. For example, if starting_ss holds the first

shift of each day, the constraint repeats on every day. NrcInstanceDailyStartingShiftSet

and NrcInstanceWeeklyStartingShiftSet (Section 3.3.5), NrcDaySetStartingShiftSet

(Section 3.4.3), and NrcShiftSetSetStartingShiftSet (Section 3.7.3) return most of the

starting shift-sets needed in practice.

When starting_ss is used, the shift-sets added to the constraint must define only the

earliest occurrence of the constraint. Some of starting_ss’s shifts may place the constraint at

points of the cycle where some parts of it go off the end. Such shifts are legal but are ignored.

One may use starting_ss with the consecutive limit types, to get constraints such as a

limit on the number of consecutive days worked within each four-week interval. But these never

seem to occur in source models, perhaps because they are very artificial at the boundaries.

After creating the constraint, add shift-sets to it by calling

void NrcConstraintAddShiftSet(NRC_CONSTRAINT c,
NRC_SHIFT_SET ss, NRC_POLARITY po);

void NrcConstraintAddShiftSetSet(NRC_CONSTRAINT c,
NRC_SHIFT_SET_SET sss, NRC_POLARITY po);

any number of times, arbitrarily intermixed. This adds the shift-sets, each accompanied by a

polarity, either one at a time or many at once. There is also

void NrcConstraintAddPattern(NRC_CONSTRAINT c, NRC_PATTERN p, NRC_DAY d);

A pattern is a sequence of shift-type sets with polarities, and NrcConstraintAddPattern simply

makes the corresponding sequence of calls to NrcConstraintAddShiftSet, converting each

shift type set sts into a shift set, by calling NrcDayShiftSetFromShiftTypeSet(d, sts) for

the shift type set of the first term, and similarly using successive days for successive terms.

To visit the shift-sets and polarities added to a constraint c, call

int NrcConstraintShiftSetCount(NRC_CONSTRAINT c);
void NrcConstraintShiftSet(NRC_CONSTRAINT c, int i,
NRC_SHIFT_SET *ss, NRC_POLARITY *po);

as usual. The constraint does not remember whether the shift-sets and polarities were added

individually, or using shift-set sets, or using patterns.

One common form of constraint, the unwanted pattern, is already implemented:

1The author learned of this approach to constraining consecutive subsequences from Gerhard Post.

48 Chapter 3. NRC Instances and Solutions

NRC_CONSTRAINT NrcUnwantedPatternConstraintMake(NRC_INSTANCE ins,
char *name, NRC_WORKER_SET ws, NRC_PENALTY penalty, NRC_PATTERN p,
NRC_DAY_SET starting_ds);

The first three parameters and the return value are as for NrcConstraintMake. Parameter

penalty is the penalty to apply when the pattern is violated. The last two parameters give the

unwanted pattern and the set of days on which it may begin (pass NrcInstanceCycle(ins) if

it may begin on any day). Here p must contain at least one term, and starting_ds must contain

at least one day.

Function

void NrcConstraintDebug(NRC_CONSTRAINT c, int indent, FILE *fp);

produces a debug print of c onto fp, as explained in Section 3.2.

Behind the scenes, NRConv implements an important optimization called condensing,

which converts sets of constraints of type NRC_CONSTRAINT_ACTIVE into constraints of type

NRC_CONSTRAINT_CONSECUTIVE when the shift-sets are uniform (when they repeat regularly

along the cycle). When source files implement minimum and maximum limits on the number of

busy days using patterns,condensing changes them back into constraints which limit the numbers

directly. The implementation has been done with care and produces an exact result whenever it

is applied. The new constraints have the old names with " (condensed)" appended.

3.9.9. Examples of worker constraints

this section is out of date, it needs a makeover

This section presents some examples of worker constraints. Many more may be found in the

source code. For reference, here is the interface of NrcConstraintMake from Section 3.9.8:

NRC_CONSTRAINT NrcConstraintMake(NRC_INSTANCE ins, char *name,
NRC_WORKER_SET ws, NRC_CONSTRAINT_TYPE type, NRC_BOUND bound,
NRC_SHIFT_SET starting_ss);

Let ins be an NRC instance. To say that all staff should work at most one shift per day:

c = NrcConstraintMake(ins, "Single assignment per day",
NrcInstanceStaffing(ins), p, NRC_LIMIT_MAX, 1,
NrcInstanceDailyStartingShiftSet(ins));

NrcConstraintAddShiftSetSet(c,
NrcDayShiftSetSet(NrcInstanceCycleDay(ins, 0), NRC_POSITIVE);

Looking along the arguments of NrcConstraintMake, c applies to all workers, has penalty p,

maximum limit 1 (not consecutive), and repeats each day. The second statement defines the first

point where it applies: to the shifts of the first day of the cycle. The shift-set set ensures that each

shift is added in its own shift-set, so that the usual limit on the number of busy shift-sets becomes

a limit on the number of busy shifts. It would be wrong to pass in a single shift-set containing all

the shifts of the day, but NRConv works out that this is a simple case and generates a limit busy

times constraint rather than a cluster busy times constraint.

To impose a maximum workload limit of 28 shifts:

3.9. Constraints 49

c = NrcConstraintMake(ins, "At most 28 shifts",
NrcInstanceStaffing(ins), p, NRC_LIMIT_MAX, 28, NULL);

NrcConstraintAddShiftSetSet(c, NrcInstanceShiftsShiftSetSet(ins),
NRC_POSITIVE);

Here c applies to all workers, has penalty p, is not consecutive, and does not repeat. The second

statement adds each shift, again in its own shift-set.

Making a pattern p unwanted is very easy:

c = NrcConstraintMake(ins, "Unwanted pattern", NrcInstanceStaffing(ins),
p, NRC_LIMIT_MAX, NrcPatternTermCount(p) - 1,
NrcInstanceDailyStartingShiftSet(ins));

NrcConstraintAddPattern(c, p, NrcInstanceCycleDay(ins, 0));

The constraint applies to all workers, has penalty p, has a maximum limit of one less than the

pattern length (not consecutive), and starts afresh each day. The last line adds shift-sets defining

the first occurrence of the pattern, beginning on the first day of the cycle.

NRConv offers NrcUnwantedPatternConstraintMake, its own implementation of

unwanted patterns, documented near the end of Section 3.9.8. It is rather more complex than the

code above, mainly because, if the pattern is uniform (has the same shift-set and the same polarity

at every term) and may begin on any day, it optimizes by generating a limit active intervals

constraint rather than a cluster busy times constraint which repeats on each day:

50 Chapter 3. NRC Instances and Solutions

NRC_CONSTRAINT NrcUnwantedPatternConstraintMake(NRC_INSTANCE ins,
char *name, NRC_WORKER_SET ws, NRC_PENALTY penalty, NRC_PATTERN p,
NRC_DAY_SET starting_ds)

{
NRC_CONSTRAINT res; NRC_SHIFT_TYPE_SET sts; NRC_POLARITY po; int i;
NRC_DAY d; NRC_SHIFT_SET ss;

MAssert(NrcPatternTermCount(p) > 0,
"NrcUnwantedPatternConstraintMake: empty pattern");

MAssert(NrcDaySetDayCount(starting_ds) > 0,
"NrcUnwantedPatternConstraintMake: empty starting_ds");

if(NrcDaySetDayCount(starting_ds) == NrcInstanceCycleDayCount(ins)
&& NrcPatternIsUniform(p))

{
/* uniform pattern, single limit active intervals constraint */
res = NrcConstraintMake(ins, name, ws, penalty,
NRC_LIMIT_MAX_CONSECUTIVE, NrcPatternTermCount(p)-1, NULL);

NrcPatternTerm(p, 0, &sts, &po);
for(i = 0; i < NrcInstanceCycleDayCount(ins); i++)
{
d = NrcInstanceCycleDay(ins, i);
ss = NrcDayShiftSetFromShiftTypeSet(d, sts);
NrcConstraintAddShiftSet(res, ss, po);

}
}
else
{
/* non-uniform pattern, repeating cluster busy times constraint */
res = NrcConstraintMake(ins, name, ws, penalty, NRC_LIMIT_MAX,
NrcPatternTermCount(p)-1, NrcDaySetStartingShiftSet(starting_ds));

NrcConstraintAddPattern(res, p, NrcDaySetDay(starting_ds, 0));
}
return res;

}

This function could be written by an NRC user; it does not use any behind-the-scenes features.

Constraints involving weekends need to know when the weekends are. One way to express

this is as a day-set set, each day-set of which contains the days of one weekend, in chronological

order. Such a day-set set can be built using NRC’s functions for building day-sets and day-set

sets, following whatever rule the format uses to define weekends, and shared by all constraints

concerning weekends. Assuming that weekends_dss is such a day-set set, the following code

places a maximum limit of 3 on the number of consecutive weekends that worker w can work:

3.9. Constraints 51

NRC_CONSTRAINT c; int i; NRC_DAY_SET ds;
c = NrcConstraintMake(ins, "At most 3 consecutive weekends",

NrcWorkerSingletonWorkerSet(w), p, NRC_LIMIT_MAX_CONSECUTIVE, 3, NULL);
for(i = 0; i < NrcDaySetSetDaySetCount(weekends_dss); i++)
{

ds = NrcDaySetSetDaySet(weekends_dss, i);
NrcConstraintAddShiftSet(c, NrcDaySetShiftSet(ds), NRC_POSITIVE);

}

The constraint applies to w only, has penalty p, has maximum limit 3, and is consecutive. There

is one shift-set for each weekend, containing the shifts of that weekend.

3.9.10. Adding history to worker constraints

Some constraints need to be influenced by the history of the workers whose timetables they

constrain. This can be done by first calling

void NrcConstraintAddHistory(NRC_CONSTRAINT c, int history_before,
int history_after);

once, then

void NrcConstraintAddHistoryWorker(NRC_CONSTRAINT c, NRC_WORKER w,
int value);

at most once for each worker w in c’s worker-set. The history_before, history_after, and

value values are the ai, ci, and xi values from Jeff Kingston’s paper on history.

Functions NrcWorkerAddHistory and NrcWorkerRetrieveHistory from Section 3.8.1

make it easy to store history values in workers. However, they do not automatically pass these

values on to constraints. Code like this is needed for that:

c = NrcConstraintMake(..., ws, ...);
NrcConstraintAddHistory(c, ...);
for(i = 0; i < NrcWorkerSetWorkerCount(ws); i++)
{
w = NrcWorkerSetWorker(ws, i);
if(NrcWorkerRetrieveHistory(w, "WeekendsWorked", &v) && v > 0)
NrcConstraintAddHistoryWorker(c, w, v);

}

Accordingly, NRC offers helper function

void NrcConstraintAddHistoryAllWorkers(NRC_CONSTRAINT c,
int history_before, int history_after, char *name);

whose body is the call to NrcConstraintAddHistory plus the loop, with name for

"WeekendsWorked" and NrcConstraintWorkerSet(c) for ws. Most cases are best handled by

NrcConstraintAddHistoryAllWorkers, but when its simple approach is not sufficient, one can

fall back on NrcConstraintAddHistory and NrcConstraintAddHistoryWorker.

52 Chapter 3. NRC Instances and Solutions

History may not be added to a constraint with a starting shift-set. It is just too hard to assign

a reasonable meaning to it.

3.10. Solutions

This section describes solutions. A solution is a collection of assignments to the demands of the

shifts of one instance. It is a very simple thing, making this a very short section.

To create a new solution for a given instance, call

NRC_SOLN NrcSolnMake(NRC_INSTANCE ins, HA_ARENA_SET as);

where as is as for NrcInstanceMake. To retrieve the instance, call

NRC_INSTANCE NrcSolnInstance(NRC_SOLN soln);

A solution contains an optional description, giving its provenance. To set and retrieve it, call

void NrcSolnSetDescription(NRC_SOLN soln, char *description);
char *NrcSolnDescription(NRC_SOLN soln);

NrcSolnDescription returns NULL when there is no description.

A solution also contains an optional running time, giving the time in seconds that it took to

find. To set this value and retrieve it, call

void NrcSolnSetRunningTime(NRC_SOLN soln, float running_time);
float NrcSolnRunningTime(NRC_SOLN soln);

NrcSolnRunningTime returns -1.0 when no running time has been passed, meaning ‘absent’.

A newly created solution does not lie in any archives. To add it to an archive, the user must

first ensure that that archive has a solution group, by calling NrcSolnGroupMake (Section 2.2).

Then the solution may be added to the solution group, by calling NrcSolnGroupAddSoln.

Internally, a solution is just a collection of assignments of workers to the demands of shifts.

Each demand accepts at most one assignment. To add an assignment, call

void NrcSolnAddAssignment(NRC_SOLN soln, NRC_SHIFT s, int i,
NRC_WORKER w);

This assigns w to demand i of s, where 0 <= i < NrcShiftDemandCount(s). The assignment

is in soln, not in the instance; the instance does not change. NrcSolnAddAssignment aborts if

an attempt is made to assign a second worker to the same demand.

To inspect an existing assignment, call

NRC_WORKER NrcSolnAssignment(NRC_SOLN soln, NRC_SHIFT s, int i);

This returns NULL when no assignment has been made. Unassigned demands are acceptable

within solutions, although they usually incur a penalty, depending on the demand’s penalties.

Chapter 4. Implementation Notes

This chapter contains notes on the more complicated parts of the NRC implementation. It is here

mainly for the author’s benefit; users of NRC do not have to read it.

4.1. Optimizing worker constraints

The worker constraints created by calls to NrcConstraintMake, called just constraints here,

are not mapped to XESTT constraints in a simple one-to-one manner. Instead, a sequence of

optimizations is applied, aiming to reduce the size of the generated XESTT file by combining

constraints where possible, and to reduce the density of constraints by replacing whole sets of

NRC_CONSTRAINT_ACTIVE constraints that combine to limit the number of consecutive busy or

free days (etc.) by NRC_CONSTRAINT_CONSECUTIVE constraints that apply these limits directly.

These optimizations are carried out by NrcInstanceConvertWorkerConstraints, a

private function which calls on various functions in files nrc_instance.c, nrc_constraint.c,

and nrc_condensed.c. The remainder of this section is basically a step-by-step account of what

NrcInstanceConvertWorkerConstraints does.

The attributes of a constraint are its worker set, its type (active, consecutive, or workload),

its bound, its starting shift-set, its shift-sets (including their polarities), and its history. It also has

a name, but that does not affect optimization and is not an attribute for present purposes. When

two constraints are merged into one, their names are merged in a way that preserves everything

in both names but eliminates most repetition.

NrcInstanceConvertWorkerConstraints has three phases. In order of execution they

are condensing, bound merging, and worker set merging. After these phases are complete, the

surviving constraints are mapped to XESTT constraints in a simple one-to-one manner, the only

complication being that constraints of type active are generated as limit busy times constraints

where possible, and as cluster busy times constraints otherwise.

Bound merging and worker set merging are easy. When two constraints have equal

attributes except that one has a maximum limit and the other has a minimum limit, they are

merged by bound merging. When two or more constraints have equal attributes except that they

apply to different worker sets, they are merged by worker set merging.

Actually there is one wrinkle here. A constraint’s history after value is only referenced

when there is a minimum limit, as Jeff Kingston’s paper on history makes clear. So ‘equal

attributes’ may be refined to mean that if one of the constraints has no minimum limit, then the

history after attributes need not be compared. If the constraints are merged, the history after

attribute of the result should come from a constraint with a minimum limit, if there is one.

It remains to explain condensing. In the Curtois original instances, constraints which limit

the number of consecutive busy or free days do not do so directly. Instead, they use patterns to

specify limits on the number of busy or free days, not necessarily consecutive, that may occur

in certain time windows. This ‘encoding’ of the constraints is a bad thing, because it leads to

many overlapping constraints where just one would do, slowing down constraint evaluation and

53

54 Chapter 4. Implementation Notes

confusing solvers that attempt to understand a solution’s defects, as opposed to merely observing

its cost. Condensing detects such constraints and ‘decodes’ them back to the unencoded form.

Condensing applies only to constraints of type active which have a maximum limit (only)

whose value is one less than the number of shift-sets. Each shift-set must be a copy of the

previous one, only shifted a certain offset along the cycle (typically one day, but any offset is

acceptable), and these offsets must be all equal. Any starting shift-set must have its times equally

spaced along the cycle with this same offset. It does not have to cover the whole cycle. The

shift-sets’ polarities must either be all equal, or all equal except the last, or all equal except the

first and last. Respectively, these polarities are what one finds in patterns that impose a maximum

limit, an exact limit at the start of the cycle, and an exact limit not at the start of the cycle.

The constraints satisfying these conditions are partitioned into bags. Two constraints lie in

the same bag when they have the same hardness, the same worker set, the same polarity (ignoring

the ends), and the same first shift-set and offset. Also, constraints whose polarities impose

maximum limits go into different bags from constraints whose polarities impose exact limits.

Bags of constraints whose polarities impose maximum limits are easy to handle. One

consecutive constraint is made for each constraint, with the shift-sets implied by the original

shift-sets and starting shift-set. For example, if the original shift-sets are the first four days, and

the starting shift-set contains the first shift on each day (possibly minus the last three), then the

shift-sets are the whole set of days. No history is needed.

Bags of constraints whose polarities impose exact limits are harder to handle. Some of the

constraints may apply at the start of the cycle, others not at the start of the cycle. The exact length

penalized may also vary.

The first step is to pair each constraint which applies at the start of the cycle with a constraint

which does not apply at the start but otherwise gives the same penalty to sequences of the same

length. Any constraint which applies only at the start of the cycle but cannot be paired in this

way is left untouched and ultimately generates the usual uncondensed XESTT constraint.

The pairs are then sorted into decreasing order of the exact length penalized. If there is one

pair for each length from some number down to 1, and the penalty costs are non-decreasing as

the length decreases, then these constraints are replaced by one or more consecutive constraints

that generate the same costs.

Rather than giving a tedious general explanation, consider this example from Curtois

original instance GPost. Sequences of length 3 have penalty 1, sequences of length 2 have

penalty 4, and sequences of length 1 have penalty 100. These are mapped into two consective

constraints, one with minimum limit 4 and penalty 1 with a quadratic cost function, the other

with minimum limit 2 and penalty 91 with a linear cost function. Starting at the largest exact

length, the algorithm is to try quadratic first, then linear, then step, and see how much penalty is

left after applying this cost function. If these residues are non-negative and non-decreasing, the

function is accepted and the algorithm moves on to the next pair with positive residue. Otherwise

the function is rejected and the next function is tried. The algorithm cannot reject all functions,

because, since the penalties are non-decreasing, step at least must work. As a special case, when

there is only one pair left, all three functions work, and linear is chosen.

Finally, consider history in the condensed constraint. Let its minimum limit be L.

Suppose there is an interval of length less than L at the start. If there were patterns that

4.1. Optimizing worker constraints 55

match with this interval, then the history before value is 0. If not, the history before value is L

for each resource. It was not mentioned above, but condensing is only applied if, within a given

bag, either each pair contains two constraints (one for the start and one for the rest), or else each

pair contains one constraint (for the rest, not for the start).

Suppose that there is an interval of length less than L at the end. No penalty should be

applied in this case, because none of the original patterns match with this interval. So history

after value L is assigned to each resource. If instances appear with patterns that do match at the

end, then the algorithm will have to be revised, analogously to what happens at the start now.

4.2. Converting demands into XESTT constraints

This section explains how demand objects are converted into XESTT assign resource and prefer

resources constraints.

When a demand is added to a shift, the demand records that fact as well as the shift. When

converting the demand, this makes it easy to determine which events, and which event resources

within those events, are derived from the demand, and hence which event groups and roles the

constraints are to apply to. The main issue, then, is working out which constraints are needed.

In certain special cases, basically those which can be modelled by at most one assign

resource constraint plus at most one prefer resources constraint, the needed XESTT constraints

are generated directly. Otherwise, the conversion uses the following fully general algorithm.

A demand records the calls on penalizer functions it receives. The first step is to break each

call into a set of requests to associate one penalty with one worker assignment (including non-

assignment). The penalty type says how to combine penalties for one worker assignment: sum,

replace, or abort. At the end there is one penalty, possibly zero, for each worker assignment.

As explained earlier, the sum of a hard penalty and a soft penalty is the hard penalty. This

may be inexact, but in nurse rostering at least the inexactness does not matter. We can’t add them.

Even if NRC used combined costs like KHE does, there would still be no way to represent the

combined cost in an XESTT file.

Partition the worker assignments into groups, where the assignments in group Gi all have

the same penalty, p
i
. Place non-assignment into its own group. Then,

• For each group of workers Gi whose penalty is non-zero, generate one prefer resources

constraint whose set of preferred resources is W − Gi, where W is the set of all workers, and

whose penalty is p
i
. This is correct: it penalizes assignments of Gi but nothing else.

• For the group Gi representing non-assignment, if its penalty is non-zero, generate an assign

resource constraint with that penalty. This penalizes non-assignment and nothing else.

Whatever assignment or non-assignment is made, at most one constraint is violated.

4.3. Optimizing demand constraints

NRC offers two ways to define cover constraints (constraints on how many nurses should attend

each shift, and what skills they need):

56 Chapter 4. Implementation Notes

• Demand objects, which constrain each request for one nurse independently of the others.

They are converted into XESTT assign resource and prefer resources constraints.

• Demand constraints, which constrain multiple requests simultaneously. They are converted

into XESTT limit resources constraints, except as explained below.

There is an argument for using demand constraints only: one method is better than two, and

demand constraints can do everything that demand objects do. The counter-argument is that it

is better for solving if demands are constrained independently. For example, it allows a solver

to decide, for each task separately, whether not assigning that task would incur a cost.

NRConv helps to resolve this dilemma by detecting cases where demand constraints can

be replaced by equivalent demand objects, and performing those replacements just before the

conversion to XESTT. So the user can use demand constraints where convenient, avoiding an

error-prone manual replacement by demand objects while still gaining their advantages.

For example, the following appears in Curtois original instance Azaiez.xml:

<DayOfWeekCover>
<Day>Sunday</Day>
<Cover><Shift>1</Shift><Min>3</Min></Cover>
<Cover><Skill>0</Skill><Shift>1</Shift><Min>1</Min></Cover>

</DayOfWeekCover>

The user of NRC will express this with two demand constraints, which NRC will convert into

demand objects: one requesting a nurse with skill 0, and at least two requesting any nurse.

There must be nothing approximate about any replacements done here: the result must be

strictly equivalent to the original. However, defining equivalence is an issue. A solution to an

instance made with demand constraints merely needs to assign workers to shifts; by the way the

constraints work, it does not matter which tasks within the shifts are assigned. But it does matter

when the solution is to an instance with demand objects.

For example, consider a shift that prefers four nurses, but will accept three or five, with a

penalty. When this shift is converted without using demand objects, all five tasks are subject to

the same limit resources constraint, and it does not matter which tasks receive the assignments.

But when the shift is converted using demand objects, the first four tasks have penalties for

non-assignment, and the fifth task has a penalty for assignment, and solutions that assign four

workers need to nominate the first four tasks as the ones receiving the assignments.

So is the converted instance really equivalent to the original? Our answer is that when

converting a solution, we are given the workers to assign and the shift to assign them to, but not

the tasks, and we need to find the best assignment. If we do that, then the converted instance is

equivalent, but solvers for the converted instance have an extra job to do: find the best tasks to

assign workers to within each shift.

A conversion which converts demand constraints into demand objects will be considered

correct when the best assignment of workers to tasks in each shift attracts the same cost as when

demand constraints are used.

The question is whether, for a particular shift s, the demand constraints ci that refer to s can

be replaced by demand objects. If any of the ci also refer to other shifts, the case seems hopeless

4.3. Optimizing demand constraints 57

and we fail to convert. So we assume now that the ci constrain only s. Each ci constrains all the

demands of s, not just some, since that is all that NrcDemandConstraintMake offers.

Each demand constraint ci places a bound bi on the number of demands of s that may be

assigned workers from a given worker set wi, which could be all workers but need not be. So we

may consider the constraints on s to be a set of pairs (bi,wi) for 1 ≤ i ≤ k. We assume also that the

total number of demands, N, is given. This is needed because XESTT requires that a particular,

fixed number of event resources appear in each event; N is that number. We might offer a

function which deduces a reasonable value of N from a shift’s demand constraints;but ultimately

the user is best placed to determine N, based on what existing solutions need, perhaps.

The algorithm for converting the ci and N into demand objects is as follows. It may fail at

several points, in which case we fail to convert s’s demand constraints into demands; they remain

as demand constraints and are subsequently converted into XESTT limit resources constraints.

The first step is to transform the ci to simplify their structure. Each bound bi contains

optional minimum, maximum, and preferred limits, with associated penalties. A preferred limit

is two limits, a minimum and a maximum, whose values are equal. So we replace the ci by a set

of triples of the form min(vi,wi,ci) and max(vi,wi,ci), where vi is the limit value, wi is the worker

set, and ci is the penalty to apply for each worker over or under the limit.

Let W be the set of all workers, and let w0 be a set of workers containing just one element, a

special worker representing non-assignment. Transform each maximum limit max(vi,wi,ci) into

the equivalent minimum limit min(N − vi,W ∪ w0 − wi,ci). Saying that at most vi workers from

wi are wanted is equivalent to saying that at least N − vi workers from W ∪ w0 − wi are wanted.

So the first step yields a set of minimum limits min(vi,wi,ci), where wi may include w0. The

second step makes these limits, plus the artificial limit min(N,W ∪ w0,0), into nodes in a tree Ts.

Ts is like the tree KHE builds when converting workload requirements into workload demand

nodes, although that tree limits times, not workers. The nodes of Ts satisfy these conditions:

1. If node ni = min(vi,wi,ci) is the parent of node nj = min(vj,wj,cj), then wj ⊆ wi and vj ≤ vi.

2. If nodes nj = min(vj,wj,cj) and nk = min(vk,wk,ck) are siblings, then wj ∩ wk = ∅ .

The algorithm for building Ts is as follows. Sort the minimum limits into non-increasing |wi|
order; break ties using non-increasing vi order. Take each limit in order, make it into a node, and

insert it into Ts. The artificial limit min(N,W ∪ w0,0) comes first in this order, and its insertion

is a special case: it becomes the root. Subsequent insertions of a new node y assume that the

insertion is to take place below a given node p. Initially, p is the root. Then,

• If the first condition holds between one of p’s children q and y, insert y below q.

• Otherwise, if y’s set of workers is disjoint from all of p’s children’s, make y a child of p.

• Otherwise, fail to convert.

It is easy to see that if this algorithm does not fail, then the tree it builds must satisfy the two

conditions. By sorting the limits, we ensure that y could never be the parent of a previously

inserted node, showing that if a tree exists at all, this algorithm will not fail.

The third and final step traverses Ts in postorder, generating demand objects along the way.

58 Chapter 4. Implementation Notes

At each node ni = min(vi,wi,ci), generate vi − Vi demand objects, where Vi is the total number of

demand objects generated at proper descendants of ni. The point here is that all the demands

generated below ni are demands for workers which are elements of wi, so they count towards what

ni is demanding. If vi − Vi is negative, fail to convert.

It remains to associate penalties with worker assignments in the generated demand objects.

Take any node ni and consider the vi demand objects generated at or below ni. (These are easy to

find during the postorder traversal, since immediately after generating the vi − Vi demand objects

at ni, they are the vi most recently generated demand objects.) Each of these demand objects is

supposed to incur penalty ci if its assignment is not an element of wi. Accordingly we call

NrcDemandPenalizeNotWorkerSet(d, wi − w0, NRC_PENALTY_ADD, ci);

on each of these demand objects d, being careful to do so only once per distinct object. If wi does

not include w0, then we also need to call

NrcDemandPenalizeNonAssignment(d, NRC_PENALTY_ADD, ci);

After all demands are created and all penalties are added, all the demand objects are made

immutable by calls to NrcDemandMakeEnd, so that no further changes are possible.

Consider the example from Azaiez.xml given earlier, and suppose N = 5 and w is the set

of workers with skill 0. Then Ts has root node min(5,W,0), that node has one child min(3,W,c1),
and that node has one child min(1,w,c2), where c1 and c2 are given elsewhere in the file. The

postorder traversal will generate one demand, with cost c2 for a nurse outside w and c1 + c2 for

non-assignment, then two demands, with cost c1 for non-assignment, and finally another two

demands, with no costs.

Part B

The NRConv Executable

59

Chapter 5. NRConv and its Converters

This chapter describes NRConv and its converters, passing silently over routine things. The

material on each converter assumes that the reader has a detailed knowledge of the source model

being converted. For NRConv usage information, type nrconv with no arguments.

As a rough guide to the complexity of the code, here are line counts for the C source files:

Lines Files

5092 coi.c, coi_cover.c, and coi_limit.c

1669 inrc1.c

1464 inrc2.c

1836 cq14.c

The format of the Curtois original instances is considerably more complex than the others.

5.1. Instance models and solution models

NRConv has instance models and solution models, which define the format of source instances

and solutions. Whenever it reads a source instance or solution file, it has already been informed

(via the -i and -s command-line flags) which model the file follows.

An instance model is defined by a text file called an instance model file. For example:

InstanceSourceFormat: inrc1.xml
Contributor: The organizers of INRC1
Date:
Country:
Description:
Remarks: converted from INRC1 format by NRConv

Each line consists of an identifier followed by a colon followed by any number of spaces

followed by an optional value. The lines must appear in the order shown.

InstanceSourceFormat gives the name of the format in which the source instances

which follow this model are expressed. There is a fixed set of valid names, which at present is

coi.xml inrc1.xml inrc2.xml cq14.txt

but which is easy to expand (see the top of file ins_model.c). There is nothing to prevent

different instance models from using the same source format.

The remaining lines give values for the metadata fields of each instance. If there is no date,

as above, then the date that NRConv runs is substituted. All these fields are to be taken as default

values. If an instance contains more informative metadata values, they may replace these ones.

A solution model is defined by a text file called a solution model file. For example:

60

5.1. Instance models and solution models 61

SolnSourceFormat: inrc1-soln.xml
LinkageToInstance: internal
LinkageToSolnGroup: first
Keep: best
SolnGroup: GOAL
Contributor: The GOAL team
Date:
Description:
Publication: http://www.goal.ufop.br/nrp/
Remarks: converted from INRC1 format by NRConv

As before, each line consists of an identifier followed by a colon followed by any number of

spaces followed by an optional value, and the lines must appear in the order shown.

The SolnSourceFormat line gives the name of the format in which the source solutions are

expressed. There is a fixed set of valid names, which at present is

coi-soln.xml inrc1-soln.xml inrc2-soln.xml cq14-soln.xml

but which is easy to expand (see the top of file soln_model.c). There is nothing to prevent

different solution models from using the same source format.

The LinkageToInstance line defines how to determine which instance a solution is

for. Its value may be internal, meaning that the solution file contains this information, or

external, meaning that it doesn’t. In the latter case, the longer form of the -s command line

flag must be used to supply this information.

The LinkageToSolnGroups line defines how to determine which solution group a

solution should go into. There is a fixed set of values for this, which at present is

first cq14

but which could expand in the future. Value first places each solution into the first solution

group defined in this file (which would usually be the only one), while cq14 uses a complex rule

based on the values of the <Algorithm> and <CpuTime> elements of the solution files.

The Keep line says how many solutions to keep for each instance in each solution group.

Acceptable values are all to keep all solutions, and best to keep only one solution, the best.

The SolnGroup line defines a solution group with the given name, which will be added

to the archive. The following lines define its metadata fields. They must all be present, in the

order shown. If there is already a solution group with the given name, it is not added again, but

NRConv checks that it has the same metadata values as the ones given here, and aborts if not.

To include multiple solution groups, start again after Remarks with another SolnGroup

line, and so on. Every solution goes into exactly one solution group, so if there are any solutions

at all, there must be at least one solution group.

5.2. The Curtois original instances

Curtois pioneered the assembly of instances from around the world, and their expression in a

common format. Published at

62 Chapter 5. NRConv and its Converters

http://www.cs.nott.ac.uk/~psztc/NRP/

under the heading ‘Original instances’, there are 28 of these instances,with 66 solutions. Follow-

ing Curtois, we omit instance HED01b (it is very similar to instance HED01) and its solution, so

the converter converts 27 instances and 65 solutions, to archive COI, using instance source format

coi.xml and solution source format coi-soln.xml, which are implemented by functions in

NRConv source files coi.c, coi_limit.c, and coi_cover.c.

Instances ERMGH.ros, CHILD.ros, ERRVH.ros, and MER.ros use the <TimePeriod>

feature, which gives cover requirements for periods of the day rather than for each shift type.

Several other instances contain multiple cover requirements (for particular skills) which apply to

the same shifts. Accordingly, for all the Curtois original instances generally, NRConv produces

a generous number of extra event resources (the exact number is documented in coi_cover.c),

and constrains them using limit resources constraints.

The exception is shifts for which the <AutoAllocate> attribute is false, meaning that the

shift can only be preassigned, not assigned by a solver. Each such shift is given the exact number

of event resources required to hold the preassignments,and these event resources are preassigned

in the generated instance.

All instances use pattern constraints (element <Match>), which place minimum and

maximum limits on the number of occurrences of the elements of an arbitrary set of patterns.

These are not convertible in general. NRConv analyses them into three convertible cases, and

omits instances with constraints outside these cases (none of the 27 instances is omitted).

Case 1. The pattern constraint has maximum limit 0 but is otherwise arbitrary. Then the

patterns within this constraint are unwanted patterns and are handled as such.

Case 2. Each pattern of the constraint either contains a single term, or a sequence of terms

all containing 0, or it is one of the last three patterns, and these together match busy weekends,

as in Sat:[123][123], Sat:[0][123], and Sat:[123][0], assuming three shifts per day.

The constraint is otherwise arbitrary. It is converted to a resource contraint whose minimum and

maximum limits are those of the pattern constraint, and whose time groups express its terms.

A pattern containing a single term is easily expressible using one time group for each

starting day. For example, [12] is converted to

{1Mon1, 1Mon2}
{1Tue1, 1Tue2}
{1Wed1, 1Wed2}
…

and these time groups are added to the resource constraint.

A pattern whose terms all contain 0 is converted to one negative time group for each starting

day. Consider limiting the number of free weekends, counting a Friday night shift (shift 3) as

part of the following weekend. The pattern is Fri:[012][0][0]. The time groups are

{1Fri3, 1Sat1, 1Sat2, 1Sat3, 1Sun1, 1Sun2, 1Sun3}*
{2Fri3, 2Sat1, 2Sat2, 2Sat3, 2Sun1, 2Sun2, 2Sun3}*
…

Each time group contains the complement of each term, on successive days.

5.2. The Curtois original instances 63

Patterns which match busy weekends are easily represented by positive time groups

{1Sat1, 1Sat2, 1Sat3, 1Sun1, 1Sun2, 1Sun3}
{2Sat1, 2Sat2, 2Sat3, 2Sun1, 2Sun2, 2Sun3}

and so on. NRConv looks for this exact case; it does not attempt to generalize it in any way.

Case 3. NRConv is hard-wired to generate certain XESTT constraints when it reaches

certain file positions. This allows it to handle source constraints that fall outside the cases above

but which are nevertheless convertible. For example, the pattern constraints at lines 107–148 of

ERMGH.ros penalize cases of two consecutive busy weekends. The instance begins on a Sunday

and ends on a Saturday, and the constraint for the last two weekends does not fit the cases given

above, so NRConv generates a hard-wired limit active intervals constraint for the whole set.

As it turns out, every hard-wired case except the one for instance HED01.ros described below

concerns limiting the number of consecutive busy weekends, to one, two, or three.

An awkward pattern constraint occurs at line 95 of instance ORTEC02.ros. The problem

patterns, Sat:[NEDL][NEDL], Sat:[0][NEDL], and Sat:[NEDL][0], aim to match busy

weekends, but they omit the ‘on vacation’ shift V, so they leave some busy weekends (Sat:DV,

for example) unmatched. They should be Sat:[NEDL][NEDL], Sat:[0V][NEDL], and

Sat:[NEDL][0V], which are convertible, and in fact they are equivalent to them because the

vacation shift can only be preassigned to a nurse, not assigned by the solver, and a hand check

shows that cases like Sat:DV cannot arise. So the conversion is hard-wired here.

Instance HED01.ros (and also the omitted HED01b.ros) utilizes conditional constraints,

which require one pattern to match if another does. These cannot be converted in general, but

those in these instances can be. For example, some require all the shifts taken by a nurse in Week

1 to have the same type, which is expressible by a cluster busy times constraint with maximum

limit 1 and time groups

{1Mon1, 1Tue1, 1Wed1, 1Thu1, 1Fri1, 1Sat1, 1Sun1}
{1Mon2, 1Tue2, 1Wed2, 1Thu2, 1Fri2, 1Sat2, 1Sun2}
{1Mon3, 1Tue3, 1Wed3, 1Thu3, 1Fri3, 1Sat3, 1Sun3}

Again, NRConv is hard-wired to generate suitable constraints at these file positions.

The Ikegami instances contain constraints that require sequences of night shifts to be

separated by at least 6 days, expressed by unwanted patterns penalizing each occurrence of two

night shifts separated by 5, 4, 3, 2, or 1 days (of anything). NRConv could express them in the

same way, but to reduce the constraint density it makes them a special case and expresses them

by a single limit active intervals constraint with, for each day, one negative time group containing

the night shift on that day, and minimum limit 6, with history to ensure that a sequence at the

start of the cycle is not penalized. This penalizes the same cases as the unwanted patterns, but

with a different cost in general. However, good solutions do not violate these constraints (each

has weight 100, which is more than the total cost of good solutions), so in practice the amount

by which violations are penalized does not matter. It is true that sequences of, say, 7 consecutive

night shifts are penalized by the original formulation but not by the converted one, but there are

other constraints, again with weight 100, which limit resources to at most 6 night shifts.

The Curtois original instances have undocumented features (such as <Preferred> limits

alongside <Min> and <Max>, <CoverWeights>, and the format of the <CpuTime> attribute

64 Chapter 5. NRConv and its Converters

of solutions) and undocumented interactions (such as how <DateSpecificCover> overrides

<DayOfWeekCover>). Explaining them all is beyond our scope. There are also documented

features which do not appear in the instances. For the most part these are not implemented;NRC

will print warning messages and omit instances that contain them.

5.3. The First International Nurse Rostering Competition model

The First International Nurse Rostering Competition has a simple XML format, documented at

http://www.kuleuven-kortrijk.be/nrpcompetition

NRConv converts it using models inrc1.xml and inrc1-soln.xml.

Cover constraints appear as numbers of nurses wanted for each shift, for each skill. NRC

demand constraints are not needed. There is a long list of resource constraints. It all maps easily

into NRC, except as described now.

<AlternativeSkillCategory> defines the penalty to apply when a nurse is assigned

to a shift without having the required skill. This allows each nurse to have a different penalty,

which is a problem for XESTT, since its prefer resources constraint (the obvious target when

converting) associates the penalty with the shift, giving all unqualified nurses the same penalty.

This problem is solved as follows. For each skill si and each distinct non-zero weight

wj for <AlternativeSkillCategory>, let S(si,wj) be the set of all nurses n such that the

assignment of n to a place requiring skill si should attract penalty wj. Let N be the set of all nurses.

For each place requiring skill si, define one prefer resources constraint for each non-zero weight

wj such that S(si,wj) is non-empty, with weight wj and set of nurses N − S(si,wj). In practice this

produces just one or two prefer resources constraints per skill.

There are instance files (for example, long01.xml), which assign skills to nurses whose

<AlternativeSkillCategory> constraint is turned off. We interpret this to mean that skills

defects are to be ignored for those nurses.

<CompleteWeekends> requires a nurse to work on each day of the weekend, or none.

This is implemented for the first weekend by a cluster busy times constraint with one time group

for each day of the weekend, containing the times of that day, and minimum limit equal to the

number of days or else 0. For example, if there are two days in the weekend, with five times each

day, the constraint has time groups

{1Sat1, 1Sat2, 1Sat3, 1Sat4, 1Sat5}
{1Sun1, 1Sun2, 1Sun3, 1Sun4, 1Sun5}

and minimum limit 2 or else 0. This is then repeated for each weekend.

When weekends have three or more days, it is possible to work on the first and last days

and be free in between them. The competition assigns a higher cost for such cases than for

other cases of incomplete weekends. Although several instances do have three-day weekends,

NRConv does not implement this refinement. It can be done using unwanted patterns.

<IdenticalShiftTypesDuringWeekend> requires a nurse to either work the same

shift on each day of the weekend, or to be free on all days. This is expressed for the first

weekend by a cluster busy times constraint with one time group for each time of day, containing

5.3. The First International Nurse Rostering Competition model 65

the weekend’s times of that time of day, and maximum limit 1. For example, for the two-day

weekend with five times per day, the time groups would be

{1Sat1, 1Sun1}
{1Sat2, 1Sun2}
{1Sat3, 1Sun3}
{1Sat4, 1Sun4}
{1Sat5, 1Sun5}

This is then repeated for each weekend. Clearly, if shifts of two types are busy during one

weekend, two time groups will be active and there will be a violation.

Although this is logically correct, the competition evaluator does more: it treats violations

of <CompleteWeekends> as violations of this constraint as well. The cluster busy times

constraint just given does not do this.

One possible alternative is a limit busy times constraint with the same time groups as the

cluster busy times constraint, but with a minimum limit of 2 or else 0 applied to each. This

will penalize the case where (for example) 1Sat1 is busy but 1Sun1 is not, and vice versa. The

problem here is that if 1Sat1 and 2Sun4 are both busy, there will be two violations, not one.

The XESTT Step cost function could be used to solve this problem, but unfortunately the

intermediate model treats the time groups of limit busy times constraints as independent of one

another, which they are not when the Step cost function is used.

So NRConv generates two constraints for each identical shift types constraint: the cluster

busy times constraint, plus the equivalent of a complete weekends constraint. When there

is already a complete weekends constraint it merges the two, adding their weights together,

provided they have the same hardness and cost function.

<TwoFreeDaysAfterNightShifts> requires that on the two days after a night shift, a

nurse should either have the day off or else work another night shift. Assuming three shifts per

day, with 3 being the night shift, our solution makes patterns [3][12][12], [3][12][03],

and [3][0][12] unwanted. On the second-last day of the cycle, only [3][12] is unwanted.

A violation on both days should cost more than a violation on one, so[3][12][12] should

get double weight. However, the competition evaluator does not do this, so we assign the same

weight to all patterns. We can then merge the first two, producing unwanted patterns [3][12]

and [3][0][12].

5.4. The Second International Nurse Rostering Competition model

The Second International Nurse Rostering Competition, which is documented at

http://mobiz.vives.be/inrc2/

has a similar format to the first, although with fewer resource constraints. NRConv converts it

using models inrc2.xml and inrc2-soln.xml.

The main innovation here is that the competition reflects the way nurse rosters are often

made in reality: week by week, not all at once. A weekly instance is an instance covering one

week; a global instance covers several weeks. A global instance is solved by solving a sequence

66 Chapter 5. NRConv and its Converters

of weekly instances for consecutive weeks. Each is hidden from the solver until it has solved

the previous weekly instances.

XESTT has no representation of a sequence of instances connected by history. NRConv

produces an XESTT representation of one weekly instance, based on files giving the general

scenario, the week in question, and history. It could generate global instances, but one would

have to trust the solve for each week to not look ahead. History can be handled by adjusting

the limits of the constraints affected, using one constraint per resource. NRConv uses XESTT’s

history features to generate a single constraint with a history adjustment for each resource, which

is clearer and less verbose.

One complication with history concerns the order in which the parts of the source instance

are added to the NRC instance. It can be convenient to add constraints before nurses, when

they precede nurses in the source model file. This is done by defining, say, a worker-set for all

the nurses of one contract, passing that worker-set to that contract’s constraints, and adding the

nurses to the worker-set later. But that will not work for constraints affected by history, because

they accept history information for individual nurses. Adding the constraints early, then adding

their history later would work, but that is painful to organize.

Here is the order used by NRConv:

add days (one week’s worth), and the one weekend

add shift types

add skills

add contracts

add nurses, including their skills and contracts

add nurse histories to nurses

add worker constraints (shift type, pattern, contract), including history

add cover constraints

add shift-off requests

The week file is used only at the end, for cover constraints and shift-off requests. But the scenario

file is used out of order, partly to bring everything related to nurses together, but mainly to ensure

that nurses are added before constraints, as explained above; and the history file is used in the

middle of the scenario file. All this is easy to do because the converter reads all three files and

stores them in memory as KML_ELT objects before starting the conversion. What is not so easy,

however, is to recognize the dependencies and build the NRC instance in a correct order.

One would think that a Week 0 history file would have zero values for history, but in fact the

supplied Week 0 files have many non-zero values. So NRConv fudges and assumes that a Week

0 history file has one week of history.

5.5. The Second International Nurse Rostering Competition static model

Some time after the second international timetabling competition ended, some papers appeared

which tested a particular set of ‘static’ (multi-week) instances. So NRConv has been enhanced

to convert these kinds of instances as well.

5.6. The Curtois-Qu 2014 model 67

5.6. The Curtois-Qu 2014 model

Curtois and Qu have recently produced a new set of 24 plain text instances, documented at

http://www.cs.nott.ac.uk/~psztc/NRP/

These, and solutions posted by Curtois at the same place, have been converted using source

models cq14.txt and cq14-soln.txt.

Again, much is familiar. Minimum limits on consecutive busy or free days do not apply to

sequences that include the first or last day. This is modelled using XESTT’s history mechanism

in a somewhat artificial manner.

Many resources have a hard limit of 0 on the number of shifts they can take of a given

shift type. Although this could be implemented like other workload limits, by a limit workload

constraint, we choose instead to build, for each shift type st, the set of all workers with a

non-zero workload limit for shifts of type st, and generate a prefer resources constraint for each

shift of type st which has this set of workers for its preferred set.

The two approaches are formally equivalent, but the prefer resources constraints allow

solvers to reduce the domains of shifts to just those workers who have a non-zero workload for

that kind of shift, and so to avoid attempting assignments which are doomed to fail because of

the zero workload limit. This has saved running time in the author’s tests of his KHE18 solver.

The solutions to these instances available at the web site above are not the full set reported

in Curtois’paper. Accordingly we requested and received a larger set from Curtois.

As in the Curtois original instances, more nurses may be assigned to a shift than the

specified optimum, and NRConv creates extra event resources to allow for this. Some of the

solutions received from Curtois, especially for the larger instances, overload shifts this way to

an unreasonable degree. The worst cases occur in Instance22.Solution.516686.roster

and Instance22.Solution.516686_1.roster, which assign 25 nurses to shift d1 on day

140, when the instance specifies an optimum cover of 1.

We have chosen to generate shifts with maximum cover 2c + 5, where c is the optimum

cover, making solutions that overload shifts beyond that point invalid. Of the 372 solutions

received from Curtois, 42 were rejected for this reason. The rest were classified using metadata

in the solution files into four solution groups, one for each algorithm in Table 2 of Curtois’paper.

The best solution for each instance in each solution group was included in archive CQ14 (66

solutions altogether).

