
The KHE Timetabling Platform

and Solvers

Jeffrey H. Kingston

jeff@it.usyd.edu.au

Version 2.11(March 2024)

Contents

Part A: The Platform

Chapter 1. Introduction 2

1.1. Installation and use 2

1.2. The data types of KHE 3

1.3. Memory allocation using arenas and arena sets 3

1.4. Common operations 5

1.5. KHE for employee scheduling 6

Chapter 2. Archives and Solution Groups 7

2.1. Archives 7

2.2. Solution groups 9

2.3. Solution sets 10

2.4. Reading archives 11

2.5. Reading archives incrementally 12

2.6. Reading archives from the command line 14

2.7. Writing archives and solution groups 15

Chapter 3. Instances 17

3.1. Creating instances 17

3.2. Visiting and retrieving the components of instances 18

3.3. Constraint density 20

3.4. Times 21

3.4.1. Time groups 21

3.4.2. Times 24

3.5. Resources 26

3.5.1. Resource types 26

3.5.2. Resource groups 28

3.5.3. Resources 30

3.5.4. Resource layers 32

3.5.5. Resource type partitioning 32

3.5.6. Resource similarity and inferring resource partitions 34

3.6. Events 34

3.6.1. Event groups 35

3.6.2. Events 36

3.6.3. Event resources 38

3.6.4. Event resource groups 40

3.7. Constraints 41

3.7.1. Assign resource constraints 45

3.7.2. Assign time constraints 47

3.7.3. Split events constraints 48

3.7.4. Distribute split events constraints 49

3.7.5. Prefer resources constraints 50

3.7.6. Prefer times constraints 52

3.7.7. Avoid split assignments constraints 53

3.7.8. Spread events constraints 55

3.7.9. Link events constraints 56

3.7.10. Order events constraints 57

3.7.11. Avoid clashes constraints 58

3.7.12. Avoid unavailable times constraints 58

3.7.13. Limit idle times constraints 60

3.7.14. Cluster busy times constraints 61

3.7.15. Limit busy times constraints 65

3.7.16. Limit workload constraints 67

3.7.17. Limit active intervals constraints 69

3.7.18. Limit resources constraints 72

Chapter 4. Solutions 75

4.1. Overview 75

4.2. Top-level operations 76

4.2.1. Creation, deletion, and copy 76

4.2.2. Solutions and arenas 77

4.2.3. Simple attributes 78

4.2.4. Diversification 79

4.2.5. Visit numbers 82

4.2.6. Placeholder and invalid solutions 83

4.2.7. Traversing the components of solutions 85

4.3. Complete representation and preassignment conversion 86

4.4. Solution time, resource, and event groups 87

4.5. Meets 88

4.5.1. Splitting and merging 90

4.5.2. Assignment 92

4.5.3. Cycle meets and time assignment 95

4.5.4. Meet domains and bounds 98

4.5.5. Automatic domains 100

iii

4.6. Tasks 101

4.6.1. Assignment 103

4.6.2. Cycle tasks and resource assignment 106

4.6.3. Task domains and bounds 108

4.7. Resource availability 109

4.7.1. Resource availability functions 109

4.7.2. How resource availability is calculated 110

4.7.3. Detailed querying of resource availability 113

4.8. Marks and paths 114

4.9. The solution invariant 118

Chapter 5. Extra Types for Solving 119

5.1. Layer trees 119

5.2. Nodes 120

5.3. Layers 124

5.4. Zones 127

5.5. Taskings 129

5.6. Task sets 130

5.7. Meet sets 133

5.8. Time sets 134

5.9. Resource sets 136

5.10. Time frames 139

Chapter 6. Solution Monitoring 142

6.1. Measuring cost 142

6.2. Monitors 143

6.3. Attaching, detaching, and provably zero fixed cost 146

6.4. Time ranges and sweep times 147

6.5. Event monitors 148

6.5.1. Split events monitors 149

6.5.2. Distribute split events monitors 150

6.5.3. Assign time monitors 150

6.5.4. Prefer times monitors 151

6.5.5. Spread events monitors 151

6.5.6. Link events monitors 151

6.5.7. Order events monitors 152

6.6. Event resource monitors 153

6.6.1. Assign resource monitors 153

6.6.2. Prefer resources monitors 154

iv

6.6.3. Avoid split assignments monitors 154

6.6.4. Limit resources monitors 155

6.7. Resource monitors 156

6.7.1. Avoid clashes monitors 156

6.7.2. Avoid unavailable times monitors 157

6.7.3. Limit idle times monitors 157

6.7.4. Cluster busy times monitors 158

6.7.5. Limit busy times monitors 161

6.7.6. Limit workload monitors 162

6.7.7. Limit active intervals monitors 164

6.8. Timetable monitors 167

6.8.1. Event timetable monitors 167

6.8.2. Resource timetable monitors 168

6.9. Group monitors 171

6.9.1. Basic operations on group monitors 172

6.9.2. Defects 175

6.9.3. Tracing 176

Chapter 7. Matchings and Evenness 178

7.1. Introducing bipartite matching 178

7.2. Basic operations 180

7.3. Supply nodes and demand nodes 182

7.4. Diagnosing failure to match 184

7.4.1. Visiting unmatched demand nodes 184

7.4.2. Hall sets 184

7.4.3. Finding competitors 185

7.5. Evenness monitoring 186

Part B: Solvers

Chapter 8. Introducing Solvers 190

8.1. Keeping track of running time 190

8.2. Options, running time, and time limits 192

8.3. Do-it-yourself solving 195

8.4. General solving 196

8.5. Parallel solving 198

8.6. Monitor adjustments 201

8.6.1. Detaching low-cost monitors 201

8.6.2. Changing the multipliers of cluster busy times monitors 202

8.6.3. Propagating unavailable times to resource monitors 202

v

8.6.4. Changing the minimum limits of cluster busy times monitors .. 203

8.7. Monitor grouping 206

8.7.1. Introduction 206

8.7.2. Focus groupings 208

8.7.3. Correlation groupings 208

8.7.4. Functions for correlation grouping 209

8.8. Matchings 211

8.8.1. Introduction 211

8.8.2. Demand nodes 212

8.8.3. Avoiding double counting 215

8.9. Generating files of tables and graphs 216

8.9.1. Tables 217

8.9.2. Graphs 218

8.10. Exponential backoff 220

8.11. Thread-safe random numbers 223

8.12. Intervals 223

Chapter 9. Time-Structural Solvers 226

9.1. Layer tree construction 226

9.1.1. Overview 227

9.1.2. Linking 229

9.1.3. Splitting 230

9.1.4. Layering 231

9.1.5. Merging 232

9.2. Time-equivalence 233

9.3. Layers 234

9.3.1. Layer construction 234

9.3.2. Layer coordination 236

9.4. Runarounds 237

9.4.1. Minimum runaround duration 237

9.4.2. Building runarounds 238

9.5. Rearranging nodes 240

9.5.1. Node merging 240

9.5.2. Node meet splitting and merging 240

9.5.3. Node moving 241

9.5.4. Vizier nodes 241

9.5.5. Flattening 243

9.6. Adding zones 243

9.7. Meet splitting and merging 244

vi

9.7.1. Analysing split defects 244

9.7.2. Merging adjacent meets 245

Chapter 10. Time Solvers 246

10.1. Specification 246

10.2. Helper functions 247

10.2.1. Node assignment functions 247

10.2.2. Kempe and ejecting meet moves 248

10.3. Meet bound groups and domain reduction 255

10.3.1. Meet bound groups 255

10.3.2. Exposing resource unavailability 255

10.3.3. Preventing cluster busy times and limit idle times defects 256

10.4. Some basic time solvers 259

10.5. A time solver for runarounds 261

10.6. Extended layer matching with Elm 262

10.6.1. Introducing layer matching 263

10.6.2. The core module 265

10.6.3. Splitting supplies 270

10.6.4. Improving node regularity 271

10.6.5. Handling irregular monitors 272

10.7. Time repair 274

10.7.1. Node-regular time repair using layer node matching 274

10.7.2. Ejection chain time repair 275

10.7.3. Tree search layer time repair 275

10.7.4. Meet set time repair and the fuzzy meet move 277

10.8. Layered time assignment 278

10.8.1. Layer assignments 278

10.8.2. A solver for layered time assignment 279

10.9. Putting it all together 282

Chapter 11. Resource-Structural Solvers 284

11.1. Task bound groups 284

11.2. Task trees 284

11.3. Task tree construction 285

11.4. Resource supply and demand 287

11.4.1. Classifying resources by available workload 288

11.4.2. Limits on consecutive days 288

11.4.3. Tighten to partition 289

11.4.4. Balancing supply and demand 291

vii

11.5. Grouping by resource constraints 292

11.5.1. Taskers 293

11.5.2. Tasker support for grouping 295

11.5.3. Tasker support for profile grouping 297

11.5.4. Combinatorial grouping 299

11.5.5. Applying combinatorial grouping 303

11.5.6. Profile grouping 305

11.6. Grouping by resource 308

11.7. The task grouper 308

11.8. Task finding 309

11.8.1. Task finder objects 310

11.8.2. Daily schedules 312

11.9. Multi-task finding 313

11.9.1. Multi-task finders 314

11.9.2. Multi-tasks 316

11.9.3. Multi-task sets 320

11.9.4. Behind the scenes 322

11.10. Other resource-structural solvers 326

Chapter 12. Resource Solvers 327

12.1. Specification 327

12.2. The resource assignment invariant 327

12.3. Unchecked, checked, ejecting, and Kempe task and task set moves 330

12.4. Resource assignment algorithms 332

12.4.1. Satisfying requested task assignments 332

12.4.2. Most-constrained-first assignment 334

12.4.3. Resource packing 334

12.4.4. Split assignments 335

12.5. Single resource assignment using dynamic programming 335

12.6. Optimal resource reassignment using dynamic programming 338

12.6.1. Invoking optimal resource reassignment 338

12.6.2. Statistics and debug 342

12.6.3. Precise specification 342

12.6.4. Using optimal resource reassignment in practice 343

12.6.5. Testing 348

12.7. Resource matching 350

12.7.1. A solver for resource matching 351

12.7.2. Implementing resource matching 353

12.7.3. Time sweep resource assignment 358

viii

12.7.4. Time sweep with lookahead 360

12.7.5. Resource rematching repair 361

12.8. Ejection chain repair 363

12.9. Resource pair repair 363

12.9.1. The basic function 363

12.9.2. A resource pair solver 364

12.9.3. Partition graphs 364

12.9.4. The implementation of resource pair reassignment 366

12.10. Resource reassignment 369

12.11. Trying unassignments 373

12.12. Putting it all together 373

Chapter 13. Ejection Chains 376

13.1. Introduction 376

13.2. Ejector construction 378

13.3. Ejector solving 380

13.4. Variants of the ejection chains idea 383

13.4.1. Defect promotion 383

13.4.2. Fresh visit numbers for sub-defects 383

13.4.3. Ejection trees 384

13.4.4. Sorting repairs 388

13.4.5. Ejection beams 389

13.5. Gathering statistics 391

13.5.1. Options for choosing ejectors and schedules 391

13.5.2. Statistics for analysing Kempe meet moves 391

13.5.3. Statistics describing a single solve 391

13.5.4. Statistics describing multiple solves 392

13.5.5. Organizing augment and repair types 394

13.6. Using ejection chains in practice 395

13.6.1. Top-level ejection chains functions 395

13.6.2. Focus groupings for ejection chains 397

13.6.3. Augment options 398

13.6.4. How to write an augment function 402

13.6.5. Limiting the scope of changes 406

13.7. Repairing time assignments 407

13.8. Repairing resource assignments 409

13.8.1. High school timetabling and nurse rostering 409

13.8.2. Repairs 410

13.8.3. Avoiding repeated repairs 413

ix

13.8.4. Multi-repairs 414

13.8.5. Augment functions 418

13.8.6. Enumeration of basic repairs 419

Appendix A. Modules Packaged with KHE 423

A.1. Arenas, arena sets, and arrays 423

A.1.1. Arenas 423

A.1.2. Arena sets 424

A.1.3. Arrays 426

A.1.4. Howard’s memory allocator 431

A.2. Strings and symbol tables 433

A.2.1. Strings 433

A.2.2. Abort and assert 435

A.2.3. Symbol tables 435

A.2.4. Narrow strings and symbol tables 439

A.2.5. Pointer tables and groups 441

A.3. Sets of integers 445

A.3.1. Variable-length bitsets 445

A.3.2. Sorted sets 447

A.3.3. Shiftable sets 449

A.4. Priority queues 452

A.5. XML handling with KML 454

A.5.1. Representing XML in memory 454

A.5.2. Error handling and format checking 456

A.5.3. Reading XML files 457

A.5.4. Writing XML files 461

Appendix B. Implementation Notes 462

B.1. Source file organization 462

B.2. Relations between objects 463

B.3. Kernel operations 464

B.4. Monitor updating 467

B.5. Monitor attachment and unattachment 471

B.6. The limit active intervals monitor 473

B.7. An arena and arena set plan 475

Appendix C. Dynamic Programming Resource Reassignment: Theory 477

C.1. Overview of the algorithm 477

C.2. Running time 479

C.3. Monitors, costs, and signatures 482

x

C.4. Dominance 485

C.4.1. Separate dominance 485

C.4.2. Tradeoff dominance 489

C.4.3. Tabulated dominance 490

C.4.4. Early termination of the tabulated dominance test 492

C.4.5. Correlated dominance 492

C.5. Counter monitors 493

C.5.1. Definition 493

C.5.2. Deviation and cost 495

C.5.3. Separate dominance 496

C.5.4. Tabulated dominance 497

C.5.5. Early termination of the tabulated dominance test 498

C.5.6. Correlated expressions 500

C.6. Sum monitors 502

C.6.1. Definition 502

C.6.2. Deviation and cost 504

C.6.3. Upper bounds 505

C.6.4. Dominance 506

C.7. Sequence monitors 507

C.7.1. Definition 507

C.7.2. Deviation and cost 508

C.7.3. Separate dominance 512

C.7.4. Tabulated dominance 512

C.7.5. Early termination of the tabulated dominance test 517

C.7.6. Correlated expressions 520

C.8. Solution types 522

C.8.1. The dk-solution 523

C.8.2. The ci-solution 523

C.8.3. The cicj-solution type 527

C.8.4. The si-solution type 529

C.8.5. The sisj-solution type 530

Appendix D. Dynamic Programming Resource Reassignment: Implementation 532

D.1. Introducing the implementation 532

D.2. Exactly what gets opened 533

D.3. Times 535

D.4. Resources 536

D.4.1. The resource type 536

D.4.2. The resource on day type 537

xi

D.4.3. Resource sets 540

D.5. Events 540

D.5.1. Tasks 540

D.5.2. Multi-tasks 543

D.5.3. Shifts 545

D.5.4. Shift pairs 547

D.6. Signatures 548

D.6.1. Signatures 548

D.6.2. Signature sets 549

D.6.3. Signers 549

D.6.4. Signer sets 555

D.6.5. Correlators 560

D.6.6. Types of signers and their signatures 560

D.6.7. Dominance kinds and dominance test types 563

D.6.8. Dominance tables 565

D.6.9. Dominance tests 567

D.6.10. Dominance test caching 568

D.7. Constraints 569

D.7.1. Constraints 569

D.7.2. Monitors 572

D.8. Expressions 573

D.8.1. Introduction 573

D.8.2. Construction 576

D.8.3. Open day ranges and signatures 579

D.8.4. Open children 581

D.8.5. Opening 586

D.8.6. Closing 594

D.8.7. Searching 596

D.8.8. Types of expressions 598

D.8.9. The COST expression type 599

D.8.10. The INT_SUM_COST expression type 601

D.8.11. The INT_SEQ_COST expression type 608

D.9. Solutions 619

D.9.1. Day solutions 619

D.9.2. Mtask solutions 623

D.9.3. Mtask pair solutions 625

D.9.4. Task solutions 629

D.9.5. Task solution sets 630

D.9.6. Shift solutions 631

xii

D.9.7. Shift solution tries 632

D.9.8. Shift pair solutions 641

D.9.9. Packed solutions 649

D.10. Expansion 650

D.10.1. Expanders 650

D.10.2. The main solution expansion function 661

D.10.3. Initializing resources for expansion 664

D.10.4. Initializing days, shifts, mtasks, and tasks for expansion 672

D.10.5. Expansion by resources 678

D.10.6. Expansion by shifts 681

D.11. Sets of solutions 686

D.11.1. Solution lists 687

D.11.2. Other collection data structures 690

D.11.3. Solution set parts 691

D.11.4. Solution sets 693

D.12. Solving 695

D.12.1. Construction 696

D.12.2. Construction of expression trees 698

D.12.3. Solving 705

D.12.4. Testing 713

References .. 717

xiii

Part A

The Platform

1

Chapter 1. Introduction

Some instances of high school timetabling problems, taken from institutions in several countries
and specified formally in an XML format called XHSTT, have recently become available [13].
For the first time, the high school timetabling problem can be studied in its full generality.

KHE is an open-source ANSI C library, released under the GNU public licence, which aims
to provide a fast and robust foundation for solving instances of high school timetabling problems
expressed in the XHSTT format. Users of KHE may read and write XML files, create solutions,
and add and change time and resource assignments using any algorithms they wish. The cost of
the current solution is always available, kept up to date by a hand-coded constraint propagation
network. KHE also offers features inherited from the author’s KTS system [6, 8], notably layer
trees and matchings, and solvers for several major sub-tasks.

KHE is intended for production use, but it is also a research vehicle, so new versions will
not be constrained by backward compatibility. Please report bugs to me at jeff@it.usyd.edu.au. I
will release a corrected version within a few days of receiving a bug report, wherever possible.

This introductory chapter explains how to install and use KHE, surveys its data types, and
describes some operations common to many types.

1.1. Installation and use

KHE has a home page, at

http://jeffreykingston.id.au/khe/

The current version of KHE is a gzipped tar file in that directory. The current version of this
documentation (a PDF file) is also stored there. The names of these files change with each
release; they are most easily downloaded using links on the home page.

Originally, ‘KHE’ stood for ‘Kingston’s High School Timetabling Engine’, but it now
covers all timetabling software released by me: the platform, the solvers, HSeval (which drives
the HSEval web site), my nurse rostering software, and anything else I release in the future. So
‘KHE’no longer stands for anything, except possibly ‘Kingston’s Humungous Enterprise’.

I have used different kinds of version numbers over the years, but starting with Version 2.1
I am reverting to the traditional form, of a major release number and minor release number sepa-
rated by a dot. Each KHE release is a release of all my software under a single version number.

A program that incorporates the KHE platform can gain access to the current version
number by calling

char *KheVersionNumber(void);
char *KheVersionBanner(void);

For example, if Version 2.6 is compiled into the program that calls these functions, their results
will be "2.6" and "Version 2.6 (March 2021)".

2

1.1. Installation and use 3

To install KHE, download a release and unpack it using gunzip and tar xf as usual. The
resulting directory, khe, contains a makefile, some src_* directories holding the source files of
KHE, and some doc_* directories holding the source files of this documentation. Consult the
makefile for information about what’s what in the distribution, and how to install and use KHE.

Starting with Version 2.1, the KHE source files are divided into three parts: the platform
(whose interface is file khe_platform.h), the solvers (khe_solvers.h), and a main program.
This allows users to use only the platform, or it and the solvers, or those plus a main program.
The distribution also contains two source directories holding my nurse rostering software.

1.2. The data types of KHE

This section is an overview of KHE’s data types. The following chapters have the details.

Type KHE_ARCHIVE represents one archive, that is, a collection of instances plus a collection
of solution groups. Type KHE_SOLN_GROUP represents one solution group, that is, a set of
solutions of the instances of the archive it lies in. The word ‘solution’ is abbreviated to ‘soln’
wherever it appears in the KHE interface. Use of these types is optional: instances do not have
to lie in archives, and solutions do not have to lie in solution groups.

Type KHE_INSTANCE represents one instance of the high school timetabling problem.
KHE_TIME_GROUP represents a set of times;KHE_TIME represents one time. KHE_RESOURCE_TYPE
represents a resource type (typically Teacher, Room, Class, or Student); KHE_RESOURCE_GROUP
represents a set of resources of one type; and KHE_RESOURCE represents one resource.

Type KHE_EVENT_GROUP represents a set of events; KHE_EVENT represents one event,
including all information about its time. Type KHE_EVENT_RESOURCE represents one resource
element within an event. Type KHE_CONSTRAINT represents one constraint. This could have any
of the constraint types of the XML format (it is their abstract supertype).

Type KHE_SOLN represents one solution, complete or partial, of a given instance, optionally
lying within a solution group. Type KHE_MEET represents one meet (KHE’s commendably brief
name for what the XML format calls a solution event, split event, or sub-event: one event as it
appears in a solution), including all information about its time. Type KHE_TASK represents one
piece of work for a resource to do: one resource element within a meet.

KHE supports multi-threading by ensuring that each instance and its components (of
type KHE_INSTANCE, KHE_TIME_GROUP, and so on) is immutable after loading of the instance is
completed, and that operations applied to one solution object do not interfere with operations
applied simultaneously to another. Thus, after instance loading is completed, it is safe to create
multiple threads with different KHE_SOLN objects in each thread, all referring to the same instance,
and operate on those solutions in parallel. No such guarantees are given for operating on the
same solution from different threads.

1.3. Memory allocation using arenas and arena sets

Large solves of timetabling instances can make heavy demands on memory allocators. A search
of the internet will show that there is no ideal memory allocator, that is, one that implements the
C malloc, realloc, and free functions with negligible time and memory overhead, taking the
demands of memory caching and multi-threading into account. What follows is an attempt to do

4 Chapter 1. Introduction

memory allocation for KHE well at the cost of requiring the user to pay more attention to it than
is customary. For serious solving this seems to the author to be the right tradeoff.

An arena memory allocator allocates memory from an area called an arena. A KHE arena
enlarges, effectively without limit, as memory from it is allocated. There is no operation to free
one piece of arena memory. Instead, the entire arena is freed in one operation. This allows an
arena memory allocator to be faster than a general memory allocator, and to use less memory.

An arena memory allocator is used throughout KHE. It is flown in from another project of
the author’s called Howard, so the type name of a memory arena is not KHE_ARENA but HA_ARENA.
One can create an arena, obtain memory from it, and delete (free) it. The memory can have a
fixed size, or it can be resizable (supporting varying-length arrays and hash tables).

Every arena belongs to exactly one arena set, an object of type HA_ARENA_SET representing
a set of arenas. When an arena has no memory available to satisfy a request for memory from
a caller, it obtains a new chunk of memory from its arena set; and when an arena is deleted, its
chunks return to its arena set and become available to other arenas belonging to that arena set.

There is no locking within types HA_ARENA and HA_ARENA_SET, other than within the
underlying calls to malloc which are the ultimate source of the memory that arena sets give out to
their arenas. In a multi-threaded program, this constrains how arenas and arena sets are used.

The rule for arena sets is very simple. There should be exactly one arena set per thread, and
all memory allocated by code running within that thread should come from arenas that belong to
that arena set. This ensures that no arena set or arena is ever accessed by two different threads,
and so no locking of arena sets or arenas is required. (There is no prohibition on having two arena
sets within one thread, but that is not recommended because it can waste memory.)

When a new thread is begun, a new arena set should be created and passed to all code in
that thread that needs memory. When a thread terminates, the operation for merging one arena
set into another should be called from the parent thread to merge the terminating child thread’s
arena set into the parent thread’s arena set. All variables pointing to the child thread’s arena set
must be changed to point to the parent thread’s arena set. In practice users do not have to worry
about all this, because it is done for them by KheArchiveParallelSolve (Section 8.5).

When some single-threaded code needs memory, in simple cases it can be passed a single
arena, from which it can obtain its memory. That memory remains in use until the caller who
passed it the arena deletes that arena. In complex cases the code should be passed the arena set
of its thread, so that it can create and delete its own arenas as required.

For example, a solution object, of type KHE_SOLN, is a large, complex object. It is created
by function KheSolnMake (Section 4.2) in its own arena, so that it can be deleted individually, if
required,by deleting the arena. But there are also placeholder solutions which are mostly deleted
but which retain a small amount of information, including solution cost. So in fact a solution is
created in two arenas, one holding the placeholder part and the other holding the rest. Reducing
a full solution to a placeholder involves deleting the second arena but not the first. Given this
complexity, the right course is to pass the enclosing thread’s arena set to KheSolnMake, and leave
it to KheSolnMake to create whatever arenas it needs.

Similar considerations apply to solvers created by users. Typically, a solver will create an
arena, use it to hold whatever objects it uses, and then, when its solve operation is complete, it
will delete its arena, freeing up the memory it used, and leaving no trace of itself other than any

1.3. Memory allocation using arenas and arena sets 5

changes it may have made to the solution object it worked on. For this it needs to be passed
its thread’s arena set. But in simple cases it is also reasonable for a solver to accept an arena
parameter and simply use that arena.

KHE supports multi-threading, but it assumes that each solution object will be accessed
by only one thread. Each solution contains the arena set of that thread, and a solver can retrieve
that arena set and use it to create arenas. Alternatively, a solver can call KheSolnArenaBegin
(Section 4.2.2) to obtain one arena from that arena set, and KheSolnArenaEnd to delete that arena
when it is no longer required. In practice this is the usual way to gain access to an arena.

When solutions are read single-threaded for evaluation, they all reference the same arena
set. When they are created for solving in parallel, they have different arena sets. There is no
simple way to transition from one of these situations to the other.

Arena sets offer a means of failing gracefully if memory runs out (quite likely during large
solves). One can pass a C longjmp environment to an arena set, and then if any request for
memory from any of that arena set’s arenas cannot be satisfied, the arena code will long jump to
the target of the longjmp environment instead of returning. There is also a simple way to prevent
any one thread from monopolizing the available memory. For more on these issues and on arenas
and arena sets generally, consult Appendix A.1.

1.4. Common operations

This section describes some miscellaneous operations that are common to many data types.

Whenever KHE creates an object, any string-valued attributes of that object passed by the
user are not stored directly; instead, malloced copies are stored. If the object is later deleted, the
malloced copy is deleted along with it. Thus, whatever its origin, a string-valued attribute has
the same lifetime as the object itself.

Use of KHE often involves creating objects that contain references to KHE entities (objects
of types defined by KHE) alongside other information. Sometimes it is necessary to go back-
wards, from a KHE entity to a user-defined object. Accordingly,each KHE entity contains a back
pointer which the user is free to set and retrieve, using calls which look generically like this:

void KheEntitySetBack(KHE_ENTITY entity, void *back);
void *KheEntityBack(KHE_ENTITY entity);

All back pointers are initialized to NULL. In general, KHE itself does not set back pointers. The
exception is that some solvers packaged with KHE set the back pointers of the solution entities
they deal with. This is documented where it occurs.

Timetables often contain symmetries of various kinds. In high school timetabling, the
student group resources of one form are often symmmetrical: they attend the same kinds of
events over the course of the cycle.

Knowledge of similarity can be useful when solving. For example, it might be useful to
timetable similar events attended by student group resources of the same form at the same time.
Accordingly, several KHE entities offer an operation of the form

bool KheEntitySimilar(KHE_ENTITY e1, KHE_ENTITY e2);

6 Chapter 1. Introduction

which returns true if KHE considers that the two entities are similar. If they are the exact same
entity, they are always considered similar. In other cases, the definition of similarity varies with
the kind of entity, although it follows a common pattern: evidence both in favour of similarity
and against it is accumulated, and there needs to be a significant amount of evidence in favour,
and more evidence in favour than against. For example, an event containing no event resources
will never be considered similar to any event except itself, since positive evidence, such as
requests for the same kinds of teachers, is lacking.

Similarity is not a transitive relation in general. In other words, if e1 and e2 are similar, and
e2 and e3 are similar, that does not imply that e1 and e3 are similar. There is a heuristic aspect
to it that seems inevitable, although the intention is to stay on the safe side: to declare two entities
to be similar only when they clearly are similar.

Another operation that applies to many entities, albeit a humble one, is printing the current
state of the entity as an aid to debugging. The KHE operations for this mostly take the form

void KheEntityDebug(KHE_ENTITY entity, int verbosity,
int indent, FILE *fp);

They produce a debug print of entity onto fp.

The verbosity parameter controls how much detail is printed. Any value is acceptable. A
zero or negative value always prints nothing. Every positive value prints something, and as the
value increases, more detail is printed, depending, naturally, on the kind of entity. Value 1 tries
to print the minimum amount of information needed to identify the entity, often just its name.

If indent is non-negative, a multi-line format is used in which each line begins with at least
indent spaces. If indent is negative, the print appears on one line with no indent and no con-
cluding newline. Since space is limited, verbosity may be reduced when indent is negative.

Many entities are organized hierarchically. Depending on the verbosity, printing an entity
may include printing its descendants. Their debug functions are passed a value for indent which
is 2 larger than the value received (when non-negative), so that the hierarchy is represented in the
debug output by indenting. The debug print of one entity usually begins with [and ends with a
matching], making it easy to move around the printed hierarchy using a text editor.

1.5. KHE for employee scheduling

Recent versions of KHE support the employee scheduling data format XESTT as well as the high
school timetabling format XHSTT. XESTT is the same as XHSTT except for a few extensions,
which are documented on the HSEval web site.

KHE knows whether it is dealing with XESTT or XHSTT, but it does not care—it supports
XESTT, which includes supporting XHSTT. When using KHE for high school timetabling,
several parameters of KHE functions have to be given values that indicate that the extensions
available in XESTT are not used. This mainly affects the operations for creating cluster busy
times and limit busy times constraints.

Chapter 2. Archives and Solution Groups

This chapter describes the KHE_ARCHIVE and KHE_SOLN_GROUP data types, representing archives
and solution groups as in the XML format. Their use is optional, since instances are not required
to lie in archives, and solutions are not required to lie in solution groups.

2.1. Archives

An archive is defined in the XML format to be a collection of instances together with groups
of solutions to those instances. There may be any number of instances and solution groups. To
create a new, empty archive, call

KHE_ARCHIVE KheArchiveMake(char *id, KHE_MODEL model, HA_ARENA_SET as);

Parameter id is an identifier for the archive. It may be NULL, but only if the archive is not going
to be written. Parameter model says what problem the archive models, for which see just below.
Parameter as is the thread arena set used for obtaining memory. Appendix A.1.2 introduces
arena sets, and Appendix B.7 explains why one arena set per thread is good. You can also pass
NULL for as, but there will be some loss of efficiency in memory allocation which could be
critical when handling large archives.

Although created to support the XHSTT high school timetabling model, KHE also supports
an extended version of XHSTT, used for nurse rostering. Accordingly, type KHE_MODEL is

typedef enum {
KHE_MODEL_HIGH_SCHOOL_TIMETABLE,
KHE_MODEL_EMPLOYEE_SCHEDULE

} KHE_MODEL;

The model affects the initial tag read by KheArchiveRead and written by KheArchiveWrite,
which is <HighSchoolTimetableArchive> when it is KHE_MODEL_HIGH_SCHOOL_TIMETABLE

and <EmployeeScheduleArchive> when it is KHE_MODEL_EMPLOYEE_SCHEDULE. Instances also
have a model, which must agree with the model of any archive they lie in. Thus, it is not possible
to mix instances with different models in one archive. Functions

char *KheArchiveId(KHE_ARCHIVE archive);
KHE_MODEL KheArchiveModel(KHE_ARCHIVE archive);

return these attributes of an archive. To set and retrieve the back pointer (Section 1.4), call

void KheArchiveSetBack(KHE_ARCHIVE archive, void *back);
void *KheArchiveBack(KHE_ARCHIVE archive);

Archive metadata may be set and retrieved by calling

7

8 Chapter 2. Archives and Solution Groups

void KheArchiveSetMetaData(KHE_ARCHIVE archive, char *name,
char *contributor, char *date, char *description, char *remarks);

void KheArchiveMetaData(KHE_ARCHIVE archive, char **name,
char **contributor, char **date, char **description, char **remarks);

The values retrieved are copies of those passed in, as usual. The initial values are all NULL. When
a metadata value is required when writing an archive, any NULL or empty values are written as
"No name", "No contributor", etc. There is also

char *KheArchiveMetaDataText(KHE_ARCHIVE archive)

which returns a string containing the metadata as a paragraph of English text, for example

This archive is XHSTT-2014, assembled by Gerhard Post on 2 March 2014.

The string lies in the archive’s arena and is deleted when the archive is deleted.

Initially an archive contains no instances and no solution groups. Solution groups are added
automatically as they are created, because every solution group lies in exactly one archive. An
instance may be added to an archive by calling

bool KheArchiveAddInstance(KHE_ARCHIVE archive, KHE_INSTANCE ins);

KheArchiveAddInstance returns true if it succeeds in adding ins to archive, and false

otherwise, which can either be because archive already contains an instance with ins’s Id, or
because the instance and archive models differ. The instance will appear after any instances
already present. An instance may be deleted from an archive (but not destroyed) by calling

void KheArchiveDeleteInstance(KHE_ARCHIVE archive, KHE_INSTANCE ins);

KheArchiveDeleteInstance aborts if ins is not in archive. If there are any solutions for
ins in archive, they are deleted too. The gap left by deleting the instance is filled by shuffling
subsequent instances up one place.

To visit the instances of an archive, call

int KheArchiveInstanceCount(KHE_ARCHIVE archive);
KHE_INSTANCE KheArchiveInstance(KHE_ARCHIVE archive, int i);

The first returns the number of instances in archive, and the second returns the i’th of those
instances, counting from 0 as usual in C. There is also

bool KheArchiveRetrieveInstance(KHE_ARCHIVE archive, char *id,
KHE_INSTANCE *ins, int *index);

If archive contains an instance with the given id, this function sets ins to that instance and

*index to its index in archive and returns true; otherwise it sets *ins to NULL and *index to
-1 and returns false. And

bool KheArchiveContainsInstance(KHE_ARCHIVE archive,
KHE_INSTANCE ins, int *index);

is the function to call when the instance is given and just its index is needed.

2.1. Archives 9

For visiting the solution groups of an archive, call

int KheArchiveSolnGroupCount(KHE_ARCHIVE archive);
KHE_SOLN_GROUP KheArchiveSolnGroup(KHE_ARCHIVE archive, int i);

similarly to visiting instances. There is also

bool KheArchiveRetrieveSolnGroup(KHE_ARCHIVE archive, char *id,
KHE_SOLN_GROUP *soln_group);

which retrieves a solution group by id.

2.2. Solution groups

A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool KheSolnGroupMake(KHE_ARCHIVE archive, char *id,
KHE_SOLN_GROUP *soln_group);

Here archive is compulsory, and the solution group is added to it. Parameter id is the Id
attribute from the XML file; it is optional, with NULL meaning absent, although it is compulsory
if archive is to be written later. If the operation is successful, then true is returned with

*soln_group set to the new solution group; if not (which can only be because id is already the
Id of a solution group of archive), then false is returned with *soln_group set to NULL.

To delete a solution group, including deleting it from its archive, call

void KheSolnGroupDelete(KHE_SOLN_GROUP soln_group);

The solutions within soln_group are not deleted.

To set and retrieve the back pointer (Section 1.4) of a solution group, call

void KheSolnGroupSetBack(KHE_SOLN_GROUP soln_group, void *back);
void *KheSolnGroupBack(KHE_SOLN_GROUP soln_group);

as usual. To retrieve the archive and Id, call

KHE_ARCHIVE KheSolnGroupArchive(KHE_SOLN_GROUP soln_group);
char *KheSolnGroupId(KHE_SOLN_GROUP soln_group);

Solution group metadata may be set and retrieved by calling

void KheSolnGroupSetMetaData(KHE_SOLN_GROUP soln_group,
char *contributor, char *date, char *description,
char *publication, char *remarks);

void KheSolnGroupMetaData(KHE_SOLN_GROUP soln_group,
char **contributor, char **date, char **description,
char **publication, char **remarks);

As usual, copies of the strings are stored, not the originals. As for archive metadata, any of these
strings may be NULL or empty. KHE substitutes values "No contributor", "No date", etc. for

10 Chapter 2. Archives and Solution Groups

such values when writing an archive, or omits them altogether when XHSTT allows. Also,

char *KheSolnGroupMetaDataText(KHE_SOLN_GROUP soln_group);

returns a string containing the metadata as a paragraph of terse English text. The string lies in
the solution group’s arena and will be deleted when the solution group is deleted.

Initially a solution group has no solutions. These are added and deleted by calling

void KheSolnGroupAddSoln(KHE_SOLN_GROUP soln_group, KHE_SOLN soln);
void KheSolnGroupDeleteSoln(KHE_SOLN_GROUP soln_group, KHE_SOLN soln);

A solution can only be added when its instance lies in the solution group’s archive.

To visit the solutions of a solution group, call

int KheSolnGroupSolnCount(KHE_SOLN_GROUP soln_group);
KHE_SOLN KheSolnGroupSoln(KHE_SOLN_GROUP soln_group, int i);

Solutions have no Ids, so there is no KheSolnGroupRetrieveSoln function. When solution i is
deleted, KheSolnGroupSolnCount decreases by 1, solution i+1 becomes solution i, and so on.
To visit the solutions of a solution group that solve a particular instance, call

KHE_SOLN_SET KheSolnGroupInstanceSolnSet(KHE_SOLN_GROUP soln_group,
KHE_INSTANCE ins);

Or if the index of the instance in the soln_group’s archive is known, one can call

KHE_SOLN_SET KheSolnGroupInstanceSolnSetByIndex(
KHE_SOLN_GROUP soln_group, int index);

As described just below, KHE_SOLN_SET is a set of solutions. The set returned by these functions
holds the solutions in soln_group for the indicated instance. It is stored in soln_group and must
not be modified by the user, except that it may be sorted. KHE updates it as solutions are added
and deleted from its enclosing solution group, and deletes it when its instance is deleted.

2.3. Solution sets

Like a solution group, a solution set contains a set of solutions. But, unlike a solution group, that
is all it contains: it is not considered to lie in any archive, and it has no Id and no metadata.

To create a new, empty solution set, and to delete it (but not its solutions), call

KHE_SOLN_SET KheSolnSetMake(HA_ARENA a);

As usual it (but not its solutions) will be deleted when a is deleted. There is also

void KheSolnSetClear(KHE_SOLN_SET ss);

which empties out ss without deleting it. To add a solution, and to delete one, call

void KheSolnSetAddSoln(KHE_SOLN_SET ss, KHE_SOLN soln);
void KheSolnSetDeleteSoln(KHE_SOLN_SET ss, KHE_SOLN soln);

2.3. Solution sets 11

To find out if a solution set contains a given solution, call

bool KheSolnSetContainsSoln(KHE_SOLN_SET ss, KHE_SOLN soln, int *pos);

It returns true if ss contains soln, setting *pos to its index in ss if so.

To visit the elements of a solution set, call

int KheSolnSetSolnCount(KHE_SOLN_SET ss);
KHE_SOLN KheSolnSetSoln(KHE_SOLN_SET ss, int i);

They have the order they were inserted in, unless this has been changed by calling either of

void KheSolnSetSort(KHE_SOLN_SET ss,
int(*compar)(const void *, const void *));

void KheSolnSetSortUnique(KHE_SOLN_SET ss,
int(*compar)(const void *, const void *));

KheSolnSetSort sorts the solutions according to comparison function compar, which must be
suitable for passing to qsort. KheSolnSetSortUnique is the same, but afterwards it removes all
but one of each run of solutions for which compar returns 0.

One comparison function is already written, in one form that makes sense to people and
another that makes sense to qsort:

int KheIncreasingCostTypedCmp(KHE_SOLN soln1, KHE_SOLN soln2);
int KheIncreasingCostCmp(const void *t1, const void *t2);

It sorts the solution set so that the solutions have increasing cost. Solutions with equal cost
have increasing running time. Invalid solutions are treated as though they have infinite cost, and
solutions with no running time recorded are treated as though they have infinite running time.

Finally,

void KheSolnSetDebug(KHE_SOLN_SET ss, int verbosity,
int indent, FILE *fp);

sends a debug print of ss to fp with the given verbosity and indent.

2.4. Reading archives

KHE reads and writes archives in XHSTT, a standard XML format [13], and in XESTT, an
extension of XHSTT for employee scheduling problems [10, 11]. To read an archive, call

bool KheArchiveRead(FILE *fp, HA_ARENA_SET as, KHE_ARCHIVE *archive,
KML_ERROR *ke, bool audit_and_fix, bool resource_type_partitions,
bool infer_resource_partitions, bool allow_invalid_solns,
KHE_SOLN_TYPE soln_type, FILE *echo_fp);

File fp must be open for reading UTF-8, and it remains open after the call returns. If, starting
from its current position, fp contains a legal XML archive, then KheArchiveRead sets *archive
to that archive, passing it as as its arena set parameter, and *ke to NULL and returns true with fp

12 Chapter 2. Archives and Solution Groups

moved to the first character after the archive. If there was a problem reading the file, then it sets

*archive to NULL and *ke to an error object and returns false. Any reports in the archive are
discarded without checking.

Type KML_ERROR is from the KML module packaged with KHE. A full description of the
KML module appears in Section A.5. Given an object of type KML_ERROR, operations

int KmlErrorLineNum(KML_ERROR ke);
int KmlErrorColNum(KML_ERROR ke);
char *KmlErrorString(KML_ERROR ke);

return the line number, the column number, and a string description of the error.

KheArchiveRead builds the archive using the functions of this guide; there is nothing
special about the archive it builds. The model, for the archive and instances, depends on the
initial tag: KHE_MODEL_HIGH_SCHOOL_TIMETABLE when it is <HighSchoolTimetableArchive>,
and KHE_MODEL_EMPLOYEE_SCHEDULE when it is <EmployeeScheduleArchive>.

The audit_and_fix, resource_type_partitions, and infer_resource_partitions

parameters are passed on to KheInstanceMakeEnd (Section 3.1). KheArchiveRead

builds complete representations of the solutions it reads. To be precise, it calls func-
tions KheSolnMakeCompleteRepresentation, KheSolnAssignPreassignedTimes, and
KheSolnAssignPreassignedResources (Section 4.3), but not KheSolnMatchingBegin or
KheSolnEvennessBegin (Chapter 7).

Usually, if there are errors in the file, KheArchiveRead returns false and sets *ke to the
first error. But if allow_invalid_solns is true, then some errors lying in solutions are handled
differently: the erroneous solutions are converted to invalid placeholders (Section 4.2.6). Each
invalid placeholder solution contains its first error, and none of its errors cause false to be
returned or *ke to be set. Not all errors, not even all errors lying in solutions, can be handled in
this way; those that cannot cause KheArchiveRead to return false and set *ke as usual.

Each valid solution is passed to function KheSolnTypeReduce along with parameter
soln_type. If soln_type is KHE_SOLN_ORDINARY this does nothing, but other values reduce the
solution to a placeholder, freeing up a lot of memory which is re-used for reading other solutions.
The value of soln_type may not be KHE_SOLN_INVALID_PLACEHOLDER. See Section 4.2.6 for
KheSolnTypeReduce and the other choices for soln_type.

KheArchiveRead callsKmlReadFile (Section A.5.3), passing echo_fp to it. The characters
read are echoed to echo_fp if it is non-NULL; it would normally be NULL.

2.5. Reading archives incrementally

A large archive may have to be read one solution at a time. For this, call

2.5. Reading archives incrementally 13

bool KheArchiveReadIncremental(FILE *fp, HA_ARENA_SET as,
KHE_ARCHIVE *archive, KML_ERROR *ke, bool audit_and_fix,
bool resource_type_partitions, bool infer_resource_partitions,
bool allow_invalid_solns, KHE_SOLN_TYPE soln_type, FILE *echo_fp,
KHE_ARCHIVE_FN archive_begin_fn, KHE_ARCHIVE_FN archive_end_fn,
KHE_SOLN_GROUP_FN soln_group_begin_fn,
KHE_SOLN_GROUP_FN soln_group_end_fn, KHE_SOLN_FN soln_fn, void *impl);

The return value and the parameters up to echo_fp inclusive are as for KheArchiveRead. The
remaining parameters are callback functions, except the last, impl, which is not used by KHE
but is instead passed through to the calls on the callback functions. Any or all of the callback
functions may be NULL, in which case the corresponding callbacks are not made.

Callback function archive_begin_fn is called by KheArchiveReadIncremental at the
start of the archive. It must be written by the user like this:

void archive_begin_fn(KHE_ARCHIVE archive, void *impl)
{
...

}

Its archive parameter is set to the archive that KheArchiveReadIncremental will eventually
build, the one it returns in its *archive parameter; its impl parameter contains the value of the
impl parameter of KheArchiveReadIncremental. At the time of this call, archive contains its
Id, metadata, and model attributes, but no instances and no solution groups.

Callback function archive_end_fn is called at the end of the archive, just before
KheArchiveReadIncremental itself returns:

void archive_end_fn(KHE_ARCHIVE archive, void *impl)
{
...

}

When this function is called, archive contains all of its instances and solution groups. If
KheArchiveReadIncremental returns true, there has been one callback to archive_begin_fn

and one to archive_end_fn, if non-NULL.

Callback function soln_group_begin_fn is called at the start of each solution group:

void soln_group_begin_fn(KHE_SOLN_GROUP soln_group, void *impl)
{
...

}

Its soln_group parameter is set to one of the solution groups that the final archive will eventually
contain, and its impl parameter is as before. At the time of this call, soln_group contains its
Id and MetaData, and KheSolnGroupArchive(soln_group) returns the enclosing archive, but
there are no solutions in soln_group.

Callback function soln_group_end_fn is called at the end of each solution group:

14 Chapter 2. Archives and Solution Groups

void soln_group_end_fn(KHE_SOLN_GROUP soln_group, void *impl)
{
...

}

At the time of this call, soln_group contains all its solutions.

Finally, callback function soln_fn is called after each solution is read:

void soln_fn(KHE_SOLN soln, void *impl)
{
...

}

The solution is complete, and KheSolnSolnGroup(soln) returns the enclosing solution group.

The purpose of incremental reading is to process the solutions as they are read, so that
they can be deleted and their memory reclaimed. For example, to replace each solution by a
placeholder, pass NULL for all callbacks except soln_fn, which would be defined like this:

void soln_fn(KHE_SOLN soln, void *impl)
{
if(KheSolnType(soln) == KHE_SOLN_ORDINARY)
KheSolnReduceToPlaceholder(soln, false);

}

The test is needed only if allow_invalid_solns is true. KheSolnReduceToPlaceholder

(Section 4.2.6) reclaims most of the memory of soln, leaving just the soln object itself and a
few attributes, including its cost. In this way, the total memory cost is reduced to not much more
than the memory needed to hold the instances,but enough information is retained to support oper-
ations which (for example) print tables of solutions and their costs. Of course, KheArchiveRead
has the soln_type parameter which can be used to instruct it to do these reductions anyway.

Other applications might process soln in some way (print timetables, for example) before
finishing with a call to KheSolnReduceToPlaceholder, or even KheSolnDelete.

2.6. Reading archives from the command line

Reading an archive from the command line basically means opening the file named by a
command-line argument and calling KheArchiveRead. Beyond that, there may be a need to
process the archive before using it, for example to remove its solution groups. Function

KHE_ARCHIVE KheArchiveReadFromCommandLine(int argc, char *argv[],
int *pos, HA_ARENA_SET as, bool audit_and_fix,
bool resource_type_partitions, bool infer_resource_partitions,
bool allow_invalid_solns, KHE_SOLN_TYPE soln_type, FILE *echo_fp);

offers a standard way to do that. Here argc and argv are exactly as they were passed to the main
program, and *pos is an index into argv, to a point where the name of an archive is expected.

KheArchiveReadFromCommandLine first opens the file whose name is argv[*pos], calls

2.6. Reading archives from the command line 15

KheArchiveRead, and increments *pos to inform the caller that the argument at *pos has been
processed. The name may be -, meaning standard input. Then, while command-line arguments
beginning with -x, -i,-n, -X, and -I follow the name, it modifies the in-memory version of the
archive as instructed by those arguments. Finally, it returns the archive, with *pos moved to the
index of the first unprocessed argument, or to argc if the argument list becomes exhausted.

The -x, -i, -n, -X, and -I arguments have this syntax and meaning:

-x<id>{,<id>}

Delete instances (and their solutions) with the given Ids.

-i<id>{,<id>}

Include only instances (and their solutions) with the given Ids; delete all other instances.

-n<int>

Include only the first <int> instances (and their solutions), or fewer if the archive contains
fewer instances; delete all other instances. Useful for testing the solving of an archive
without doing all of it.

-X<id>{,<id>}

Delete solution groups with the given Ids.

-I<id>{,<id>}

Include only solution groups with the given Ids; delete all other solution groups.

As a special case, -X with no ids means to delete all solution groups.

Arguments -x, -i, and -n may not be used together, and -X and -I may not be used
together. If there is a problem, KheArchiveReadFromCommandLine prints a message and calls
exit(1).

At present there is no KheArchiveReadFromCommandLineIncremental function combin-
ing KheArchiveReadFromCommandLine with KheArchiveReadIncremental.

2.7. Writing archives and solution groups

To write an archive to a file, call

void KheArchiveWrite(KHE_ARCHIVE archive, bool with_reports, FILE *fp);

File fp must be open for writing UTF-8 characters, and it remains open after the call returns. If
with_reports is true, each written solution contains a Report section evaluating the solution.

If the archive’s model is KHE_MODEL_HIGH_SCHOOL_TIMETABLE, the initial tag written to fp

will be <HighSchoolTimetableArchive>. If the model is KHE_MODEL_EMPLOYEE_SCHEDULE,
the initial tag will be <EmployeeScheduleArchive>.

Ids and names are optional in KHE but compulsory when writing XML: if any are missing,
KheArchiveWrite writes an incomplete file and aborts with an error message. They will all be
present when archive was produced by KheArchiveRead.

If any of archive’s solutions are invalid or unwritable placeholders, KheArchiveWrite

16 Chapter 2. Archives and Solution Groups

aborts. If with_reports is true, any placeholder solution at all causes an abort.

When an event has a preassigned time, there is a problem if one of its meets is not assigned
that time. If the meet is assigned some other time (which is possible in KHE, although not easy),
then writing that time will cause the solution to be declared invalid when it is re-read. If the meet
is not assigned any time, then, whether or not the preassigned time is written, the meaning is that
the preassigned time is assigned, which is not the true state of the solution. The same problem
arises with preassigned event resources whose tasks are not assigned the preassigned resource.

Accordingly, KheArchiveWrite also writes an incomplete file and aborts with an error
message when it encounters a meet (or task) derived from a preassigned event (or event resource)
whose assigned time (or resource) is unequal to the preassigned time (or resource).

When writing solutions, KheArchiveWrite writes as little as possible. It does not write an
unassigned or preassigned task. It does not write a meet if its duration equals the duration of the
corresponding event, its time is unassigned or preassigned, and its tasks are not written according
to the rule just given (see also Section 4.3).

Two similar functions are

void KheArchiveWriteSolnGroup(KHE_ARCHIVE archive,
KHE_SOLN_GROUP soln_group, bool with_reports, FILE *fp);

void KheArchiveWriteWithoutSolnGroups(KHE_ARCHIVE archive, FILE *fp);

They also write archive, omitting all its solution groups, or all of them except soln_group.
They have been superseded, in practice, by KheArchiveReadFromCommandLine (Section 2.6).

Chapter 3. Instances

An instance is a particular case of the high school timetabling problem, for a particular term
or semester of a particular school. This chapter describes the KHE_INSTANCE data type, which
represents instances as defined in the XML format.

3.1. Creating instances

To make a new, empty instance, call

KHE_INSTANCE KheInstanceMakeBegin(char *id, KHE_MODEL model,
HA_ARENA_SET as);

Parameter id is the Id attribute from the XML file; it is optional, with NULL meaning absent.
Parameter model is the model, as for KheArchiveMake, and as is the thread arena set, also as for
KheArchiveMake. Functions

char *KheInstanceId(KHE_INSTANCE ins);
KHE_MODEL KheInstanceModel(KHE_INSTANCE ins);

retrieve these attributes.

For the convenience of functions that reorganize archives, an instance may lie in any
number of archives. To add an instance to an archive and delete it from an archive, call functions
KheArchiveAddInstance and KheArchiveDeleteInstance from Section 2.1. To visit the
archives containing a given instance, call

int KheInstanceArchiveCount(KHE_INSTANCE ins);
KHE_ARCHIVE KheInstanceArchive(KHE_INSTANCE ins, int i);

in the usual way.

To set and retrieve the back pointer of ins, call

void KheInstanceSetBack(KHE_INSTANCE ins, void *back);
void *KheInstanceBack(KHE_INSTANCE ins);

as usual.

After the instance has been completed, using functions still to be defined, call

bool KheInstanceMakeEnd(KHE_INSTANCE ins, bool audit_and_fix,
bool resource_type_partitions, bool infer_resource_partitions,
char **error_message);

This must be done, single-threaded, before any solution is created. It checks the instance
and initializes various constant data structures used to speed the solution process. Parameter

17

18 Chapter 3. Instances

audit_and_fix is described just below, resource_type_partitions is the subject of Section
3.5.5, and infer_resource_partitions is the subject of Section 3.5.6. KheInstanceMakeEnd
sets *error_message to NULL and returns true when it finds no problems; when there is some-
thing wrong it sets *error_message to an error message describing the first problem and returns
false. In principle the problem could be nearly anything, although at present the only problems
detected by KheInstanceMakeEnd are cases where the time groups used by limit idle times con-
straints (Section 3.7.13) are not compact.

Even when an instance is formally valid, it may have features that suggest that something is
wrong, such as resources without avoid clashes constraints. When audit_and_fix istrue, KHE
audits the instance and fixes any problems it finds. At present, it checks for pairs of events joined
by a link events constraint whose event constraints differ, and adds events as points of application
of those constraints to remove the differences. Other checks may be added in future.

Instance metadata may be set and retrieved by calling

void KheInstanceSetMetaData(KHE_INSTANCE ins, char *name, char *contributor,
char *date, char *country, char *description, char *remarks);

void KheInstanceMetaData(KHE_INSTANCE ins, char **name, char **contributor,
char **date, char **country, char **description, char **remarks);

Copies of the strings passed in are stored, not the originals. As for archive and solution group
metadata, KHE allows any instance metadata objects or strings to be NULL or empty, and when
writing an instance it substitutes values "No name", "No contributor", etc., for such values, or
omits them altogether when XHSTT allows. Also,

char *KheInstanceMetaDataText(KHE_INSTANCE ins);

returns a string containing the metadata as a paragraph of English text. The string lies in the
instance’s arena and will be deleted when the instance is deleted.

3.2. Visiting and retrieving the components of instances

An instance may contain any number of time groups, times, resource types, event groups, events,
and constraints. These are added by the functions that create them, to be given later.

To visit all the time groups of an instance, or retrieve a time group by id, call

int KheInstanceTimeGroupCount(KHE_INSTANCE ins);
KHE_TIME_GROUP KheInstanceTimeGroup(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveTimeGroup(KHE_INSTANCE ins, char *id,
KHE_TIME_GROUP *tg);

The first returns the number of time groups in ins. The second returns the i’th time group,
counting from 0 as usual in C. The third searches for a time group of ins with the given id; if
found, it sets *tg to it and returns true, otherwise it leaves *tg unchanged and returns false.

Only time groups created by user calls to KheTimeGroupMake (Section 3.4.1) are found by
KheInstanceTimeGroupCount, KheInstanceTimeGroup, and KheInstanceRetrieveTimeGroup.
Some other time groups are created automatically by KHE, but they are accessed in other ways.
They include one time group for each time, holding just that time; a time group holding the full

3.2. Visiting and retrieving the components of instances 19

set of times of the instance; and an empty time group. These last two are returned by

KHE_TIME_GROUP KheInstanceFullTimeGroup(KHE_INSTANCE ins);
KHE_TIME_GROUP KheInstanceEmptyTimeGroup(KHE_INSTANCE ins);

Time groups may also be created during solving (Section 4.4). Those too are not accessible via
KheInstanceTimeGroupCount, KheInstanceTimeGroup, or KheInstanceRetrieveTimeGroup.

To visit all the times of an instance, or retrieve a time by Id, call

int KheInstanceTimeCount(KHE_INSTANCE ins);
KHE_TIME KheInstanceTime(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveTime(KHE_INSTANCE ins, char *id, KHE_TIME *t);

These work in the same way as the functions above for visiting and retrieving time groups.

To visit all the resource types of an instance, or retrieve a resource type by id, call

int KheInstanceResourceTypeCount(KHE_INSTANCE ins);
KHE_RESOURCE_TYPE KheInstanceResourceType(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveResourceType(KHE_INSTANCE ins, char *id,
KHE_RESOURCE_TYPE *rt);

These work in the same way as the corresponding functions for visiting and retrieving time
groups and times. Resource types have operations which give access to their resource groups and
resources. For convenience there are also operations

bool KheInstanceRetrieveResourceGroup(KHE_INSTANCE ins, char *id,
KHE_RESOURCE_GROUP *rg);

bool KheInstanceRetrieveResource(KHE_INSTANCE ins, char *id,
KHE_RESOURCE *r);

which search all the resource types of ins for a resource group or resource with the given id. It
is also possible to bypass resource types and visit all resources directly, by calling

int KheInstanceResourceCount(KHE_INSTANCE ins);
KHE_RESOURCE KheInstanceResource(KHE_INSTANCE ins, int i);

in the usual way. The resources will be visited in the order they were created.

To visit all the event groups of an instance, or to retrieve an event group by id, call

int KheInstanceEventGroupCount(KHE_INSTANCE ins);
KHE_EVENT_GROUP KheInstanceEventGroup(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveEventGroup(KHE_INSTANCE ins, char *id,

KHE_EVENT_GROUP *eg);

These work in the usual way.

Some event groups are created automatically by KHE, including one event group for each
event, holding just that event; an event group holding the full set of events of the instance; and
an empty event group. These last two are returned by

20 Chapter 3. Instances

KHE_EVENT_GROUP KheInstanceFullEventGroup(KHE_INSTANCE ins);
KHE_EVENT_GROUP KheInstanceEmptyEventGroup(KHE_INSTANCE ins);

Automatically defined event groups are not visited by KheInstanceEventGroupCount and
KheInstanceEventGroup. Even more event groups may be created during solving. Those also
do not appear in the list of event groups of the original instance.

To visit the events of an instance, or to retrieve an event by id, call

int KheInstanceEventCount(KHE_INSTANCE ins);
KHE_EVENT KheInstanceEvent(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveEvent(KHE_INSTANCE ins, char *id, KHE_EVENT *e);

Two reasons for visiting all events have already been taken care of, by functions

bool KheInstanceAllEventsHavePreassignedTimes(KHE_INSTANCE ins);
int KheInstanceMaximumEventDuration(KHE_INSTANCE ins);

KheInstanceAllEventsHavePreassignedTimes returns true if all events have preassigned
times. KheInstanceMaximumEventDuration returns the maximum event duration, or 0 when
there are no events. In the usual representation of nurse rostering, their values are true and 1.

To visit the event resources of an instance, call

int KheInstanceEventResourceCount(KHE_INSTANCE ins);
KHE_EVENT_RESOURCE KheInstanceEventResource(KHE_INSTANCE ins, int i);

The event resources may also be visited via their events.

To visit all the constraints of an instance, or to retrieve a constraint by id, call

int KheInstanceConstraintCount(KHE_INSTANCE ins);
KHE_CONSTRAINT KheInstanceConstraint(KHE_INSTANCE ins, int i);
bool KheInstanceRetrieveConstraint(KHE_INSTANCE ins, char *id,

KHE_CONSTRAINT *c);

These work in the usual way. There is also

int KheInstanceConstraintOfTypeCount(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

which returns the number of constraints with the given constraint_tag. At present there is no
way to visit these constraints, other than to visit all constraints and select the ones with that tag.

3.3. Constraint density

Within a given instance, the density of a given kind of constraint is the number of applications
of constraints of that kind, divided by the number of places where constraints of that kind could
apply. The density is a floating-point number, usually between 0 and 1, although it can exceed
1, since constraints of the same kind may apply at one place. KHE offers functions

3.3. Constraint density 21

int KheInstanceConstraintDensityCount(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

int KheInstanceConstraintDensityTotal(KHE_INSTANCE ins,
KHE_CONSTRAINT_TAG constraint_tag);

returning the number of applications of constraints of kind constraint_tag in ins (the density
count), and the number of places where constraints of that kind could apply in ins (the density
total). The density is the quotient of these two quantities, unless the density total is 0, in which
case the density is undefined, although it may be reported as 0.0 in that case. Precise definitions
of the density count and density total are given for each kind of constraint in Section 3.7.

The first time either of these functions is called for any value of constraint_tag, the
results of both functions are calculated for all values of constraint_tag and stored in ins. So
multi-threaded calls on these functions are only safe if one single-threaded call is made first.

3.4. Times

3.4.1. Time groups

A time group, representing a set of times, is created and added to an instance by calling

bool KheTimeGroupMake(KHE_INSTANCE ins, KHE_TIME_GROUP_KIND kind,
char *id, char *name, KHE_TIME_GROUP *tg);

This works like all creations of named objects do in KHE: if id is non-NULL and ins already
contains a time group with this id, it returns false and creates nothing; otherwise it creates a
new time group, sets *tg to point to it, and returns true.

Parameter kind has type

typedef enum {
KHE_TIME_GROUP_KIND_ORDINARY,
KHE_TIME_GROUP_KIND_WEEK,
KHE_TIME_GROUP_KIND_DAY,
KHE_TIME_GROUP_KIND_SOLN,
KHE_TIME_GROUP_KIND_AUTO

} KHE_TIME_GROUP_KIND;

KHE_TIME_GROUP_KIND_ORDINARY is the usual kind. The XML format allows some time groups
to be referred to as Weeks and Days, although they do not differ from other time groups in any
other way. Values KHE_TIME_GROUP_KIND_WEEK and KHE_TIME_GROUP_KIND_DAY record this
usage; they matter only when reading and writing XML files, not when solving. The last two
values cannot be passed to KheTimeGroupMake, although they may be returned by function
KheTimeGroupKind below. KHE_TIME_GROUP_KIND_SOLN is the kind of time groups returned
by KheSolnTimeGroupEnd (Section 4.4), and KHE_TIME_GROUP_KIND_AUTO is the kind of time
groups created automatically by KHE.

The id and name parameters may be NULL; they are used only when writing XML, when
they represent the compulsory Id and Name attributes of the time group. Irrespective of the order

22 Chapter 3. Instances

time groups are created in, to conform with the XML rules, when writing time groups KHE writes
days first, then weeks, then ordinary time groups; it does not write any other time groups.

To set and retrieve the back pointer of tg, call

void KheTimeGroupSetBack(KHE_TIME_GROUP tg, void *back);
void *KheTimeGroupBack(KHE_TIME_GROUP tg);

in the usual way. The other attributes may be retrieved by calling

KHE_INSTANCE KheTimeGroupInstance(KHE_TIME_GROUP tg);
KHE_TIME_GROUP_KIND KheTimeGroupKind(KHE_TIME_GROUP tg);
char *KheTimeGroupId(KHE_TIME_GROUP tg);
char *KheTimeGroupName(KHE_TIME_GROUP tg);

Initially the time group is empty. There are several operations for changing its set of times:

void KheTimeGroupAddTime(KHE_TIME_GROUP tg, KHE_TIME t);
void KheTimeGroupSubTime(KHE_TIME_GROUP tg, KHE_TIME t);
void KheTimeGroupUnion(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);
void KheTimeGroupIntersect(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);
void KheTimeGroupDifference(KHE_TIME_GROUP tg, KHE_TIME_GROUP tg2);

These add a time to tg, remove a time, replace tg’s set of times with its union or intersecton
with the set of times of tg2, and with the difference of tg’s times and tg2’s times. The first two
operations are treated as set operations, so KheTimeGroupAddTime does nothing if t is already
present, and KheTimeGroupSubTime does nothing if t is not already present.

Changes to the time groups of an instance are not allowed after KheInstanceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct time
groups for their own use (Section 4.4).

In addition to time groups created by the user, many time groups are created automatically
by KHE, with such useful values as the full set of times of the cycle and the empty set of times
(Section 3.2), all singleton sets of times (Section 3.4), and various other values, associated with
constraints. All these time groups are created during KheInstanceMakeEnd, and in every case,
KHE first checks whether there is a user-defined time group with the desired value, and if so, it
uses that time group instead of creating a new one. When it does create a new time group, that
time group has KHE_TIME_GROUP_KIND_AUTO for kind and NULL for Id and name, except that time
groups returned by KheTimeGroupNeighbour may have an Id and name, as explained below.

The times of any time group are visited by

int KheTimeGroupTimeCount(KHE_TIME_GROUP tg);
KHE_TIME KheTimeGroupTime(KHE_TIME_GROUP tg, int i);

These work in the same way as the visit functions for instances above. And

bool KheTimeGroupContains(KHE_TIME_GROUP tg, KHE_TIME t, int *pos);
bool KheTimeGroupEqual(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
bool KheTimeGroupSubset(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
bool KheTimeGroupDisjoint(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);

3.4. Times 23

return true if tg containst (setting *pos to its position in the time group), if tg1 and tg2 contain
the same times, if the times of tg1 are a subset of the times of tg2, and if the times of tg1

and tg2 are disjoint. There is nothing to prevent two distinct time groups from containing the
same times.

There are also

int KheTimeGroupTypedCmp(KHE_TIME_GROUP tg1, KHE_TIME_GROUP tg2);
int KheTimeGroupCmp(const void *t1, const void *t2);

which are typed and untyped versions of a comparison function that may be used to sort an array
of time groups into a canonical order. The precise order is not specified other than that a return
value of 0 indicates that the two time groups are equal.

Here are some miscellaneous time group functions. Function

bool KheTimeGroupIsCompact(KHE_TIME_GROUP tg);

returns true when tg is compact: when it is empty or there are no gaps in its times, taken in
chronological order. Function

int KheTimeGroupOverlap(KHE_TIME_GROUP tg, KHE_TIME time, int durn);

returns the number of times that a meet starting at time with duration durn overlaps with tg.

A key function for KHE’s handling of time is

KHE_TIME_GROUP KheTimeGroupNeighbour(KHE_TIME_GROUP tg, int delta);

It returns a time group containing tg’s times shifted delta places, where delta may be any
integer. KheTimeGroupNeighbour(tg, 0), for example, is a time group with the same times
as tg, possibly but not necessarily tg itself; and KheTimeGroupNeighbour(tg, -1) holds the
times that immediately precede tg’s. The time group will be empty if delta is such a large
(positive or negative) number that all the times are shifted off the cycle.

Time group neighbours are created automatically by KHE. As explained above, KHE will
use existing user-defined time groups wherever possible, to avoid creating new ones. When
it does create a new one, it assigns it an Id and name. This is useful because, although time
group neighbours are never printed in XML files, names for them are needed when reporting
the calculation made by a monitor for a constraint with a non-NULL AppliesToTimeGroup. For
example, given time group tg with Id "Mon" and name "Monday", if

KheTimeGroupNeighbour(tg, 5)

has to be created it is assigned Id "Mon+5" and name "Monday+5". It is best to avoid giving
user-defined time groups names like these ones, although there can be no name clashes, strictly
speaking, because time group neighbours are not stored in any table indexed by Id or name.
KheInstanceRetrieveTimeGroup, for example, only retrieves user-defined time groups.

KheTimeGroupNeighbour accepts time groups returned by KheTimeGroupNeighbour,
but the result can be odd. Suppose tg2 = KheTimeGroupNeighbour(tg, 5) is called, and tg

has 7 times but tg2 has only 4, because 3 of tg’s times shifted off the end. A subsequent call
to KheTimeGroupNeighbour(tg2, -5) may return another time group with 4 times, but it is

24 Chapter 3. Instances

more likely to return a time group equal to tg. This is for efficiency: if, every time a time went
off either end, a whole new neighbourhood was constructed, then neighbourhood construction
would go on forever. There are no such peculiarities when times do not shift off either end.

To speed up loading nurse rostering instances with long cycles, the time group returned by
KheAvoidUnavailableTimesConstraintUnavailableTimes usually has no neighbourhood.
The same goes for KheAvoidUnavailableTimesConstraintAvailableTimes , and also for
KheLimitBusyTimesConstraintDomain and KheLimitWorkloadConstraintDomain. A call to
KheTimeGroupNeighbour will abort with an error message if it is given one of these time groups.
The user should not worry about this until it happens; it probably never will.

As an aid to debugging, function

void KheTimeGroupDebug(KHE_TIME_GROUP tg, int verbosity,
int indent, FILE *fp);

prints tg onto fp with the given verbosity and indent, as usual (Section 1.4). Verbosity 1 prints
either the Id of the time group, or the first and last time (at most) enclosed in braces.

3.4.2. Times

A time is created and added to an instance by calling

bool KheTimeMake(KHE_INSTANCE ins, char *id, char *name,
bool break_after, KHE_TIME *t);

As usual, a false return value is only possible when id is non-NULL and already in use by another
time object. Parameters id and name may be NULL, and are used only when writing XML.

Parameter break_after says that a break occurs after this time, so that, for example,
an event of duration 2 could not begin here. This is not an XML feature; when representing
XML this parameter should always be false. Within KHE itself it is used only by function
KheSolnSplitCycleMeet and its associated operations (Section 4.5.3).

To set and retrieve the back pointer of a time, call functions

void KheTimeSetBack(KHE_TIME t, void *back);
void *KheTimeBack(KHE_TIME t);

as usual. The other attributes are retrieved by

KHE_INSTANCE KheTimeInstance(KHE_TIME t);
char *KheTimeId(KHE_TIME t);
char *KheTimeName(KHE_TIME t);
bool KheTimeBreakAfter(KHE_TIME t);
int KheTimeIndex(KHE_TIME t);

KheTimeIndex returns an automatically generated index number for time: 0 for the first time
created, 1for the second, and so on. The times of an instance form a sequence, not a set, and must
be created in chronological order. This is unlike resources, events, etc., whose order of creation
does not matter. The XML format requires times to appear in this same order. Function

3.4. Times 25

bool KheTimeHasNeighbour(KHE_TIME t, int delta);

returns true when there is a time whose index is the index of t plus delta, where delta may be
any integer, negative, zero, or positive. Function

KHE_TIME KheTimeNeighbour(KHE_TIME t, int delta);

returns this time when it exists, and aborts when it does not.

For sorting an array of times into chronological order there is

int KheTimeTypedCmp(KHE_TIME t1, KHE_TIME t2);
int KheTimeCmp(const void *t1, const void *t2);

KheTimeCmp is suitable for passing to qsort, or to HaArraySort.

When calculating with the chronological ordering of time—deciding whether two meets
are adjacent, and so on—it is often best to call KheTimeIndex to obtain the indexes of the times
involved and work with them. However, these functions may help to avoid time indexes:

bool KheTimeLE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeLT(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeGT(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeGE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeEQ(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);
bool KheTimeNE(KHE_TIME time1, int delta1, KHE_TIME time2, int delta2);

They return true when KheTimeNeighbour(time1, delta1)’s time index is less than or equal
to KheTimeNeighbour(time2, delta2)’s, and so on. The neighbours need not exist; the func-
tions simply convert times into indexes and perform the indicated integer operations. Also,

int KheTimeIntervalsOverlap(KHE_TIME time1, int durn1,
KHE_TIME time2, int durn2);

takes two time intervals, one beginning at time1 with duration durn1, the other beginning at
time2 with duration durn2, and returns the number of times lying in both intervals. For example,
the result will be 0 when either interval ends before the other begins. Similarly,

bool KheTimeIntervalsOverlapInterval(KHE_TIME time1, int durn1,
KHE_TIME time2, int durn2, KHE_TIME *overlap_time, int *overlap_durn);

returns true when KheTimeIntervalsOverlap is non-zero, and sets *overlap_time and

*overlap_durn to the starting time and duration of the overlap; otherwise it returns false.

For convenience, a time group is available for each time, holding just that time. Function

KHE_TIME_GROUP KheTimeSingletonTimeGroup(KHE_TIME t);

returns this time group. It cannot be changed.

The events preassigned a particular time can be visited by

int KheTimePreassignedEventCount(KHE_TIME t);
KHE_EVENT KheTimePreassignedEvent(KHE_TIME t, int i);

26 Chapter 3. Instances

KheTimePreassignedEventCount(t) returns the number of events preassigned time t, and
KheTimePreassignedEvent(t, i) returns the ith of these events, counting from 0 as usual.

3.5. Resources

3.5.1. Resource types

A resource type, representing one broad category of resources, such as the teachers or rooms, is
created and added to an instance in the usual way by the call

bool KheResourceTypeMake(KHE_INSTANCE ins, char *id, char *name,
bool has_partitions, KHE_RESOURCE_TYPE *rt);

Attributes id and name represent the optional XML Id and Name attributes as usual. Its back
pointer may be set and retrieved by

void KheResourceTypeSetBack(KHE_RESOURCE_TYPE rt, void *back);
void *KheResourceTypeBack(KHE_RESOURCE_TYPE rt);

as usual, and its other attributes may be retrieved by

KHE_INSTANCE KheResourceTypeInstance(KHE_RESOURCE_TYPE rt);
int KheResourceTypeIndex(KHE_RESOURCE_TYPE rt);
char *KheResourceTypeId(KHE_RESOURCE_TYPE rt);
char *KheResourceTypeName(KHE_RESOURCE_TYPE rt);
bool KheResourceTypeHasPartitions(KHE_RESOURCE_TYPE rt);

KheResourceTypeIndex(rt) returns the index of rt in the enclosing instance, that is, the value
of i for which KheInstanceResourceType returns rt.

Attribute has_partitions is not an XML feature, and should be given value false when
reading an XML instance. It indicates that there is a unique partitioning of the resources of this
resource type, defined by a collection of specially marked resource groups called partitions. For
example, the resources of a student groups resource type might be partitioned into forms, or the
resources of a teachers resource type might be partitioned into faculties. When a resource type
has partitions, each of its resources must lie in exactly one partition.

Each resource type contains an arbitrary number of resource groups, representing sets
of resources of its type. Resource groups are added to a resource type automatically by the
functions that create them. To visit all the resource groups of a given resource type, or to retrieve
a resource group with a given id from a given resource type, call

int KheResourceTypeResourceGroupCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypeResourceGroup(KHE_RESOURCE_TYPE rt,
int i);

bool KheResourceTypeRetrieveResourceGroup(KHE_RESOURCE_TYPE rt,
char *id, KHE_RESOURCE_GROUP *rg);

These work in the usual way. The partitions of a resource type may be visited by

3.5. Resources 27

int KheResourceTypePartitionCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypePartition(KHE_RESOURCE_TYPE rt, int i);

KheResourceTypePartitionCount returns 0 when rt does not have partitions.

Some resource groups are made automatically by KHE, including one resource group for
each resource, holding just that resource; a resource group holding the full set of resources of
the resource type; and an empty resource group. These last two are returned by

KHE_RESOURCE_GROUP KheResourceTypeFullResourceGroup(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE_GROUP KheResourceTypeEmptyResourceGroup(KHE_RESOURCE_TYPE rt);

Automatically made resource groups are not visited by KheResourceTypeResourceGroupCount
and KheResourceTypeResourceGroup. Even more resource groups may be created during
solving, but those do not appear in the list of resource groups of the original instance.

To visit all the resources of a given resource type, or to retrieve a resource of a given
resource type by id, call

int KheResourceTypeResourceCount(KHE_RESOURCE_TYPE rt);
KHE_RESOURCE KheResourceTypeResource(KHE_RESOURCE_TYPE rt, int i);
bool KheResourceTypeRetrieveResource(KHE_RESOURCE_TYPE rt,
char *id, KHE_RESOURCE *r);

in the usual way.

Four functions, which should be called only after the instance is complete, summarize
information relevant to assigning resources of a given resource type. The values of these
functions are calculated as the instance is made, so one call on any of them costs practically
nothing. The first is

bool KheResourceTypeDemandIsAllPreassigned(KHE_RESOURCE_TYPE rt);

It returns true if every event resource of type rt is preassigned. In practice this is always true
for student group resource types, and often for teachers, but rarely for rooms. The second is

int KheResourceTypeAvoidSplitAssignmentsCount(KHE_RESOURCE_TYPE rt);

It returns the number of points of application of avoid split assignments constraints that constrain
event resources of this type. The larger this number is, the more difficult the resource assignment
problem for resources of this type is likely to be. The third is

int KheResourceTypeLimitResourcesCount(KHE_RESOURCE_TYPE rt);

returns the number of points of application of limit resources constraints that have this resource
type. See Section 12.7.3 for an application of this function. Finally,

float KheResourceTypeMaxWorkloadPerTime(KHE_RESOURCE_TYPE rt);

returns the maximum value of KheEventResourceWorkloadPerTime(er) over all event
resources er of type rt. Limit workload monitors use this value (Section 6.7.6).

28 Chapter 3. Instances

3.5.2. Resource groups

A resource group is created and added to a resource type by the call

bool KheResourceGroupMake(KHE_RESOURCE_TYPE rt, char *id, char *name,
bool is_partition, KHE_RESOURCE_GROUP *rg)

This function returns false only when id is non-NULL and some other resource group of type
rt has this id. The resource group lies in resource type rt with the usual id and name attributes.
Attribute is_partition is not an XML feature, and should be given value false when reading
an XML instance. It may be true only if attribute has_partitions of the resource group’s
resource type is true, in which case it indicates that this resource group is a partition, that is, one
of those resource groups which define the unique partitioning of the resources of that type.

To set and retrieve the back pointer of a resource group, call

void KheResourceGroupSetBack(KHE_RESOURCE_GROUP rg, void *back);
void *KheResourceGroupBack(KHE_RESOURCE_GROUP rg);

as usual. The other attributes may be retrieved by calling

KHE_RESOURCE_TYPE KheResourceGroupResourceType(KHE_RESOURCE_GROUP rg);
KHE_INSTANCE KheResourceGroupInstance(KHE_RESOURCE_GROUP rg);
char *KheResourceGroupId(KHE_RESOURCE_GROUP rg);
char *KheResourceGroupName(KHE_RESOURCE_GROUP rg);
bool KheResourceGroupIsPartition(KHE_RESOURCE_GROUP rg);

KheResourceGroupInstance returns the resource group’s resource type’s instance.

Initially the resource group is empty. Several operations change its resources:

void KheResourceGroupAddResource(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
void KheResourceGroupSubResource(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
void KheResourceGroupUnion(KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP rg2);
void KheResourceGroupIntersect(KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP rg2);
void KheResourceGroupDifference(KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP rg2);

These add r to rg, remove r, replace rg’s set of resources with its union or intersecton with
the set of resources of rg2, and with the difference of rg’s resources and rg2’s resources. All
the resources and resource groups involved must be of the same type. The first two operations
are treated as set operations, so KheResourceGroupAddResource does nothing if r is already
present, and KheResourceGroupSubResource does nothing if r is not already present.

These functions may not be used to alter resource groups which define partitions. When a
resource type has partitions, each of its resources is added to its partition when it is created.

Changes to the resource groups of an instance are not allowed after KheInstanceMakeEnd
is called, since instances are immutable after that point. However, solutions may construct
resource groups for their own use (Section 4.4).

There are also several operations for finding the cardinality of unions, intersections, etc.,
without changing anything:

3.5. Resources 29

int KheResourceGroupUnionCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupIntersectCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupDifferenceCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupSymmetricDifferenceCount(KHE_RESOURCE_GROUP rg,
KHE_RESOURCE_GROUP rg2);

Building symmetric differences is awkward, so at present there is no operation for it, only this
operation for finding its cardinality.

There are also predefined resource groups, for the complete set of resources of each
resource type and the empty set of resources of each type (see Section 3.5.1 for those), and one
for each resource of the instance, containing just that resource (Section 3.5). The resources in
predefined resource groups may not be changed.

The resources of any resource group are visited by

int KheResourceGroupResourceCount(KHE_RESOURCE_GROUP rg);
KHE_RESOURCE KheResourceGroupResource(KHE_RESOURCE_GROUP rg, int i);

These work in the usual way. And

bool KheResourceGroupContains(KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);
bool KheResourceGroupEqual(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

bool KheResourceGroupSubset(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

bool KheResourceGroupDisjoint(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

return true if rg contains r, if rg1 and rg2 contain the same resources, if the resources of rg1
form a subset of the resources of rg2, and if the resources of rg1 and rg2 are disjoint. Two
distinct resource groups may contain the same resources, so it is best not to apply the C equality
operator to resource groups.

There are also

int KheResourceGroupTypedCmp(KHE_RESOURCE_GROUP rg1,
KHE_RESOURCE_GROUP rg2);

int KheResourceGroupCmp(const void *t1, const void *t2);

which are typed and untyped versions of a comparison function that may be used to sort an array
of resource groups into a canonical order. The precise order is not specified other than that a
return value of 0 indicates that the two resource groups are equal.

After a resource group is finalized, function

KHE_RESOURCE_GROUP KheResourceGroupPartition(KHE_RESOURCE_GROUP rg);

may be called. If rg is non-empty and its resources share a partition, the result is that partition,

30 Chapter 3. Instances

otherwise the result is NULL. Since KheResourceGroupPartition is called when monitoring
evenness, for efficiency the result is precomputed and stored in rg when it is finalized.

As an aid to debugging, function

void KheResourceGroupDebug(KHE_RESOURCE_GROUP rg, int verbosity,
int indent, FILE *fp);

prints rg onto fp with the given verbosity and indent, as described for debug functions in general
in Section 1.4. Verbosity 1prints the Id of the resource group in some cases, and the first and last
resource (at most) enclosed in braces in others.

3.5.3. Resources

A resource is created and added to its resource type by the call

bool KheResourceMake(KHE_RESOURCE_TYPE rt, char *id, char *name,
KHE_RESOURCE_GROUP partition, KHE_RESOURCE *r);

A resource type is compulsory; id and name are the usual optional XML Id and Name.

Unlike KheResourceGroupMake, which returns false when its id parameter is non-NULL
and some other resource group of the same resource type already has that Id, KheResourceMake
returns false and sets *r to NULL when its id parameter is non-NULL and some other resource of
any resource type already has its Id. This is because predefined event resources are permitted to
identify a resource by its Id alone, and so resource Ids must be unique among all the resources of
the instance, not merely among resources of a given type.

The partition attribute is not an XML feature, and should be given value NULL when
reading an XML instance. It must be non-NULL if and only if rt’s has_partitions attribute is
true, in which case its value must be a resource group of type rt whose is_partition attribute
istrue, and it indicates that the new resource lies in the specified partition. The new resource will
be added to the partition by this function, and no separate call to ResourceGroupAddResource

to do this is necessary or even permitted.

To set and retrieve the back pointer of a resource, call

void KheResourceSetBack(KHE_RESOURCE r, void *back);
void *KheResourceBack(KHE_RESOURCE r);

as usual. The other attributes may be retrieved by the calls

KHE_INSTANCE KheResourceInstance(KHE_RESOURCE r);
int KheResourceInstanceIndex(KHE_RESOURCE r);
KHE_RESOURCE_TYPE KheResourceResourceType(KHE_RESOURCE r);
int KheResourceResourceTypeIndex(KHE_RESOURCE r);
char *KheResourceId(KHE_RESOURCE r);
char *KheResourceName(KHE_RESOURCE r);
KHE_RESOURCE_GROUP KheResourcePartition(KHE_RESOURCE r);

KheResourceInstance returns r’s instance, and KheResourceInstanceIndex returns r’s
index in that instance: the value of i for which KheInstanceResource(ins, i) returns r.

3.5. Resources 31

KheResourceResourceType returns r’s resource type, and KheResourceResourceTypeIndex

returns r’s index in that type: the value of i for which KheResourceTypeResource(rt, i)

returns r. Unlike the index numbers of times, which indicate chronological order, resource index
numbers have no semantic significance. They are made available only for convenience.

A resource group is created automatically for each resource r, holding just r. Function

KHE_RESOURCE_GROUP KheResourceSingletonResourceGroup(KHE_RESOURCE r);

returns this resource group. This resource group may not be changed. To visit the resource
groups containing r (not including automatically generated ones), call

int KheResourceResourceGroupCount(KHE_RESOURCE r);
KHE_RESOURCE_GROUP KheResourceResourceGroup(KHE_RESOURCE r, int i);

in the usual way.

The event resources that r is preassigned to are made available by calling

int KheResourcePreassignedEventResourceCount(KHE_RESOURCE r);
KHE_EVENT_RESOURCE KheResourcePreassignedEventResource(KHE_RESOURCE r,
int i);

Naturally, the entire instance has to be loaded for these to work correctly. At present there is no
way to visit events containing event resource groups containing a given resource.

Some constraints apply to resources. When these constraints are created, they are added to
the resources they apply to. To visit all the constraints applicable to a given resource, call

int KheResourceConstraintCount(KHE_RESOURCE r);
KHE_CONSTRAINT KheResourceConstraint(KHE_RESOURCE r, int i);

There may be any number of avoid clashes constraints, avoid unavailable times constraints, limit
idle times constraints, cluster busy times constraints, limit busy times constraints, limit workload
constraints, and limit active intervals constraints, in any order. There are also

KHE_TIME_GROUP KheResourceHardUnavailableTimeGroup(KHE_RESOURCE r);
KHE_TIME_GROUP KheResourceHardAndSoftUnavailableTimeGroup(
KHE_RESOURCE r);

KheResourceHardUnavailableTimeGroup returns the union of the domains of the required
unavailable times constraints of r. KheResourceHardAndSoftUnavailableTimeGroup does the
same, except that the domains of all unavailable times constraints are included. Both functions
return the empty time group when there are no applicable constraints.

These two public functions are used by KHE when calculating lower bounds:

bool KheResourceHasAvoidClashesConstraint(KHE_RESOURCE r, KHE_COST cost);
int KheResourcePreassignedEventsDuration(KHE_RESOURCE r, KHE_COST cost);

KheResourceHasAvoidClashesConstraint returns true if some avoid clashes constraint of
combined weight greater than cost applies to r; KheResourcePreassignedEventsDuration
returns the total duration of events which are both preassigned r and either preassigned a time

32 Chapter 3. Instances

or subject to an assign time constraint of combined cost greater than cost.

As an aid to sorting arrays of resources, functions

int KheResourceTypedCmp(KHE_RESOURCE r1, KHE_RESOURCE r2);
int KheResourceCmp(const void *t1, const void *t2);

are offered. KheResourceTypedCmp returns the instance index of r1 minus the instance index
of r2. KheResourceCmp is basically the same, but in the form suited for passing to qsort, and
hence to HaArraySort and HaArraySortUnique.

As an aid to debugging, function

void KheResourceDebug(KHE_RESOURCE r, int verbosity,
int indent, FILE *fp)

produces a debug print of resource r onto file fp with the given verbosity and indent, as described
for debug functions in general in Section 1.4.

3.5.4. Resource layers

A resource layer is the set of events containing a preassignment of a given resource r which is
the subject of a hard avoid clashes constraint. A resource layer’s events may not overlap in time:
they must spread horizontally across the timetable, hence the term ‘layer’. Within a solution, the
meets derived from the events of one resource layer form a solution layer, or just layer.

Layers are important in high school timetabling, at least for student group resources, since
the total duration of their events is often close to the total duration of the cycle, and hence these
events strongly constrain each other. The following operations are available on the layer of r:

int KheResourceLayerEventCount(KHE_RESOURCE r);
KHE_EVENT KheResourceLayerEvent(KHE_RESOURCE r, int i);
int KheResourceLayerDuration(KHE_RESOURCE r);

The first two work together in the usual way to return the events of the resource layer. They
are sorted by increasing event index. If the resource is not preassigned to any events, or
has no required avoid clashes constraint, then KheResourceLayerEventCount returns 0.
KheResourceLayerDuration returns the total duration of the events of the layer. In the unlike-
ly case that r is assigned to the same event twice, the event still appears only once in the list of
events of the layer, and contributes its duration only once to the layer duration.

3.5.5. Resource type partitioning

Suppose that Science laboratoriesare never used as ordinary classrooms,and ordinary classrooms
are never used as Science laboratories. Then it doesn’t matter whether Science laboratories are
considered to have resource type Room or some other type specific to them. The advantage of
giving them their own type is that it makes it clear to solvers that assigning Science laboratories
is a completely separate problem from assigning other rooms.

Resource type partitioning is KHE’s name for a radical kind of resource partitioning, in
which each partition becomes a resource type. Under suitable circumstances it will recognize,

3.5. Resources 33

for example, that Science laboratories can be given their own resource type, and it will transform
the instance accordingly. It is attempted only when the user explicitly asks for it, by setting the
resource_type_partitions parameter of KheInstanceMakeEnd to true.

Consider any resource type rt (before partitioning). Suppose that there is an event resource
of type rt which is not subject to a prefer resources constraint with non-zero hard cost. Then this
event resource could be assigned any resource of type rt, and so partitioning will not succeed
and will not be attempted, even when requested.

So suppose now that there are none of these event resources. Initialize by placing each
resource in its own partition. For each pair of resources referenced (either directly or via a
resource group) by a prefer resources constraint with non-zero hard cost, merge their partitions.
If, at the end, there are two or more partitions, create new resource types to hold these partitions
and replace each reference to rt in the instance by a reference to one of these new resource types.
(Actually, rt is retained and used to hold one of its own partitions.)

After this process ends, resource groups may exist that contain resources of two or more
types. These resource groups are arbitrarily assigned the resource type of their first resource;
they are exceptions to the usual rule that all resources of a resource group have the same type.

Resource types for which has_partition is true are ignored by resource type partitioning.
But KheInstanceMakeEnd does resource type partitioning before inferring resource partitions
(Section 3.5.6), so a resource type created by resource type partitioning can have partitions.

There is no way to undo resource type partitioning. However, if the instance is written to a
file it will display no trace of it: the resources, resource groups, and event resources all revert to
their original types, and the resource types created by partitioning are not written. It is done this
way because resource type partitioning is offered to help solvers, not to transform instances.

The implementation of resource type partitioning is incomplete in one respect: although
KheResourceGroupResourceType returns a new resource type created by partitioning whenever
its first resource is moved to such a type, the resource types themselves do not know that the re-
source groups have changed their types, so functions KheResourceTypeResourceGroupCount,
KheResourceTypeResourceGroup, and KheResourceTypeRetrieveResourceGroup behave as
though no partitioning has occurred. Functions KheResourceTypeDemandIsAllPreassigned

and KheResourceTypeAvoidSplitAssignmentsCount may also return incorrect values, as may
KheResourceTypeLimitResourcesCount. These problems will be corrected if needed.

The names assigned to resource types created by partitioning don’t matter very much, but
some attempt has been made to choose reasonable names, to help make debug and testing output
readable. One of the resource types is the original one and it retains its original name. If there is a
partition that contains more than half of the affected resources, that partition will be represented
by this original resource type, otherwise there is no simple rule to say which partition it will
represent. The other, newly created resource types will have names of the form part1:part2.
Here part1 is the name of the original resource type; part2 is the name of a resource group if
that resource group contains exactly the resources of the new resource type (as often happens),
or the name of one of the resources of the newly created type otherwise.

34 Chapter 3. Instances

3.5.6. Resource similarity and inferring resource partitions

Following the general approach introduced in Section 1.4, KHE offers function

bool KheResourceSimilar(KHE_RESOURCE r1, KHE_RESOURCE r2);

which returns true when resources r1 and r2 are similar: when they lie in similar resource
groups and are preassigned to similar events. The exact definition is given below.

KheResourceSimilar often succeeds in recognising that student group resources from the
same form are similar, and that teacher resources from the same faculty are similar. However, it
needs positive evidence to work with. For example,when there are no student or teacher resource
groups, and each event contains one preassigned student group resource, one preassigned teacher
resource, and a request for one ordinary classroom, there is no basis for grouping the resources
and each will be considered similar only to itself.

Resource partitions (Section 3.5.1) are not part of the XML format. But they are useful
when solving, so KheInstanceMakeEnd has an infer_resource_partitions parameter which,
when true, causes partitions to be added to each resource type rt that lacks them. Afterwards,
KheResourceTypeHasPartitions(rt) will be true, KheResourceGroupIsPartition(rg)

will be true for some of the resource groups of rt, and KheResourcePartition(r) will
return a non-NULL partition for each resource r. All this is exactly as though the partitions had
been entered explicitly, except that any specially created resource groups will not be visited by
KheResourceTypeResourceGroupCount and KheResourceTypeResourceGroup.

The algorithm for inferring resource partitions is a simple application of resource similarity.
Build a graph in which each node corresponds to one resource, and an edge joins two nodes when
their resources are similar. The partitions are the connected components of this graph.

To decide whether two resources are similar or not, two non-negative integers, the positive
evidence and the negative evidence, are calculated as explained below. The two resources are
similar if the positive evidence exceeds the negative evidence by at least two.

Evidence comes from two sources: the resource groups that the resources lie in, and the
events that the resources are preassigned to. A resource group is admissible (i.e. admissible
as evidence) if its number of resources is at least two and at most one third of the number
of resources of its resource type. Inadmissible resource groups are considered to contain no
useful information and are ignored. Each case of an admissible resource group containing both
resources counts as two units of positive evidence, and each case of an admissible resource group
containing one resource but not the other counts as one unit of negative evidence.

A definition of what it means for two events to be similar appears in Section 3.6.2. Each
case of an event preassigned one resource being similar to an event preassigned the other counts
as two units of positive evidence. Each case of an event preassigned one resource for which there
is no similar event preassigned the other counts as one unit of negative evidence. The cases are
distinct, in the sense that each event participates in at most one case.

3.6. Events

3.6. Events 35

3.6.1. Event groups

An event group, representing a set of events, is created and added to an instance by calling

bool KheEventGroupMake(KHE_INSTANCE ins, KHE_EVENT_GROUP_KIND kind,
char *id, char *name, KHE_EVENT_GROUP *eg);

As usual, it returns false only when id is non-NULL and ins already contains an event group
with this id. To set and retrieve the back pointer, call

void KheEventGroupSetBack(KHE_EVENT_GROUP eg, void *back);
void *KheEventGroupBack(KHE_EVENT_GROUP eg);

as usual. The other attributes may be retrieved by the calls

KHE_INSTANCE KheEventGroupInstance(KHE_EVENT_GROUP eg);
KHE_EVENT_GROUP_KIND KheEventGroupKind(KHE_EVENT_GROUP eg);
char *KheEventGroupId(KHE_EVENT_GROUP eg);
char *KheEventGroupName(KHE_EVENT_GROUP eg);

The event group kind is a value of type

typedef enum {
KHE_EVENT_GROUP_KIND_COURSE,
KHE_EVENT_GROUP_KIND_ORDINARY

} KHE_EVENT_GROUP_KIND;

The XML format allows some event groups to be referred to as Courses, although they do not
differ from other event groups in any other way. The kind attribute records this distinction; it is
only used by KHE when reading and writing XML files, not when solving.

Irrespective of the order event groups are created in, to conform with the XML rules, when
writing event groups KHE writes courses first, then ordinary event groups.

Initially the event group is empty. There are several operations for changing its events:

void KheEventGroupAddEvent(KHE_EVENT_GROUP eg, KHE_EVENT e);
void KheEventGroupSubEvent(KHE_EVENT_GROUP eg, KHE_EVENT e);
void KheEventGroupUnion(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);
void KheEventGroupIntersect(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);
void KheEventGroupDifference(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);

These add an event to eg, remove an event, replace eg’s set of events with its union or intersecton
with the set of events of eg2, and with the difference of eg’s events and eg2’s events. The first
two operations are treated as set operations, so KheEventGroupAddEvent does nothing if e is
already present, and KheEventGroupSubEvent does nothing if e is not already present.

Changes to the event groups of an instance are not allowed after KheInstanceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct event
groups for their own use (Section 4.4).

There are also predefined event groups, for the complete set of events of the instance and
for the empty set of events (Section 3), and one for each event of the instance, containing just

36 Chapter 3. Instances

that event (Section 3.6). The events in predefined event groups may not be changed.

To visit the events of an event group, functions

int KheEventGroupEventCount(KHE_EVENT_GROUP eg);
KHE_EVENT KheEventGroupEvent(KHE_EVENT_GROUP eg, int i);

are used in the usual way. And

bool KheEventGroupContains(KHE_EVENT_GROUP eg, KHE_EVENT e);
bool KheEventGroupEqual(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);
bool KheEventGroupSubset(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);
bool KheEventGroupDisjoint(KHE_EVENT_GROUP eg1, KHE_EVENT_GROUP eg2);

return true if eg contains e, if eg1 and eg2 contain the same events, if the events of eg1 are a
subset of the events of eg2, and if the events of eg1 and eg2 are disjoint. There is nothing to
prevent two distinct event groups from containing the same events.

Some constraints apply to event groups. When these are created, they are added to the event
groups they apply to. To visit all the constraints that apply to a given event group, call

int KheEventGroupConstraintCount(KHE_EVENT_GROUP eg);
KHE_CONSTRAINT KheEventGroupConstraint(KHE_EVENT_GROUP eg, int i);

There may be any number of avoid split assignments constraints, spread events constraints, link
events constraints, and limit resources constraints, in any order. Function

void KheEventGroupDebug(KHE_EVENT_GROUP eg, int verbosity,
int indent, FILE *fp);

produces a debug print of eg onto fp with the given verbosity and indent, in the usual way.

3.6.2. Events

An event is created and added to an instance by calling

bool KheEventMake(KHE_INSTANCE ins, char *id, char *name, char *color,
int duration, int workload, KHE_TIME preassigned_time, KHE_EVENT *e);

This returns false only if id is non-NULL and is already the id of an event of ins. Parameter
color is an optional color for use when printing timetables. If non-NULL, its value must be a
legal Web colour ("#7CFC00" for example, or a colour name). A duration and workload are
compulsory (the XML specification states that a missing workload is taken to be equal to the
duration), but the preassigned time may be NULL. The back pointer is set and retrieved by

void KheEventSetBack(KHE_EVENT e, void *back);
void *KheEventBack(KHE_EVENT e);

as usual, and the other attributes may be retrieved by

3.6. Events 37

KHE_INSTANCE KheEventInstance(KHE_EVENT e);
char *KheEventId(KHE_EVENT e);
char *KheEventName(KHE_EVENT e);
char *KheEventColor(KHE_EVENT e);
int KheEventDuration(KHE_EVENT e);
int KheEventWorkload(KHE_EVENT e);
KHE_TIME KheEventPreassignedTime(KHE_EVENT e);

There are two other useful query functions. First,

int KheEventIndex(KHE_EVENT e);

returns the index number of e (0 for the first event inserted, 1 for the next, etc.). This number has
no timetabling significance; it is included merely for convenience. Second,

int KheEventDemand(KHE_EVENT e);

returns the demand of e, defined to be its duration multiplied by the number of its event resources
(in matching terms, the number of demand tixels). This is included as a measure of the overall
bulk of an event, useful for sorting events by estimated difficulty of timetabling.

Each event also contains any number of event resources. These are added to their events as
they are created. To visit them, call

int KheEventResourceCount(KHE_EVENT e);
KHE_EVENT_RESOURCE KheEventResource(KHE_EVENT e, int i);

in the usual way. There is also

bool KheEventRetrieveEventResource(KHE_EVENT e, char *role,
KHE_EVENT_RESOURCE *er);

which retrieves an event resource from e with the given role. If there is such an event resource,
it sets *er to it and returns true. If not, *er is not changed and false is returned.

Each event also contains any number of event resource groups. These are added to their
events as they are created. To visit them, call

int KheEventResourceGroupCount(KHE_EVENT e);
KHE_EVENT_RESOURCE_GROUP KheEventResourceGroup(KHE_EVENT e, int i);

as usual.

For convenience, an event group is created for each event, holding just that event. Call

KHE_EVENT_GROUP KheEventSingletonEventGroup(KHE_EVENT event);

to retrieve this event group. Other events may not be added to it.

Some constraints apply to events. When these constraints are created, they are added to the
events they apply to. To visit all the constraints applicable to a given event, call

int KheEventConstraintCount(KHE_EVENT e);
KHE_CONSTRAINT KheEventConstraint(KHE_EVENT e, int i);

38 Chapter 3. Instances

There may be any number of assign time constraints, prefer times constraints, split events
constraints, and distribute split events constraints, in any order, except that an event with a
preassigned time cannot have assign time constraints and prefer times constraints.

Following the general pattern given in Section 1.4, function

bool KheEventSimilar(KHE_EVENT e1, KHE_EVENT e2);

returns true if e1 and e2 are similar: if they have the same duration and similar event resources.
The exact definition is as follows. An event is admissible if it has one or more admissible event
resources. An event resource is admissible if its hard domain (reflecting its prefer resources con-
straints and any preassignment) is an admissible resource group, as defined in Section 3.5.6. An
event is always similar to itself. Two distinct events are similar if they are admissible, have equal
durations, and their admissible event resources (taken in any order) have equal hard domains.

There is also

bool KheEventMergeable(KHE_EVENT e1, KHE_EVENT e2, int slack);

which returns true if e1 and e2 could reasonably be considered to be split fragments of a single
larger event: if their event resources correspond, ignoring differences in the order in which they
appear in the two events. If slack is non-zero, KheEventMergeable returns true even if up
to slack event resources in e1 do not correspond with any event resource in e2 and vice versa.
Two event resources correspond when they have the same resource type, the same preassigned
resource, equal hard domains as returned by KheEventResourceHardDomain, and equal
hard-and-soft domains as returned by KheEventResourceHardAndSoftDomain. Like those two
functions, KheEventMergeable can only be called after the instance is complete.

A reasonable way to decide whether two events must be disjoint in time is to call

bool KheEventSharePreassignedResource(KHE_EVENT e1, KHE_EVENT e2,
KHE_RESOURCE *r);

If e1 and e2 share a preassigned resource which has a required avoid clashes constraint, this
function returns true and sets r to one such resource; otherwise it returns false and sets r to
NULL. It should only be called after the instance is complete.

Function

void KheEventDebug(KHE_EVENT e, int verbosity, int indent, FILE *fp);

produces a debug print of e onto fp with the given verbosity and indent, in the usual way.

3.6.3. Event resources

An event resource is created and added to an event by the call

bool KheEventResourceMake(KHE_EVENT event, KHE_RESOURCE_TYPE rt,
KHE_RESOURCE preassigned_resource, char *role, int workload,
KHE_EVENT_RESOURCE *er);

This returns false only when the optional role parameter (used only when writing XML) is
non-NULL and there is already an event resource within event with this value for role. Parameter

3.6. Events 39

preassigned_resource is an optional resource preassignment and may be NULL.

To set and retrieve the back pointer of an event resource, call

void KheEventResourceSetBack(KHE_EVENT_RESOURCE er, void *back);
void *KheEventResourceBack(KHE_EVENT_RESOURCE er);

as usual. The other attributes may be retrieved by

KHE_INSTANCE KheEventResourceInstance(KHE_EVENT_RESOURCE er);
int KheEventResourceInstanceIndex(KHE_EVENT_RESOURCE er);
KHE_EVENT KheEventResourceEvent(KHE_EVENT_RESOURCE er);
int KheEventResourceEventIndex(KHE_EVENT_RESOURCE er);
KHE_RESOURCE_TYPE KheEventResourceResourceType(KHE_EVENT_RESOURCE er);
KHE_RESOURCE KheEventResourcePreassignedResource(KHE_EVENT_RESOURCE er);
char *KheEventResourceRole(KHE_EVENT_RESOURCE er);
int KheEventResourceWorkload(KHE_EVENT_RESOURCE er);
float KheEventResourceWorkloadPerTime(KHE_EVENT_RESOURCE er);

KheEventResourceInstance is the enclosing instance; KheEventResourceInstanceIndex is
the index of er in that instance (the number i such that KheInstanceEventResource(ins, i)

returns er). KheEventResourceEvent is the enclosing event; KheEventResourceEventIndex
is the index of er in that event (the number i such that KheEventResource(e, i) returns er).
The next three functions just echo parameters. Finally, KheEventResourceWorkloadPerTime
returns the floating-point workload per time of the event resource: its workload divided by the
duration of the enclosing event.

Some constraints apply to event resources. When these are created, they are added to the
event resources they apply to. To visit the constraints that apply to a given event resource, call

int KheEventResourceConstraintCount(KHE_EVENT_RESOURCE er);
KHE_CONSTRAINT KheEventResourceConstraint(KHE_EVENT_RESOURCE er, int i);

There may be any number of assign resource constraints, prefer resources constraints, and avoid
split assignments constraints, in any order, except that an event resource with a preassigned
resource cannot have assign resource constraints and prefer resources constraints. If the i’th
constraint is an avoid split assignments constraint, function

int KheEventResourceConstraintEventGroupIndex(KHE_EVENT_RESOURCE er, int i);

may be called to find the event group index within that constraint that contains er. (It returns -1
if the i’th constraint is not an avoid split assignments constraint.)

After the instance is complete but not before, function

KHE_MAYBE_TYPE KheEventResourceNeedsAssignment(KHE_EVENT_RESOURCE er);

may be called to determine whether the constraints on er mean that it needs assignment (i.e. that
not assigning it would produce a positive hard or soft cost). Its return type is

40 Chapter 3. Instances

typedef enum {
KHE_NO,
KHE_MAYBE,
KHE_YES

} KHE_MAYBE_TYPE;

KHE_YES means that it does need assignment, because at least one assign resource constraint with
positive cost applies to it; KHE_MAYBE means that there is no case for KHE_YES, but at least one
limit resources constraint with positive cost and positive minimum limit applies to it; and KHE_NO

means that there is no case for KHE_YES or KHE_MAYBE.

Also after the instance is complete, functions

KHE_RESOURCE_GROUP KheEventResourceHardDomain(KHE_EVENT_RESOURCE er);
KHE_RESOURCE_GROUP KheEventResourceHardAndSoftDomain(KHE_EVENT_RESOURCE er);

return domains suited to er. The resource group returned by KheEventResourceHardDomain is
the intersection of the domains of the required prefer resources constraints, with weight greater
than 0, of er and other event resources that share a required avoid split assignments constraint of
weight greater than 0 with er, either directly or indirectly via any number of intermediate event
resources. If any of these event resources is preassigned, then the singleton resource groups
containing the preassigned resources are intersected along with the other groups. The same is
true of KheEventResourceHardAndSoftDomain, except that both hard and soft prefer resources
and avoid split assignments constraints are used, producing smaller domains in general.

These functions are not recommended for use when solving, since KheTaskTreeMake offers
a more sophisticated way of initializing the domains of tasks. KheEventResourceHardDomain

is used when deciding whether events are similar.

Formerly at this point a function called KheEventResourceEquivalent was introduced,
which returned true when two given event resources are equivalent, in the sense that they lie
in the same events and are monitored by similar constraints. This function has been withdrawn,
because multi-tasks (Section 11.9) now do the same job rather better.

Function

void KheEventResourceDebug(KHE_EVENT_RESOURCE er, int verbosity,
int indent, FILE *fp);

produces a debug print of er onto fp with the given verbosity and indent, in the usual way.

3.6.4. Event resource groups

An event resource group is created and added to an event by the call

KHE_EVENT_RESOURCE_GROUP KheEventResourceGroupMake(KHE_EVENT event,
KHE_RESOURCE_GROUP rg);

Its attributes may be retrieved by calling

3.6. Events 41

KHE_EVENT KheEventResourceGroupEvent(KHE_EVENT_RESOURCE_GROUP erg);
KHE_RESOURCE_GROUP KheEventResourceGroupResourceGroup(
KHE_EVENT_RESOURCE_GROUP erg);

In addition to making a new event resource group object, KheEventResourceGroupMake

calls KheEventResourceMake once for each resource of rg, with the resource for its
preassigned_resource parameter and the obvious values for its other parameters. This satisfies
the semantic requirement that adding a resource group should be just like adding its resources
individually. These added event resources appear on the list of event resources of the event just
like other event resources; they can be distinguished from them only by calling

KHE_EVENT_RESOURCE_GROUP KheEventResourceEventResourceGroup(
KHE_EVENT_RESOURCE er);

which returns the event resource group that caused er to be created when there is one, and NULL

when er was created directly. For example, when printing XML files, KHE calls this function
once for each event resource, to decide whether it should be printed explicitly or omitted because
it is part of an event resource group. Function

void KheEventResourceGroupDebug(KHE_EVENT_RESOURCE_GROUP erg,
int verbosity, int indent, FILE *fp);

produces a debug print of erg onto fp with the given verbosity and indent, in the usual way.

3.7. Constraints

Some attributes of constraints are common to all kinds of constraints; others vary from one kind
of constraint to another. Accordingly, KHE offers type KHE_CONSTRAINT, which is the abstract
supertype of all kinds of constraints, and one subtype of this type for each kind of constraint.

To set and retrieve the back pointer of a constraint object, call

void KheConstraintSetBack(KHE_CONSTRAINT c, void *back);
void *KheConstraintBack(KHE_CONSTRAINT c);

as usual. To retrieve the other attributes common to all kinds of constraints, use functions

KHE_INSTANCE KheConstraintInstance(KHE_CONSTRAINT c);
char *KheConstraintId(KHE_CONSTRAINT c);
char *KheConstraintName(KHE_CONSTRAINT c);
bool KheConstraintRequired(KHE_CONSTRAINT c);
int KheConstraintWeight(KHE_CONSTRAINT c);
KHE_COST KheConstraintCombinedWeight(KHE_CONSTRAINT c);
KHE_COST_FUNCTION KheConstraintCostFunction(KHE_CONSTRAINT c);
int KheConstraintIndex(KHE_CONSTRAINT c);
KHE_CONSTRAINT_TAG KheConstraintTag(KHE_CONSTRAINT c);

KheConstraintInstance returns the instance; KheConstraintId and KheConstraintName

return the constraint’s Id and Name (as usual, these are optional in KHE, needed only when
writing XML). KheConstraintRequired is true when the Required attribute is true.

42 Chapter 3. Instances

KheConstraintWeight is the weight given to violations of the constraint. As explained
in Section 6.1, KheConstraintCombinedWeight is similar, except that hard constraints are
weighted more heavily; KHE_COST is also defined there. KheConstraintCostFunction is the
cost function used when calculating the cost of deviations, of type

typedef enum {
KHE_STEP_COST_FUNCTION,
KHE_LINEAR_COST_FUNCTION,
KHE_QUADRATIC_COST_FUNCTION

} KHE_COST_FUNCTION;

KheConstraintIndex returns an automatically generated index number for c: 0 for the first
constraint created, 1 for the second, and so on. KheConstraintTag is the type tag which
determines which concrete kind of constraint this is, with type

typedef enum {
KHE_ASSIGN_RESOURCE_CONSTRAINT_TAG,
KHE_ASSIGN_TIME_CONSTRAINT_TAG,
KHE_SPLIT_EVENTS_CONSTRAINT_TAG,
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT_TAG,
KHE_PREFER_RESOURCES_CONSTRAINT_TAG,
KHE_PREFER_TIMES_CONSTRAINT_TAG,
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT_TAG,
KHE_SPREAD_EVENTS_CONSTRAINT_TAG,
KHE_LINK_EVENTS_CONSTRAINT_TAG,
KHE_ORDER_EVENTS_CONSTRAINT_TAG,
KHE_AVOID_CLASHES_CONSTRAINT_TAG,
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_IDLE_TIMES_CONSTRAINT_TAG,
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_BUSY_TIMES_CONSTRAINT_TAG,
KHE_LIMIT_WORKLOAD_CONSTRAINT_TAG,
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT_TAG,
KHE_LIMIT_RESOURCES_CONSTRAINT_TAG,
KHE_CONSTRAINT_TAG_COUNT

} KHE_CONSTRAINT_TAG;

The last value is not a valid tag; it counts the number of constraints, allowing code of the form

for(tag = 0; tag < KHE_CONSTRAINT_TAG_COUNT; tag++)
...

to be written which visits every tag, now and in the future.

The number of points of application of a constraint is returned by

int KheConstraintAppliesToCount(KHE_CONSTRAINT c);

For an assign resource constraint this is the total number of event resources; for a split events
constraint it is the total number of events plus the sizes of the event groups; and so on.

Given a tag, one can obtain a string representation of the constraint name by calling

3.7. Constraints 43

char *KheConstraintTagShow(KHE_CONSTRAINT_TAG tag);
char *KheConstraintTagShowSpaced(KHE_CONSTRAINT_TAG tag);

The first returns an unspaced form ("AssignResourceConstraint" and so on), the second
returns a spaced form ("Assign Resource Constraint" and so on). There is also

KHE_CONSTRAINT_TAG KheStringToConstraintTag(char *str);

which implements the inverse function, from unspaced constraint names to constraint tags, and

char *KheCostFunctionShow(KHE_COST_FUNCTION cf);

which returns a cost function’s string representation, and

void KheConstraintDebug(KHE_CONSTRAINT c, int verbosity,
int indent, FILE *fp);

which produces a debug print of c onto fp with the given verbosity and indent. This just calls
the appropriate debug function for the downcast value: KheAssignResourceConstraintDebug,
KheAssignTimeConstraintDebug, and so on.

The names of the concrete subtypes themselves are

KHE_ASSIGN_RESOURCE_CONSTRAINT
KHE_ASSIGN_TIME_CONSTRAINT
KHE_SPLIT_EVENTS_CONSTRAINT
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KHE_PREFER_RESOURCES_CONSTRAINT
KHE_PREFER_TIMES_CONSTRAINT
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KHE_SPREAD_EVENTS_CONSTRAINT
KHE_LINK_EVENTS_CONSTRAINT
KHE_ORDER_EVENTS_CONSTRAINT
KHE_AVOID_CLASHES_CONSTRAINT
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KHE_LIMIT_IDLE_TIMES_CONSTRAINT
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT
KHE_LIMIT_BUSY_TIMES_CONSTRAINT
KHE_LIMIT_WORKLOAD_CONSTRAINT
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT
KHE_LIMIT_RESOURCES_CONSTRAINT

Downcasting and upcasting between KHE_CONSTRAINT and each of these subtypes, using C casts,
is a normal part of the use of KHE. Alternatively, since C casts can also be used for unsafe things,
explicit functions are offered for upcasting:

44 Chapter 3. Instances

KHE_CONSTRAINT KheFromAssignResourceConstraint(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_CONSTRAINT KheFromAssignTimeConstraint(
KHE_ASSIGN_TIME_CONSTRAINT c);

KHE_CONSTRAINT KheFromSplitEventsConstraint(
KHE_SPLIT_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromDistributeSplitEventsConstraint(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromPreferResourcesConstraint(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_CONSTRAINT KheFromPreferTimesConstraint(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidSplitAssignmentsConstraint(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromSpreadEventsConstraint(
KHE_SPREAD_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromLinkEventsConstraint(
KHE_LINK_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromOrderEventsConstraint(
KHE_ORDER_EVENTS_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidClashesConstraint(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_CONSTRAINT KheFromAvoidUnavailableTimesConstraint(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitIdleTimesConstraint(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromClusterBusyTimesConstraint(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitBusyTimesConstraint(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitWorkloadConstraint(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitActiveIntervalsConstraint(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_CONSTRAINT KheFromLimitResourcesConstraint(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

and for downcasting:

3.7. Constraints 45

KHE_ASSIGN_RESOURCE_CONSTRAINT
KheToAssignResourceConstraint(KHE_CONSTRAINT c);

KHE_ASSIGN_TIME_CONSTRAINT
KheToAssignTimeConstraint(KHE_CONSTRAINT c);

KHE_SPLIT_EVENTS_CONSTRAINT
KheToSplitEventsConstraint(KHE_CONSTRAINT c);

KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KheToDistributeSplitEventsConstraint(KHE_CONSTRAINT c);

KHE_PREFER_RESOURCES_CONSTRAINT
KheToPreferResourcesConstraint(KHE_CONSTRAINT c);

KHE_PREFER_TIMES_CONSTRAINT
KheToPreferTimesConstraint(KHE_CONSTRAINT c);

KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KheToAvoidSplitAssignmentsConstraint(KHE_CONSTRAINT c);

KHE_SPREAD_EVENTS_CONSTRAINT
KheToSpreadEventsConstraint(KHE_CONSTRAINT c);

KHE_LINK_EVENTS_CONSTRAINT
KheToLinkEventsConstraint(KHE_CONSTRAINT c);

KHE_ORDER_EVENTS_CONSTRAINT
KheToOrderEventsConstraint(KHE_CONSTRAINT c);

KHE_AVOID_CLASHES_CONSTRAINT
KheToAvoidClashesConstraint(KHE_CONSTRAINT c);

KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KheToAvoidUnavailableTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_IDLE_TIMES_CONSTRAINT
KheToLimitIdleTimesConstraint(KHE_CONSTRAINT c);

KHE_CLUSTER_BUSY_TIMES_CONSTRAINT
KheToClusterBusyTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_BUSY_TIMES_CONSTRAINT
KheToLimitBusyTimesConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_WORKLOAD_CONSTRAINT
KheToLimitWorkloadConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT
KheToLimitActiveIntervalsConstraint(KHE_CONSTRAINT c);

KHE_LIMIT_RESOURCES_CONSTRAINT
KheToLimitResourcesConstraint(KHE_CONSTRAINT c);

The downcasting functions check that their parameter is of the correct type, and abort if not.

3.7.1. Assign resource constraints

An assign resource constraint is created and added to an instance by

bool KheAssignResourceConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_ASSIGN_RESOURCE_CONSTRAINT *c);

This accepts the attributes common to all constraints, followed by an optional role, which is

46 Chapter 3. Instances

specific to this kind of constraint. As usual, if successful it returns true, setting *c to the new
constraint; if not (which can only be because id is non-NULL and equal to the Id of an existing
constraint of ins), then it returns false, setting *c to NULL.

The attributes common to all kinds of constraints may be retrieved by upcasting to
KHE_CONSTRAINT and calling the relevant operations on that type. The attribute specific to assign
resources constraints may be retrieved by calling

char *KheAssignResourceConstraintRole(KHE_ASSIGN_RESOURCE_CONSTRAINT c);

Initially the constraint has no points of application. There are two ways to add them. The first
is to give NULL for role, then add the event resources that this constraint applies to by calling

void KheAssignResourceConstraintAddEventResource(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT_RESOURCE er);

as often as necessary. It is an error to call this function when er contains a preassigned resource,
since assign resource constraints do not apply to event resources with preassigned resources. To
visit the event resources of c, call

int KheAssignResourceConstraintEventResourceCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT_RESOURCE KheAssignResourceConstraintEventResource(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

as usual.

The second way to add event resources, used when reading XML files, is to give a non-NULL
value for role, then add events and event groups. To add events and visit them, the calls are

void KheAssignResourceConstraintAddEvent(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT e);

int KheAssignResourceConstraintEventCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT KheAssignResourceConstraintEvent(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

To add event groups and visit them, the calls are

void KheAssignResourceConstraintAddEventGroup(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheAssignResourceConstraintEventGroupCount(
KHE_ASSIGN_RESOURCE_CONSTRAINT c);

KHE_EVENT_GROUP KheAssignResourceConstraintEventGroup(
KHE_ASSIGN_RESOURCE_CONSTRAINT c, int i);

When this is done, KHE stores the events and event groups in the constraint so that they can be
written out again correctly later, but it also works out which event resources the constraint applies
to and calls KheAssignResourceConstraintAddEventResource for each of them, taking due
note of the XML rule that it does not apply when an event does not contain an event resource
with the specified role, or when such an event resource has a preassigned resource.

3.7. Constraints 47

Function

void KheAssignResourceConstraintDebug(KHE_ASSIGN_RESOURCE_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the assign resources constraints of an instance (Section 3.3) is
their number of their points of application divided by the number of event resources without
preassigned resources.

3.7.2. Assign time constraints

An assign time constraint is created and added to an instance by

bool KheAssignTimeConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_ASSIGN_TIME_CONSTRAINT *c);

As usual, if successful it returns true, setting *c to the new constraint; if not (which can only
be because id is non-NULL and equal to the Id of an existing constraint of ins), then it returns
false, setting *c to NULL. The attributes may be retrieved by upcasting to KHE_CONSTRAINT and
calling the relevant operations on that type.

The points of application of an assign time constraint are events, and the XML file allows
them to be given individually and in groups. To add individual events and visit them, call

void KheAssignTimeConstraintAddEvent(KHE_ASSIGN_TIME_CONSTRAINT c,
KHE_EVENT e);

int KheAssignTimeConstraintEventCount(KHE_ASSIGN_TIME_CONSTRAINT c);
KHE_EVENT KheAssignTimeConstraintEvent(KHE_ASSIGN_TIME_CONSTRAINT c,
int i);

To add groups of events and visit them, call

void KheAssignTimeConstraintAddEventGroup(KHE_ASSIGN_TIME_CONSTRAINT c,
KHE_EVENT_GROUP eg);

int KheAssignTimeConstraintEventGroupCount(
KHE_ASSIGN_TIME_CONSTRAINT c);

KHE_EVENT_GROUP KheAssignTimeConstraintEventGroup(
KHE_ASSIGN_TIME_CONSTRAINT c, int i);

The XML specification states that assign time constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function

void KheAssignTimeConstraintDebug(KHE_ASSIGN_TIME_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

48 Chapter 3. Instances

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the assign times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.3. Split events constraints

A split events constraint is created and added to an instance by

bool KheSplitEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int min_duration, int max_duration, int min_amount,
int max_amount, KHE_SPLIT_EVENTS_CONSTRAINT *c);

in the usual way. Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and
calling the relevant operation on that type. The exceptions are

int KheSplitEventsConstraintMinDuration(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMaxDuration(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMinAmount(KHE_SPLIT_EVENTS_CONSTRAINT c);
int KheSplitEventsConstraintMaxAmount(KHE_SPLIT_EVENTS_CONSTRAINT c);

which return the various attributes specific to split events constraints.

The points of application are events, and, as for assign time constraints, these may be added
and visited individually:

void KheSplitEventsConstraintAddEvent(KHE_SPLIT_EVENTS_CONSTRAINT c,
KHE_EVENT e);

int KheSplitEventsConstraintEventCount(KHE_SPLIT_EVENTS_CONSTRAINT c);
KHE_EVENT KheSplitEventsConstraintEvent(KHE_SPLIT_EVENTS_CONSTRAINT c,
int i);

and also in groups:

void KheSplitEventsConstraintAddEventGroup(
KHE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheSplitEventsConstraintEventGroupCount(
KHE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheSplitEventsConstraintEventGroup(
KHE_SPLIT_EVENTS_CONSTRAINT c, int i);

All the events are linked to the constraint, unlike for assign time constraints.

Function

void KheSplitEventsConstraintDebug(KHE_SPLIT_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the split events constraints of an instance (Section 3.3) is their
number of points of application divided by the total number of events.

3.7. Constraints 49

3.7.4. Distribute split events constraints

A distribute split events constraint is created and added to an instance by

bool KheDistributeSplitEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int duration, int minimum, int maximum,
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT *c);

in the usual way. Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and
calling the relevant operation on that type. The exceptions are

int KheDistributeSplitEventsConstraintDuration(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

int KheDistributeSplitEventsConstraintMinimum(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

int KheDistributeSplitEventsConstraintMaximum(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

which return the various attributes specific to distribute split events constraints.

The points of application are events, and, as for split events constraints, these may be added
and visited individually:

void KheDistributeSplitEventsConstraintAddEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT e);

int KheDistributeSplitEventsConstraintEventCount(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT KheDistributeSplitEventsConstraintEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, int i);

and also in groups:

void KheDistributeSplitEventsConstraintAddEventGroup(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheDistributeSplitEventsConstraintEventGroupCount(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheDistributeSplitEventsConstraintEventGroup(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c, int i);

All the events are linked to the constraint.

Function

void KheDistributeSplitEventsConstraintDebug(
KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the distribute split events constraints of an instance (Section 3.3)
is their number of points of application divided by the total number of events.

50 Chapter 3. Instances

3.7.5. Prefer resources constraints

A prefer resources constraint is created and added to an instance by

bool KhePreferResourcesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_PREFER_RESOURCES_CONSTRAINT *c);

As usual, the only reason for returning false is that id is non-NULL and there is already a
constraint in ins with this id. Most of the attributes may be retrieved by upcasting to
KHE_CONSTRAINT and calling the relevant operations on that type; the exception is role, which
is retrieved by calling

char *KhePreferResourcesConstraintRole(KHE_PREFER_RESOURCES_CONSTRAINT c);

since it is specific to this constraint type.

In the XML specification, the resources that make up the domain of the constraint may be
added in groups or individually. To add them in groups, and to visit the groups, call

bool KhePreferResourcesConstraintAddResourceGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KhePreferResourcesConstraintResourceGroupCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_RESOURCE_GROUP KhePreferResourcesConstraintResourceGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

The bool result type of KhePreferResourcesConstraintAddResourceGroup (and other func-
tions below) is explained at the end of this section. To add and visit resources individually, call

bool KhePreferResourcesConstraintAddResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_RESOURCE r);

int KhePreferResourcesConstraintResourceCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_RESOURCE KhePreferResourcesConstraintResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

After the instance is complete, but not before, function

KHE_RESOURCE_GROUP KhePreferResourcesConstraintDomain(
KHE_PREFER_RESOURCES_CONSTRAINT c);

returns the domain of c as a single resource group. If exactly one resource group or one resource
was added, this resource group will be that resource group or the automatically created singleton
resource group for that resource; otherwise it will be created by taking the union of everything
added. This resource group may be used like any other, except for a problem in one special case:
when no resource groups or resources are added, the domain is not only an empty resource group
but also has a NULL resource type.

There is also

3.7. Constraints 51

KHE_RESOURCE_GROUP KheLimitResourcesConstraintDomainComplement(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

which returns the complement of the domain, that is, the set of resources of the same type as the
domain that are not in it. This will not work when c’s domain is empty.

The points of application of prefer resources constraints are event resources, and they
are handled in the same way as for assign resource constraints. That is, one can load the event
resources directly by having a NULL value for role and calling

bool KhePreferResourcesConstraintAddEventResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT_RESOURCE er);

int KhePreferResourcesConstraintEventResourceCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT_RESOURCE KhePreferResourcesConstraintEventResource(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

or load them indirectly by loading events:

bool KhePreferResourcesConstraintAddEvent(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT e);

int KhePreferResourcesConstraintEventCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT KhePreferResourcesConstraintEvent(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

and event groups:

bool KhePreferResourcesConstraintAddEventGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, KHE_EVENT_GROUP eg,
KHE_EVENT *problem_event);

int KhePreferResourcesConstraintEventGroupCount(
KHE_PREFER_RESOURCES_CONSTRAINT c);

KHE_EVENT_GROUP KhePreferResourcesConstraintEventGroup(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

When KhePreferResourcesConstraintAddEventGroup returns false, problem_event is set
to the first event that caused the problem. The rules for skipping inappropriate events are as for
assign resource constraints.

The resources, resource groups, and event resources of a prefer resources constraint all have
a resource type attribute. All these resources types must be equal. This is why the operations
above for adding a resource, resource group, event resource, event, or event group all have a bool
result type: they all return false and add nothing if the operation would add an entity with a
different resource type from something added previously.

Function

void KhePreferResourcesConstraintDebug(KHE_PREFER_RESOURCES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

52 Chapter 3. Instances

The constraint density of prefer resources constraints (Section 3.3) is the number of points
of application divided by the number of event resources without preassigned resources.

3.7.6. Prefer times constraints

A prefer times constraint is created and added to an instance by

bool KhePreferTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int duration, KHE_PREFER_TIMES_CONSTRAINT *c);

As usual, the only possible reason for returning false is that id is non-NULL and there is already a
constraint in ins with this id. A duration is optional; to not give one (meaning that the constraint
applies for all durations), use the special value KHE_ANY_DURATION, a synonym for 0.

Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the
relevant operations on that type; the exception is duration, which is retrieved by calling

int KhePreferTimesConstraintDuration(KHE_PREFER_TIMES_CONSTRAINT c);

since it is specific to this constraint type.

In the XML specification, the times that make up the domain of the constraint may be added
in groups or individually. To add them in groups, and to visit the groups, call

void KhePreferTimesConstraintAddTimeGroup(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KhePreferTimesConstraintTimeGroupCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KhePreferTimesConstraintTimeGroup(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

To add and visit times individually, call

void KhePreferTimesConstraintAddTime(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_TIME t);

int KhePreferTimesConstraintTimeCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_TIME KhePreferTimesConstraintTime(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

After the instance is complete, but not before, function

KHE_TIME_GROUP KhePreferTimesConstraintDomain(
KHE_PREFER_TIMES_CONSTRAINT c);

returns the domain of c as a single time group. If exactly one time group or one time was added,
this time group will be that time group or the automatically created singleton time group for that
time; otherwise it will be created by taking the union of everything added. This time group may
be used like any other.

The points of application of prefer times constraints are events, and they can be added and

3.7. Constraints 53

visited individually:

void KhePreferTimesConstraintAddEvent(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_EVENT e);

int KhePreferTimesConstraintEventCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_EVENT KhePreferTimesConstraintEvent(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

or in groups:

void KhePreferTimesConstraintAddEventGroup(
KHE_PREFER_TIMES_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KhePreferTimesConstraintEventGroupCount(
KHE_PREFER_TIMES_CONSTRAINT c);

KHE_EVENT_GROUP KhePreferTimesConstraintEventGroup(
KHE_PREFER_TIMES_CONSTRAINT c, int i);

The XML specification states that prefer times constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function

void KhePreferTimesConstraintDebug(KHE_PREFER_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the prefer times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.7. Avoid split assignments constraints

An avoid split assignments constraint is created and added to an instance by

bool KheAvoidSplitAssignmentsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT *c);

As usual, the attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the
relevant operation on that type, except that to retrieve the role attribute the call is

char *KheAvoidSplitAssignmentsConstraintRole(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

The role attribute may be NULL.

The handling of the points of application of an avoid split assignments constraint is
somewhat complex, because one point of application is fundamentally a set of event resources
(the XML file identifies each set by an event group and a role), so that the points of application

54 Chapter 3. Instances

overall form a set of sets of event resources. We will first explain how to add these points of
application when reading an XML file, and then how to do it directly.

When reading an XML file, a non-NULL role is passed, and then each event group is added
in the usual way. To add an event group and to visit the event groups, the calls are

bool KheAvoidSplitAssignmentsConstraintAddEventGroup(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, KHE_EVENT_GROUP eg,
KHE_EVENT *problem_event);

int KheAvoidSplitAssignmentsConstraintEventGroupCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheAvoidSplitAssignmentsConstraintEventGroup(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int i);

Behind the scenes, the appropriate event resources are retrieved from the events of each event
group and added automatically, so that nothing further needs to be done. A false result
returned by KheAvoidSplitAssignmentsConstraintAddEventGroup indicates that one of the
events of eg does not contain an event resource with the required non-NULL role. In this case,

*problem_event will contain the first event of eg with this problem on return.

When the instance is not derived from an XML file it may be more convenient to add
event resources directly. For the sake of this case, role may be NULL, and the eg parameter of
KheAvoidSplitAssignmentsConstraintAddEventGroup may also be NULL. If either is NULL,
event resources are not added automatically.

To add event resources manually, and to visit event resources (whether added automatically
or manually), the calls are

void KheAvoidSplitAssignmentsConstraintAddEventResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index,
KHE_EVENT_RESOURCE er);

int KheAvoidSplitAssignmentsConstraintEventResourceCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index);

KHE_EVENT_RESOURCE KheAvoidSplitAssignmentsConstraintEventResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c, int eg_index, int er_index);

These functions add an event resource to the eg_index’th point of application of c, return the
number of event resources at that point, and return the er_index’th event resource at that point.
They define the required set of sets of event resources.

Usually, constraints are added to the instance and to the entities they apply to. For avoid
split assignments constraints this would mean adding the constraint to the instance and the event
groups. This is done, but, for convenience, each avoid split assignments constaint is also added
to each of its event resources.

Function

void KheAvoidSplitAssignmentsConstraintDebug(
KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

3.7. Constraints 55

The constraint density (Section 3.3) is the number of event resources in all points of
application divided by the number of event resources without preassigned resources.

3.7.8. Spread events constraints

A spread events constraint is created and added to an instance by

bool KheSpreadEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_SPREAD ts, KHE_SPREAD_EVENTS_CONSTRAINT *c);

where type KHE_TIME_SPREAD is explained below. Most of the attributes may be retrieved by
upcasting to KHE_CONSTRAINT and calling the relevant operation on that type. The exception is

KHE_TIME_SPREAD KheSpreadEventsConstraintTimeSpread(
KHE_SPREAD_EVENTS_CONSTRAINT c);

which returns the time spread. Type KHE_TIME_SPREAD is an object which describes the time
groups that the constraint requires the event group to spread through, and the limits on the
number of events that may touch each time group. Time spread objects are immutable, and may
be shared among any number of constraints. To create a time spread object, call

KHE_TIME_SPREAD KheTimeSpreadMake(KHE_INSTANCE ins);

Initially this has no time groups. To add them, call

void KheTimeSpreadAddLimitedTimeGroup(KHE_TIME_SPREAD ts,
KHE_LIMITED_TIME_GROUP ltg);

repeatedly. To retrieve the limited time groups of a time spread, call

int KheTimeSpreadLimitedTimeGroupCount(KHE_TIME_SPREAD lts);
KHE_LIMITED_TIME_GROUP KheTimeSpreadLimitedTimeGroup(
KHE_TIME_SPREAD lts, int i);

An object of type KHE_LIMITED_TIME_GROUP contains what one element of a time spread needs:
a time group plus a minimum and maximum number of events. It may be created by calling

KHE_LIMITED_TIME_GROUP KheLimitedTimeGroupMake(KHE_TIME_GROUP tg,
int minimum, int maximum);

and functions

KHE_TIME_GROUP KheLimitedTimeGroupTimeGroup(KHE_LIMITED_TIME_GROUP ltg);
int KheLimitedTimeGroupMinimum(KHE_LIMITED_TIME_GROUP ltg);
int KheLimitedTimeGroupMaximum(KHE_LIMITED_TIME_GROUP ltg);

retrieve its attributes.

Two other operations on time spreads, available only after the instance is complete, provide
information that may be useful to solvers:

56 Chapter 3. Instances

bool KheTimeSpreadTimeGroupsDisjoint(KHE_TIME_SPREAD ts);
bool KheTimeSpreadCoversWholeCycle(KHE_TIME_SPREAD ts);

KheTimeSpreadTimeGroupsDisjoint returns true when the time groups of ts’s limited time
groups are pairwise disjoint. KheTimeSpreadCoversWholeCycle returns true when every time
of the cycle appears in at least one of the time groups of ts’s limited time groups.

Spread events apply to event groups; the operations for adding and visiting them are

void KheSpreadEventsConstraintAddEventGroup(
KHE_SPREAD_EVENTS_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheSpreadEventsConstraintEventGroupCount(
KHE_SPREAD_EVENTS_CONSTRAINT c);

KHE_EVENT_GROUP KheSpreadEventsConstraintEventGroup(
KHE_SPREAD_EVENTS_CONSTRAINT c, int i);

as usual.

Function

void KheSpreadEventsConstraintDebug(KHE_SPREAD_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the spread events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.9. Link events constraints

A link events constraint is created and added to an instance by

bool KheLinkEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_LINK_EVENTS_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the relevant
operation on that type. One point of application of a link events constraint is an event group; one
constraint may contain any number of these. The operations for adding them are

void KheLinkEventsConstraintAddEventGroup(KHE_LINK_EVENTS_CONSTRAINT c,
KHE_EVENT_GROUP eg);

int KheLinkEventsConstraintEventGroupCount(KHE_LINK_EVENTS_CONSTRAINT c);
KHE_EVENT_GROUP KheLinkEventsConstraintEventGroup(

KHE_LINK_EVENTS_CONSTRAINT c, int i);

as usual.

Function

void KheLinkEventsConstraintDebug(KHE_LINK_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

3.7. Constraints 57

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the link events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.10. Order events constraints

An order events constraint is created and added to an instance by

bool KheOrderEventsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_ORDER_EVENTS_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the relevant
operation on that type.

One point of application of an order events constraint is a pair of instance events, together
with integer minimum and maximum separations. To add one point of application, call

void KheOrderEventsConstraintAddEventPair(KHE_ORDER_EVENTS_CONSTRAINT c,
KHE_EVENT first_event, KHE_EVENT second_event, int min_separation,
int max_separation);

Both min_separation and max_separation must be non-negative. Infinity, the default value
of max_separation in the XML format, is implemented by passing INT_MAX.

To retrieve the number of points of application and the attributes of each, call

int KheOrderEventsConstraintEventPairCount(
KHE_ORDER_EVENTS_CONSTRAINT c);

KHE_EVENT KheOrderEventsConstraintFirstEvent(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

KHE_EVENT KheOrderEventsConstraintSecondEvent(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

int KheOrderEventsConstraintMinSeparation(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

int KheOrderEventsConstraintMaxSeparation(
KHE_ORDER_EVENTS_CONSTRAINT c, int i);

in the usual way. The value of KheOrderEventsConstraintEventPairCount(c) is the same
as the value of KheConstraintAppliesToCount((KHE_CONSTRAINT) c).

Function

void KheOrderEventsConstraintDebug(KHE_ORDER_EVENTS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the order events constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events.

58 Chapter 3. Instances

3.7.11. Avoid clashes constraints

An avoid clashes constraint is created and added to an instance by

bool KheAvoidClashesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_AVOID_CLASHES_CONSTRAINT *c);

as usual. The attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the
relevant operation on that type.

Avoid clashes constraints apply to resource groups and resources. To add and visit resource
groups, the operations are

void KheAvoidClashesConstraintAddResourceGroup(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheAvoidClashesConstraintResourceGroupCount(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheAvoidClashesConstraintResourceGroup(
KHE_AVOID_CLASHES_CONSTRAINT c, int i);

while to add and visit resources the operations are

void KheAvoidClashesConstraintAddResource(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE r);

int KheAvoidClashesConstraintResourceCount(
KHE_AVOID_CLASHES_CONSTRAINT c);

KHE_RESOURCE KheAvoidClashesConstraintResource(
KHE_AVOID_CLASHES_CONSTRAINT c, int i);

These all work in the usual way. There is also

int KheAvoidClashesConstraintResourceOfTypeCount(
KHE_AVOID_CLASHES_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resources of type rt which are points of application of c. In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

Function

void KheAvoidClashesConstraintDebug(KHE_AVOID_CLASHES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the avoid clashes constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.12. Avoid unavailable times constraints

An avoid unavailable times constraint is created and added to an instance by

3.7. Constraints 59

bool KheAvoidUnavailableTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT *c);

in the usual way. To add the resource groups and resources defining the points of application,
and to visit them, call

void KheAvoidUnavailableTimesConstraintAddResourceGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheAvoidUnavailableTimesConstraintResourceGroupCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheAvoidUnavailableTimesConstraintResourceGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

for resource groups and

void KheAvoidUnavailableTimesConstraintAddResource(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheAvoidUnavailableTimesConstraintResourceCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_RESOURCE KheAvoidUnavailableTimesConstraintResource(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

for individual resources. The XML format allows the unavailable times themselves to be defined
by both time groups and times. To add time groups and visit them, call

void KheAvoidUnavailableTimesConstraintAddTimeGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheAvoidUnavailableTimesConstraintTimeGroupCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintTimeGroup(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

To add individual times and visit them, call

void KheAvoidUnavailableTimesConstraintAddTime(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, KHE_TIME t);

int KheAvoidUnavailableTimesConstraintTimeCount(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

KHE_TIME KheAvoidUnavailableTimesConstraintTime(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c, int i);

These functions all work in the usual way. Function

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintUnavailableTimes(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

returns a time group containing the union of the time groups and times of c, and

KHE_TIME_GROUP KheAvoidUnavailableTimesConstraintAvailableTimes(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c);

60 Chapter 3. Instances

returns a time group containing the complement of those times. Both functions may be called
only after construction of the instance is complete. The time groups they return will usually not
have neighbourhoods (Section 3.4.1). This is not likely to cause problems.

Function

void KheAvoidUnavailableTimesConstraintDebug(
KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the avoid unavailable times constraints of an instance (Section
3.3) is the number of points of application divided by the number of resources.

3.7.13. Limit idle times constraints

A limit idle times constraint is created and added to an instance by

bool KheLimitIdleTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int minimum, int maximum, KHE_LIMIT_IDLE_TIMES_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are

int KheLimitIdleTimesConstraintMinimum(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);
int KheLimitIdleTimesConstraintMaximum(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

which are specific to this kind of constraint.

A limit idle times constraint requires time groups, which are added and visited by calling

void KheLimitIdleTimesConstraintAddTimeGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitIdleTimesConstraintTimeGroupCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheLimitIdleTimesConstraintTimeGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

After the instance ends, the following queries are available:

bool KheLimitIdleTimesConstraintTimeGroupsDisjoint(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

bool KheLimitIdleTimesConstraintTimeGroupsCoverWholeCycle(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

They return true when the time groups of c are pairwise disjoint, and when their union covers
the whole cycle.

A limit idle times constraint also requires the resource groups and resources which define
its points of application. Resource groups are added and visited by calling

3.7. Constraints 61

void KheLimitIdleTimesConstraintAddResourceGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitIdleTimesConstraintResourceGroupCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitIdleTimesConstraintResourceGroup(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheLimitIdleTimesConstraintAddResource(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitIdleTimesConstraintResourceCount(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c);

KHE_RESOURCE KheLimitIdleTimesConstraintResource(
KHE_LIMIT_IDLE_TIMES_CONSTRAINT c, int i);

in the usual way.

Function

void KheLimitIdleTimesConstraintDebug(KHE_LIMIT_IDLE_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The constraint density of the limit idle times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.14. Cluster busy times constraints

A cluster busy times constraint is created and added to an instance by

bool KheClusterBusyTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
bool allow_zero, KHE_CLUSTER_BUSY_TIMES_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are

KHE_TIME_GROUP KheClusterBusyTimesConstraintAppliesToTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

int KheClusterBusyTimesConstraintMinimum(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

int KheClusterBusyTimesConstraintMaximum(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

bool KheClusterBusyTimesConstraintAllowZero(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg must be NULL and allow_zero must be false. There is also

62 Chapter 3. Instances

bool KheClusterBusyTimesConstraintLimitBusyRecode(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

It returns true when c is a recoded limit busy times constraint, for which see Section 3.7.15.

After the instance is complete, functions

int KheClusterBusyTimesConstraintAppliesToOffsetCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

int KheClusterBusyTimesConstraintAppliesToOffset(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

may be used to visit the applies-to offsets, or just offsets, of c. If applies_to_tg is NULL, there is
one offset,with value 0. If applies_to_tg is empty, there are no offsets. Otherwise, let t0 be the
first time in applies_to_tg. There is one offset for each time ti in applies_to_tg, including
t0, such that when KheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time
in c, the result is a legal time index.

A cluster busy times constraint requires time groups, which are added and visited by

void KheClusterBusyTimesConstraintAddTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg, KHE_POLARITY po);

int KheClusterBusyTimesConstraintTimeGroupCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheClusterBusyTimesConstraintTimeGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i, int offset, KHE_POLARITY *po);

where type KHE_POLARITY is

typedef enum {
KHE_NEGATIVE,
KHE_POSITIVE

} KHE_POLARITY;

In the high school model, the polarity must be KHE_POSITIVE. When visiting, to get the original
time groups, set offset to 0; to get the time groups being monitored by monitor m, set it to
KheClusterBusyTimesMonitorOffset(m).

Convenience functions

bool KheClusterBusyTimesConstraintAllPositive(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

bool KheClusterBusyTimesConstraintAllNegative(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

return true when all of the time groups added so far have polarity KHE_POSITIVE, or all have
polarity KHE_NEGATIVE. In real instances one of these two functions will usually return true. In
nurse rostering the main exceptions are constraints that implement unwanted patterns. Also,

3.7. Constraints 63

bool KheClusterBusyTimesConstraintTimeGroupsDisjoint(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

bool KheClusterBusyTimesConstraintTimeGroupsCoverWholeCycle(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

return true when the time groups of c are pairwise disjoint, and when their union covers the
whole cycle. These functions should only be called after the instance is complete. Also,

bool KheClusterBusyTimesConstraintRange(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int offset,
KHE_TIME *first_time, KHE_TIME *last_time);

sets *first_time and *last_time to the chronologically first and last times monitored
by c at offset, and returns true. Here offset must be a legal offset (a value returned by
KheClusterBusyTimesConstraintAppliesToOffset above). In the unlikely event of c having
no time groups, the function returns false with *first_time and *last_time set to NULL.

To add the resource groups and resources defining the points of application, use

void KheClusterBusyTimesConstraintAddResourceGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheClusterBusyTimesConstraintResourceGroupCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheClusterBusyTimesConstraintResourceGroup(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

for resource groups and

void KheClusterBusyTimesConstraintAddResource(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheClusterBusyTimesConstraintResourceCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE KheClusterBusyTimesConstraintResource(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int i);

for individual resources. There is also

int KheClusterBusyTimesConstraintResourceOfTypeCount(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resources of type rt which are points of application of c. In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

For employee scheduling only, to add and retrieve a value representing the number of time
groups preceding this constraint, called ai in Jeff Kingston’s paper on history [10], call

void KheClusterBusyTimesConstraintAddHistoryBefore(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int val);

int KheClusterBusyTimesConstraintHistoryBefore(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

When KheClusterBusyTimesConstraintAddHistoryBefore is not called, the value is 0.

64 Chapter 3. Instances

For employee scheduling only, to add and retrieve a value representing the number of time
groups following this constraint, called ci in the history paper, call

void KheClusterBusyTimesConstraintAddHistoryAfter(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, int val);

int KheClusterBusyTimesConstraintHistoryAfter(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c);

When KheClusterBusyTimesConstraintAddHistoryAfter is not called, the value is 0.

For employee scheduling only, to add and retrieve a value for one resource representing the
number of active time groups preceding this constraint, called xi in the history paper, call

void KheClusterBusyTimesConstraintAddHistory(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r, int val);

int KheClusterBusyTimesConstraintHistory(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

When KheClusterBusyTimesConstraintAddHistory is not called for some r, the value is 0.

KHE does not check that resources in history calls are points of application of c. It aborts
if any conflicting history values are received.

Function

void KheClusterBusyTimesConstraintDebug(
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The number of points of application of a cluster busy times constraint c is its total number
of resources multiplied by KheClusterBusyTimesConstraintAppliesToOffsetCount(c) .
The constraint density of the cluster busy times constraints of an instance (Section 3.3) is their
total number of points of application divided by the number of resources in the instance.

Suppose that a cluster busy times constraint requires some resource to be busy for at most
20 out of 28 days. This is the same as requiring the resource to be free for at least 8 out of the 28
days. Here is a general statement of what is going on here, along with a proof.

Theorem. Suppose cluster busy times constraint c has minimum limit a, maximum limit b,
and n time groups. Suppose cluster busy times constraint c′ has minimum limit n − b, maximum
limit n − a, the same hardness, cost function, and weight as c, and the same time groups as c, only
with their polarities reversed. If c has history values ai, xi (one for each resource), and ci, suppose
that c′ has the same ai and ci values as c, but that each of its xi values is changed to ai − xi. Then
in every solution, c and c′ have equal cost.

Proof. The proof depends on the fact that when a time group’s polarity is reversed, so is
its activity. If positive time group g is active, it is busy, so one of its times is busy. If g is made
negative, one of its times is still busy, so it is inactive. If positive time group g is inactive, none of
its times is busy. If g is made negative, still none of its times is busy, so it is active. And so on.

Let S be an arbitrary solution, and suppose that c has k active time groups in S. Then the
deviation of c is

3.7. Constraints 65

d(c) = max(0,a − k,k − b)

But c′ has n − k active time groups in S, because the time groups are the same as in c but their
polarity, and hence their activity as we have seen, is reversed. So the deviation of c′ is

d(c′) = max(0, (n − b) − (n − k), (n − k) − (n − a))

which simplifies to max(0,k − b,a − k) which equals d(c).
When history is present, there are ai time groups preceding the first time group but not

explicitly represented, xi of which are active; and there are ci time groups following the last time
group, again not explicitly represented, whose activity is unknown. When these times groups’
polarities are reversed, there will still be ai time groups preceding the first time group, but now
ai − xi of them will be active; and there will still be ci time groups following the last time group,
whose activity remains unknown.

3.7.15. Limit busy times constraints

A limit busy times constraint is created and added to an instance by

bool KheLimitBusyTimesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
bool allow_zero, KHE_LIMIT_BUSY_TIMES_CONSTRAINT *c);

Most of these attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the
relevant operation on that type. The exceptions are

KHE_TIME_GROUP KheLimitBusyTimesConstraintAppliesToTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

int KheLimitBusyTimesConstraintMinimum(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

int KheLimitBusyTimesConstraintMaximum(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

bool KheLimitBusyTimesConstraintAllowZero(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg must be NULL and allow_zero must be false.

After the instance is complete, functions

int KheLimitBusyTimesConstraintAppliesToOffsetCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

int KheLimitBusyTimesConstraintAppliesToOffset(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

may be used to visit the applies-to offsets, or just offsets, of c. If applies_to_tg is NULL, there is
one offset,with value 0. If applies_to_tg is empty, there are no offsets. Otherwise, let t0 be the
first time in applies_to_tg. There is one offset for each time ti in applies_to_tg, including
t0, such that when KheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time

66 Chapter 3. Instances

in c, the result is a legal time index.

A limit busy times constraint requires time groups, which are added and visited by

void KheLimitBusyTimesConstraintAddTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitBusyTimesConstraintTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_TIME_GROUP KheLimitBusyTimesConstraintTimeGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int offset, int i);

To get the original time groups, set offset to 0; to get the time groups monitored by monitor m,
set it to KheLimitBusyTimesMonitorOffset(m).

After the instance is complete, these two functions may be called:

KHE_TIME_GROUP KheLimitBusyTimesConstraintDomain(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

bool KheLimitBusyTimesConstraintLimitsWholeCycle(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KheLimitBusyTimesConstraintDomain returns the domain of c: the union of its time groups.
It may be used like any time group, except that it may have no neighbourhood (Section 3.4.1).
This function should probably not exist; it is irrelevant to solving, because the limits are applied
to each time group separately. KheLimitBusyTimesConstraintLimitsWholeCycle returns
true when c contains a time group equal to the whole cycle.

A limit busy times constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

void KheLimitBusyTimesConstraintAddResourceGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitBusyTimesConstraintResourceGroupCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitBusyTimesConstraintResourceGroup(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

and individual resources are added and visited by calling

void KheLimitBusyTimesConstraintAddResource(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitBusyTimesConstraintResourceCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c);

KHE_RESOURCE KheLimitBusyTimesConstraintResource(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, int i);

in the usual way. There is also

int KheLimitBusyTimesConstraintResourceOfTypeCount(
KHE_LIMIT_BUSY_TIMES_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resources of type rt which are points of application of c. In practice

3.7. Constraints 67

the resources of one constraint always have the same type, but the rules do not guarantee this.

Function

void KheLimitBusyTimesConstraintDebug(KHE_LIMIT_BUSY_TIMES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The number of points of application of a limit busy times constraint c is its total number
of resources multiplied by KheLimitBusyTimesConstraintAppliesToOffsetCount(c) . The
constraint density of the limit busy times constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

What happens,precisely, is this. For each time group of each limit busy times constraint that
has a minimum limit, a cluster busy times constraint is added to the instance which has the exact
same meaning as the limit busy times constraint does on that time group. (It has a singleton time
group for each time of the time group, and the same limits and cost function.) This constraint
appears on lists of constraints in the usual way, but if the instance is printed out later it is omitted
from the print. Furthermore, when a solution object is created, monitors are created for the
cluster busy times constraints but not for the original limit busy times constraints.

3.7.16. Limit workload constraints

A limit workload constraint is created and added to an instance by

bool KheLimitWorkloadConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
bool allow_zero, KHE_LIMIT_WORKLOAD_CONSTRAINT *c);

Most of these attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the
relevant operation on that type. The exceptions are

KHE_TIME_GROUP KheLimitWorkloadConstraintAppliesToTimeGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

int KheLimitWorkloadConstraintMinimum(KHE_LIMIT_WORKLOAD_CONSTRAINT c);
int KheLimitWorkloadConstraintMaximum(KHE_LIMIT_WORKLOAD_CONSTRAINT c);
bool KheLimitWorkloadConstraintAllowZero(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg must be NULL and allow_zero must be false.

After the instance is complete, functions

int KheLimitWorkloadConstraintAppliesToOffsetCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

int KheLimitWorkloadConstraintAppliesToOffset(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

may be used to visit the applies-to offsets, or just offsets, of c. If applies_to_tg is NULL, there is

68 Chapter 3. Instances

one offset,with value 0. If applies_to_tg is empty, there are no offsets. Otherwise, let t0 be the
first time in applies_to_tg. There is one offset for each time ti in applies_to_tg, including
t0, such that when KheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time
in c, the result is a legal time index.

A limit workload constraint has optional time groups (not permitted in the high school
model), which are added and visited by

void KheLimitWorkloadConstraintAddTimeGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_TIME_GROUP tg);

int KheLimitWorkloadConstraintTimeGroupCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_TIME_GROUP KheLimitWorkloadConstraintTimeGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int offset, int i);

To get the original time groups, set offset to 0; to get the time groups monitored by monitor m, set
it to KheLimitWorkloadMonitorOffset(m). Adding no time groups is semantically equivalent
to adding one time group holding all the times of the instance. So when no time groups are added,
after the instance is finalized, KheLimitWorkloadConstraintTimeGroupCount(c) is 1, and
KheLimitWorkloadConstraintTimeGroup(c, 0, 0) is KheInstanceFullTimeGroup(ins).
Nevertheless, in this special case KheArchiveWrite does not write any time groups.

Also after the instance is complete, these two functions may be called:

KHE_TIME_GROUP KheLimitWorkloadConstraintDomain(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

bool KheLimitWorkloadConstraintLimitsWholeCycle(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KheLimitWorkloadConstraintDomain returns the domain of c: the union of its time groups.
If no time groups were added, it returns the set of all the times in the instance. This time group
may be used like any other, except that it might have no neighbourhood (Section 3.4.1). This
function should probably not exist; it is irrelevant to solving, because the limits are applied to
each time group separately. KheLimitWorkloadConstraintLimitsWholeCycle returns true

when c contains a time group equal to the whole cycle.

A limit workload constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

void KheLimitWorkloadConstraintAddResourceGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitWorkloadConstraintResourceGroupCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitWorkloadConstraintResourceGroup(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

and individual resources are added and visited by calling

3.7. Constraints 69

void KheLimitWorkloadConstraintAddResource(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitWorkloadConstraintResourceCount(
KHE_LIMIT_WORKLOAD_CONSTRAINT c);

KHE_RESOURCE KheLimitWorkloadConstraintResource(
KHE_LIMIT_WORKLOAD_CONSTRAINT c, int i);

in the usual way.

Function

void KheLimitWorkloadConstraintDebug(KHE_LIMIT_WORKLOAD_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The number of points of application of a limit workload constraint c is its total number
of resources multiplied by KheLimitWorkloadConstraintAppliesToOffsetCount(c) . The
constraint density of the limit workload constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

3.7.17. Limit active intervals constraints

Limit active intervals constraints are allowed only with KHE_MODEL_EMPLOYEE_SCHEDULE.
Although they have their own semantics, syntactically they are almost the same as cluster busy
times constraints: the only differences are the change of name and the absence of AllowZero.

A limit active intervals constraint is created and added to an instance by

bool KheLimitActiveIntervalsConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
KHE_TIME_GROUP applies_to_tg, int minimum, int maximum,
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT *c);

Most of the attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the relevant
operation on that type; the exceptions are

KHE_TIME_GROUP KheLimitActiveIntervalsConstraintAppliesToTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

int KheLimitActiveIntervalsConstraintMinimum(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

int KheLimitActiveIntervalsConstraintMaximum(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

which are specific to this kind of constraint.

After the instance is complete, functions

int KheLimitActiveIntervalsConstraintAppliesToOffsetCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

int KheLimitActiveIntervalsConstraintAppliesToOffset(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i);

70 Chapter 3. Instances

may be used to visit the applies-to offsets, or just offsets, of c. If applies_to_tg is NULL, there is
one offset,with value 0. If applies_to_tg is empty, there are no offsets. Otherwise, let t0 be the
first time in applies_to_tg. There is one offset for each time ti in applies_to_tg, including
t0, such that when KheTimeIndex(ti) - KheTimeIndex(t0) is added to the index of each time
in c, the result is a legal time index.

A limit active intervals constraint requires time groups, which are added and visited by

void KheLimitActiveIntervalsConstraintAddTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_TIME_GROUP tg,
KHE_POLARITY po);

int KheLimitActiveIntervalsConstraintTimeGroupCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_TIME_GROUP KheLimitActiveIntervalsConstraintTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i, int offset,
KHE_POLARITY *po);

where type KHE_POLARITY is as for cluster busy times constraints. When visiting, to get the
original time groups, set offset to 0; to get the time groups being monitored by monitor m, set
it to KheLimitActiveIntervalsMonitorOffset(m) .

Convenience functions

bool KheLimitActiveIntervalsConstraintAllPositive(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

bool KheLimitActiveIntervalsConstraintAllNegative(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

return true when all of the time groups added so far have polarity KHE_POSITIVE, or all have
polarity KHE_NEGATIVE. In real instances it is almost certain that one of these will return true.

To add the resource groups and resources defining the points of application, use

void KheLimitActiveIntervalsConstraintAddResourceGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitActiveIntervalsConstraintResourceGroupCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitActiveIntervalsConstraintResourceGroup(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i);

for resource groups and

void KheLimitActiveIntervalsConstraintAddResource(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitActiveIntervalsConstraintResourceCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

KHE_RESOURCE KheLimitActiveIntervalsConstraintResource(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int i);

for individual resources. There is also

3.7. Constraints 71

int KheLimitActiveIntervalsConstraintResourceOfTypeCount(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE_TYPE rt);

which returns the number of resources of type rt which are points of application of c. In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

To add and retrieve a value representing the number of time groups preceding this
constraint, called ai in Jeff Kingston’s paper on history [10], call

void KheLimitActiveIntervalsConstraintAddHistoryBefore(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int val);

int KheLimitActiveIntervalsConstraintHistoryBefore(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

When KheLimitActiveIntervalsConstraintAddHistoryBefore is not called, the value is 0.

To add and retrieve a value representing the number of time groups following this
constraint, called ci in the history paper, call

void KheLimitActiveIntervalsConstraintAddHistoryAfter(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, int val);

int KheLimitActiveIntervalsConstraintHistoryAfter(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c);

When KheLimitActiveIntervalsConstraintAddHistoryAfter is not called, the value is 0.

To add and retrieve a value for one resource representing the number of active time groups
preceding this constraint, called xi in the history paper, call

void KheLimitActiveIntervalsConstraintAddHistory(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE r, int val);

int KheLimitActiveIntervalsConstraintHistory(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c, KHE_RESOURCE r);

When KheLimitActiveIntervalsConstraintAddHistory is not called for r, the value is 0.

KHE does not check that resources in history calls are points of application of c. It aborts
if a history value is given twice in the same constraint.

Function

void KheLimitActiveIntervalsConstraintDebug(
KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The number of points of application of a limit active intervals constraint c is its number
of resources times KheLimitActiveIntervalsConstraintAppliesToOffsetCount(c) . The
constraint density of the limit active intervals constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

72 Chapter 3. Instances

3.7.18. Limit resources constraints

Limit resources constraints are allowed only with KHE_MODEL_EMPLOYEE_SCHEDULE.

A limit resources constraint is created and added to an instance by

bool KheLimitResourcesConstraintMake(KHE_INSTANCE ins, char *id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int minimum, int maximum, KHE_LIMIT_RESOURCES_CONSTRAINT *c);

Most of these attributes may be retrieved by upcasting to KHE_CONSTRAINT and calling the
relevant operation on that type; the exceptions are

int KheLimitResourcesConstraintMinimum(KHE_LIMIT_RESOURCES_CONSTRAINT c);
int KheLimitResourcesConstraintMaximum(KHE_LIMIT_RESOURCES_CONSTRAINT c);

which are specific to this kind of constraint. These values are optional in XESTT files; a missing
minimum is represented by 0, and a missing maximum is represented by INT_MAX.

To add and visit the resource groups and resources required by this constraint, call

bool KheLimitResourcesConstraintAddResourceGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, KHE_RESOURCE_GROUP rg);

int KheLimitResourcesConstraintResourceGroupCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

KHE_RESOURCE_GROUP KheLimitResourcesConstraintResourceGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

and

bool KheLimitResourcesConstraintAddResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, KHE_RESOURCE r);

int KheLimitResourcesConstraintResourceCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

KHE_RESOURCE KheLimitResourcesConstraintResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

After the instance has ended, function

KHE_RESOURCE_GROUP KheLimitResourcesConstraintDomain(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

returns a resource group containing the union of all these resource groups and resources (which
must all have the same type). There is also

KHE_RESOURCE_GROUP KheLimitResourcesConstraintDomainComplement(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

which returns the complement of the domain, that is, the set of resources of the same type as the
domain that are not in it.

To add and visit the event groups which are this constraint’s points of application, call

3.7. Constraints 73

void KheLimitResourcesConstraintAddEventGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, KHE_EVENT_GROUP eg);

int KheLimitResourcesConstraintEventGroupCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

KHE_EVENT_GROUP KheLimitResourcesConstraintEventGroup(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

XESTT also allows individual events to be given, interpreted as singleton event groups. When
KHE reads an XESTT file, an individual event e is added by a call to

KheLimitResourcesConstraintAddEventGroup(c, KheEventSingletonEventGroup(e));

When KHE writes an XESTT file, it makes two passes over the list of event groups, first writing
all event groups whose number of events is not 1, then writing all event groups whose number
of events is 1, the latter written as individual events rather than as event groups.

To add and visit the roles of the constraint, call

void KheLimitResourcesConstraintAddRole(
KHE_LIMIT_RESOURCES_CONSTRAINT c, char *role);

int KheLimitResourcesConstraintRoleCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c);

char *KheLimitResourcesConstraintRole(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int i);

In practice, these should all be distinct, but no-one is checking.

Although the points of application are described as event groups, at the implementation
level they are really sets of event resources. There is a way to bypass event groups and roles
and create these sets of event resources directly. First, to create one point of application, call
KheLimitResourcesConstraintAddEventGroup with NULL for the event group. Then call

void KheLimitResourcesConstraintAddEventResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int eg_index, KHE_EVENT_RESOURCE er);

to add an event resources to the eg_index’th point of application. Instances containing points
of application created in this way cannot be written.

To visit the event resources of the eg_index’th point of application, call

int KheLimitResourcesConstraintEventResourceCount(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int eg_index);

KHE_EVENT_RESOURCE KheLimitResourcesConstraintEventResource(
KHE_LIMIT_RESOURCES_CONSTRAINT c, int eg_index, int er_index);

Before the instance ends, these functions only visit the event resources added by
KheLimitResourcesConstraintAddEventResource . After the instance ends, they also visit
the event resources defined by the event group (if present) and roles.

Function

void KheLimitResourcesConstraintDebug(KHE_LIMIT_RESOURCES_CONSTRAINT c,
int verbosity, int indent, FILE *fp);

74 Chapter 3. Instances

produces a debug print of c onto fp with the given verbosity and indent, in the usual way.

The number of points of application of a limit resources constraint is its number of event
groups. The constraint density of the limit resources constraints of an instance is the number
of event resources in all points of application divided by the number of event resources without
preassigned resources.

Chapter 4. Solutions

4.1. Overview

A solution is represented by an object of type KHE_SOLN (‘solution’is always abbreviated to ‘soln’
in the KHE interface). Any number of solutions may exist and be operated on simultaneously.
Instances are immutable after creation, and operations that change instances only assemble them,
they do not disassemble them. In contrast, each operation that changes a solution is paired with
one that changes it back. This supports not just the assembly of a fixed solution, such as one read
from a file, but also the changes and testing of alternatives needed when solving an instance.

Within each solution are KHE_MEET objects representing meets (also called split events or
sub-events), each of which may be assigned a time, and KHE_TASK objects representing the re-
source elements of meets, each of which may be assigned a resource. Although most meets are
derived from events and most tasks are derived from event resources, these derivations are op-
tional. Only meets and tasks that are so derived are considered part of the solution to the original
instance, but other meets and tasks may be present to help with solving. Several meets may be
derived from one event; these are the split events or sub-events of that event in the solution.

At all times, the solution (however incomplete it may be) has a definite numerical cost,
a 64-bit integer measuring the badness of the solution which is always available via function
KheSolnCost (Chapter 6). It may be used to guide the search for good solutions.

A solution must obey a condition called the solution invariant throughout its lifetime; this
is an unbreakable constraint. A precise statement of the solution invariant appears in Section 4.9.
Every operation that changes a solution in a way that could violate the invariant is implemented
with two functions, which look generically like this:

bool KheOperationCheck(...);
bool KheOperation(...);

The two functions accept the same inputs and return the same value in a given solution state. The
first returns true if the change would not violate the invariant, but itself changes nothing. The
second also returns true if the change would not violate the invariant, but in that case it also
makes the change. It changes nothing if the change would violate the invariant.

The relationship between the solution invariant and the constraints of the original instance is
rather subtle. Should a constraint be incorporated into the invariant, so that no solution (not even
a partial solution) will ever violate it? KHE leaves this question to the user. Some operations do
incorporate constraints into the solution invariant, but those operations are all optional.

Some aspects of solution entities that may be changed have operations of the form

void KheEntityAspectFix(ENTITY e);
void KheEntityAspectUnFix(ENTITY e);
bool KheEntityAspectIsFixed(ENTITY e);

75

76 Chapter 4. Solutions

The first fixes that aspect of the entity—prevents later operations from changing it; the second
removes the fix; the third returns true when the fix is in place. Initially everything is unfixed.
Fixing a fixed aspect, and unfixing an unfixed aspect, do nothing. When the current value of
some aspect will remain unchanged for a long time, fixing that aspect may have a significant
efficiency payoff. This is because fixing detaches attached monitors (Chapter 6) whose cost is
0 and cannot change while the current fixes are in place, which can save a lot of time. Unfixing
attaches those unattached monitors which could have non-zero cost given the unfix.

There are three levels of operations. At the lowest level are basic operations, which
carry out basic queries and changes to a solution, such as assigning or unassigning the time of
a meet. Above them are helper functions, which implement commonly needed sequences of
basic operations, such as swaps. Some helper functions utilize optimizations that make them
significantly more efficient than the equivalent sequences of basic operations.

At the highest level are solvers, which make large-scale changes to solutions. A complete
algorithm for solving an instance is a solver, but so are operations with more modest scope, such
as assigning times to the meetings of one form, assigning rooms, and so on.

KHE supplies many solvers, documented in later chapters, and the user is free to write
others. As a matter of good design, solvers should not have behind-the-scenes access to KHE’s
data structures; they should use only the operations described in this guide and made available
by header file khe_platform.h. They may of course call other solvers. The solvers supplied
by KHE follow this rule.

4.2. Top-level operations

This section presents functions that operate on objects of type KHE_SOLN. Later sections present
functions that operate on the components of solutions (meets, tasks, and so on).

4.2.1. Creation, deletion, and copy

To create a solution for a given instance, initially with no meets or tasks, call

KHE_SOLN KheSolnMake(KHE_INSTANCE ins, HA_ARENA_SET as);

KheInstanceMakeEnd(ins) must have been called and returned before KheSolnMake is called.

To delete soln and everything in it, and remove it from its solution groups, if any, call

void KheSolnDelete(KHE_SOLN soln);

The memory consumed by soln and everything in it will be freed. Each solution lies in its
own memory arena, allowing its deletion to be carried out very efficiently: just delete its arena.
Actually, there are two arenas, one holding the soln object, the other holding everything else.
This is needed in case the user chooses to reduce a solution to a placeholder (Section 4.2.6).

Another way to create a solution is

KHE_SOLN KheSolnCopy(KHE_SOLN soln, HA_ARENA_SET as);

It returns a copy of soln. Parameter as is as for KheSolnMake. The copy is exact except that it

4.2. Top-level operations 77

does not lie in any solution groups. Immutable elements, such as anything from the instance, and
time, resource, and event groups created within the solution, are shared, as are back pointers.

Copying is useful when forking a solution process part-way through: the original solution
may continue down one thread, and the copy, which is quite independent, may be given to the
other thread. Care is needed in one respect, however: it is not safe to make two copies of one
solution simultaneously, even though the original solution is unaffected by copying it. This is
because the copy algorithm uses temporary forwarding pointers in the objects of the solution.

Even semantically unimportant things, such as the order of items in sets, are preserved by
KheSolnCopy. If the same solution algorithm is run on the original and the copy, and it does
not depend on anything peculiar such as elapsed time or the memory addresses of its objects,
it should produce the same solution. The author has verified this for KheGeneralSolve2024
(Section 8.4). Diversity can be obtained by changing the copy’s diversifier (Section 4.2.4).

The specification of qsort states that when two elements compare equal, their order in the
final result is undefined. So the author has tried to eliminate all such cases in the comparison func-
tions packaged with KHE. Index numbers, returned by functions such as KheMeetSolnIndex
and KheTaskSolnIndex, are useful for breaking ties consistently as a last resort.

As an aid to debugging, function

void KheSolnDebug(KHE_SOLN soln, int verbosity, int indent, FILE *fp);

prints information about the current solution onto file fp with the given verbosity and indent,
as described for debug functions in general in Section 1.4. Verbosity 1 prints just the instance
name and current cost, verbosity 2 adds a breakdown of the current cost by constraint type (only
constraint types with non-zero cost are printed), verbosity 3 adds debug prints of the solution’s
defects (Section 6.2), and verbosity 4 prints further details.

4.2.2. Solutions and arenas

Solutions and solvers can take up a lot of memory, and memory allocation and deallocation can
become a serious bottleneck. KHE has a strategy for mitigating this problem. The idea is to
create one arena set as (Appendix A.1.2) per thread, and pass as to each call to KheSolnMake

made by the thread. Then the arenas needed to construct the solution are taken from as.

KHE does not make the mistake of sharing one arena set across threads. That would require
arena sets to be lockable, which they are not. Appendix B.7 has more on these kinds of issues.

Solvers can and should participate in this memory allocation strategy. A solver can call

HA_ARENA KheSolnArenaBegin(KHE_SOLN soln);

This will return a currently unused arena from soln’s arena set. When the arena is no longer
required and its memory can be made available for other uses, the solver can call

void KheSolnArenaEnd(KHE_SOLN soln, HA_ARENA a);

This makes the memory used by arena a available to the other arenas of soln’s arena set. (These
two functions simply call HaArenaMake and HaArenaDelete from Appendix A.1.1). There is
also a function to retrieve a solution’s arena set:

78 Chapter 4. Solutions

HA_ARENA_SET KheSolnArenaSet(KHE_SOLN soln);

Formerly there was a function (KheSolnSetArenaSet) to set a solution’s arena set. However, a
redesign of arenas and arena sets made this wrong, so it has been withdrawn. The recommended
alternative is to use KheSolnCopy (Section 4.2.1) to copy the solution into the desired arena set.

For responding gracefully when memory runs out, there are functions

void KheSolnJmpEnvBegin(KHE_SOLN soln, jmp_buf *env);
void KheSolnJmpEnvEnd(KHE_SOLN soln);

These just call HaArenaSetJmpEnvBegin and HaArenaSetJmpEnvEnd on soln’s arena set. See
Appendix A.1.2 for a description of these functions and an example of how to use them.

4.2.3. Simple attributes

A solution may lie in any number of solution groups. To add it to a solution group and delete
it from a solution group, use functions KheSolnGroupAddSoln and KheSolnGroupDeleteSoln

from Section 2.2. To visit the solution groups containing soln, call

int KheSolnSolnGroupCount(KHE_SOLN soln);
KHE_SOLN_GROUP KheSolnSolnGroup(KHE_SOLN soln, int i);

in the usual way.

A solution is always for a particular instance, fixed when the solution is created. Function

KHE_INSTANCE KheSolnInstance(KHE_SOLN soln);

returns the instance that the solution is for.

A solution has an optional Description attribute which may contain arbitrary text saying
what is distinctive about the solution. This attribute may be set and retrieved by calling

void KheSolnSetDescription(KHE_SOLN soln, char *description);
char *KheSolnDescription(KHE_SOLN soln);

The default value is NULL, meaning no description.

A solution also has an optional RunningTime attribute giving the wall clock time to produce
the solution, in seconds. This attribute may be set and retrieved by calling

void KheSolnSetRunningTime(KHE_SOLN soln, float running_time);
bool KheSolnHasRunningTime(KHE_SOLN soln, float *running_time);

If KheSolnSetRunningTime has been called, then KheSolnHasRunningTime returns true with

*running_time set to the most recent value passed by KheSolnSetRunningTime. Otherwise it
returns false with *running_time set to -1.0. It would be impossible for KHE to ensure that
the value stored in this field is honest, and it does not try to.

There is also a function for comparing two solutions by their running times. It comes in two
versions, one which makes sense to people, and another which makes sense to qsort:

4.2. Top-level operations 79

int KheSolnIncreasingRunningTimeTypedCmp(KHE_SOLN soln1, KHE_SOLN soln2);
int KheSolnIncreasingRunningTimeCmp(const void *t1, const void *t2);

Solutions without a running time are treated as though they have a very large running time.

Solution objects and their components have back pointers in the usual way. These may be
changed at any time. To set and retrieve the back pointer of a solution object, call

void KheSolnSetBack(KHE_SOLN soln, void *back);
void *KheSolnBack(KHE_SOLN soln);

as usual.

4.2.4. Diversification

One strategy for finding good solutions is to find many solutions and choose the best. This only
works when the solutions are diverse, creating a need to find ways to produce diversity.

Each solution contains a non-negative integer diversifier. Its initial value is 0, but it may be
set and retrieved at any time by

void KheSolnSetDiversifier(KHE_SOLN soln, int val);
int KheSolnDiversifier(KHE_SOLN soln);

When solutions are created that need to be diverse, each is given a different diversifier. When an
algorithm reaches a point where it could equally well follow any one of several paths, it consults
the diversifier when making its choice.

Suppose the diversifier has value d and a point is reached where there are c alternatives, for
some c ≥ 1. A simple approach is to choose the ith alternative (counting from 0), where

i = d % c;

We call a function D(d,c) which returns an integer i s.t. 0 ≤ i < c a diversification function.

How should we choose diversifiers and diversification functions to ensure that we really
do get diversity? One possibility is to start with a random integer and change it using a random
number generator, passing the current value as seed, each time the diversifier is consulted. But
there is no way to analyse the effect of this, so instead we are going to examine what happens
when the diversifiers are fixed successive integers starting from 0.

What we want is a little hard to grasp. Suppose that, at some points in the algorithm, it
is offered a choice between 1 alternative; at others, there are 2 alternatives, and so on, with a
maximum of n alternatives. For a given diversifier, there are n! different functions of the number
of choices. Ideally we would want all of these functions to turn up as d varies over its range.

It is not obvious, but it is a fact that the modulus function above does turn up every function
when n is 1, 2 or 3, but when n is 4 it produces 12 distinct functions, only half the possible 24
functions, as the following tables, obtained by running khe -d4, show:

80 Chapter 4. Solutions

 d | 1 2
----+------
 0 | 0 0
 1 | 0 1
----+------

 d | 1 2 3
----+---------
 0 | 0 0 0
 1 | 0 1 1
 2 | 0 0 2
 3 | 0 1 0
 4 | 0 0 1
 5 | 0 1 2
----+---------

 d | 1 2 3 4
----+------------
 0 | 0 0 0 0
 1 | 0 1 1 1
 2 | 0 0 2 2
 3 | 0 1 0 3
 4 | 0 0 1 0
 5 | 0 1 2 1
 6 | 0 0 0 2
 7 | 0 1 1 3
 8 | 0 0 2 0
 9 | 0 1 0 1
 10 | 0 0 1 2
 11 | 0 1 2 3
 12 | 0 0 0 0 (same as 0)
 13 | 0 1 1 1 (same as 1)
 14 | 0 0 2 2 (same as 2)
 15 | 0 1 0 3 (same as 3)
 16 | 0 0 1 0 (same as 4)
 17 | 0 1 2 1 (same as 5)
 18 | 0 0 0 2 (same as 6)
 19 | 0 1 1 3 (same as 7)
 20 | 0 0 2 0 (same as 8)
 21 | 0 1 0 1 (same as 9)
 22 | 0 0 1 2 (same as 10)
 23 | 0 1 2 3 (same as 11)
----+------------

Each row is one value of d, and each column is one value of c. What this means is that if, during
the course of one run, no more than 4 choices are offered at any one point, then only 12 distinct
solutions can emerge, no matter how many are begun.

The most natural diversification function which produces distinct outcomes is probably

(d / fact(c - 1)) % c

where fact is the factorial function. (To avoid overflow, in practice one stops multiplying as
soon as the value exceeds d.) Each line is something like the binary representation of d, only in
a factorial number system rather than binary:

4.2. Top-level operations 81

 d | 1 2
----+------
 0 | 0 0
 1 | 0 1
----+------

 d | 1 2 3
----+---------
 0 | 0 0 0
 1 | 0 1 0
 2 | 0 0 1
 3 | 0 1 1
 4 | 0 0 2
 5 | 0 1 2
----+---------

 d | 1 2 3 4
----+------------
 0 | 0 0 0 0
 1 | 0 1 0 0
 2 | 0 0 1 0
 3 | 0 1 1 0
 4 | 0 0 2 0
 5 | 0 1 2 0
 6 | 0 0 0 1
 7 | 0 1 0 1
 8 | 0 0 1 1
 9 | 0 1 1 1
 10 | 0 0 2 1
 11 | 0 1 2 1
 12 | 0 0 0 2
 13 | 0 1 0 2
 14 | 0 0 1 2
 15 | 0 1 1 2
 16 | 0 0 2 2
 17 | 0 1 2 2
 18 | 0 0 0 3
 19 | 0 1 0 3
 20 | 0 0 1 3
 21 | 0 1 1 3
 22 | 0 0 2 3
 23 | 0 1 2 3
----+------------

But there is still a problem: if all alternatives have 4 choices, say, then the first 6 threads will
produce the same result despite differing in d. The solution to this seems to be function

(d / fact(c - 1) + d % fact(c - 1)) % c

Delightfully, it produces

 d | 1 2
----+------
 0 | 0 0
 1 | 0 1
----+------

 d | 1 2 3
----+---------
 0 | 0 0 0
 1 | 0 1 1
 2 | 0 0 1
 3 | 0 1 2
 4 | 0 0 2
 5 | 0 1 0
----+---------

 d | 1 2 3 4
----+------------
 0 | 0 0 0 0
 1 | 0 1 1 1
 2 | 0 0 1 2
 3 | 0 1 2 3
 4 | 0 0 2 0
 5 | 0 1 0 1
 6 | 0 0 0 1
 7 | 0 1 1 2
 8 | 0 0 1 3
 9 | 0 1 2 0
 10 | 0 0 2 1
 11 | 0 1 0 2
 12 | 0 0 0 2
 13 | 0 1 1 3
 14 | 0 0 1 0
 15 | 0 1 2 1
 16 | 0 0 2 2
 17 | 0 1 0 3
 18 | 0 0 0 3
 19 | 0 1 1 0
 20 | 0 0 1 1
 21 | 0 1 2 2
 22 | 0 0 2 3
 23 | 0 1 0 0
----+------------

82 Chapter 4. Solutions

and is diverse up to c = 8at least. Function

int KheSolnDiversifierChoose(KHE_SOLN soln, int c);

implements this function, returning a non-negative integer less than c.

It is quite reasonable for every algorithm faced with an arbitrary choice to diversify. It is
easy to do, and it provides a continual prodding towards diversity that should drive solutions with
different diversifiers further and further apart as solving continues, always provided that there
are sufficiently many choices.

4.2.5. Visit numbers

Some algorithms, such as tabu search and ejection chains, need to know whether some part of
the solution has changed recently. KHE supports this with a system of visit numbers.

A visit number is just an integer stored at some point in the solution. The KHE platform
initializes visit numbers (to 0) and copies them, but does not otherwise use them. The user is free
to set their values in any way at any time, using operations that look generically like this:

void KheSolnEntitySetVisitNum(KHE_SOLN_ENTITY e, int num);
int KheSolnEntityVisitNum(KHE_SOLN_ENTITY e);

But there is also a conventional way to use visit numbers, as follows.

The solution object contains a global visit number which is used differently from the others.
The following operations are applicable to it:

void KheSolnSetGlobalVisitNum(KHE_SOLN soln, int num);
int KheSolnGlobalVisitNum(KHE_SOLN soln);
void KheSolnNewGlobalVisit(KHE_SOLN soln);

The first two operations are not usually used directly. The third increases the global visit number
by one. This new value has not previously been assigned to any visit number.

The visit numbers of other solution entities should never exceed the global visit number.
The operations for other solution entities look generically like this:

void KheSolnEntitySetVisitNum(KHE_SOLN_ENTITY e, int num);
int KheSolnEntityVisitNum(KHE_SOLN_ENTITY e);
bool KheSolnEntityVisited(KHE_SOLN_ENTITY e, int slack);
void KheSolnEntityVisit(KHE_SOLN_ENTITY e);
void KheSolnEntityUnVisit(KHE_SOLN_ENTITY e);

Type SOLN_ENTITY is fictitious and so are these functions; they just display the standard pattern.
The first two are the standard ones. The third returns the value of the condition

KheSolnVisitNum(soln) - KheSolnEntityVisitNum(e) <= slack

where soln is the solution containing e. The fourth sets e’s visit number to its solution object’s
visit number, and the last sets it to one less than its solution’s visit number.

These operations may be used to implement tabu search efficiently as follows. Suppose for

4.2. Top-level operations 83

example that a change to the assignment of meet is to remain tabu until at least tabu_len other
changes have been made. The code for this is

if(!KheMeetVisited(meet, tabu_len))
{
KheSolnNewVisit(KheMeetSoln(meet));
KheMeetVisit(meet);
... change the assignment of meet ...

}

To ensure that everything is visitable initially, call

KheSolnSetVisitNum(soln, tabu_len);

It is easy to generalize this code to other operations.

One form of the ejection chains algorithm requires that once a meet (or other entity) has
been changed during the current visit, it must remain tabu until a new visit is started in the outer
loop of the algorithm. The code for this is

if(!KheMeetVisited(meet, 0))
{
KheMeetVisit(meet);
... change the assignment of meet ...

}

A variant of this idea makes meet tabu to recursive calls, but not tabu for the entire remainder of
the current visit. The code for this is

if(!KheMeetVisited(meet, 0))
{
KheMeetVisit(meet);
... change the assignment of meet and recurse ...
KheMeetUnVisit(meet);

}

Only meets in the direct line of the recursion are tabu. At present, the author’s ejection code
follows this pattern for visiting monitors only, and does it behind the scenes is the ejection chains
framework code (in type KHE_EJECTOR). The user does not have to worry about visiting.

4.2.6. Placeholder and invalid solutions

A placeholder solution is a solution which is missing most of what an ordinary solution has,
either because it is invalid, or to save memory. Function

KHE_SOLN_TYPE KheSolnType(KHE_SOLN soln);

may be used to find out whether a solution is a placeholder. Its return value has type

84 Chapter 4. Solutions

typedef enum {
KHE_SOLN_INVALID_PLACEHOLDER,
KHE_SOLN_BASIC_PLACEHOLDER,
KHE_SOLN_WRITABLE_PLACEHOLDER,
KHE_SOLN_ORDINARY

} KHE_SOLN_TYPE;

The first three values indicate that soln is a placeholder of some kind, as follows.

KHE_SOLN_INVALID_PLACEHOLDER means that soln is an invalid placeholder: it became
a placeholder because it has some problem. In practice this can only happen when reading a
solution from an archive (Section 2.4). We usually just say that soln is invalid. Function

KML_ERROR KheSolnInvalidError(KHE_SOLN soln);

returns the first error that made soln invalid, or NULL if soln is not invalid. For type KML_ERROR,
see Section A.5.2. An invalid solution offers few functions: for example, it has no cost.

KHE_SOLN_BASIC_PLACEHOLDER means that soln is a basic placeholder: all of the objects
below soln (all its meets, tasks, and so on) have been deleted. This frees a great deal of memory,
which is the point of it, but it makes soln unusable except that the following functions remain
available and return their previous values:

char *KheSolnDescription(KHE_SOLN soln);
void *KheSolnBack(KHE_SOLN soln);
KHE_INSTANCE KheSolnInstance(KHE_SOLN soln);
bool KheSolnHasRunningTime(KHE_SOLN soln, float *running_time);
int KheSolnSolnGroupCount(KHE_SOLN soln);
KHE_SOLN_GROUP KheSolnSolnGroup(KHE_SOLN soln, int i);
void *KheSolnImpl(KHE_SOLN soln);
int KheSolnDiversifier(KHE_SOLN soln);
int KheSolnVisitNum(KHE_SOLN soln);
KHE_COST KheSolnCost(KHE_SOLN soln);

Function KheSolnTypeReduce below is also still available.

KHE_SOLN_WRITABLE_PLACEHOLDER is like KHE_SOLN_BASIC_PLACEHOLDER except that the
solution can also be written by KheArchiveWrite (Section 2.7), because a brief private record of
who is assigned to what is retained. KheArchiveWrite will abort if it is asked to write an invalid
or basic placeholder. Even a writable placeholder cannot be written if KheArchiveWrite has
been asked to write a report along with each solution.

Finally,KHE_SOLN_ORDINARY indicates that soln is an ordinary solution (not a placeholder),
supporting the full range of operations including access to its meets, tasks, and so on. When
a solution is created, it is an ordinary solution. A placeholder solution cannot be created
directly; an ordinary solution must be created and then reduced to a placeholder, using function
KheSolnTypeReduce below. This ensures that the solution cost is correct.

Placeholder solutions may be used to build tables of solutions showing costs and running
times; but they cannot be used to find cost breakdowns by constraint type, or to print timetables,
and so on. Writable placeholder solutions are good when solving, both for solutions produced

4.2. Top-level operations 85

by the solver and for solutions which are already in the archive and just need to be read in and
written out again. Function

void KheSolnTypeReduce(KHE_SOLN soln, KHE_SOLN_TYPE soln_type,
KML_ERROR ke);

changes the type of soln to soln_type. If soln_type is KHE_SOLN_INVALID_PLACEHOLDER,
ke must be non-NULL, and a copy of it becomes the value returned by KheSolnInvalidError.
Otherwise ke is not used and should be NULL.

KheSolnTypeReduce can only change the type to something equal or lower. For example, it
can reduce an ordinary solution to any kind of placeholder, but it cannot reduce a placeholder to
an ordinary solution, because the data is lost. Changing the type to what it already is does nothing
except replace KheSolnInvalidError if the type is KHE_SOLN_INVALID_PLACEHOLDER.

4.2.7. Traversing the components of solutions

A solution has many components: principally tasks and meets, but also other objects. They can
all be visited, using the functions defined in this section.

To visit the meets of a solution, in an unspecified order, call

int KheSolnMeetCount(KHE_SOLN soln);
KHE_MEET KheSolnMeet(KHE_SOLN soln, int i);

The meets visited include the cycle meets described in Section 4.5.3. To visit the meets of a
solution derived from a given event, call

int KheEventMeetCount(KHE_SOLN soln, KHE_EVENT e);
KHE_MEET KheEventMeet(KHE_SOLN soln, KHE_EVENT e, int i);

The first returns the number of meets derived from e (possibly 0), and the second returns the i’th
of these meets, in an unspecified order.

To visit the tasks of a solution, in an unspecified order, call

int KheSolnTaskCount(KHE_SOLN soln);
KHE_TASK KheSolnTask(KHE_SOLN soln, int i);

To visit the tasks derived from a given event resource, call

int KheEventResourceTaskCount(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_TASK KheEventResourceTask(KHE_SOLN soln, KHE_EVENT_RESOURCE er,
int i);

There is one for each meet derived from the event containing er.

A solution may also contain nodes and taskings, as explained in Chapter 5. To visit the
nodes in an unspecified order, call

int KheSolnNodeCount(KHE_SOLN soln);
KHE_NODE KheSolnNode(KHE_SOLN soln, int i);

86 Chapter 4. Solutions

To visit the taskings, call

int KheSolnTaskingCount(KHE_SOLN soln);
KHE_TASKING KheSolnTasking(KHE_SOLN soln, int i);

in the usual way.

4.3. Complete representation and preassignment conversion

A solution is a complete representation when it satisfies the following two conditions:

• For each event e of the solution’s instance, the total duration of the meets derived from e is
equal to the duration of e;

• For each event resource er of the solution’s instance, each meet derived from the event
containing er contains a task derived from er.

Complete representation does not rule out extra meets or tasks. It has nothing to do with being
a complete solution, in the sense of assigning a time to every meet and a resource to every task.

KHE does not require a solution to be a complete representation, since that would be too
restrictive when building and modifying solutions. However, the cost it reports for a solution is
correct only when that solution is a complete representation. This is because, behind the scenes,
KHE needs to be able to see a meet with no assigned time in order for it to realize that an assign
time constraint is being violated, and similarly for the other constraints.

There is a standard procedure, part of the XML specification, for converting a solution into
a complete representation:

1. For each event e of the solution’s instance, if there are no meets derived from e, then insert
one meet whose duration is the duration of e, and whose assigned time is the preassigned
time of e, or is absent if e has no preassigned time. Initially, this meet contains no tasks, but
that may be changed by the third rule.

2. If now there is an event e such that the total duration of the meets derived from e is not equal
to the duration of e, then that is an error and the XML file is rejected.

3. For each event resource er of each event e of the instance, for each meet derived from e, if
that meet does not contain a task derived from er, then add one. Its assigned resource is the
preassigned resource of er if there is one, or is absent if er has no preassigned resource.

This procedure, minus the conversions from preassignments to assignments, is implemented by

bool KheSolnMakeCompleteRepresentation(KHE_SOLN soln,
KHE_EVENT *problem_event);

For each event e, it finds the total duration of the meets derived from e. If that is greater than
the duration of e it returns false with *problem_event set to e. If it is less, then one meet
derived from e is added whose duration makes up the difference. The domain of this meet
has the usual default value: the preassigned time of e if any, or else the largest legal domain,

4.3. Complete representation and preassignment conversion 87

KheSolnPackingTimeGroup(soln) (Section 4.5.3). Then, within each meet derived from an
event, just created or not, it adds a task for each event resource er not already represented. The
domain of this task has the usual default value: the preassigned resource of er if any, or else the
largest legal domain, KheResourceTypeFullResourceGroup(rt), where rt is er’s resource type.

KheSolnMakeCompleteRepresentation has two uses. The first is in KheArchiveRead

(Section 2.4), which applies it to each solution it reads, as the XML specification requires, and
then calls these two public functions to convert preassignments into assignments:

void KheSolnAssignPreassignedTimes(KHE_SOLN soln);
void KheSolnAssignPreassignedResources(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt);

KheSolnAssignPreassignedTimes assigns the obvious time to each preassigned unassigned
meet. KheSolnAssignPreassignedResources assigns the obvious resource to each preassigned
unassigned task of type rt (any type if rt is NULL).

The second use for KheSolnMakeCompleteRepresentation is to build a solution from
scratch, ready for solving. The solution returned by KheSolnMake has no meets except for
the initial cycle meet, and it has no tasks. KheSolnMakeCompleteRepresentation is a very
convenient way to add both. When solving, it is usually called immediately after KheSolnMake
and KheSolnSplitCycleMeet (Section 4.5.3). The solution changes as solving proceeds, but it
remains a complete representation throughout, except perhaps during brief reconstructions. A
call to KheSolnAssignPreassignedResources is also a good idea, since it does no harm and
ensures that resource constraints involving preassigned resources will contribute to the cost of
the solution as soon as the meets they are preassigned to are assigned times. On the other hand,
it may be better not to assign preassigned times at this point; Section 10.4 has the alternatives.

4.4. Solution time, resource, and event groups

Groups are important in solving. A solver needs to be able to construct its own, since the ones
declared in the instance might not be enough. (Conceivably, a solver could need its own times
and resources as well, but that possibility is not currently supported.) Accordingly, the following
functions are provided for constructing a time group while solving:

void KheSolnTimeGroupBegin(KHE_SOLN soln);
void KheSolnTimeGroupAddTime(KHE_SOLN soln, KHE_TIME t);
void KheSolnTimeGroupSubTime(KHE_SOLN soln, KHE_TIME t);
void KheSolnTimeGroupUnion(KHE_SOLN soln, KHE_TIME_GROUP tg2);
void KheSolnTimeGroupIntersect(KHE_SOLN soln, KHE_TIME_GROUP tg2);
void KheSolnTimeGroupDifference(KHE_SOLN soln, KHE_TIME_GROUP tg2);
KHE_TIME_GROUP KheSolnTimeGroupEnd(KHE_SOLN soln);

The first operation begins the process; the next five do what the corresponding operations for
instance time groups do, and the last operation returns the finished time group. Its kind will be
KHE_TIME_GROUP_KIND_ORDINARY, and its id and name attributes will be NULL.

A similar set of operations constructs a resource group:

88 Chapter 4. Solutions

void KheSolnResourceGroupBegin(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);
void KheSolnResourceGroupAddResource(KHE_SOLN soln, KHE_RESOURCE r);
void KheSolnResourceGroupSubResource(KHE_SOLN soln, KHE_RESOURCE r);
void KheSolnResourceGroupUnion(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
void KheSolnResourceGroupIntersect(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
void KheSolnResourceGroupDifference(KHE_SOLN soln, KHE_RESOURCE_GROUP rg2);
KHE_RESOURCE_GROUP KheSolnResourceGroupEnd(KHE_SOLN soln);

and an event group:

void KheSolnEventGroupBegin(KHE_SOLN soln);
void KheSolnEventGroupAddEvent(KHE_SOLN soln, KHE_EVENT e);
void KheSolnEventGroupSubEvent(KHE_SOLN soln, KHE_EVENT e);
void KheSolnEventGroupUnion(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
void KheSolnEventGroupIntersect(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
void KheSolnEventGroupDifference(KHE_SOLN soln, KHE_EVENT_GROUP eg2);
KHE_EVENT_GROUP KheSolnEventGroupEnd(KHE_SOLN soln);

All the usual operations may be applied to these groups. The functions use soln as a factory
object instead of the group itself, to ensure that groups are complete and immutable (apart from
their back pointers) by the time they are given to the user. Groups are deleted when their solution
is deleted. They know which instance they are for, but the instance, being immutable after
creation, is not aware of their existence.

Within one solution, when calls to KheSolnTimeGroupEnd return groups containing the
same elements, the objects returned are the same too. This is done using a hash table of time
groups. It allows the user to experiment with many time groups, without worrying about their
memory cost. This is not being done for resource and event groups yet; it should be.

4.5. Meets

A meet is created by calling

KHE_MEET KheMeetMake(KHE_SOLN soln, int duration, KHE_EVENT e);

This creates and adds to soln a new meet of the given duration, which must be at least 1. If e is
non-NULL, it indicates that this meet is derived from event e. Initially the meet contains no tasks;
they must be added separately. A meet may be deleted from its solution by calling

void KheMeetDelete(KHE_MEET meet);

Any tasks within meet are also deleted. If meet is assigned to another meet, or any other meets
are assigned to it, all those assignments are removed. The meet is also deleted from any node
(Section 5.2) it may lie in.

The back pointer of a meet may be set and retrieved by

void KheMeetSetBack(KHE_MEET meet, void *back);
void *KheMeetBack(KHE_MEET meet);

4.5. Meets 89

and the visit number by

void KheMeetSetVisitNum(KHE_MEET meet, int num);
int KheMeetVisitNum(KHE_MEET meet);
bool KheMeetVisited(KHE_MEET meet, int slack);
void KheMeetVisit(KHE_MEET meet);
void KheMeetUnVisit(KHE_MEET meet);

Function

char *KheMeetId(KHE_MEET meet);

returns a string which is supposed to uniquely identify the meet. Most of the time, this is the Id
of the meet’s event, followed, if the event is split into more than one meet, by a colon and an index
number identifying the meet within the event. Some special meets (e.g. cycle meets) have an Id
beginning and ending with "/".

The result of KheMeetId(meet) is created when KheMeetId(meet) is first called, and
stored in meet so that it does not have to be created over and over. If it is used only for debugging,
as is the intention, there is virtually no cost in running time or memory when debugging is off.
There is some uncertainty over the choice of index number when meets are split and joined.

The other attributes of a meet are accessed by

KHE_SOLN KheMeetSoln(KHE_MEET meet);
int KheMeetSolnIndex(KHE_MEET meet);
int KheMeetDuration(KHE_MEET meet);
KHE_EVENT KheMeetEvent(KHE_MEET meet);

These return the enclosing solution,meet’s index in that solution (that is, the value of i for which
KheSolnMeet(soln, i) returns meet), its duration, and the event that meet is derived from
(possibly NULL). Index numbers change when meets are deleted (the hole left by the deletion of
a meet, if not last, is plugged by the last meet), so care is needed. There is also

bool KheMeetIsPreassigned(KHE_MEET meet, TIME *time);

which returns true when KheMeetEvent(meet) != NULL and that event has a preassigned time;
meet is called a preassigned meet in that case. If time != NULL, then *time is set to the event’s
preassigned time if meet is preassigned, and to NULL otherwise.

When deciding what order to assign meets in, it is handy to have some measure of how
difficult they are to timetable. Functions

int KheMeetAssignedDuration(KHE_MEET meet);
int KheMeetDemand(KHE_MEET meet);

attempt to provide this. KheMeetAssignedDuration is the duration of meet if it is assigned, or 0
otherwise. KheMeetDemand(meet) is the sum, over meet and all meets assigned to meet, directly
or indirectly, of the product of the duration of the meet and the number of tasks it contains. This
value is stored in the meet and kept up to date as solutions change, so a call on KheMeetDemand

costs almost nothing.

A task is added to its meet when it is created, and removed from its meet when it is deleted.

90 Chapter 4. Solutions

To visit the tasks of a meet, call

int KheMeetTaskCount(KHE_MEET meet);
KHE_TASK KheMeetTask(KHE_MEET meet, int i);
bool KheMeetRetrieveTask(KHE_MEET meet, char *role, KHE_TASK *task);
bool KheMeetFindTask(KHE_MEET meet, KHE_EVENT_RESOURCE er,
KHE_TASK *task);

The first two traverse the tasks. The order of tasks within meets is not significant, and it may
change as tasks are created and deleted. KheMeetRetrieveTask retrieves a task which is derived
from an event resource with the given role, if present. KheMeetFindTask is similar, but it looks
for a task derived from event resource er, rather than for a role. There are also

bool KheMeetContainsResourcePreassignment(KHE_MEET meet,
KHE_RESOURCE r, KHE_TASK *task);

bool KheMeetContainsResourceAssignment(KHE_MEET meet,
KHE_RESOURCE r, KHE_TASK *task);

which return true if meet contains a task preassigned or assigned r, setting *task to one if so.
Here a task is considered to be preassigned if it is derived from a preassigned event resource.

A meet contains an optional assignment, which assigns the meet to a particular offset in
another meet, thereby fixing its time relative to the starting time of the other meet, and a time
domain which restricts the times it may start at to an arbitrary subset of the times of the cycle.
These attributes are described in detail in later sections.

A meet may optionally be contained in one node (Chapter 5). Functions

KHE_NODE KheMeetNode(KHE_MEET meet);
int KheMeetNodeIndex(KHE_MEET meet);

return the node containing meet, and the index of meet in that node, or NULL and -1 if none.

As an aid to debugging, function

void KheMeetDebug(KHE_MEET meet, int verbosity, int indent, FILE *fp);

prints meet onto fp with the given verbosity and indent (for which see Section 1.4). Verbosity 1
prints just an identifying name; verbosity 2 adds the chain of assignments leading out of meet.

The name is usually the name of meet’s event, between quotes. If there is more than one
meet corresponding to that event, this will be followed by a colon and the number i for which
KheEventMeet(soln, e, i) equalsmeet. Alternatively, if meet is a cycle meet (Section 4.5.3),
the name is its starting time (a time name or else an index) between slashes.

4.5.1. Splitting and merging

A meet may be split into two meets whose durations sum to the duration of the original meet:

bool KheMeetSplitCheck(KHE_MEET meet, int duration1, bool recursive);
bool KheMeetSplit(KHE_MEET meet, int duration1, bool recursive,
KHE_MEET *meet1, KHE_MEET *meet2);

4.5. Meets 91

These functions follow the pattern described earlier for operations that might violate the solution
invariant, in that both return true if the split is permitted. The second actually carries out the
split, setting *meet1 and *meet2 to the new meets if the split is permitted, and leaving them
unchanged if not. The original meet, meet, is undefined after a successful split, unless meet1
or meet2 is set to &meet (this may seem dangerous, but it does what is wanted whether the split
succeeds or not). The split meet may be a cycle meet, in which case so are the two fragments.

The first new meet, *meet1, has duration duration1, and the second, *meet2, has the
remaining duration. Parameter duration1 must be such that both meets have duration at least 1,
otherwise both functions abort. Their back pointers are set to the back pointer of meet. If meet
is assigned,*meet1 has the same target meet and offset as meet, while *meet2 has the same target
meet, but its offset is duration1 larger, making the two meets adjacent in time.

If recursive is true, any meets assigned to meet that span the split point will also be split,
into one meet for the part overlapping *meet1 and one for the part overlapping *meet2. This
process proceeds recursively as deeply as required.

The two split functions return true if these two conditions hold:

• Either recursive is true, or else no meets assigned to meet span the split point.

• The meets resulting from each split have copies of the meet bounds (Section 4.5.4) of the
meets they are fragments of. Nevertheless their domains usually change, owing to meet
bounds with specific duration attributes. This must cause no incompatibilities with the
domains of other meets connected to them by assignments, allowing for offsets. When a
cycle meet (Section 4.5.3) splits, the two fragments have the appropriate singleton domains.
Domain incompatibilities cannot occur in that case.

If these conditions hold, meet is said to be splittable at duration1.

When a meet splits, its tasks split too. This produces what is typically required when
assigning rooms: the fragments are free to be assigned different resources. The other possibility,
where the fragments are required to be assigned the same resource, can be obtained by assigning
the fragmentary tasks to each other. This must be done separately.

The next two functions are concerned with merging two meets into one:

bool KheMeetMergeCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetMerge(KHE_MEET meet1, KHE_MEET meet2, bool recursive,
KHE_MEET *meet);

Parameters meet1 and meet2 become undefined after a successful merge, unless meet is set to
&meet1 or &meet2.

If recursive is true, after merging meet1 and meet2, KheMeetMerge searches for pairs of
meets, one formerly assigned to the end of meet1, the other formerly assigned to the beginning
of meet2, which are mergeable according to KheMeetMergeCheck, and merges each such pair.
This process proceeds recursively as deeply as required. KheMeetMergeCheck has no recursive
parameter because its result does not depend on whether the merge is recursive.

The functions return true if all these conditions hold:

• The two meets are distinct.

92 Chapter 4. Solutions

• The two meets have the same value of KheMeetIsCycleMeet (Section 4.5.3).

• The two meets have the same value of KheMeetEvent, possibly NULL.

• The two meets have the same value of KheMeetNode, possibly NULL.

• The two meets are both either assigned to the same meet, or not assigned. If assigned, the
offset of one (it may be either) must equal the offset plus duration of the other, ensuring they
are adjacent in time. Cycle meets, although never assigned, must also be adjacent in time.

• The two meets have the same number of tasks, and the order of their tasks may be permuted
so that corresponding tasks are compatible. Two tasks are compatible when they have the
same taskings, domains, event resources, and assignments.

• The result meet takes over the meet bounds (Section 4.5.4) of one of the meets being
merged. Nevertheless its domain usually changes, owing to meet bounds with non-zero
duration attributes. This must cause no incompatibilities with the domains of other meets
connected to it by assignments, allowing for offsets. When cycle meets (Section 4.5.3)
merge, the result meet has the singleton domain of the chronologically first meet. Domain
incompatibilities cannot occur in that case.

If all these conditions hold, meet1 and meet2 are said to be mergeable. These conditions
usually hold trivially when merging the results of a previous split. The merged meet’s attributes
(including its meet bounds and the order of its tasks) may come from either meet1 or meet2; the
choice is deliberately left unspecified, and the user must not depend on it.

It is now clear why KheMeetMergeCheck does not need a recursive parameter: because
none of the conditions just given depend on whether the merge is recursive. Recursive merges
are only attempted when KheMergeCheck says they will succeed. So instead of preventing the
top-level merge, an unacceptable recursive merge simply does not happen.

4.5.2. Assignment

KHE’s basic operations do not include assigning a time to a meet. A meet is either unassigned or
else assigned to another meet at a given offset, fixing the starting times of the two meets relative
to each other, but not assigning a specific time to either. For example, if m1 is assigned to m2

at offset 2, then whatever time m2 eventually starts at, m1 will start two times later. Of course,
ultimately meets need to be assigned times. This is done by assigning them to special meets
called cycle meets (Section 4.5.3).

Assigning one meet to another supports hierarchical timetabling, in which several meets
are timetabled relative to each other, then the whole group is timetabled into a larger context, and
so on. One simple application is in handling link events constraints. Assigning all the linked
events except one to that exception guarantees that the linked events will be simultaneous; the
time eventually assigned to the exception becomes the time assigned to all.

The fundamental meet assignment operations are

bool KheMeetMoveCheck(KHE_MEET meet, KHE_MEET target_meet, int offset);
bool KheMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset);

4.5. Meets 93

KheMeetMove changes the assignment of meet from whatever it is now to target_meet at
offset. If target_meet is NULL, the move is an unassignment and offset is ignored.

These functions follow the usual pattern, returning true if the move can be carried out, with
KheMeetMove actually doing it if so. They return true if all of the following conditions hold:

• KheMeetAssignIsFixed (see below) returns false.

• The meet parameter is not a cycle meet.

• The move actually changes the assignment: either target_meet is NULL and meet’s current
assignment is non-NULL, or target_meet is non-NULL and meet’s current assignment is not
to target_meet at offset.

• The offset parameter is in range: if target_meet is non-NULL, then offset >= 0 and
offset <= KheMeetDuration(target_meet) - KheMeetDuration(meet);

• If target_meet is non-NULL, then the time domain (Section 4.5.4) of target_meet is a
subset of the time domain of meet, allowing for offsets.

• The node rule (Section 4.9) would not be violated if the move was carried out.

If all these conditions hold, then meet is said to be moveable to target_meet at offset.
Returning false when the move changes nothing reflects the practical reality that no solver
wants to waste time on such moves.

KHE offers several convenience functions based on KheMeetMoveCheck and KheMeetMove.
For assigning a meet there is

bool KheMeetAssignCheck(KHE_MEET meet, KHE_MEET target_meet, int offset);
bool KheMeetAssign(KHE_MEET meet, KHE_MEET target_meet, int offset);

Assigning is the same as moving except that meet is expected to be unassigned to begin with, and
KheMeetAssignCheck and KheMeetAssign return false if not. For unassigning there is

bool KheMeetUnAssignCheck(KHE_MEET meet);
bool KheMeetUnAssign(KHE_MEET meet);

Unassigning is the same as moving to NULL. For swapping there is

bool KheMeetSwapCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetSwap(KHE_MEET meet1, KHE_MEET meet2);

A swap is two moves, one of meet1 to whatever meet2 is assigned to, and the other of meet2 to
whatever meet1 is assigned to. It succeeds whenever those two moves succeed.

KheMeetSwap has two useful properties. First, exchanging the order of its parameters never
affects what it does. Second, the code fragment

if(KheMeetSwap(meet1, meet2))
KheMeetSwap(meet1, meet2);

leaves the solution in its original state whether the swap occurs or not.

94 Chapter 4. Solutions

A variant of the swapping idea called block swapping is offered:

bool KheMeetBlockSwapCheck(KHE_MEET meet1, KHE_MEET meet2);
bool KheMeetBlockSwap(KHE_MEET meet1, KHE_MEET meet2);

Block swapping is the same as ordinary swapping except that it treats one very special case in
a different way: the case when both meets are initially assigned to the same meet, at different
offsets which cause them to be adjacent, but not overlapping, in time. In this case, both meets
remain assigned to the same meet afterwards, and the later meet is assigned the offset of the
earlier one, but the earlier one is not necessarily assigned the offset of the later one. Instead, it
is assigned that offset which places it adjacent to the other meet.

For example, when swapping a meet of duration 1assigned to the first time on Monday with
a meet of duration 2 assigned to the second time on Monday, KheMeetBlockSwap would move
the first meet to the third time on Monday, not the second time. This is much more likely to work
well when the two meets have preassigned resources in common. It is the same as an ordinary
swap when the meets have the same duration, but it is different when their durations differ. The
two useful properties of ordinary swaps also hold for block swaps.

A meet’s assignment may be retrieved by calling

KHE_MEET KheMeetAsst(KHE_MEET meet);
int KheMeetAsstOffset(KHE_MEET meet);

These return the meet that meet is assigned to, and the offset into that meet. If there is no
assignment, the values returned are NULL and -1.

Although a meet may only be assigned to one meet, any number of meets may be assigned
to a meet, each with its own offset. Functions

int KheMeetAssignedToCount(KHE_MEET target_meet);
KHE_MEET KheMeetAssignedTo(KHE_MEET target_meet, int i);

visit all the meets that are assigned to a given meet, in an unspecified order which could change
when a meet is assigned to or unassigned from target_meet. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.)

Given that a meet can be assigned to another meet at some offset, it follows that a chain of
assignments can be built up, from one meet to another and another and so on. Function

KHE_MEET KheMeetRoot(KHE_MEET meet, int *offset_in_root);

returns the root of meet: the last meet on the chain of assignments leading out of meet. It also
sets *offset_in_root to the offset of meet in its root meet, which is just the sum of the offsets
along the assignment path. One function which uses KheMeetRoot is

bool KheMeetOverlap(KHE_MEET meet1, KHE_MEET meet2);

This returns true if meet1 and meet2 can be proved to overlap in time, because they have the
same root meet, and their offsets in that root meet and durations make them overlap. Also,

bool KheMeetAdjacent(KHE_MEET meet1, KHE_MEET meet2, bool *swap);

4.5. Meets 95

returns true if meet1 and meet2 can be proved to be immediately adjacent in time (but not
overlapping), because they have the same root meet, and their offsets in that root meet and
durations make them adjacent. If so, it also sets *swap to true if meet2 precedes meet1, and to
false otherwise. Again, the meets are required to have the same root meet. This implies that
a meet assigned to the end of one cycle meet (Section 4.5.3) is not reported to be adjacent to a
meet assigned to the start of the next cycle meet. This is usually what is wanted in practice.

Meet assignments may be fixed and unfixed, by calling

void KheMeetAssignFix(KHE_MEET meet);
void KheMeetAssignUnFix(KHE_MEET meet);
bool KheMeetAssignIsFixed(KHE_MEET meet);

Any attempt to change the assignment of meet will fail while the fix is in place. When several
events are linked by a link events constraint, assigning the meets of all but one of them to the
meets of that one and fixing those assignments, or assigning the meets of all of them to some
other set of meets and fixing those assignments, has a significant efficiency payoff.

A call to KheMeetMoveCheck(meet, target_meet, offset) returns false irrespective
of target_meet and offset when meet is a cycle meet or its assignment is fixed. Function

bool KheMeetIsMovable(KHE_MEET meet);

returns true when neither of these conditions holds, so that KheMeetMoveCheck can be expected
to return true for at least some target meets and offsets.

Two similar functions follow chains of fixed assignments:

KHE_MEET KheMeetFirstMovable(KHE_MEET meet, int *offset_in_result);
KHE_MEET KheMeetLastFixed(KHE_MEET meet, int *offset_in_result);

KheMeetFirstMovable returns the first meet m on the chain of assignments out of meet such
that KheMeetIsMovable(m) holds. If there is no such meet it returns NULL. It is used when
changing the time assigned to meet: this can be done only by changing the assignment of
KheMeetFirstMovable(meet), or of a movable meet further along the chain, and this is only
possible when the result is non-NULL. KheMeetLastFixed returns the last meet on the chain of
fixed assignments out of meet; that is, it follows the chain of assignments out of meet until it
reaches a meet whose target meet is NULL or whose assignment is not fixed, and returns that meet.
Its result is always non-NULL, and could be a cycle meet. It is used to decide whether two meets
are fixed to the same meet, directly or indirectly. In both functions, the result could be meet itself,
and *offset_in_result is set to the offset of meet in the result, if non-NULL.

4.5.3. Cycle meets and time assignment

Even if most meets are assigned to other meets, there must be a way to associate a particular
starting time with a meet eventually. Rather than having two kinds of assignment, one to a meet
and one to a time, which might conflict, KHE has a special kind of meet called a cycle meet. A
cycle meet has type KHE_MEET as usual, and it has many of the properties of ordinary meets. But
it is also associated with a particular starting time (and its domain is fixed to just that time and
cannot be changed), and so by assigning a meet to a cycle meet one also assigns a time.

96 Chapter 4. Solutions

A cycle meet cannot be assigned to another meet; its assignment is fixed to NULL and cannot
be changed. Cycle meets may be split (their offspring are also cycle meets) and merged. They
may even be deleted, but that is not likely to ever be a good idea.

The user cannot create cycle meets directly. Instead,one cycle meet is created automatically
whenever a solution is created. The starting time of this initial cycle meet is the first time of the
cycle, and its duration is the number of times of the cycle. When solving, it is usual to split the
initial cycle meet into one meet for each block of times not separated by a meal break or the end
of a day, to prevent other meets from being assigned times which cause them to span these breaks.
A function for this appears below. When evaluating a fixed solution, it is usual to not split the
initial cycle meet, since the other meets already have unchangeable starting times and durations,
and splitting the initial cycle meet might prevent them from being assigned to cycle meets.

To find out whether a given meet is a cycle meet, call

bool KheMeetIsCycleMeet(KHE_MEET meet);

Cycle meets appear on the list of all meets contained in a solution. They are not stored separately
anywhere. So the way to find them all is

for(i = 0; i < KheSolnMeetCount(soln); i++)
{
meet = KheSolnMeet(soln, i);
if(KheMeetIsCycleMeet(meet))
visit_cycle_meet(meet);

}

However, cycle meets are usually near the front of the list, so this can be optimized as follows:

time_count = KheInstanceTimeCount(KheSolnInstance(soln));
durn = 0;
for(i = 0; i < KheSolnMeetCount(soln) && durn < time_count; i++)
{
meet = KheSolnMeet(soln, i);
if(KheMeetIsCycleMeet(meet))
{
visit_cycle_meet(meet);
durn += KheMeetDuration(meet);

}
}

The loop terminates as soon as the total duration of the cycle meets visited reaches the number
of times in the instance.

Solutions offer several functions whose results depend on cycle meets. They notice when
cycle meets are split, and adjust their results accordingly. Functions

KHE_MEET KheSolnTimeCycleMeet(KHE_SOLN soln, KHE_TIME t);
int KheSolnTimeCycleMeetOffset(KHE_SOLN soln, KHE_TIME t);

return the unique cycle meet running at time t, and the offset of t within that meet. Function

4.5. Meets 97

KHE_TIME_GROUP KheSolnPackingTimeGroup(KHE_SOLN soln, int duration);

returns a time group containing the times at which a meet of the given duration may begin. For
example, if the initial cycle meet has not been split, KheSolnPackingTimeGroup(soln, 2) will
contain every time except the last in the cycle; if the initial cycle meet has been split into one
meet for each day, it will contain every time except the last in each day; and so on.

As mentioned earlier,when solving it is usual to split the initial cycle meet into one fragment
for each maximal block of times not spanning a meal break or end of day. The XML format
does not record this information, but solver

void KheSolnSplitCycleMeet(KHE_SOLN soln);

is able to infer it, as follows. Say that two events of soln’s instance are related if they share
a required link events constraint with non-zero weight. Find the equivalence classes of the
reflexive transitive closure of this relation. For each class, examine the required split events
constraints with non-zero weight of the events of the class to determine what durations the meets
derived from the events of this class may have. Also determine whether the starting time of the
class is preassigned, because one of its events has a preassigned time.

For each permitted duration, consult the required prefer times constraints of non-zero
weight of the events of the class to see when its meets of that duration could begin. If a meet m
with duration 2 can begin at time t, there cannot be a break after time t; if a meet m with duration
3 can begin at time t, there cannot be a break after time t or after the time following t, if any;
and so on. Accumulating all this information for all classes determines the set of times which
cannot be followed by a break. All other times can be followed by a break, and the initial cycle
event is split at these times, and also at times where a break is explicitly allowed by function
KheTimeBreakAfter from Section 3.4.2.

These functions move a meet to a time, following the familiar pattern:

bool KheMeetMoveTimeCheck(KHE_MEET meet, KHE_TIME t);
bool KheMeetMoveTime(KHE_MEET meet, KHE_TIME t);

They work by converting t into a cycle meet and offset, via functions KheSolnTimeCycleMeet
and KheSolnTimeCycleMeetOffset above, and calling KheMeetMoveCheck and KheMeetMove.
Meets may also be assigned to cycle meets directly, using KheMeetMove and the rest. The direct
route is more convenient in general solving, since time assignment is then not a special case.

The following functions are also offered:

bool KheMeetAssignTimeCheck(KHE_MEET meet, KHE_TIME t);
bool KheMeetAssignTime(KHE_MEET meet, KHE_TIME t);
bool KheMeetUnAssignTimeCheck(KHE_MEET meet);
bool KheMeetUnAssignTime(KHE_MEET meet);
KHE_TIME KheMeetAsstTime(KHE_MEET meet);

The first four are wrappers for KheMeetAssignCheck, KheMeetAssign, KheMeetUnAssignCheck,
and KheMeetUnAssign. KheMeetAsstTime follows the assignments of meet as far as possible, and
if it arrives in a cycle meet, it returns the starting time of meet; otherwise it returns NULL.

98 Chapter 4. Solutions

4.5.4. Meet domains and bounds

Each meet contains a time group called its domain, retrievable by calling

KHE_TIME_GROUP KheMeetDomain(KHE_MEET meet);

When a meet is assigned a time, that time must be an element of its domain.

More precisely, the solution invariant says that meet’s domain must be a superset of the
domain of the meet it is assigned to, if any, adjusted for offsets. So, given a chain of assignments
beginning at meet and ending at a cycle meet, the domain of meet must be a superset of the
domain of the cycle meet, adjusted for offsets. Since the domain of a cycle meet is a singleton set
defining a time, the time assigned to meet by this chain of assignments lies in meet’s domain.

Meet domains cannot be set directly. Instead, meet bound objects influence them. This
may seem unnecessarily complicated, but meet bounds have several major advantages over
setting domains directly, including allowing restrictions on domains to be added and removed
independently, and doing the right thing when meets split and merge.

When meets split and merge, their durations change, and this usually requires a change of
domain. For example, a meet of duration 2 cannot be assigned the last time on any day, but if it is
split, the fragments may be. Accordingly, a meet bound object stores a whole set of time groups,
one for each possible duration. Only one time group influences a meet’s domain at any moment:
the one corresponding to the meet’s current duration. But the others remain in reserve for when
the meet’s duration is changed by a split or merge.

To create a meet bound object, call

KHE_MEET_BOUND KheMeetBoundMake(KHE_SOLN soln,
bool occupancy, KHE_TIME_GROUP dft_tg);

See below for the occupancy and dft_tg parameters. To delete a meet bound object, call

bool KheMeetBoundDeleteCheck(KHE_MEET_BOUND mb);
bool KheMeetBoundDelete(KHE_MEET_BOUND mb);

This includes deleting mb from each meet it is added to, and is permitted when all of those
deletions are permitted, according to KheMeetDeleteMeetBoundCheck, defined below.

To retrieve the attributes defined when a meet bound is created, call

KHE_SOLN KheMeetBoundSoln(KHE_MEET_BOUND mb);
bool KheMeetBoundOccupancy(KHE_MEET_BOUND mb);
KHE_TIME_GROUP KheMeetBoundDefaultTimeGroup(KHE_MEET_BOUND mb);

These are rarely accessed in practice.

As mentioned above, a meet bound is supposed to define a time group for each possible
duration. These time groups can be set manually by making any number of calls to

void KheMeetBoundAddTimeGroup(KHE_MEET_BOUND mb,
int duration, KHE_TIME_GROUP tg);

Each declares that when mb is applied to a meet of the given duration, it restricts its domain to

4.5. Meets 99

be a subset of tg. They may be retrieved by

KHE_TIME_GROUP KheMeetBoundTimeGroup(KHE_MEET_BOUND mb, int duration);

In both functions, duration may be any positive integer, provided it is not unreasonably large.
Two calls to KheMeetBoundAddTimeGroup with the same duration are pointless, but if they
occur, the second takes effect. There is no need to specify a time group for every possible
duration: durations other than those covered by calls to KheMeetBoundAddTimeGroup are
assigned time groups using the occupancy and dft_tg arguments of KheMeetBoundMake. To
explain them we need to delve deeper.

There are really two kinds of domains. Those we have dealt with so far may be called
starting-time domains, because they restrict the starting times of meets. They are appropriate, for
example, when expressing prefer times and spread events constraints (which constrain starting
times) structurally. The others may be called occupancy domains, because they restrict the whole
set of times a meet occupies, not just its starting time. For example, a meet of duration 2 should
not start immediately before a time when one of its resources is unavailable: the complement of
a resource’s set of unavailable times is an occupancy domain, not a starting-time domain.

KHE works directly only with starting-time domains, not occupancy domains, so what is
needed is a function to convert an occupancy domain into a starting-time domain:

KHE_TIME_GROUP KheSolnStartingTimeGroup(KHE_SOLN soln, int duration,
KHE_TIME_GROUP tg);

This returns the set of times that a meet of the given duration could start without any part of
it lying outside tg. In other words, it accepts occupancy domain tg and returns the equivalent
starting-time domain for a meet of the given duration. When duration is 1, the result is just tg.
As duration increases the result shrinks, eventually becoming empty.

To return to meet bounds. When occupancy is false, the time group used by the meet
bound for durations not set explicitly is dft_tg. It may be best to set all durations explicitly in
this case. When occupancy is true, the value used for any unspecified duration is

KheSolnStartingTimeGroup(soln, duration, dft_tg);

These values could be passed explicitly, but this way they can be (and are) created only when
needed, and there is no need to know the maximum duration. For example, let available_tg be
the set of times that some resource is available. Then the meet bound created by

KheMeetBoundMake(soln, true, available_tg);

ensures that a meet lies entirely within this set of times, whatever duration it has.

A meet m may have any number of meet bounds. Its domain is the intersection, over all
its meet bounds mb, of KheMeetBoundTimeGroup(mb, KheMeetDuration(m)), or the full cycle if
none. A meet bound may be added to any number of meets. To add a meet bound, call

bool KheMeetAddMeetBoundCheck(KHE_MEET meet, KHE_MEET_BOUND mb);
bool KheMeetAddMeetBound(KHE_MEET meet, KHE_MEET_BOUND mb);

These follow the usual form, returning true when the addition is permitted (when the change

100 Chapter 4. Solutions

in meet’s domain it causes does not violate the solution invariant), with KheMeetAddMeetBound

actually carrying out the addition in that case. To delete a meet bound from a meet, call

bool KheMeetDeleteMeetBoundCheck(KHE_MEET meet, KHE_MEET_BOUND mb);
bool KheMeetDeleteMeetBound(KHE_MEET meet, KHE_MEET_BOUND mb);

This too is not always permitted, because it may increase meet’s domain, which may violate the
solution invariant with respect to the domains of meets assigned to meet.

While a meet bound is added to at least one meet, it is not permitted to change its time
groups (that is, calls to KheMeetBoundAddTimeGroup are prohibited).

To visit the meet bounds added to a given meet, call

int KheMeetMeetBoundCount(KHE_MEET meet);
KHE_MEET_BOUND KheMeetMeetBound(KHE_MEET meet, int i);

as usual. To visit the meets to which a given meet bound has been added, call

int KheMeetBoundMeetCount(KHE_MEET_BOUND mb);
KHE_MEET KheMeetBoundMeet(KHE_MEET_BOUND mb, int i);

The relationship between meets and meet bounds is a many-to-many one.

When a meet is split, its meet bounds are added to both fragments; and when two meets
are merged, one (either) of the two sets of meet bounds is used for the merged meet. Although
the meet bounds are the same, the durations change, so the domains may change too. Splits and
merges are only permitted when the new domains do not violate the solution invariant.

Adding a meet bound to a meet has some cost in run time, but is fast enough to use within
solvers. Meet bound objects are obtained from free lists held in the solution object. Time groups
are immutable during solving and may be shared.

When KheMeetMake makes a meet derived from an event with a preassigned time, it adds
to the meet a meet bound whose default time group is the singleton time group containing that
time. No other special arrangements are made for meets derived from preassigned events.

4.5.5. Automatic domains

Cycle meets have fixed singleton domains, and meets derived from events can also be assigned
fixed domains, based on their durations and the constraints that apply to them.

When solving hierarchically there may be other meets, lying at intermediate levels, for
which there is no obvious fixed domain. Instead, the domain of such a meet needs to be the
largest domain consistent with the domains of the meets assigned to it: the intersection of those
domains, allowing for offsets, or the full set of times if no meets are assigned to it.

As meets are assigned to and unassigned from such a meet, its domain changes automatical-
ly. At any moment it does have a domain,however,defined by the rule just given, and this domain
must satisfy the solution invariant as usual.

A newly created meet has a fixed domain. To convert it to the automatic form, call

4.5. Meets 101

bool KheMeetSetAutoDomainCheck(KHE_MEET meet, bool automatic);
bool KheMeetSetAutoDomain(KHE_MEET meet, bool automatic);

Assigning true to automatic gives the meet an automatic domain. This will return false if
meet is a cycle meet, or if meet is derived from an event or contains tasks, as discussed below.
Assigning false returns the meet to a fixed domain. Meet bounds are not affected by automatic
domains; what is affected is whether they are used to construct the domain or not.

KheMeetDomain returns NULL when the meet has an automatic domain. It is important not
to mistake this for ‘having no domain,’ a concept not defined by KHE. Function

KHE_TIME_GROUP KheMeetDescendantsDomain(KHE_MEET meet);

returns the intersection of the domains of the descendants of meet, including meet itself, adjusted
for offsets, or the full time group if there are no such meets or they all have automatic domains.
It may thus be used to find the true domain of a meet when KheMeetDomain returns NULL. It is
relatively slow and not intended for use during solving.

When a meet with an automatic domain is split, its two fragments have automatic domains.
When two meets are joined, they must both either have automatic domains or not; and if both do,
then the joined meet has an automatic domain.

A meet with an automatic domain may not be derived from an event, and it may not have
tasks. These two conditions are naturally satisfied by the kinds of meets that need automatic
domains. They are necessary, since otherwise KHE would be forced to maintain explicit
domains as meets are assigned and unassigned, which would not be efficient. As it is, automatic
domains are implemented by having the domain test bypass meets whose domains are automatic,
as though each such meet was replaced by the collection of meets assigned to it.

4.6. Tasks

A task is a demand for one resource. It is created by calling

KHE_TASK KheTaskMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_MEET meet, KHE_EVENT_RESOURCE er);

The task lies in soln and has resource type rt. When parameter meet is non-NULL, the task
lies within meet, representing a demand for one resource, of type rt, at the times when meet is
running. When meet is NULL, the task still demands a resource, but at no times, making it useful
only as a target for the assignment of other tasks, as explained below.

Parameter er may be non-NULL only when meet is non-NULL and derived from some event
e. In that case, er must be one of e’s event resources. Its presence causes the task to consider
itself to be derived from event resource er.

When first created, a meet has no tasks. They must be created separately by calls to
KheTaskMake. Function KheSolnMakeCompleteRepresentation (Section 4.3)does this. When
a task’s enclosing meet splits, the task splits too. And when two meets merge, their tasks must
be compatible and are merged pairwise, inversely to the split.

A task contains an optional assignment to another task, and a resource domain which
restricts the resources it may be assigned to an arbitrary subset of the resources of its type. These

102 Chapter 4. Solutions

attributes are described in detail in later sections.

A task may be deleted by calling

void KheTaskDelete(KHE_TASK task);

This removes the task from its meet, if any, and unassigns any assignments involving the task.

The back pointer of a task may be set and retrieved by

void KheTaskSetBack(KHE_TASK task, void *back);
void *KheTaskBack(KHE_TASK task);

as usual, and the usual visit number operations are available:

void KheTaskSetVisitNum(KHE_TASK task, int num);
int KheTaskVisitNum(KHE_TASK task);
bool KheTaskVisited(KHE_TASK task, int slack);
void KheTaskVisit(KHE_TASK task);
void KheTaskUnVisit(KHE_TASK task);

Function

char *KheTaskId(KHE_TASK task);

returns a string which is supposed to uniquely identify the task. Most of the time, this is the Id of
the task’s meet, followed by a dot and an index number identifying the task within the meet (the
first task has index 0, the second has index 1, and so on). Some special tasks (e.g. cycle meets)
have an Id beginning and ending with "/".

The result of KheTaskId(task) is created when KheTaskId(task) is first called, and
stored in task so that it does not have to be created over and over. If it is used only for debugging,
as is the intention, there is virtually no cost in running time or memory when debugging is off.

The attributes of a task related to its meet may be retrieved by

KHE_MEET KheTaskMeet(KHE_TASK task);
int KheTaskMeetIndex(KHE_TASK task);
int KheTaskDuration(KHE_TASK task);
float KheTaskWorkload(KHE_TASK task);

If there is no meet, KheTaskMeet returns NULL and KheTaskDuration and KheTaskWorkload

return 0. If there is a meet and event resource, KheTaskWorkload returns the workload of the
task, defined in accord with the XML format’s definition to be

w(task) =
d(meet)w(er)

d(e)

where d(meet) is the duration of task’s meet, w(er) is the workload of task’s event resource, and
d(e) is the duration of task’s meet’s event. See below for the similar and more generally useful
KheTaskTotalDuration and KheTaskTotalWorkload operations. There is also

float KheTaskWorkloadPerTime(KHE_TASK task);

4.6. Tasks 103

which returns the workload per time of the task: the workload per time of its event resource, or
0.0 if there is no event resource. Other attributes of a task may be accessed by

KHE_SOLN KheTaskSoln(KHE_TASK task);
int KheTaskSolnIndex(KHE_TASK task);
KHE_RESOURCE_TYPE KheTaskResourceType(KHE_TASK task);
KHE_EVENT_RESOURCE KheTaskEventResource(KHE_TASK task);

These return the solution containing task, the index of task in its solution (the value of i for
which KheSolnTask(soln, i) returns task), the task’s resource type, and its event resource (if
any). Index numbers may change when tasks are deleted (what actually happens is that the hole
left by the deletion of a task, if not last, is plugged by the last task), so care is needed. Also,

bool KheTaskIsPreassigned(KHE_TASK task, KHE_RESOURCE *r);

returns true when KheTaskEventResource(task) != NULL and that event resource has a
preassigned resource;task is called a preassigned task in that case. If r != NULL, then *r is set
to the event resource’s preassigned resource if task is preassigned, and to NULL otherwise.

When a task is preassigned, its domain (Section 4.6.3) contains just the preassigned
resource. This prevents any other resource from being assigned, directly or indirectly, to the task.
However there is no prohibition on unassigning the task, or on moving it to a task whose domain
makes it also preassigned that same resource. Allowing such changes can be awkward; it has
been done to permit preassigned tasks to participate in structures such as task trees.

Formerly at this point a function called KheTaskEquivalent was introduced which
returned true when two given tasks are equivalent, in the sense that it makes no difference which
of the two is assigned some resource. This function has been withdrawn, because multi-tasks
(Section 11.9) now do the same job rather better.

A task may lie in a tasking, which is an arbitrary set of tasks (Section 5.5). Functions

KHE_TASKING KheTaskTasking(KHE_TASK task);
int KheTaskTaskingIndex(KHE_TASK task);

return the tasking containing task and the index of task in that tasking, or NULL and -1 if the
task does not lie in a tasking. Finally,

void KheTaskDebug(KHE_TASK task, int verbosity, int indent, FILE *fp);

produces the usual debug print of task onto fp with the given verbosity and indent.

4.6.1. Assignment

Just as KHE assigns one meet to another meet, not to a time, so it assigns one task to another task,
not to a resource. Accordingly, the assignment operations for tasks parallel those for meets, the
main difference being that there is no offset.

The fundamental task assignment operations are

bool KheTaskMoveCheck(KHE_TASK task, KHE_TASK target_task);
bool KheTaskMove(KHE_TASK task, KHE_TASK target_task);

104 Chapter 4. Solutions

KheTaskMove changes the assignment of task to target_task. If target_task is NULL, the
move is an unassignment. These operations follow the usual pattern, returning false and chang-
ing nothing if they cannot be carried out. Here is the full list of reasons why this could happen:

• task’s assignment is fixed;

• task is a cycle task (Section 4.6.2);

• the move changes nothing: target_task is the same as task’s current assignment;

• target_task is non-NULL and the resource domain (Section 4.6.3) of target_task is not
a subset of the resource domain of task.

As for meet moves, returning false when the move changes nothing reflects the practical reality
that no solver wants to waste time on such moves.

KHE offers several convenience functions based on KheTaskMoveCheck and KheTaskMove.
For assigning a task there is

bool KheTaskAssignCheck(KHE_TASK task, KHE_TASK target_task);
bool KheTaskAssign(KHE_TASK task, KHE_TASK target_task);

Assigning is the same as moving except that task is expected to be unassigned to begin with, and
KheTaskAssignCheck and KheTaskAssign return false if not. For unassigning there is

bool KheTaskUnAssignCheck(KHE_TASK task);
bool KheTaskUnAssign(KHE_TASK task);

Unassigning is the same as moving to NULL. For swapping there is

bool KheTaskSwapCheck(KHE_TASK task1, KHE_TASK task2);
bool KheTaskSwap(KHE_TASK task1, KHE_TASK task2);

A swap is two moves, one of task1 to whatever task2 is assigned to, and the other of task2

to whatever task1 is assigned to. It succeeds whenever those two moves succeed. As for meet
swaps, exchanging the parameters changes nothing, and code fragment

if(KheTaskSwap(task1, task2))
KheTaskSwap(task1, task2);

leaves the solution in its original state whether the swap occurs or not.

A task’s assignment may be retrieved by calling

KHE_TASK KheTaskAsst(KHE_TASK task);

If there is no assignment, NULL is returned. Although a task may only be assigned to one task,
any number of tasks may be assigned to a task. Functions

int KheTaskAssignedToCount(KHE_TASK target_task);
KHE_TASK KheTaskAssignedTo(KHE_TASK target_task, int i);

visit all the tasks that are assigned to target_task, in an unspecified order which could change

4.6. Tasks 105

when a task is assigned or unassigned from target_task. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.) Functions

int KheTaskTotalDuration(KHE_TASK task);
float KheTaskTotalWorkload(KHE_TASK task);

return the total duration and workload of task and the tasks assigned to it, directly or indirectly.
These functions are usually more appropriate than KheTaskDuration and KheTaskWorkload.

Given that a task can be assigned to another task, a chain of assignments can be built up,
from one task to another and so on. Function

KHE_TASK KheTaskRoot(KHE_TASK task);

returns the root of task: the last task on the chain of assignments leading out of task, possibly
task itself. The result is never NULL, but it could be a cycle task (Section 4.6.2). Function

KHE_TASK KheTaskProperRoot(KHE_TASK task);

is like KheTaskRoot except that it excludes assignments to cycle tasks from the chain of
assignments it follows. The result is a cycle task only when task itself is a cycle task. Also,

bool KheTaskIsProperRoot(KHE_TASK task);

returns true when task is a proper root task: when it is not a cycle task, and is either unassigned
or assigned directly to a cycle task.

The next function is offered as an aid to solvers, to help them to decide whether they should
try to assign a resource to a given task, or not:

bool KheTaskNeedsAssignment(KHE_TASK task);

Irrespective of whether task is currently assigned or not, this function returns true when task

needs to be assigned a resource in order to avoid a positive cost (hard or soft) among the event
resource constraints that apply to it, taking the rest of the current solution as fixed.

This function is mainly useful when repairing solutions. When constructing initial solutions
it will often be misleading, since when none of the tasks subject to a limit resources constraint
with a positive minimum limit is assigned (as is the case initially), it will say that all of them need
assignment, when in fact only some of them (enough to reach the limit) need assignment.

Although the idea of KheTaskNeedsAssignment is simple enough, there are several
wrinkles, which we explain now by describing the implementation.

First, KheTaskNeedsAssignment finds the proper root of task, as defined just above, and
applies itself to that task. This is because the intention is to determine whether task needs
assignment to a resource, not to another task, and assignments to other tasks are taken as fixed.
It’s best, on the whole, if task itself is already a proper root task.

The next step is to check the tasks assigned to task recursively. If any of them need
assignment, then so does task. Otherwise, it remains to check task itself.

If task is not derived from an event resource, then it does not need assignment. Otherwise,
KheTaskNeedsAssignment calls KheEventResourceNeedsAssignment (Section 3.6.3). If this

106 Chapter 4. Solutions

returns KHE_NO or KHE_YES, KheTaskNeedsAssignment returns false or true immediately. If
it returns KHE_MAYBE, then task’s monitors are searched for limit resources monitors m with a
positive minimum limit, and each is handled as follows.

If m is below the limit, then irrespective of whether or not task is assigned, clearly it needs
to be assigned. Otherwise, m is at or above the limit. If task is either unassigned or assigned a
resource of no interest to m, then it does not need to be assigned, since other tasks are satisfying
m. This leaves one awkward case: m is satisfied, but task is assigned in a way that contributes to
that satisfaction, and it may be that if it was not assigned, m would not be satisfied.

We need to work out what would happen if the task was unassigned. We do that by finding
the total duration of all descendant tasks of the proper root task that are monitored by m, and
comparing their total duration with the amount by which m exceeds its limit.

A similar function is

KHE_COST KheTaskAssignmentCostReduction(KHE_TASK task);

This returns the total amount by which the cost of the event resource constraints that monitor
task (and any tasks assigned, directly or indirectly, to task) reduce when task is assigned. As
for KheTaskNeedsAssignment, this function does not care whether task is assigned or not, and
it applies itself to the proper root of task, so it is probably best if task is its own proper root.
The result could be negative, if assigning task has bad consequences: causing the maximum
limit of a limit resources constraint to be exceeded, or when task is subject to a prefer resources
constraint with an empty domain. The result is inexact when the cost function is not linear, and
also when two tasks are subject to the same limit resources constraint and one is assigned,directly
or indirectly, to the other.

Task assignments may be fixed and unfixed as usual, by calling

void KheTaskAssignFix(KHE_TASK task);
void KheTaskAssignUnFix(KHE_TASK task);
bool KheTaskAssignIsFixed(KHE_TASK task);

The assignment of task cannot be changed while the fix is in place. When several tasks are
linked by an avoid split assignments constraint, assigning all but one of them to that one and fix-
ing those assignments, or assigning all of them to some other task and fixing those assignments,
has a significant efficiency payoff. Function

KHE_TASK KheTaskFirstUnFixed(KHE_TASK task);

returns the first task on the chain of assignments out of task whose assignment is not fixed (pos-
sibly task), or NULL if none. A solver can change the resource assigned to task only by changing
the assignment of KheTaskFirstUnFixed(task), or of a task further along the chain.

4.6.2. Cycle tasks and resource assignment

Just as meets are assigned times by assigning them, directly or indirectly, to cycle meets, so tasks
are assigned resources by assigning them, directly or indirectly, to cycle tasks. A cycle task
has type KHE_TASK as usual, and it has many of the properties of ordinary tasks. But it is also
associated with a particular resource (and its domain is fixed to just that resource and cannot be

4.6. Tasks 107

changed), and so by assigning a task to a cycle task one also assigns a resource.

The user cannot create cycle tasks directly. Instead, one cycle task is created automatically
for each resource whenever a solution is created. The first KheInstanceResourceCount tasks
of a solution are its cycle tasks, in the order the resources appear in the instance. Function

bool KheTaskIsCycleTask(KHE_TASK task);

returns true when task is a cycle task. Function

KHE_TASK KheSolnResourceCycleTask(KHE_SOLN soln, KHE_RESOURCE r);

returns the cycle task representing r in soln.

These functions move a task to a resource, following the familiar pattern:

bool KheTaskMoveResourceCheck(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskMoveResource(KHE_TASK task, KHE_RESOURCE r);

They first produce a target task. If r is non-NULL this is the cycle task returned by function
KheSolnResourceCycleTask above, otherwise it is NULL. Then they call KheTaskMoveCheck
and KheTaskMove. Tasks may also be assigned to cycle tasks directly, using KheTaskMove etc.

The following functions are also offered:

bool KheTaskAssignResourceCheck(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskAssignResource(KHE_TASK task, KHE_RESOURCE r);
bool KheTaskUnAssignResourceCheck(KHE_TASK task);
bool KheTaskUnAssignResource(KHE_TASK task);
KHE_RESOURCE KheTaskAsstResource(KHE_TASK task);

The first four are wrappers for KheTaskAssignCheck, KheTaskAssign, KheTaskUnAssignCheck,
and KheTaskUnAssign. KheTaskAsstResource follows the assignments of task as far as possible.
If it arrives at a cycle task, it returns the resource represented by that task, else it returns NULL.

To find the tasks assigned a given resource, either directly or indirectly via other tasks, call

int KheResourceAssignedTaskCount(KHE_SOLN soln, KHE_RESOURCE r);
KHE_TASK KheResourceAssignedTask(KHE_SOLN soln, KHE_RESOURCE r, int i);

When a resource r is assigned to a task, the task and all tasks assigned to it, directly or indirectly,
go on the end of r’s sequence. When r is unassigned from a task, the task and all tasks assigned
to it, directly or indirectly, are removed, and the gaps are plugged by tasks taken from the end.
The sequence does not include r’s cycle task.

In practice, tasks are of three kinds: cycle tasks, which represent resources; unfixed tasks,
which require assignment to cycle tasks; and fixed tasks, whose assignments are fixed to unfixed
tasks, relinquishing responsibility for assigning a resource to those tasks. Resource assignment
algorithms are concerned with assigning or reassigning unfixed tasks.

108 Chapter 4. Solutions

4.6.3. Task domains and bounds

Each task contains a resource group called its domain, retrievable by calling

KHE_RESOURCE_GROUP KheTaskDomain(KHE_TASK task);

When a task is assigned a resource, that resource must be an element of its domain.

More precisely, the solution invariant says that task’s domain must be a superset of the
domain of the task it is assigned to, if any. So, given a chain of assignments beginning at task
and ending at a cycle task, the domain of task must be a superset of the domain of the cycle task.
Since the domain of a cycle task is a singleton set defining a resource, the resource assigned to
task by this chain of assignments lies in task’s domain.

Task domains cannot be set directly. Instead, task bound objects influence them. Task
bounds work in the same way as meet bounds, except that the complications introduced by meet
splitting are absent. To create a task bound object, call

KHE_TASK_BOUND KheTaskBoundMake(KHE_SOLN soln, KHE_RESOURCE_GROUP rg);

To delete a task bound object, call

bool KheTaskBoundDeleteCheck(KHE_TASK_BOUND tb);
bool KheTaskBoundDelete(KHE_TASK_BOUND tb);

This includes deleting tb from each task it is added to, and is permitted when all of those
deletions are permitted, according to KheTaskDeleteTaskBoundCheck, defined below.

To retrieve the attributes defined when a task bound is created, call

KHE_SOLN KheTaskBoundSoln(KHE_TASK_BOUND tb);
KHE_RESOURCE_GROUP KheTaskBoundResourceGroup(KHE_TASK_BOUND tb);

These are rarely accessed in practice.

A task may have any number of task bounds. Its domain is the intersection, over all its task
bounds tb, of KheTaskBoundResourceGroup(tb), or the full set of resources of its type if none.
A task bound may be added to any number of tasks. To add a task bound, call

bool KheTaskAddTaskBoundCheck(KHE_TASK task, KHE_TASK_BOUND tb);
bool KheTaskAddTaskBound(KHE_TASK task, KHE_TASK_BOUND tb);

These follow the usual form, returning true when the addition is permitted (when the change
in task’s domain it causes does not violate the solution invariant), with KheTaskAddTaskBound

actually carrying out the addition in that case. To delete a task bound from a task, call

bool KheTaskDeleteTaskBoundCheck(KHE_TASK task, KHE_TASK_BOUND tb);
bool KheTaskDeleteTaskBound(KHE_TASK task, KHE_TASK_BOUND tb);

This too is not always permitted, because it may increase task’s domain, which may violate the
solution invariant with respect to the domains of tasks assigned to task.

To visit the task bounds added to a given task, call

4.6. Tasks 109

int KheTaskTaskBoundCount(KHE_TASK task);
KHE_TASK_BOUND KheTaskTaskBound(KHE_TASK task, int i);

as usual. To visit the tasks to which a given task bound has been added, call

int KheTaskBoundTaskCount(KHE_TASK_BOUND tb);
KHE_TASK KheTaskBoundTask(KHE_TASK_BOUND tb, int i);

The relationship between tasks and task bounds is a many-to-many one.

Adding a task bound to a task has some cost in run time, but is fast enough to use within
solvers. The implementation parallels the one described previously for meet bounds.

When KheTaskMake makes a task derived from an event resource which has a preassigned
resource, it adds to the task a task bound whose resource group is the singleton resource group
containing that resource. No other special arrangements are made for tasks derived from
preassigned event resources.

4.7. Resource availability

Evaluators and solvers may wish to know how available a resource is: how much more work it
could do without becoming overloaded. This section presents KHE’s functions for this.

4.7.1. Resource availability functions

The maximum load of a resource r is the maximum amount of work that r could do without
violating any resource constraint of non-zero weight (hard or soft). The current load is the
amount of work that r is doing now (in a given solution), and its available load is its maximum
load minus its current load. Available load could be negative, in which case r is overloaded. In
that case, at least one of its resource constraints of non-zero weight must be violated.

Here ‘load’refers to either of two measures: the total number of times occupied by the tasks
that r is assigned to, or their total workload.

The maximum load is the maximum, over all timetables for r which do not violate any of r’s
preassignments or resource constraints, of the load of the timetable. These two functions return
an estimate of the maximum load, which is usually the true value but may be higher:

bool KheResourceMaxBusyTimes(KHE_SOLN soln, KHE_RESOURCE r, int *res);
bool KheResourceMaxWorkload(KHE_SOLN soln, KHE_RESOURCE r, float *res);

If they can show that constraints limit r’s maximum load to a non-trivial value, they return true

and set *res to that value. Otherwise they return false with *res set to INT_MAX or FLT_MAX.

KheResourceMaxBusyTimes and KheResourceMaxWorkload depend only on the instance,
not on the solution. They are presented as they are because their results are cached in the solution
by the first call, ensuring that subsequent calls take almost no time. This is important, because
they are slow. (The other option which supports caching, which is to calculate them for every
resource while finalizing the instance, seems too burdensome for users who do not need them.)

Next come two functions which calculate the current load:

110 Chapter 4. Solutions

int KheResourceBusyTimes(KHE_SOLN soln, KHE_RESOURCE r);
float KheResourceWorkload(KHE_SOLN soln, KHE_RESOURCE r);

These return the total duration of the tasks currently assigned r in soln, and their total
workload. They could be implemented by traversing the tasks assigned r using functions
KheResourceAssignedTaskCount and KheResourceAssignedTask (Section 4.6.2), but in fact
KHE keeps track of their values as tasks are assigned and unassigned, so they are very fast.

Finally come two functions that calculate availability:

bool KheResourceAvailableBusyTimes(KHE_SOLN soln, KHE_RESOURCE r, int *res);
bool KheResourceAvailableWorkload(KHE_SOLN soln, KHE_RESOURCE r, float *res);

These are the same as KheResourceMaxBusyTimes and KheResourceMaxWorkload, except they
subtract the current load from *res when they return true. So *res could be negative here.

4.7.2. How resource availability is calculated

This section explains how KheResourceMaxBusyTimes and KheResourceMaxWorkload are
implemented. We start with KheResourceMaxBusyTimes. Owing to caching it does its work
only once per resource, so it is more concerned with finding a good limit than running quickly.

A resource’s maximum number of busy times depends on its avoid unavailable times, limit
busy times, and cluster busy times constraints of non-zero weight, soft as well as hard. There are
cases where this number is easy to find. For example, it could be the maximum limit of a limit
busy times constraint whose time group is the entire cycle. But there are other, more complicated
possibilities. A cluster busy times constraint might limit the number of busy days, and then limit
busy times constraints might limit the number of busy times on each day. Or there might be limits
on each day or week, which need to be added to give the overall limit.

Possibilities like these explain why KheResourceMaxBusyTimes is not always exact. It
proceeds as follows, for each resource separately. The following applies to one resource, r.

An avail node is a set of times plus a non-negative integer limit. Its meaning is that r is
constrained to be busy for at most the limit number of times from the set.

At various points in the following description, it says that an avail node x with a given set
of times and limit is created. This statement is to be understood as subject to these rules:

• If a time t is known to lie in an avail node with limit 0 containing just t, then t can be omitted
from every other node without changing the node’s limit. All such times are deleted from
x’s times before x is created, and before the following rules are applied.

• If x’s limit is equal to or larger than its number of times, then x offers no useful information
and it is not created. This includes all avail nodes whose set of times is empty.

• If several avail nodes containing the same set of times are created for r, only one of them,
one whose limit is minimal, is kept; the others are either not created at all, or destroyed when
a node with a smaller limit is created.

Here is the algorithm for KheResourceMaxBusyTimes. Its first phase uses r’s constraints to
create avail nodes wherever they can be justified, as follows. These four cases are handled first:

4.7. Resource availability 111

1. Suppose that all events have preassigned times, as occurs in nurse rostering but not high
school timetabling. Suppose that at some time t, all of the event resources of r’s type in the
events running at t are preassigned resources other than r. Then t is unassignable as far as
r is concerned. For each such t, create one avail node containing limit 0 and t.

2. If r is subject to an avoid unavailable times constraint of non-zero weight, then create one
avail node for each time of the constraint, containing limit 0 and that time.

3. If r is subject to a limit busy times constraint of non-zero weight with maximum limit 0,
then create one avail node for each time of the constraint, containing limit 0 and that time.

4. If r is subject to a cluster busy times constraint of non-zero weight with maximum limit
0, then create one avail node for each time in each positive time group of the constraint,
containing limit 0 and that time.

Next, the algorithm handles these four cases. It makes two passes over the relevant constraints,
because a node derived from one can open the way to nodes derived from others.

5. If r is subject to a limit busy times constraint of non-zero weight with maximum limit
m > 0, then create one avail node for each time group of the constraint, whose times are the
times of the time group, and whose limit is m.

6. Suppose that r is subject to cluster busy times constraint c of non-zero weight with maxi-
mum limit m > 0. For each positive time group g of c, define a set of times and a limit as
follows. The set of times consists of the times of g, minus any for which there is an avail
node with limit 0 containing just that time. The limit is the number of times in that set,
unless there is already an avail node whose times are the times of that set, in which case the
limit is that node’s limit. Then define an avail node as follows. Sort the limits of the positive
time groups, as just defined, into decreasing order. The new node’s times are the times of
the positive time groups, and its limit is the sum of the first m of the sorted limits.

When history is present, the maximum limit m is replaced by max(0,m − xi) in accordance
with the meaning of history. If m < xi the resource is overloaded even if every time group
is inactive, but that possibility is not taken into account here.

7. Suppose that r is subject to cluster busy times constraint c of non-zero weight with a
non-zero minimum limit (including not allowing zero). This may be the same constraint
as in the previous point. Then c may be converted into an equivalent cluster busy times
constraint c′ with the same time groups, but with their polarities reversed, and maximum
limit equal to the number of time groups minus the minimum limit. For example, if c says
that r must be free on at least 8 out of 28 days, then c′ says that r must be busy on at most
20 out of 28 days. So make this conversion (notionally) and apply the previous point. For
a proof that the conversion is correct in general, see the end of Section 3.7.14.

When history is present, suppose that c has n time groups, minimum limit m, and history
values ai and xi. According to the conversion, the revised history value is ai − xi, and the
revised limit (now a maximum limit) is n − m. So altogether the maximum limit comes
to max(0, (n − m) − (ai − xi)).

112 Chapter 4. Solutions

8. Suppose that r is subject to a limit workload constraint c of non-zero weight with maximum
limit m. For each time group g of c, proceed as follows. For each time t of g, find w(t,r),
the minimum workload per time that r could incur when it is busy at t. Sort the w(t,r) of
g into increasing order, and let k be the largest integer such that the sum of the first k of the
w(t,r) does not exceed m. Then k is the largest number of times that r can be busy within
g without violating c, so create an avail node containing the times of g with limit k.

To find w(t,r), proceed as follows. Let S be the set of all event resources whose type is the
type of r. Make the following definitions:

• wuu is the minimum, over all event resources s ∈ S that lie in unpreassigned events and
are themselves unpreassigned, of the workload per time of s.

• wpu(t) is the minimum, over all event resources s ∈ S that lie in preassigned events that
run during time t, and are themselves unpreassigned, of the workload per time of s.

• wup(r) is the minimum, over all event resources s ∈ S that lie in unpreassigned events
and are themselves preassigned r, of the workload per time of s.

• wpp(t,r) is the sum, over all event resources s ∈ S that lie in preassigned events that run
during time t, and are themselves preassigned r, of the workload per time of s.

Define wuu, wpu(t), wup(r), and wpp(r, t) to be ∞ when their defining sets of event resources
are empty. Set w(r, t) to wpp(r, t) if wpp(r, t) < ∞, and to min(wuu,wpu(t),wup(r)) otherwise.

If w(r, t) = ∞, then r cannot be busy at time t, so add an avail node containing t and limit 0,
and proceed as though t is not present in g. Also, if wpp(r, t) < ∞, then r must be busy at t,
so subtract wpp(r, t) from m and proceed as though t is not present in g.

This ends the first phase. Its result is a set of avail nodes.

The second phase uses a graph whose nodes are the first phase’s avail nodes. An edge joins
two nodes when their sets of times have a non-empty intersection. Any independent set in this
graph (any set of nodes such that no two are connected by an edge) defines a larger avail node
whose set of times S is the union of its nodes’ sets, and whose limit L is the sum of their limits.

Let the set of times of the whole cycle be C. The independent set says that of these |C|
times, |S| times are subject to limit L. The remaining |C| − |S| times are not limited. Overall, then,
it places a maximum limit of L′ = L + |C| − |S|on the number of times that r can be busy.

So the second phase finds an independent set for which L′ is as small as possible. This
problem is closely related to the problem of finding a maximum independent set, making it
NP-complete, so KheResourceMaxBusyTimes uses a simple heuristic. It sorts the avail nodes
into decreasing time set size order. Then, for each node in that order, it finds one independent
set, by starting with that node and then examining each following node in order, adding a node
whenever its times do not intersect with the times of the previously added nodes. It then chooses,
from these independent sets, one for which L′ is minimum, and returns that L′ as its result.

KheResourceMaxWorkload is simpler because it is affected only by limit workload
constraints. It works in the same way as KheResourceMaxBusyTimes, finding avail nodes and
building independent sets, but the avail nodes come from just one source:

4.7. Resource availability 113

9. For each time group of each limit workload constraint of non-zero weight with a maximum
limit, build one avail node containing the times of the time group and the maximum limit.

Only independent sets that cover the whole cycle can be used, since the algorithm knows nothing
about workload in the uncovered times. The result is the total limit of the chosen set.

To limit running time on large instances, such as the last few CQ14 instances, the algorithm
exits early when 20 candidate independent sets have been tried since the most recent new best.

KheResourceMaxWorkload produces an integer despite its return type being float, because
the maximum limits of limit workload constraints are integers. KheResourceWorkload and
KheResourceAvailableWorkload, on the other hand, can return fractional values.

The cases covered here are not the only possibilities. Limit active intervals constraints force
resources to have some free time, for example. Pairs of nodes whose time sets have a non-empty
intersection can still be useful, if the intersection is small. But we have to stop somewhere, and
the independent sets suggest that finding the true limit is likely to be an NP-complete problem.

4.7.3. Detailed querying of resource availability

KHE offers functions for querying in detail how resource availability is calculated. The first step
is to obtain a resource availability solver by calling

KHE_AVAIL_SOLVER KheSolnAvailSolver(KHE_SOLN soln);

Each solution object has one resource availability solver, which is created the first time it is
needed (e.g. when KheSolnAvailSolver is first called) and stored in the solution object. It uses
soln’s memory arena, so it will be deleted when soln is deleted or made into a placeholder. It
uses memory fairly efficiently, recycling what it uses through its own free lists.

To query the availability of a particular resource from soln’s instance, start by calling

void KheAvailSolverSetResource(KHE_AVAIL_SOLVER as, KHE_RESOURCE r);

This runs the algorithm from the previous section on r, keeping the resulting best independent
sets, one for busy times and one for workload. It is fairly slow, so it is best if all queries about r
are made after one call to KheAvailSolverSetResource.

After that, several functions become available. To begin with,

bool KheAvailSolverMaxBusyTimes(KHE_AVAIL_SOLVER as, int *res);
bool KheAvailSolverMaxWorkload(KHE_AVAIL_SOLVER as, float *res);

are the same as KheResourceMaxBusyTimes and KheResourceMaxWorkload except that they
query the avail solver about the set resource.

The solver recognises these types of avail node:

114 Chapter 4. Solutions

typedef enum {
KHE_AVAIL_NODE_UNASSIGNABLE_TIME,
KHE_AVAIL_NODE_UNAVAILABLE_TIME,
KHE_AVAIL_NODE_LIMIT_BUSY_ZERO,
KHE_AVAIL_NODE_CLUSTER_BUSY_ZERO,
KHE_AVAIL_NODE_LIMIT_BUSY,
KHE_AVAIL_NODE_CLUSTER_BUSY,
KHE_AVAIL_NODE_CLUSTER_BUSY_MIN,
KHE_AVAIL_NODE_WORKLOAD

} KHE_AVAIL_NODE_TYPE;

These follow the cases given in the previous section, so should be self-explanatory. Function

char *KheAvailNodeTypeShow(KHE_AVAIL_NODE_TYPE type);

returns a short string in static memory describing in general terms what a node with the given
type was derived from: "Unavailable time", and so on.

To find out how the maximum number of busy times was calculated, call

int KheAvailSolverMaxBusyTimesAvailNodeCount(KHE_AVAIL_SOLVER as);
void KheAvailSolverMaxBusyTimesAvailNode(KHE_AVAIL_SOLVER as, int i,
KHE_AVAIL_NODE_TYPE *type, int *limit, KHE_TIME_SET *ts, KHE_MONITOR *m);

KheAvailSolverMaxBusyTimesAvailNodeCount returns the number of avail nodes in the
independent set chosen to define the limit, or 0 if the solver was unable to find a non-trivial limit.
KheAvailSolverMaxBusyTimesAvailNode visits the ith avail node of the chosen independent
set, returning its type, its limit, its set of times, and the monitor that gave rise to it, or NULL if none.
For type KHE_TIME_SET, see Section 5.8.

To do the same job for workload, the calls are

int KheAvailSolverMaxWorkloadAvailNodeCount(KHE_AVAIL_SOLVER as);
void KheAvailSolverMaxWorkloadAvailNode(KHE_AVAIL_SOLVER as, int i,
KHE_AVAIL_NODE_TYPE *type, int *limit, KHE_TIME_SET *ts, KHE_MONITOR *m);

In this case *type is always KHE_AVAIL_NODE_WORKLOAD and *m is never NULL. Again, the count
is 0 if the solver could not find a non-trivial limit.

The avail solver does not report current or available load. Details of current load may be
found by using functions KheResourceAssignedTaskCount and KheResourceAssignedTask

(Section 4.6.2) to visit the tasks assigned r, and KheTaskDuration and KheTaskWorkload to find
their load. Available load is just maximum load minus current load.

4.8. Marks and paths

Suppose you want to make the best time assignment for a meet. You try each assignment in turn,
remembering the best so far and its solution cost, then finish off by re-doing the best one.

Now suppose the alternative operations are more complicated. For example, they might
be Kempe meet moves (Section 10.2.2), each consisting of an unpredictable number of time

4.8. Marks and paths 115

assignments. The same program structure works, but undoing one alternative is much more
complicated. Marks and paths solve these kinds of problems.

A mark is like a waymark on a journey: it marks a particular point, or state, that a solution
has reached. It is created and deleted by

KHE_MARK KheMarkBegin(KHE_SOLN soln);
void KheMarkEnd(KHE_MARK mark, bool undo);

These operations must be called in matching pairs: for each call to KheMarkBegin there must be
one later call to KheMarkEnd with the same mark object. Between these two calls there may be
other calls to KheMarkBegin and KheMarkEnd, and those calls must occur in matching pairs.

KheMarkEnd deletes the mark created by the corresponding KheMarkBegin. If its undo

parameter is true, it also undoes all operations on soln since the corresponding KheMarkBegin,
returning the solution to its state when that call was made. Another way to undo is

void KheMarkUndo(KHE_MARK mark);

It undoes all operations on soln since the call to KheMarkBegin which returned mark, only
without removing mark. It can only be called when it would be legal to call KheMarkEnd with the
same value of mark: when mark is the mark returned most recently by a call to KheMarkBegin,
apart from marks already completed by KheMarkEnd.

When undoing by either method, the resulting value of the solution may differ from the
original in its naturally nondeterministic aspects, such as the set of unmatched demand monitors
(but not their number), and the order of elements in arrays representing sets (of meets, etc.). But
as a solution it will be the same as the original. KHE objects deleted while doing and re-created
while undoing are re-created with the same memory addresses as the originals.

At any time between KheMarkBegin and its corresponding KheMarkEnd, functions

KHE_SOLN KheMarkSoln(KHE_MARK mark);
KHE_COST KheMarkSolnCost(KHE_MARK mark);

may be called to obtain mark’s solution and the solution cost at the time KheMarkBegin was
called. Exploring the result of KheMarkSoln will reveal the solution as it is now, not as it was
when KheMarkBegin was called.

All mark objects share access to one sequence, stored in the solution object, of records of the
operations performed on the solution since the first call to KheMarkBegin whose corresponding
KheMarkEnd has not occurred yet. When undoing, these operations are undone in reverse order
and removed from the sequence. All changes to solutions, including changes to back pointers,are
recorded, except changes to visit numbers, since undoing them would be inappropriate. A mark
object holds a pointer to the solution object, its cost when KheMarkBegin was called, an index
into the sequence saying where to stop undoing, and a sequence of paths, described below.

Changes to monitors (attaching, unattaching, grouping, ungrouping, and SetCeiling

and similar operations) are not recorded in the operation sequence, and so are not undone by
KheMarkEnd. The author is unsure whether this counts as a defect in KHE or not. Certainly, it
removes any guarantee that undoing will ensure that a solution re-attains its previous cost, be-
cause if monitors have changed and the changes are not undone, different costs will be reported.

116 Chapter 4. Solutions

Solvers that make changes to monitors should probably change them back again before they re-
turn, even if other changes to the solution, recording a successful outcome for the solver, remain
in place.

A path is like the route between two waymarks. A path is created by calling

KHE_PATH KheMarkAddPath(KHE_MARK mark);

and represents the route from the state of mark’s solution represented by mark to the state of
that solution at the moment KheMarkAddPath is called. Concretely, a path holds a copy of the
shared sequence of operations, taken at the moment KheMarkAddPath is called, from its mark’s
index to the end. As well as being returned, a path is stored in its mark and deleted by that mark’s
KheMarkEnd, if it has not been deleted before then. A path is meaningless after its mark ends.

In practice, this helper function may be more useful than KheMarkAddPath:

KHE_PATH KheMarkAddBestPath(KHE_MARK mark, int k);

It is written using the more basic functions given below. Its behaviour is equivalent to calling
KheMarkAddPath(mark), then sorting mark’s paths into increasing cost order, then deleting paths
from the end as required to ensure that not more than k paths are kept. But rather than following
this description literally, it uses an optimized method that only calls KheMarkAddPath(mark)

when the resulting path would be one of those kept; it returns the new path in that case, and NULL

otherwise. For example, KheMarkAddBestPath(mark, 1) saves only the best path, and only
creates a path when it would be a new best.

Any number of paths may be stored in a mark, and they may be visited using

int KheMarkPathCount(KHE_MARK mark);
KHE_PATH KheMarkPath(KHE_MARK mark, int i);

as usual, and sorted by calling

void KheMarkPathSort(KHE_MARK mark,
int(*compar)(const void *, const void *));

where compar is a function suited to passing to qsort when sorting an array of KHE_PATH objects.
One such function, KhePathIncreasingSolnCostCmp, is provided, such that after calling

KheMarkPathSort(mark, &KhePathIncreasingSolnCostCmp);

the paths will be sorted into increasing solution cost order, so that the path with the smallest
solution cost comes first. The following operations on paths are also available:

KHE_SOLN KhePathSoln(KHE_PATH path);
KHE_COST KhePathSolnCost(KHE_PATH path);
KHE_MARK KhePathMark(KHE_PATH path);
void KhePathDelete(KHE_PATH path);
void KhePathRedo(KHE_PATH path);

KhePathSoln returns path’s solution, and KhePathSolnCost returns the solution cost at
the moment the path was created by KheMarkAddPath. KhePathMark returns path’s mark.

4.8. Marks and paths 117

KhePathDelete deletes path, including removing it from its mark. KheMarkEnd calls
KhePathDelete for each of its paths; once a mark is deleted, its paths have no meaning.

When KhePathRedo(path) is called, the solution must be in the state it was in when path’s
mark was created. It redoes path, without deleting or otherwise disturbing its mark, so that the
state after it returns is the state at the end of path. This is the only way to redo a path, and because
it checks that it starts from the same state that the path started from originally, it guarantees that
the operations executed while redoing the path cannot fail. KHE objects created along the path
and deleted during the undo (which must have occurred in order to return the solution to its
original state) are re-created during the redo with the same memory addresses as the originals.

One application of marks and paths is the conversion of a sequence of operations into an
atomic sequence, one which is either carried out completely or not at all:

mark = KheMarkBegin(soln);
success = SomeSequenceOfOperations(...);
KheMarkEnd(mark, !success);

If the sequence of operations is successful, it remains in place; otherwise the unsuccessful
sequence, or whatever part of it was completed before failure occurred, is undone. Similarly,

mark = KheMarkBegin(soln);
SomeSequenceOfOperations(...);
KheMarkEnd(mark, KheSolnCost(soln) >= KheMarkSolnCost(mark));

keeps the sequence of operations if it reduces the cost of the solution, but not otherwise.

Another application is the coordination of complex searches, such as tree searches, which
try many alternatives and keep the best. Before the search begins, create a mark, and pass it
to the search function, so that whenever it finds a worthwhile state it can record it in the mark
by calling KheMarkAddPath or KheMarkAddBestPath. (If the initial state is a valid solution,
one that the rest of the search is trying to improve on, call KheMarkAddPath immediately after
KheMarkBegin.) Within the search function, create other marks as required so that subtrees can
be undone by callingKheMarkEnd(sub_mark, true). At the end, all worthwhile states are paths
in the original mark, where they can be examined, sorted, or whatever—like this, perhaps:

if(KheMarkPathCount(mark) > 0)
KhePathRedo(KheMarkPath(mark, 0));

KheMarkEnd(mark, false);

when only the best path is kept. If it is safe to redo that path, there can be nothing to undo.

Marks and paths have been implemented carefully, and their running time is small. Indeed,
it is usually faster to use marks and undoing to return a solution to a previous state, than to
use operations opposite to the originals. This is because KheMarkBegin and KheMarkEnd call
KheSolnMatchingMarkBegin and KheSolnMatchingMarkEnd (Section 7.2), and because there
is no need to check that an undo is safe, as there is when carrying out an opposite operation.

118 Chapter 4. Solutions

4.9. The solution invariant

Here is the condition, called the solution invariant, that every solution always satisfies. The last
three rules relate to data types introduced in Chapter 5.

1. The meet rule: if meet is assigned to target_meet at offset offset, then:

(a) The value of offset is at least 0 and at most the duration of target_meet minus the
duration of meet;

(b) The time domain of target_meet, shifted right offset places, is a subset of the time
domain of meet;

2. The task rule: if task is assigned to target_task, then the resource domain of
target_task is a subset of the resource domain of task.

3. The cycle rule: the parent links of nodes may not form a cycle.

4. The node rule: if meet meet is assigned to meet target_meet and lies in node n, then n has
a parent node and target_meet lies in that parent node.

5. The layer rule: every node of a layer has the same parent node as the layer.

No sequence of operations can bring a solution to a state that violates this invariant.

Chapter 5. Extra Types for Solving

This chapter introduces several types of objects that help with solving. Four of them (nodes, lay-
ers, zones, and taskings) are integral to solutions, being copied when they are copied, for example.
But they are not part of the XML model, so their use is optional. Nodes and layers together define
the layer tree, a data structure invented by the author [7] for use in time assignment. Zones help
to make time assignments regular, and taskings are used in resource assignment.

5.1. Layer trees

The layer tree is a data structure for organizing solutions during time assignment. It supports
hierarchical timetabling, in which meets are timetabled together into small timetables called
tiles, the tiles are timetabled together, and so on until a complete timetable is produced. Layer
trees are recommended when solving general instances, since they gracefully handle awkward
cases, such as linked events whose durations differ.

Layer trees are made of nodes, which form a tree (actually, a forest). Each node has an
optional parent node. The nodes with a given parent are its children.

Within each node lie any number of meets. The node rule, part of the solution invariant
(Section 4.9), imposes a structure on how the meets of nodes may be assigned: if meet is
assigned to target_meet and lies in node n, then n has a parent node and target_meet lies in
that parent node. A layer tree usually has a single root node containing the cycle meets, called the
cycle node. If there is a cycle node, the node rule guarantees that if every non-cycle meet lying
in a node is assigned to some meet, then every such meet is assigned a time.

A meet may lie in at most one node. When using layer trees, it is conventional for every
meet to lie in a node except when it has received its final assignment. Omitting meets from nodes
hides them from time assignment algorithms, which typically access meets via nodes.

When a meet splits, it is replaced in its node (if any) by the two fragments. When two meets
merge, they must lie in the same node (or none), and they are replaced by the merged meet.

A layer is a subset of the children of some node with the property that none of the meets in
the nodes of the layer may overlap in time. This could be for any reason, but it is usually because
their meets all share a preassigned resource which possesses a required avoid clashes constraint.
The property is not enforced by KHE; it is merely a convention.

Here are some examples of layer trees. The first has four nodes, N, n1, n2, and n3. The ni

share a layer and are children of N, so their meets must be assigned to meets of N and should
not overlap in time:

N

n1 n2 n3

The nodes are shown as rectangles. The horizontal direction represents time. That the ni share

119

120 Chapter 5. Extra Types for Solving

a layer is indicated by placing them alongside each other, and that they are children of N is
indicated by placing them vertically below N.

In the next example, N has five children, lying in two layers, {n1,n2,n3} and {m1,m2} :

N

n1 n2 n3

m1 m2

This could arise when one group of students attends the ni while another group attends the mi.

Finally, here is an example where a node lies in two layers (but still has only one parent):

N

n2 n3nm1

m2 m3

The two layers {nm1,n2,n3} and {nm1,m2,m3} both contain node nm1. This case arises naturally
when an event (or a set of linked events) is attended by two groups of students, so that their
timetables coincide at that event but may differ elsewhere.

The key operation in hierarchical timetabling is the assignment of the meets of the children
of a node to the meets of the node, so that meets that share a layer do not overlap. One way to
construct a timetable is to build a layer tree containing every meet, whose root node contains the
cycle meets, and apply this operation at each node, visiting the nodes in postorder (bottom up).

5.2. Nodes

To create a layer tree node, initially with no meets, no parent, and no children, call

KHE_NODE KheNodeMake(KHE_SOLN soln);

Its back pointer may be accessed by

void KheNodeSetBack(KHE_NODE node, void *back);
void *KheNodeBack(KHE_NODE node);

and its visit number by

void KheNodeSetVisitNum(KHE_NODE n, int num);
int KheNodeVisitNum(KHE_NODE n);
bool KheNodeVisited(KHE_NODE n, int slack);
void KheNodeVisit(KHE_NODE n);
void KheNodeUnVisit(KHE_NODE n);

as usual, and its other attributes may be retrieved by calling

KHE_SOLN KheNodeSoln(KHE_NODE node);
int KheNodeSolnIndex(KHE_NODE node);

5.2. Nodes 121

KheNodeSolnIndex returns the index of node: the value of i for which KheSolnNode(soln, i)

(Section 4.2.7) returns node. The index may change when nodes are deleted (what actually
happens is that the hole left by the deletion of a node, if not last, is plugged by the last node) so
care is needed if indexes are stored. To visit the nodes of a solution in increasing index order,
use functions KheSolnNodeCount and KheSolnNode from Section 4.2.7. To delete a node, call

bool KheNodeDeleteCheck(KHE_NODE node);
bool KheNodeDelete(KHE_NODE node);

This deletes all parent-child links involving node, and deletes all meets from node (but does not
delete them). It is permitted only when no meets assigned to node’s meets lie in a node.

To make one node the parent of another, call

bool KheNodeAddParentCheck(KHE_NODE child_node, KHE_NODE parent_node);
bool KheNodeAddParent(KHE_NODE child_node, KHE_NODE parent_node);

These abort if child_node already has a parent; they return false and do nothing when adding
the link would cause a cycle. To delete a parent-child link, call

bool KheNodeDeleteParentCheck(KHE_NODE child_node);
bool KheNodeDeleteParent(KHE_NODE child_node);

Deletion is permitted only when none of the meets of child_node is assigned. The gap created
in the list of child nodes of the parent node by the deletion of child_node is filled by shuffling
the following nodes down one place. To retrieve the parent of a node, call

KHE_NODE KheNodeParent(KHE_NODE node);

This returnsNULL when node has no parent. Children are added and deleted,obviously,by adding
and deleting parents. Functions

int KheNodeChildCount(KHE_NODE node);
KHE_NODE KheNodeChild(KHE_NODE node, int i);

visit a node’s children in the usual way. There are also

bool KheNodeIsDescendant(KHE_NODE node, KHE_NODE ancestor_node);
bool KheNodeIsProperDescendant(KHE_NODE node, KHE_NODE ancestor_node);

KheNodeIsDescendant returns true when node is a descendant of ancestor_node, possibly
ancestor_node itself; KheNodeIsProperDescendant returns true when node is a proper
descendant of ancestor_node, that is, a descendant other than ancestor_node itself. They
work in the obvious way, searching upwards from node for ancestor_node.

Several helper functions for rearranging nodes appear in Section 9.5. They are often more
useful than KheNodeAddParent and KheNodeDeleteParent. Some of them call

void KheNodeSwapChildNodesAndLayers(KHE_NODE node1, KHE_NODE node2);

This function makes all the child nodes and child layers of node1 into child nodes and child
layers of node2 and vice versa. The child nodes and layers are the exact same objects as before,
stored in the same order as before; only their parent node is changed. Any assigned meets lying

122 Chapter 5. Extra Types for Solving

in child nodes of either node are unassigned (otherwise the node rule would be violated).

A meet may lie in at most one node, and function KheMeetNode (Section 4.5) returns the
node containing a given meet, if any. To add a meet to a node and delete it, the operations are

bool KheNodeAddMeetCheck(KHE_NODE node, KHE_MEET meet);
bool KheNodeAddMeet(KHE_NODE node, KHE_MEET meet);
bool KheNodeDeleteMeetCheck(KHE_NODE node, KHE_MEET meet);
bool KheNodeDeleteMeet(KHE_NODE node, KHE_MEET meet);

KheNodeAddMeetCheck and KheNodeAddMeet abort if meet already lies in a node, and return
false if it is already assigned to a meet not in the parent of node. KheNodeDeleteMeetCheck

and KheNodeDeleteMeet abort if meet does not lie in node, and return false if a meet from a
child of node is assigned to meet. Functions

int KheNodeMeetCount(KHE_NODE node);
KHE_MEET KheNodeMeet(KHE_NODE node, int i);

visit the meets of a node in the usual way. The order that meets are stored in nodes and returned
by these functions is arbitrary, and the user can change it by calling

void KheNodeMeetSort(KHE_NODE node,
int(*compar)(const void *, const void *))

where compar is a comparison function suitable for passing to qsort. Two such comparison
functions are supplied. One sorts the meets into decreasing duration order:

int KheMeetDecreasingDurationCmp(const void *p1, const void *p2);

Here is the implementation:

int KheMeetDecreasingDurationCmp(const void *p1, const void *p2)
{
KHE_MEET meet1 = * (KHE_MEET *) p1;
KHE_MEET meet2 = * (KHE_MEET *) p2;
if(KheMeetDuration(meet1) != KheMeetDuration(meet2))
return KheMeetDuration(meet2) - KheMeetDuration(meet1);

else
return KheMeetIndex(meet1) - KheMeetIndex(meet2);

}

Ties are broken by referring to the meet index. The other sorts meets by increasing value of the
index of the target meet, breaking ties by increasing value of the target offset:

int KheMeetIncreasingAsstCmp(const void *p1, const void *p2)

This brings together meets whose assignments place them adjacent in time. Unassigned meets
appear after assigned ones, but are not themselves sorted into any particular order.

Unlike cycle meets, which are different behind the scenes from other meets, cycle nodes are
just ordinary nodes whose meets happen to be cycle meets. Accordingly, function

5.2. Nodes 123

bool KheNodeIsCycleNode(KHE_NODE node);

merely returns true if node contains at least one meet, and its first meet is a cycle meet.

The total duration, assigned duration, and demand of the meets of node are returned by

int KheNodeDuration(KHE_NODE node);
int KheNodeAssignedDuration(KHE_NODE node);
int KheNodeDemand(KHE_NODE node);

The duration is kept up to date and stored in the node, so KheNodeDuration costs almost nothing.
The other two have to sum values stored in the meets, which is slower but still fast.

Following the pattern laid down in Section 1.4, function

bool KheNodeSimilar(KHE_NODE node1, KHE_NODE node2);

returns true when node1 and node2 are similar: when they contain similar events. The exact
rule is as follows. If node1 and node2 are the same node, they are similar. A node is admissible
if all of its meets are derived from events, and for each event found among those meets, all of the
meets of that event lie in the node. Thus, an admissible node can be considered as a set of events.
Two distinct nodes are similar if they are admissible and each event in one can be matched up
with a similar event in the other. The definition of similarity for events is as in Section 3.6.2.

A similar property is regularity (Section 5.4). Two nodes are regular when they are the same
node or contain meets of equal durations and equal time domains. Function

bool KheNodeRegular(KHE_NODE node1, KHE_NODE node2, int *regular_count);

returns true when node1 and node2 are regular, and false otherwise. Either way, it reorders the
meets of both nodes so that corresponding meets have equal durations and equal time domains,
as far as possible; *regular_count is the number of such pairs. (So true is returned when

*regular_count equals the number of meets in both nodes.)

Another function useful to solvers is

int KheNodeResourceDuration(KHE_NODE node, KHE_RESOURCE r);

This returns the total duration of meets in node and its descendants that contain a preassignment
of r. If a meet contains two such preassignments, its duration is only counted once.

To make a debug print of node onto file fp with a given verbosity and indent, call

void KheNodeDebug(KHE_NODE node, int verbosity, int indent, FILE *fp);

Verbosity 1prints just the node index number, verbosity 2 adds the duration and meets, verbosity
3 adds the node’s children, and verbosity 4 adds its segments. There is also

void KheNodePrintTimetable(KHE_NODE node, int cell_width,
int indent, FILE *fp);

which prints a timetable showing the meets of node across the top, and the assigned meets lying
in child nodes of node on subsequent lines, one line per child layer. (So node needs to have child
layers when it is called.) Parameter cell_width is the width of each cell, in characters.

124 Chapter 5. Extra Types for Solving

5.3. Layers

A layer (not to be confused with the resource layer of Section 3.5.4) is a subset of the child
nodes of some node. The intention is that the meets of a layer’s nodes should not overlap in time,
although this condition is not enforced.

For a given node there are two sets of layers of interest: the node’s parent layers, which are
the layers it lies in (it may lie in several), and its child layers, which are subsets of its child nodes.
A node is a member of all of its parent layers and none of its child layers.

To create a layer of children of a given parent node, initially with no nodes, call

KHE_LAYER KheLayerMake(KHE_NODE parent_node);

It has a back pointer and a visit number, accessed by

void KheLayerSetBack(KHE_LAYER layer, void *back);
void *KheLayerBack(KHE_LAYER layer);

void KheLayerSetVisitNum(KHE_LAYER layer, int num);
int KheLayerVisitNum(KHE_LAYER layer);
bool KheLayerVisited(KHE_LAYER layer, int slack);
void KheLayerVisit(KHE_LAYER layer);
void KheLayerUnVisit(KHE_LAYER layer);

as usual. Functions

KHE_NODE KheLayerParentNode(KHE_LAYER layer);
int KheLayerParentNodeIndex(KHE_LAYER layer);

return the parent node of layer and the value of i for which
KheNodeChildLayer(KheLayerParentNode(layer), i) returns layer. For convenience the
solution containing it can be found by

KHE_SOLN KheLayerSoln(KHE_LAYER layer);

To delete the layer (but not its nodes), call

void KheLayerDelete(KHE_LAYER layer);

To add and delete a child node of parent_node from a layer, call

void KheLayerAddChildNode(KHE_LAYER layer, KHE_NODE node);
void KheLayerDeleteChildNode(KHE_LAYER layer, KHE_NODE node);

KheLayerAddChildNode aborts if node’s parent node and layer’s parent node are different,
and KheLayerDeleteChildNode aborts if node does not lie in layer; otherwise, both succeed.
When a child node is deleted from a layer, all later nodes are shuffled up one place to fill the gap.
To visit the child nodes of a layer, call

int KheLayerChildNodeCount(KHE_LAYER layer);
KHE_NODE KheLayerChildNode(KHE_LAYER layer, int i);

5.3. Layers 125

To sort the child nodes of a layer, call

void KheLayerChildNodesSort(KHE_LAYER layer,
int(*compar)(const void *, const void *));

where compar is a function suited to passing to qsort when it sorts an array of nodes.

Although much about layers is taken on trust, the layer rule is enforced: the parent node of
each node of a layer equals the parent node of the layer. When the parent of a node is changed,
the node is deleted from all the layers it lies in.

The usual reason why nodes are placed into a layer together is because their meets have one
or more preassigned resources in common, and the resources have hard avoid clashes constraints,
preventing the meets from overlapping in time. To document this reason when it applies, a layer
contains a set of resources. To add and delete a resource from this set, the functions are

void KheLayerAddResource(KHE_LAYER layer, KHE_RESOURCE r);
void KheLayerDeleteResource(KHE_LAYER layer, KHE_RESOURCE r);

To visit this set of resources, the functions are

int KheLayerResourceCount(KHE_LAYER layer);
KHE_RESOURCE KheLayerResource(KHE_LAYER layer, int i);

There is no check that these resources are actually preassigned to the layer’s meets.

When KheLayerMake(parent_node) is called, the resulting layer becomes a child layer of
parent_node. To visit the child layers of a given node, call

int KheNodeChildLayerCount(KHE_NODE parent_node);
KHE_LAYER KheNodeChildLayer(KHE_NODE parent_node, int i);

Also,

void KheNodeChildLayersSort(KHE_NODE parent_node,
int(*compar)(const void *, const void *));

sorts the child layers of parent_node, using compar (a function suited to passing to qsort) as
the comparison function, and

void KheNodeChildLayersDelete(KHE_NODE parent_node);

deletes all the child layers of parent_node, without deleting any nodes.

When KheLayerAddChildNode(layer, node) is called, layer becomes a parent layer of
node. To visit a node’s parent layers, call

int KheNodeParentLayerCount(KHE_NODE child_node);
KHE_LAYER KheNodeParentLayer(KHE_NODE child_node, int i);

It is important to allow multiple parent layers in this way. For example, suppose there is one
layer for the meets attended by Year 12 students and another for the meets attended by Year
11 students. If one of the Year 11 events is linked to one of the Year 12 events by a link events
constraint, then there will usually be a single node whose subtree contains the meets of both

126 Chapter 5. Extra Types for Solving

events, and this node will appear in both layers. Function

bool KheNodeSameParentLayers(KHE_NODE node1, KHE_NODE node2);

returns true when node1 and node2 have the same parent layers.

Functions

int KheLayerDuration(KHE_LAYER layer);
int KheLayerMeetCount(KHE_LAYER layer);

return the total duration of layer’s child nodes and the number of meets in them. These values
are stored in the layer and kept up to date as it changes, in the expectation that they will be used
when sorting layers. Similarly,

int KheLayerAssignedDuration(KHE_LAYER layer);
int KheLayerDemand(KHE_LAYER layer);

return the total duration of the assigned meets of layer’s child nodes, and their total demand.
These values are calculated on demand, not stored, so the functions are a bit slower. There are
also set operations, implemented efficiently using bit vectors of node indexes:

bool KheLayerEqual(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerSubset(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerDisjoint(KHE_LAYER layer1, KHE_LAYER layer2);
bool KheLayerContains(KHE_LAYER layer, KHE_NODE node);

These return true if layer1 and layer2 contain the same nodes, if every node of layer1 is a
node of layer2, if layer1 and layer2 contain no nodes in common, and if node lies in layer.

Three functions offer more complex comparisons between layers:

bool KheLayerSame(KHE_LAYER layer1, KHE_LAYER layer2, int *same_count);
bool KheLayerSimilar(KHE_LAYER layer1, KHE_LAYER layer2,
int *similar_count);

bool KheLayerRegular(KHE_LAYER layer1, KHE_LAYER layer2,
int *regular_count);

These work in the same general way: they reorder the nodes in the two layers so that the first

*same_count (etc.) nodes in layer1 are equivalent in some way to the corresponding nodes in
layer2, returning true if this accounts for all the nodes in both layers. KheLayerSame aligns
nodes that are the identical same node;KheLayerSimilar aligns nodes that are similar, according
to KheNodeSimilar from Section 5.2; and KheLayerRegular aligns nodes that are regular,
according to KheNodeRegular from Section 5.2. If layer1 and layer2 are the same layer, all
three functions return true and set their count variable to the number of nodes in the layer. If
some nodes are shared between the two layers, these are always considered equivalent and they
always appear first after the layers are ordered.

These functions are implemented by calls to a more general function:

bool KheLayerAlign(KHE_LAYER layer1, KHE_LAYER layer2,
bool (*node_equiv)(KHE_NODE node1, KHE_NODE node2), int *count);

5.3. Layers 127

which does the same kind of alignment, first bringing identical nodes to the front of both layers,
then ordering the other nodes, calling node_equiv to decide whether two nodes are equivalent.

Two layers that share a common parent node may be merged:

void KheLayerMerge(KHE_LAYER layer1, KHE_LAYER layer2, KHE_LAYER *res);

The layers are deleted and replaced by layer *res, containing the nodes and resources of layer1
and layer2. It makes sense to merge, for example, when one layer is a subset of the other.

As an aid to debugging, KHE offers function

void KheLayerDebug(KHE_LAYER layer, int verbosity, int indent, FILE *fp);

It sends a debug print of layer to fp in the usual way.

5.4. Zones

A regular timetable is one which has a pattern that makes it easy to understand. For example, if
a train comes every 15 minutes, then that is a regular train timetable.

In high school timetabling, two forms of regularity are important. Meet regularity is
achieved when meets which overlap in time have the same starting times and durations. It is
automatic when all meets have duration 1, but not otherwise. For example, if there are two meets
of duration 2, and one starts at the first time on Mondays while the second starts at the second
time, that is not regular. Most instances seem to have meets of durations 1 and 2, with just a few
meets of higher durations, and under those circumstances meet regularity is easy to achieve.

Node regularity is achieved when the meets of two nodes which overlap in time have the
same starting times and durations. Node regularity makes a timetable easy to understand, and
simplifies resource assignment by reducing the number of pairs of events whose meets overlap
in time, by ensuring that they generally either overlap completely or not at all.

There seems to be little value in measuring regularity formally; the important thing is to
encourage it. This is what zones are for.

For any node n, consider the set of all pairs of the form (m,o), where m is a meet lying in n,
and o is a legal offset of m: if m has duration 1, o may only be 0; if m has duration 2, o may be
0 or 1; and so on. Such a pair is called a meet-offset of n. For example, if n contains the cycle
meets, then there is a meet-offset of n for each time of the cycle.

A zone of node n is a subset of the meet-offsets of n. A zone may be created by calling

KHE_ZONE KheZoneMake(KHE_NODE node);

Initially it contains no meet-offsets. Functions

KHE_NODE KheZoneNode(KHE_ZONE zone);
int KheZoneNodeIndex(KHE_ZONE zone);

return zone’s node, which never changes, and the value of i for which KheNodeZone(node, i)

returns zone. When a zone is deleted, the indexes of other zones in its node may change. (As
usual, the gap left by the deletion of the zone is plugged by moving the last zone into it, unless
the deleted zone was the last zone.) For convenience there is also

128 Chapter 5. Extra Types for Solving

KHE_SOLN KheZoneSoln(KHE_ZONE zone);

which returns the solution containing zone’s node.

A zone has has the usual back pointer and visit number:

void KheZoneSetBack(KHE_ZONE zone, void *back);
void *KheZoneBack(KHE_ZONE zone);

void KheZoneSetVisitNum(KHE_ZONE zone, int num);
int KheZoneVisitNum(KHE_ZONE zone);
bool KheZoneVisited(KHE_ZONE zone, int slack);
void KheZoneVisit(KHE_ZONE zone);
void KheZoneUnVisit(KHE_ZONE zone);

A zone may be deleted by calling

void KheZoneDelete(KHE_ZONE zone);

and all the zones of a node may be deleted by calling

void KheNodeDeleteZones(KHE_NODE node);

Each meet-offset may lie in at most one zone. To add a meet-offset to a zone, and to delete a
meet-offset from a zone, the operations are

void KheZoneAddMeetOffset(KHE_ZONE zone, KHE_MEET meet, int offset);
void KheZoneDeleteMeetOffset(KHE_ZONE zone, KHE_MEET meet, int offset);

To retrieve the zone of a meet-offset, call

KHE_ZONE KheMeetOffsetZone(KHE_MEET meet, int offset);

All these functions abort if offset is not a legal offset of meet. KheZoneAddMeetOffset also
aborts if the meet-offset already lies in a zone, or zone is NULL, or meet does not lie in a node,
or zone is not a zone of the node containing meet. KheMeetOffsetZone returns NULL if the
meet-offset does not lie in any zone, as is the case by default.

The zones of a node may be accessed from the node in the usual way:

int KheNodeZoneCount(KHE_NODE node);
KHE_ZONE KheNodeZone(KHE_NODE node, int i);

They are returned in an arbitrary order. The meet-offsets of a zone may be accessed by calling

int KheZoneMeetOffsetCount(KHE_ZONE zone);
void KheZoneMeetOffset(KHE_ZONE zone, int i, KHE_MEET *meet, int *offset);

They are returned in an arbitrary order. Function

void KheZoneDebug(KHE_ZONE zone, int verbosity, int indent, FILE *fp);

produces a debug print of zone onto fp in the usual way.

5.4. Zones 129

When a meet is deleted from a node or deleted altogether, all the meet-offsets involving that
meet are removed from their zones. When a meet is split or merged, the meet-offsets mutate in
the appropriate way, but preserve their zones. For example, when a meet m of duration 3 is split
into a meet m1 of duration 1 and a meet m2 of duration 2, the meet-offsets mutate as follows:

(m,0), (m,1), (m,2) → (m1,0), (m2,0), (m2,1)

Nothing constrains a zone to hold any particular meet-offsets, and indeed nothing requires zones
to be created at all. The basic operations of KHE are not restricted in any way by zones. By
convention only, some solvers use zones to encourage meet and node regularity. See Section 9.6
for solvers that install zones.

A useful helper function when using zones is

bool KheMeetMovePreservesZones(KHE_MEET meet1, int offset1,
KHE_MEET meet2, int offset2, int durn);

Assuming that a meet of duration durn may be assigned to meet1 at offset1 and to meet2 at
offset2, this function returns true if that meet would be assigned to the same zones either way.
It treats the NULL value returned at times by KheMeetOffsetZone as though it was a zone.

Another useful function is

int KheNodeIrregularity(KHE_NODE node);

It returns the irregularity of node: 0 if none of its meets is assigned, else the number of distinct
zones of n’s parent node that the assigned meets of n are assigned to (counting NULL as a zone),
minus one. For example, when n’s parent node has no zones, or all of the meets of n are assigned
to the same zone, n’s irregularity is 0. One reasonable way to preserve existing regularity is
to measure the irregularity of the nodes affected by an operation beforehand, measure it again
afterwards, and undo the operation if irregularity has increased.

5.5. Taskings

A tasking is an object of type KHE_TASKING representing a set of tasks. A task may lie in at most
one tasking at any one time. Taskings make useful parameters to resource solvers: the solver’s
job can be to assign resources to the tasks of the tasking—any subset of the tasks of a solution.
For a deeper analysis of the role of taskings, see Section 11.2.

To create a tasking, initially with no tasks, call

KHE_TASKING KheTaskingMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);

When rt is non-NULL, it signifies that all the tasks of the tasking have that type; but it may also
be NULL, in which case there is no restriction. To retrieve the two attributes, call

KHE_SOLN KheTaskingSoln(KHE_TASKING tasking);
KHE_RESOURCE_TYPE KheTaskingResourceType(KHE_TASKING tasking);

To visit the taskings of a solution, call functions KheSolnTaskingCount and KheSolnTasking

from Section 4.2.7. To delete a tasking, without deleting its tasks, call

130 Chapter 5. Extra Types for Solving

void KheTaskingDelete(KHE_TASKING tasking);

To add a task to a tasking, and to delete it from a tasking, call

void KheTaskingAddTask(KHE_TASKING tasking, KHE_TASK task);
void KheTaskingDeleteTask(KHE_TASKING tasking, KHE_TASK task);

KheTaskingAddTask aborts if task already lies in a tasking, or if the resource type of tasking
is non-NULL and task does not have that resource type. KheTaskingDeleteTask aborts if task
does not lie in tasking. Functions

int KheTaskingTaskCount(KHE_TASKING tasking);
KHE_TASK KheTaskingTask(KHE_TASKING tasking, int i);

visit the tasks of a tasking in the usual way, and

void KheTaskingDebug(KHE_TASKING tasking, int verbosity,
int indent, FILE *fp);

produces a debug print of tasking.

5.6. Task sets

A task set is like a tasking in that it represents a set of tasks. It is different in that a task may lie
in any number of task sets, but it does not know which task sets it lies in.

To create a new, empty task set for holding tasks from soln, call

KHE_TASK_SET KheTaskSetMake(KHE_SOLN soln);

The soln attribute is stored in the task set and may be accessed by calling

KHE_SOLN KheTaskSetSoln(KHE_TASK_SET ts);

To delete a task set (but not its tasks), call

void KheTaskSetDelete(KHE_TASK_SET ts);

This places the task set object on a free list in its solution object, where it is available for use by
subsequent calls to KheTaskSetMake on the same solution object.

To clear a task set back to the empty set of tasks, call

void KheTaskSetClear(KHE_TASK_SET ts);

To clear a task set from the end back to a point where it contains count elements, call

void KheTaskSetClearFromEnd(KHE_TASK_SET ts, int count);

To remove the last n tasks from a task set, call

void KheTaskSetDropFromEnd(KHE_TASK_SET ts, int n);

To add a task to a task set, call

5.6. Task sets 131

void KheTaskSetAddTask(KHE_TASK_SET ts, KHE_TASK task);

To add the tasks of ts2 to ts, call

void KheTaskSetAddTaskSet(KHE_TASK_SET ts, KHE_TASK_SET ts2);

To delete a task, call

void KheTaskSetDeleteTask(KHE_TASK_SET ts, KHE_TASK task);

KheTaskSetDeleteTask aborts if task is not in ts. If the tasks of ts are equivalent, the best
way to extract one task is

KHE_TASK KheTaskSetLastAndDelete(KHE_TASK_SET ts);

This deletes and returns the last task of ts; it aborts if ts is empty.

To search a task set for a given task, call

bool KheTaskSetContainsTask(KHE_TASK_SET ts, KHE_TASK task, int *pos);

If this returns true, it sets *pos to the index of task in ts. To visit the tasks of a task set, call

int KheTaskSetTaskCount(KHE_TASK_SET ts);
KHE_TASK KheTaskSetTask(KHE_TASK_SET ts, int i);

as usual. There are also

KHE_TASK KheTaskSetFirst(KHE_TASK_SET ts);
KHE_TASK KheTaskSetLast(KHE_TASK_SET ts);

which return the first and last tasks. To sort the tasks, call

void KheTaskSetSort(KHE_TASK_SET ts,
int(*compar)(const void *, const void *));

void KheTaskSetSortUnique(KHE_TASK_SET ts,
int(*compar)(const void *, const void *));

KheTaskSetSortUnique calls HaArraySortUnique (Section A.1.3).

Functions

int KheTaskSetTotalDuration(KHE_TASK_SET ts);
float KheTaskSetTotalWorkload(KHE_TASK_SET ts);

return the total duration or total workload of the task set: the sum, over all tasks t, of the total
duration or total workload of t.

Function

void KheTaskSetUnGroup(KHE_TASK_SET ts);

is useful when ts is being used to record a set of tasks which were assigned to other tasks in order
to ensure that they would be assigned the same resource. It removes the assignments of the tasks
of ts, but then assigns the tasks directly to the resources (cycle tasks) that they were previously
indirectly assigned to, if any, or unassigns them otherwise.

132 Chapter 5. Extra Types for Solving

There is another possible specification for KheTaskSetUnGroup, saying that the assignment
in each task of ts is changed to the grandparent task (whatever the current assignment is
assigned to). This was rejected because it misbehaves in some cases when groupings are made
in stages, with one task assigned to another and then that task assigned to a third. The preferred
specification cuts the knot by ungrouping the tasks from all groupings.

Function

bool KheTaskSetNeedsAssignment(KHE_TASK_SET ts);

returns true if KheTaskNeedsAssignment returns true for at least one task in ts.

There are functions for visiting the tasks of a task set, following the usual pattern:

void KheTaskSetSetVisitNum(KHE_TASK_SET ts, int num);
int KheTaskSetGetVisitNum(KHE_TASK_SET ts);
bool KheTaskSetAllVisited(KHE_TASK_SET ts, int slack);
bool KheTaskSetAnyVisited(KHE_TASK_SET ts, int slack);
void KheTaskSetAllVisit(KHE_TASK_SET ts);
void KheTaskSetAllUnVisit(KHE_TASK_SET ts);

These just call the corresponding task visit operation on each task of ts, except that
KheTaskSetGetVisitNum returns the visit number of ts’s first task, aborting if ts is empty.
KheTaskSetAllVisited returns true when all the calls on individual tasks return true, and
KheTaskSetAnyVisited returns true when any of the calls on individual tasks return true.
Which of these two truly represents the condition ‘ts has been visited’ is a matter of opinion.

There are also functions for moving, assigning, and unassigning all the tasks of a task set:

bool KheTaskSetMoveResourceCheck(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetMoveResource(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetAssignResourceCheck(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetAssignResource(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheTaskSetUnAssignResourceCheck(KHE_TASK_SET ts);
bool KheTaskSetUnAssignResource(KHE_TASK_SET ts);

These are like KheTaskMoveResourceCheck and so on, except that they apply to all the tasks
of ts: KheTaskSetMoveResourceCheck checks that all the tasks of ts can be moved to r,
KheTaskSetMoveResource checks and moves, and so on. If false is returned, some tasks
may have been changed and others not. If that does not suit, check first before trying to change
anything. There are also

bool KheTaskSetPartMoveResourceCheck(KHE_TASK_SET ts,
int first_index, int last_index, KHE_RESOURCE r);

bool KheTaskSetPartMoveResource(KHE_TASK_SET ts,
int first_index, int last_index, KHE_RESOURCE r);

which are like KheTaskSetMoveResourceCheck and KheTaskSetMoveResource, but applied
only to the tasks with indexes between first_index and last_index (inclusive).

KHE’s policy is for operations to return false when they change nothing, on the grounds
that no solver wants to waste time on operations that do nothing. However this policy does not

5.6. Task sets 133

seem to work very well here, because very often the task set move or assignment is just one
part of a larger operation. Certainly, we do not want to waste time on the larger operation if it
does nothing, but that does not prevent one part of it from doing nothing. Accordingly, these
operations all succeed (return true) when ts is empty.

Finally,

void KheTaskSetDebug(KHE_TASK_SET ts, int verbosity, int indent, FILE *fp);

produces a debug print of ts onto fp with the given verbosity and indent.

5.7. Meet sets

A meet set is like a node in that it represents a set of meets. It is different in that a meet may lie
in any number of meet sets, but it does not know which. Meet sets correspond closely with task
sets, so we will be brief. To create a new, empty meet set for holding meets from soln, call

KHE_MEET_SET KheMeetSetMake(KHE_SOLN soln);

To delete a meet set (but not its meets), call

void KheMeetSetDelete(KHE_MEET_SET ms);

A deleted meet set goes on a free list in the solution object and becomes available for re-use.

void KheMeetSetClear(KHE_MEET_SET ms);

clears ms back to the empty set of meets, and

void KheMeetSetDropFromEnd(KHE_MEET_SET ms, int n);

removes the last n meets from ms. To add and delete a meet, call

void KheMeetSetAddMeet(KHE_MEET_SET ms, KHE_MEET meet);
void KheMeetSetDeleteMeet(KHE_MEET_SET ms, KHE_MEET meet);

KheMeetSetDeleteMeet aborts if meet is not present. To search a meet set, call

bool KheMeetSetContainsMeet(KHE_MEET_SET ms, KHE_MEET meet, int *pos);

If this returns true, it sets *pos to the index of meet in ms. To visit the meets, call

int KheMeetSetMeetCount(KHE_MEET_SET ms);
KHE_MEET KheMeetSetMeet(KHE_MEET_SET ms, int i);

as usual. To sort the meets, call

void KheMeetSetSort(KHE_MEET_SET ms,
int(*compar)(const void *, const void *));

void KheMeetSetSortUnique(KHE_MEET_SET ms,
int(*compar)(const void *, const void *));

KheMeetSetSortUnique calls HaArraySortUnique (Section A.1.3). Function

134 Chapter 5. Extra Types for Solving

int KheMeetSetTotalDuration(KHE_MEET_SET ms);

the sum, over all meets m in ms, of the duration of m.

There are functions for visiting the meets of a meet set, following the usual pattern:

void KheMeetSetSetVisitNum(KHE_MEET_SET ms, int num);
int KheMeetSetGetVisitNum(KHE_MEET_SET ms);
bool KheMeetSetVisited(KHE_MEET_SET ms, int slack);
void KheMeetSetVisit(KHE_MEET_SET ms);
void KheMeetSetUnVisit(KHE_MEET_SET ms);

These just call the corresponding meet visit operation on each meet of ms, except that
KheMeetSetGetVisitNum returns the visit number of ms’s first meet, aborting if ms is empty.
KheMeetSetVisited returns true when all the calls on individual meets return true. Finally,

void KheMeetSetDebug(KHE_MEET_SET ms, int verbosity, int indent, FILE *fp);

produces a debug print of ms onto fp with the given verbosity and indent.

5.8. Time sets

A time set is like a time group in that it represents a set of times. However, it carries less baggage:
it has no name, and there is nothing equivalent to KheTimeGroupNeighbour. It is a convenient
type to use when a set of times is needed during solving. Internally, a time set holds the instance
that the times come from and a sorted array of time indexes, nothing more.

To create a new, empty time set, call

KHE_TIME_SET KheTimeSetMake(KHE_INSTANCE ins, HA_ARENA a);

Another way to make a time set is

KHE_TIME_SET KheTimeSetCopy(KHE_TIME_SET ts, HA_ARENA a);

This makes a fresh copy of ts in arena a. There is also

void KheTimeSetCopyElements(KHE_TIME_SET dst_ts, KHE_TIME_SET src_ts);

which replaces the times of time set dst_ts, whatever they are, with the times of src_ts.

To retrieve a time set’s instance, call

KHE_INSTANCE KheTimeSetInstance(KHE_TIME_SET ts);

There is no function to delete a time set; it is deleted when its arena is deleted. But a time set can
be cleared back to the empty set of times, by calling

void KheTimeSetClear(KHE_TIME_SET ts);

To add times to a time set, the following operations are available:

5.8. Time sets 135

void KheTimeSetAddTime(KHE_TIME_SET ts, KHE_TIME t);
void KheTimeSetAddTimeGroup(KHE_TIME_SET ts, KHE_TIME_GROUP tg);
void KheTimeSetAddTaskTimes(KHE_TIME_SET ts, KHE_TASK task);

These add a time, or the times of a time group, or the times a task is running (including tasks as-
signed, directly or indirectly, to that task). To add the times of a time set, call KheTimeSetUnion
below. Here and elsewhere, adding a time that is already present does nothing.

For deleting times there are

void KheTimeSetDeleteTime(KHE_TIME_SET ts, KHE_TIME t);
void KheTimeSetDeleteLastTime(KHE_TIME_SET ts);

KheTimeSetDeleteTime deletes t from ts, or does nothing if it is not present.
KheTimeSetDeleteLastTime deletes the last time from ts; it must be present.

To visit the times of a time set, call

int KheTimeSetTimeCount(KHE_TIME_SET ts);
KHE_TIME KheTimeSetTime(KHE_TIME_SET ts, int i);

in the usual way. There is also

int KheTimeSetTimeIndex(KHE_TIME_SET ts, int i);

which returns the index of the ith time, rather than the time itself. Irrespective of the order in
which the times were added, they are stored and visited in order of increasing index.

There are also set operations on time sets:

void KheTimeSetUnion(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
void KheTimeSetIntersect(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
void KheTimeSetDifference(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

These update ts1 to hold its union, intersection, or difference with ts2. Also,

int KheTimeSetUnionCount(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
int KheTimeSetIntersectCount(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
int KheTimeSetDifferenceCount(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

return the cardinality of the union, intersection, and difference without building the actual set.
KheTimeSetIntersectCount is optimized for the case of intersecting a small (and presumably
localized) set with a large one: it uses binary search to retrieve the indexes of the first and last
elements of the smaller set in the larger one, then only traverses the larger one in that range. This
idea could be applied to other operations, but so far it has not been.

Several set queries are available:

bool KheTimeSetEmpty(KHE_TIME_SET ts);
bool KheTimeSetEqual(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
bool KheTimeSetSubset(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
bool KheTimeSetDisjoint(KHE_TIME_SET ts1, KHE_TIME_SET ts2);
bool KheTimeSetContainsTime(KHE_TIME_SET ts, KHE_TIME t);

136 Chapter 5. Extra Types for Solving

These return true when ts is empty, when ts1 is equal to ts2, when ts1 is a subset of ts2, when
ts1 is disjoint from ts2, and when ts contains t.

For applications in which a time set is used as the key into a hash table, there is

int KheTimeSetHash(KHE_TIME_SET ts);

At present the value returned is the sum of the indexes of the first, middle, and last times, after
shifting left 16, 8, and 0 places respectively, or 0 if ts is empty.

Four other comparison functions are available:

int KheTimeSetCmp(const void *t1, const void *t2);
int KheTimeSetTypedCmp(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

KheTimeSetCmp is suitable for passing to HaArraySort, to bring equal time sets together.
KheTimeSetTypedCmp is the typed equivalent of KheTimeSetCmp. And

int KheTimeSetCmpReverse(const void *t1, const void *t2);
int KheTimeSetTypedCmpReverse(KHE_TIME_SET ts1, KHE_TIME_SET ts2);

are like KheTimeSetCmp and KheTimeSetTypedCmp, except that they sort in the reverse order.

Unlike time groups, time sets allow NULL to be a member. It is handled like any other time:
it can be added and deleted, and it participates in set operations. It has index -1, which means
that, if present, it is the result of KheTimeSetTime(ts, 0).

Finally,

void KheTimeSetDebug(KHE_TIME_SET ts, int verbosity, int indent, FILE *fp);

produces a debug print of ts onto fp with the given verbosity and indent, as usual. Since the time
set has no name, this can only be done by printing its elements. When verbosity is 1or indent
is negative, only the first and last elements (at most) are printed.

5.9. Resource sets

A resource set is like a resource group in that it represents a set of resources of a particular type.
However, it carries less baggage: it has no name, for example. It is a convenient type to use when
a set of resources is needed during solving. Internally, a resource set holds the resource type that
the resources must share, and a sorted array of resource indexes in that resource type.

Resource sets are virtually clones of time sets, with some extra operations that might find
their way into time sets eventually. To create a new, empty resource set of a given type, call

KHE_RESOURCE_SET KheResourceSetMake(KHE_RESOURCE_TYPE rt, HA_ARENA a);

Another way to make a resource set is

KHE_RESOURCE_SET KheResourceSetCopy(KHE_RESOURCE_SET rs, HA_ARENA a);

It makes a fresh copy of rs in arena a. Either way, it will be deleted when a is deleted. Also,

5.9. Resource sets 137

void KheResourceSetCopyElements(KHE_RESOURCE_SET dst_rs,
KHE_RESOURCE_SET src_rs);

replaces the resources of resource set dst_rs, whatever they are, with the resources of src_rs.

To retrieve a resource set’s resource type, call

KHE_RESOURCE_TYPE KheResourceSetResourceType(KHE_RESOURCE_SET rs);

To clear a resource set back to the empty set of resources, call

void KheResourceSetClear(KHE_RESOURCE_SET rs);

To add resources to a resource set, the following operations are available:

void KheResourceSetAddResource(KHE_RESOURCE_SET rs, KHE_RESOURCE r);
void KheResourceSetAddResourceGroup(KHE_RESOURCE_SET rs,
KHE_RESOURCE_GROUP rg);

These add a resource, or the resources of a resource group. To add the resources of a resource
set, call KheResourceSetUnion below. Here and elsewhere, adding a resource that is already
present does nothing.

For deleting resources there are

void KheResourceSetDeleteResource(KHE_RESOURCE_SET rs, KHE_RESOURCE r);
void KheResourceSetDeleteLastResource(KHE_RESOURCE_SET rs);

KheResourceSetDeleteResource deletes r from rs, or does nothing if it is not present.
KheResourceSetDeleteLastResource deletes the last resource from rs; it must be present.

To visit the resources of a resource set, call

int KheResourceSetResourceCount(KHE_RESOURCE_SET rs);
KHE_RESOURCE KheResourceSetResource(KHE_RESOURCE_SET rs, int i);

in the usual way. There is also

int KheResourceSetResourceIndex(KHE_RESOURCE_SET rs, int i);

which returns the index in the resource set’s resource type of the ith resource, rather than the
resource itself. Irrespective of the order in which the resources were added, they are stored and
visited in order of increasing index.

There are also set operations on resource sets. These come in various forms, all of which
are illustrated by the operations for set union:

void KheResourceSetUnion(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
void KheResourceSetUnionGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
int KheResourceSetUnionCount(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
int KheResourceSetUnionCountGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

138 Chapter 5. Extra Types for Solving

KheResourceSetUnion updates rs1 to hold the set union of itself with rs2, eliminating
duplicates. KheResourceSetUnionGroup is the same, except that the second parameter is a
resource group. KheResourceSetUnionCount and KheResourceSetUnionCountGroup return
the number of elements in the union, without actually building it. This is faster, when it suits.

A resource group does actually hold a resource set, but it would not be safe to make
that set available directly, because resource groups are supposed to be immutable after their
creation ends. A copy of it is easily made, by starting with an empty resource set and calling
KheResourceSetUnionGroup.

Corresponding operations are available for set intersection:

void KheResourceSetIntersect(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
void KheResourceSetIntersectGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
int KheResourceSetIntersectCount(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_SET rs2);
int KheResourceSetIntersectCountGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

and set difference:

void KheResourceSetDifference(KHE_RESOURCE_SET rs1,KHE_RESOURCE_SET rs2);
void KheResourceSetDifferenceGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);
int KheResourceSetDifferenceCount(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_SET rs2);
int KheResourceSetDifferenceCountGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

For symmetric difference, at present only the count operations are offered:

int KheResourceSetSymmetricDifferenceCount(KHE_RESOURCE_SET rs1,
KHE_RESOURCE_SET rs2);

int KheResourceSetSymmetricDifferenceCountGroup(KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

This is because building the actual set is awkward.

For the Boolean-valued set operations, again the second parameter may be a resource group,
but there is no need for count operations. So for equality we have

bool KheResourceSetEqual(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
bool KheResourceSetEqualGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

and similarly for subset:

bool KheResourceSetSubset(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
bool KheResourceSetSubsetGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

5.9. Resource sets 139

and testing for disjointness:

bool KheResourceSetDisjoint(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);
bool KheResourceSetDisjointGroup(KHE_RESOURCE_SET rs1,

KHE_RESOURCE_GROUP rg2);

There is also

bool KheResourceSetContainsResource(KHE_RESOURCE_SET rs, KHE_RESOURCE r);

which returns true when rs contains r.

Two other comparison functions are available:

int KheResourceSetCmp(const void *t1, const void *t2);
int KheResourceSetTypedCmp(KHE_RESOURCE_SET rs1, KHE_RESOURCE_SET rs2);

KheResourceSetCmp is suitable for passing to HaArraySort, to bring equal resource
sets together. (It is not for sorting the resources of one resource set; their order is fixed.)
KheResourceSetTypedCmp is the typed equivalent of KheResourceSetCmp.

Unlike resource groups, resource sets allow NULL to be a member. It is handled like any
other resource: it can be added and deleted, and it participates in set operations. It has index -1,
which means that, if present, it is the result of KheResourceSetResource(rs, 0).

Finally,

void KheResourceSetDebug(KHE_RESOURCE_SET rs, int verbosity,
int indent, FILE *fp);

produces a debug print of rs onto fp with the given verbosity and indent, as usual. Since the
resource set has no name, this can only be done by printing its elements. When verbosity is 1
or indent is negative, only the first and last elements (at most) are printed.

5.10. Time frames

A time frame, or just frame, is a sequence of time groups. Frames satisfy a practical need during
solving; they help to bridge the gap between the high school and nurse rostering time models.

A frame has type KHE_FRAME, the usual pointer to a private struct, lying in heap memory and
holding the enclosing solution, the time groups, and some other things.

Frames are immutable after creation. To help enforce this, they are created indirectly via
another type, KHE_FRAME_MAKE. The operations for creating a frame are

KHE_FRAME_MAKE KheFrameMakeBegin(KHE_SOLN soln);
void KheFrameMakeAddTimeGroup(KHE_FRAME_MAKE fm, KHE_TIME_GROUP tg);
KHE_FRAME KheFrameMakeEnd(KHE_FRAME_MAKE fm, bool sort_time_groups);

KheFrameMakeBegin starts the creation of the frame by creating a KHE_FRAME_MAKE object. This
is followed by any number of calls to KheFrameMakeAddTimeGroup, which add the time groups.
The creation ends with a call to KheFrameMakeEnd, which returns the actual frame.

If the sort_time_groups parameter of KheFrameMakeEnd is true, KheFrameMakeEnd

140 Chapter 5. Extra Types for Solving

sorts the time groups into increasing first time order.

To delete a frame returned by KheFrameMakeEnd, call

void KheFrameDelete(KHE_FRAME frame);

This frees the memory consumed by frame; it goes on a free list in frame’s solution object, where
it can be re-used by a later call to KheFrameMakeBegin.

The usual operations are available for retrieving the attributes of a frame. To retrieve the
enclosing solution, call

KHE_SOLN KheFrameSoln(KHE_FRAME frame);

To visit the time groups, call

int KheFrameTimeGroupCount(KHE_FRAME frame);
KHE_TIME_GROUP KheFrameTimeGroup(KHE_FRAME frame, int i);

KheFrameTimeGroup returns the ith time group of frame.

A frame is disjoint when its time groups are pairwise disjoint, and complete when every time
in the cycle lies in at least one of its time groups. Frames do not have to satisfy these conditions,
but some applications of frames require them. They are returned by functions

bool KheFrameIsDisjoint(KHE_FRAME frame, int *problem_index1,
int *problem_index2);

bool KheFrameIsComplete(KHE_FRAME frame, KHE_TIME *problem_time);

If the frame is disjoint, KheFrameIsDisjoint returns true with *problem_index1 and

*problem_index2 set to -1; otherwise it returns false with *problem_index1 and

*problem_index2 set to the indexes of two overlapping time groups. If the frame is complete,
KheFrameIsComplete returns true with *problem_time set to NULL; otherwise it returns false
with *problem_time set to a time of the instance which is not in any of frame’s time groups.

KheFrameIsDisjoint and KheFrameIsComplete are typically called at most once per
frame, after KheFrameMakeEnd. An efficient implementation has not been thought necessary.
But this function is implemented efficiently:

int KheFrameTimeIndex(KHE_FRAME frame, KHE_TIME t);

It returns the index in frame of the time group containing time t. If there is no such time group
(implying that the frame is not complete), -1 is returned. If there is more than one such time
group (implying that the frame is not disjoint), the index of one of the time groups is returned.
The time group itself can then be retrieved using KheFrameTimeGroup. There is also

KHE_TIME_GROUP KheFrameTimeTimeGroup(KHE_FRAME frame, KHE_TIME t);

which combines the two steps, returning the time group of frame that contains t, or aborting if
there is no such time group.

Frames arise naturally in employee scheduling when each employee can work at most one
shift per day (evidenced by a hard limit busy times constraint with non-zero cost, maximum limit
1, and one time group for each day). When this is true of all resources, function

5.10. Time frames 141

KHE_FRAME KheFrameMakeCommon(KHE_SOLN soln);

returns a frame with one time group per day, each with positive polarity. The time groups do
not have to actually represent days, they merely need to be the same for all resources and to be
disjoint and complete. When there is no common frame, NULL is returned.

When KheFrameMakeCommon returns NULL, as a fallback there is

KHE_FRAME KheFrameMakeSingletons(KHE_SOLN soln);

This returns a frame with one time group for each time, containing just that single time.

Once created, frames of this kind do not change. So it makes sense to share a single one
between solvers, by storing it in the solvers’ shared options object. A convenient way do this is

KHE_FRAME KheOptionsFrame(KHE_OPTIONS options, char *key, KHE_SOLN soln);

from Section 8.2. This returns the frame stored in options under the given key. If there
is no object in options under that key, it first creates one, by calling KheFrameMakeCommon,
followed by KheFrameMakeSingletons if necessary, and storing the result in options under
key. Thus, if all solvers that need a frame call this function to obtain it, they will all share the
same frame, the one created the first time this function is called. By convention, the key to use
is "gs_common_frame", and so

frame = KheOptionsFrame(options, "gs_common_frame", soln);

is the recommended way to obtain this kind of frame.

Function

bool KheFrameIntersectsTimeGroup(KHE_FRAME frame, KHE_TIME_GROUP tg);

returns true when tg shares at least one time with at least one of the time groups of frame.

There is the usual debug function:

void KheFrameDebug(KHE_FRAME frame, int verbosity, int indent, FILE *fp);

This prints frame onto fp with the given verbosity and indent. Here frame may be NULL.

Finally, here are three related miscellaneous functions:

bool KheFrameResourceHasClashes(KHE_FRAME frame, KHE_RESOURCE r);
void KheFrameResourceAssertNoClashes(KHE_FRAME frame, KHE_RESOURCE r);
void KheFrameAssertNoClashes(KHE_FRAME frame);

These help to debug solvers that preserve an invariant stating that each resource attends at most
one task during each time group of frame. KheFrameResourceHasClashes returns true if r

violates this condition; KheFrameResourceAssertNoClashes aborts the run if it is violated for
resource r, after printing out information about which resource and time group is involved; and
KheFrameAssertNoClashes calls KheFrameResourceAssertNoClashes for all resources.

Chapter 6. Solution Monitoring

As a solution changes, it is continuously monitored by a hand-tuned constraint network.

6.1. Measuring cost

KHE measures the badness of a solution as a single integral value called the cost, or sometimes
the combined cost because it includes the cost of both hard and soft constraint deviations.
Storing costs in this way is convenient, because it allows costs to be assigned using =, added using
+, and compared using < and so on in the usual way. The hard cost is shifted left by 32 bits, to
ensure that it is more significant than any reasonable total soft cost, then added to the soft cost.

The type of a combined cost is KHE_COST, a synonym for the standard C 64-bit integer type
int64_t (a fact best forgotten). To find the current combined cost of a solution, call

KHE_COST KheSolnCost(KHE_SOLN soln);

This value is stored explicitly in soln, so this function takes virtually no time to execute. Call

KHE_COST KheCost(int hard_cost, int soft_cost);

to create a combined cost. The two components of a combined cost may be accessed by

int KheHardCost(KHE_COST combined_cost);
int KheSoftCost(KHE_COST combined_cost);

There is also the constant KheCostMax, which returns the maximum value storable in a variable
of type KHE_COST (a synonym for INT64_MAX) and the function

int KheCostCmp(KHE_COST cost1, KHE_COST cost2);

which returns an int which is less than, equal to, or greater than zero if the first argument is
respectively less than, equal to, or greater than the second, as needed when sorting items by cost.
The implementation does not make the mistake of merely subtracting cost2 from cost1; the
result then would be a KHE_COST which will usually overflow the int result.

The suggested way to display a combined cost is as a decimal number with the hard cost
before the decimal point and the soft cost after. Five decimal places are displayed, allowing for
soft costs up to 99999. Larger soft costs are displayed as 99999. To assist with this, function

double KheCostShow(KHE_COST combined_cost);

returns a value which, when printed with printf format "%.5f", prints the cost in this format.

These functions assume that both components of the cost are non-negative. There is no
problem with negative combined costs in themselves,but when a hard and soft cost are combined
together, if either is negative they may be different if they are separated again.

142

6.2. Monitors 143

6.2. Monitors

A monitor is an object, of type KHE_MONITOR, that monitors one part of a solution: typically, one
point of application of one constraint. It contains the usual back pointer and visit number:

void KheMonitorSetBack(KHE_MONITOR m, void *back);
void *KheMonitorBack(KHE_MONITOR m);
void KheMonitorSetVisitNum(KHE_MONITOR m, int num);
int KheMonitorVisitNum(KHE_MONITOR m);
bool KheMonitorVisited(KHE_MONITOR m, int slack);
void KheMonitorVisit(KHE_MONITOR m);
void KheMonitorUnVisit(KHE_MONITOR m);

Operations

KHE_SOLN KheMonitorSoln(KHE_MONITOR m);
int KheMonitorSolnIndex(KHE_MONITOR m);
KHE_COST KheMonitorCost(KHE_MONITOR m);
KHE_COST KheMonitorLowerBound(KHE_MONITOR m);

return the enclosing solution, the index of m in that solution, the cost of what m is monitoring (kept
up to date by KHE as the solution changes), and a constant lower bound on KheMonitorCost,
which is usually 0 but will be non-zero when KHE can prove the lower bound easily.

Type KHE_MONITOR is the abstract supertype of many concrete subtypes, with these tags:

typedef enum {
KHE_ASSIGN_RESOURCE_MONITOR_TAG,
KHE_ASSIGN_TIME_MONITOR_TAG,
KHE_SPLIT_EVENTS_MONITOR_TAG,
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR_TAG,
KHE_PREFER_RESOURCES_MONITOR_TAG,
KHE_PREFER_TIMES_MONITOR_TAG,
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR_TAG,
KHE_SPREAD_EVENTS_MONITOR_TAG,
KHE_LINK_EVENTS_MONITOR_TAG,
KHE_ORDER_EVENTS_MONITOR_TAG,
KHE_AVOID_CLASHES_MONITOR_TAG,
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR_TAG,
KHE_LIMIT_IDLE_TIMES_MONITOR_TAG,
KHE_CLUSTER_BUSY_TIMES_MONITOR_TAG,
KHE_LIMIT_BUSY_TIMES_MONITOR_TAG,
KHE_LIMIT_WORKLOAD_MONITOR_TAG,
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR_TAG,
KHE_LIMIT_RESOURCES_MONITOR_TAG,
KHE_EVENT_TIMETABLE_MONITOR_TAG,
KHE_RESOURCE_TIMETABLE_MONITOR_TAG,
KHE_ORDINARY_DEMAND_MONITOR_TAG,
KHE_WORKLOAD_DEMAND_MONITOR_TAG,
KHE_EVENNESS_MONITOR_TAG,
KHE_GROUP_MONITOR_TAG,
KHE_MONITOR_TAG_COUNT

} KHE_MONITOR_TAG;

144 Chapter 6. Solution Monitoring

Each monitor object contains a tag identifying its subtype, returned by

KHE_MONITOR_TAG KheMonitorTag(KHE_MONITOR m);

Monitors of the first eighteen types monitor one point of application of one constraint; their cost
is the total cost of deviations at that point. They are described in detail in later sections of this
chapter. Monitors of the last six types (from KHE_EVENT_TIMETABLE_MONITOR_TAG onwards) do
not monitor constraints. Timetable monitors hold the timetables of events and resources (Section
6.8) Ordinary and workload demand monitors monitor matchings, and evenness monitors
monitor evenness (Chapter 7). Group monitors group together other monitors (Section 6.9). The
last value is not a tag; it is a count of the number of monitor types, allowing code of the form

for(tag = 0; tag < KHE_MONITOR_TAG_COUNT; tag++)
... do something for monitors of type tag ...

For those monitors that monitor a point of application of a constraint, functions

KHE_CONSTRAINT KheMonitorConstraint(KHE_MONITOR m);
char *KheMonitorAppliesToName(KHE_MONITOR m);

return the constraint and the name of the point of application (if this point is an event re-
source, the name of the enclosing event is returned). For other monitors they return NULL.
KheMonitorAppliesToName is more or less obsolete; the author prefers now to call

char *KheMonitorPointOfApplication(KHE_MONITOR m);

which returns a more precise indication of the point of application. Each constraint monitor also
has functions which return the specific constraint and point of application.

The result of KheMonitorPointOfApplication(m) is created afresh on each call. This is
not very efficient, but if the function is called only when generating evaluation tables, as is the
intention, that will not matter.

A similar function to KheMonitorPointOfApplication is

char *KheMonitorId(KHE_MONITOR m);

It returns a string composed of two or three fields separated by / characters. Each field is an Id
from the instance or an integer. The fields are supposed to uniquely identify the monitor,although
in a few cases this is doubtful. The first field is always a constraint Id, identifying the constraint
that the monitor is derived from, and the second is usually an event, event group, or resource Id,
identifying the point of application. There may be a third field, holding a second event Id (for
order events monitors) or an offset (for resource constraints with an AppliesToTimeGroup at-
tribute). When the offset is 0 the offset field and preceding / are omitted. A non-zero offset may
be replaced by the Id of the first time of the first monitored time group.

The result of KheMonitorId(m) is created when KheMonitorId(m) is first called, and
stored in m so that it does not have to be created over and over. If it is used only for debugging,
as is the intention, there is virtually no cost in running time or memory when debugging is off.

The cost of a monitor is a function of its deviation, a non-negative integer:

6.2. Monitors 145

int KheMonitorDeviation(KHE_MONITOR m);
char *KheMonitorDeviationDescription(KHE_MONITOR m);

These functions are intended for reporting, not solving. KheMonitorDeviation returns the
deviation, and KheMonitorDeviationDescription returns a description of it: an expression,
augmented with brief text, showing how it is calculated. The result string does not necessarily
lie in heap memory, and should not be freed.

For limit active intervals monitors,KheMonitorDeviation returns the sum of the deviations
of the active intervals. Exceptionally, the cost of the monitor is not a function of this deviation;
instead, it is the sum of the costs of the deviations of the active intervals taken separately.

To visit the full set of monitors monitoring soln, call

int KheSolnMonitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMonitor(KHE_SOLN soln, int i);

Although KHE does not fully specify the order in which these monitors appear, it does guarantee
that the monitors which monitor constraints will appear together in the list in the order that their
constraints appear in the input. It is best to select these monitors by testing whether the result of
KheMonitorConstraint above is non-NULL.

There is also function

bool KheSolnRetrieveMonitor(KHE_SOLN soln, char *id, KHE_MONITOR *m);

It searches for a monitor whose Id, as returned by KheMonitorId above, is equal to id. If it finds
one, it returns true with *m set to that monitor; otherwise it returns false with *m set to NULL.

Although every monitor has an Id, at present KheSolnRetrieveMonitor does not retrieve
all monitors. It retrieves resource monitors, and event monitors that monitor a single event.

KheSolnRetrieveMonitor is intended for debugging and is not very efficient. It works
by finding the entity (event, event group, or resource) identified by the second field of id and
searching that entity’s list of monitors for one for which KheMonitorId returns id.

To debug a monitor m with a given verbosity and indent, call

void KheMonitorDebug(KHE_MONITOR m, int verbosity, int indent, FILE *fp);

There are also versions of this function for each of the specific monitor types. These all work
in the same way. The output starts with a G, A or D indicating whether the monitor is a group
monitor, an attached non-group monitor, or a detached non-group monitor. This is followed by
the number of paths up from the monitor to the solution (Section 6.9), usually 0 or 1. Then comes
the monitor’s tag and cost, then other information depending on the monitor type and verbosity.
There is also

char *KheMonitorTagShow(KHE_MONITOR_TAG tag);

which returns a string representation of tag. In practice a more useful function is

char *KheMonitorLabel(KHE_MONITOR m);

This returns KheMonitorTagShow(KheMonitorTag(m)) if m is not a group monitor, and m’s
subtag label if m is a group monitor.

146 Chapter 6. Solution Monitoring

6.3. Attaching, detaching, and provably zero fixed cost

For a monitor to be updated when the solution changes, there must be links from the appropriate
points within the solution to the monitor. When these links are present, the monitor is said to be
attached to the solution, or just attached. Most monitors are attached to begin with, but they can
be detached at any time, and even reattached later, by calling

void KheMonitorDetachFromSoln(KHE_MONITOR m);
void KheMonitorAttachToSoln(KHE_MONITOR m);

Even when detached, a monitor remembers which parts of the solution it is supposed to monitor,
so the attach operation does not have to tell the monitor where to attach itself. To find out whether
a monitor is currently attached or detached, call

bool KheMonitorAttachedToSoln(KHE_MONITOR m);

Another function, highly recommended for calling at the end of a solve, is

void KheSolnEnsureOfficialCost(KHE_SOLN soln);

This ensures that all constraint monitors are both attached to the solution and reporting their
cost to the solution, directly or indirectly via group monitors, that the multipliers of all cluster
busy times monitors are 1 and their minimums have their original value, and that all demand and
evenness monitors are detached from the solution. This guarantees that the solution cost is the
official cost.

While a monitor is detached, it receives no information about changes to the solution, and,
by definition, its deviation and cost are 0. Detaching a monitor may therefore change its cost. If
there is a change in cost, it is reported to the monitor’s parents (if it has any) as usual. Conversely,
attaching a monitor brings it up to date with the current state of the solution, which again may
change its cost; and again, if there is a change in cost it is reported to its parents (if it has any).

There are two main reasons for detaching a monitor. First, the user might make a deliberate
choice to ignore some constraints. For example, a solver that works in two phases, first finding
a solution that satisfies the hard constraints, and then attacking the soft ones, might detach the
monitors for the soft constraints during its first phase. An example of this kind of deliberate
choice is KHE’s matching feature (Chapter 7), which is implemented with monitors. Unlike
other monitors, matching monitors are detached initially. KHE makes this choice deliberately,
on the grounds that the cost of the matching is not officially part of the cost function.

The second reason for detaching a monitor is that it may be clear that its cost will be zero
for a long time. In that case, detaching it means that no time is spent keeping it up to date, yet it
still reports the correct cost. For example, if the meets of one point of application of a link events
constraint are assigned to each other and those assignments will not be removed, then it is safe
to save time by detaching the corresponding monitor.

This reasoning was formerly embodied in a function called KheMonitorAttachCheck,
which assumed that certain elements of the solution were unlikely to change, and detached mon-
itors accordingly. KheMonitorAttachCheck has been withdrawn; the equivalent functionality is
now obtained, more reliably, by calling the Fix and UnFix functions, as follows.

A monitor has provably zero fixed cost if enough of the solution is currently fixed (by calls to

6.3. Attaching,detaching, and provably zero fixed cost 147

KheMeetAssignFix and KheTaskAssignFix) to allow KHE to prove that the monitor must have
cost 0 while those fixes remain. For each kind of monitor, either a specific definition of when it
has provably zero fixed cost is given below, or else it never has provably zero fixed cost.

When one of the fixing operations just listed is called, after doing the actual fixing KHE
ensures that all monitors which did not have provably zero fixed cost before but now do are
detached. When one of the corresponding unfix operations is called, after doing the actual
unfixing it ensures that all monitors which had provably zero fixed cost before but now do not
are attached. So there is no risk that detaching these monitors could lead to cost errors; as soon
as unfixes make a non-zero cost possible, they are attached again.

6.4. Time ranges and sweep times

Function

bool KheMonitorTimeRange(KHE_MONITOR m,
KHE_TIME *first_time, KHE_TIME *last_time);

determines the times t such that the cost of m is affected by what is happening at time t. If there
are any such times, it sets *first_time to the first of them and *last_time to the last of them,
and returns true. Otherwise it sets *first_time and *last_time to NULL and returns false.

When m is a resource monitor, KheMonitorTimeRange depends only on the instance; it just
returns the first and last times referenced (explicitly or implicitly) by m. These values are cached
in m, so requesting them a second time has virtually no cost.

When m is an event monitor, KheMonitorTimeRange depends on the times assigned to the
meets monitored by m. When m is an event resource monitor,KheMonitorTimeRange depends on
the times assigned to the meets containing the tasks monitored by m. In these cases the values are
not cached; they are recalculated each time they are requested. Meets without an assigned time
are skipped and contribute nothing to the result.

The main use for KheMonitorTimeRange is in handling sweep times, as explained now.

A time sweep algorithm is a resource assignment algorithm that sweeps through a solution,
assigning tasks in increasing order of their assigned times. A sweep time is a time t representing
the point that a time sweep has reached: assignments have been or are being made up to and
including t, but not later. Or t may be NULL, meaning that the time sweep is just beginning and
the entire cycle is beyond where it has reached.

Now consider a limit active intervals monitor which specifies a minimum limit of two
on the number of consecutive busy days. Starting a new sequence of busy days during a time
sweep violates the minimum limit, and not starting one does not, which is misleading. The same
problem afflicts cluster busy times monitors: a minimum limit can encourage a resource to be
busy at the start, when it could very well remain free until later.

So monitors should not report defects that could disappear later as the time sweep proceeds.
We say that tasks and times beyond the sweep time are open: neither assigned nor unassigned.
The cost reported by a monitor is the true cost when nothing relevant is open, and a lower bound
on the true cost otherwise, treating the open parts as don’t knows.

There is a connection here with the ‘history after’values of some resource monitors. These

148 Chapter 6. Solution Monitoring

count notional time groups that lie beyond the end of the cycle. They are open in exactly the
same way that times beyond the sweep time are open. However, they can never be not open.

Function

void KheMonitorSetSweepTime(KHE_MONITOR m, KHE_TIME t);

tells m that the sweep time is t (possibly NULL as above). This may change the cost of m.

As an example of the use of KheMonitorSetSweepTime, suppose a time sweep algorithm
assigns one day at a time. Initially it calls KheMonitorSetSweepTime(m, NULL), and then,
before assigning each day d, it calls KheMonitorSetSweepTime(m, t), where t is d’s last time.
On the last call, t is the last time of the cycle; the time sweep has ended and nothing is open.

Behind the scenes, limit busy times and limit workload monitors which need to know what
resource r is doing during time group tg share access to a private object that keeps track of this
information. When they receive a new sweep time they pass it on to this object. Giving different
sweep times to monitors which share the same private object will not work, although it is safe
to change the sweep times of those monitors one by one to a new common value, provided no
affected costs are accessed until the last change has been made.

It can be slow to call KheMonitorSetSweepTime for every monitor and every time (or every
day). A basis for speeding things up is provided by function

bool KheMonitorSweepTimeRange(KHE_MONITOR m,
KHE_TIME *first_time, KHE_TIME *last_time);

If the cost of m could possibly change when the sweep time changes, this is the same as
KheMonitorTimeRange above. If the cost of m can never change when the sweep time changes,
this sets*first_time and *last_time to NULL and returnsfalse. In making this determination,
it is assumed that all tasks lying beyond the sweep time are unassigned.

Calling KheMonitorSetSweepTime with any time t preceding *first_time is the same as
calling it with t set to NULL, and calling it with any time t following *last_time is the same as
calling it with t set to *last_time. So m needs only an initial call with t set to NULL, then calls
for times between *first_time and *last_time, and finally, to bring the monitor back to its
usual state, a call with t set to *last_time or any later time. Or if KheMonitorSweepTimeRange
returns false, no KheMonitorSetSweepTime calls are needed.

All monitors have their own private versions of the functions defined here, which these
functions call on. However, not all monitors are affected by sweep times. For those which are
not, setting the sweep time does nothing and the sweep time range function returns false.

Sweep times are used by KheTimeSweepAssignResources (Section 12.7.3) and have been
added to support that solver. KheDynamicResourceSolverSolve (Section 12.6) utilizes similar
ideas, but within a completely different and more thorough implementation.

6.5. Event monitors

An event monitor monitors one or more events. The set of monitors (attached or unattached)
which monitor a given event may be found by calling

6.5. Event monitors 149

int KheSolnEventMonitorCount(KHE_SOLN soln, KHE_EVENT e);
KHE_MONITOR KheSolnEventMonitor(KHE_SOLN soln, KHE_EVENT e, int i);

These return the number of monitors that monitor e in soln, and the ith of these, as usual. The
timetable monitor for event e (Section 6.8) is not visited by these functions; it may be retrieved
by calling KheEventTimetableMonitor.

The total cost of these monitors measures how well e is timetabled. Functions

KHE_COST KheSolnEventCost(KHE_SOLN soln, KHE_EVENT e);
KHE_COST KheSolnEventMonitorCost(KHE_SOLN soln, KHE_EVENT e,
KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoring e, and the total cost of all monitors monitoring
e of a specific type, defined by tag. KheSolnEventMonitorCost returns 0 when tag does not
specify one of the monitor types in the following subsections.

Each point of application of a spread events constraint or link events constraint is one event
group, and a monitor of these kinds appears on the list of monitors of each of the events in its
event group. Similarly, an order events monitor appears on the list of monitors of both of the
events it monitors. If KheSolnEventCost(soln, e) is summed over all events, the cost of such
monitors is counted repeatedly, and the total may exceed the total cost of all event monitors.

Event monitors are unaffected by sweep times. This is because sweep times are concerned
with time sweep resource assignment, which assumes that assigned times are not changing.

The following subsections list the various kinds of event monitors and the details specific
to each of them. Their types (KHE_SPLIT_EVENTS_MONITOR and so on) may be obtained by
downcasting from KHE_MONITOR after checking the type tag.

6.5.1. Split events monitors

A split events monitor has tag KHE_SPLIT_EVENTS_MONITOR_TAG and monitors an event which
is one point of application of one split events constraint. Functions

KHE_SPLIT_EVENTS_CONSTRAINT KheSplitEventsMonitorConstraint(
KHE_SPLIT_EVENTS_MONITOR m);

KHE_EVENT KheSplitEventsMonitorEvent(KHE_SPLIT_EVENTS_MONITOR m);

return the split events constraint and event being monitored, and

void KheSplitEventsMonitorLimits(KHE_SPLIT_EVENTS_MONITOR m,
int *min_duration, int *max_duration, int *min_amount, int *max_amount);

sets the four last variables to the corresponding attributes of the monitor’s constraint. Function

void KheSplitEventsMonitorDebug(KHE_SPLIT_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

150 Chapter 6. Solution Monitoring

6.5.2. Distribute split events monitors

A distribute split events monitor has tag KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR_TAG and
monitors one point of application of a distribute split events constraint (one event). Functions

KHE_DISTRIBUTE_SPLIT_EVENTS_CONSTRAINT
KheDistributeSplitEventsMonitorConstraint(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m);

KHE_EVENT KheDistributeSplitEventsMonitorEvent(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m);

return the constraint and event being monitored, and

void KheDistributeEventsMonitorLimits(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m,
int *duration, int *minimum, int *maximum, int *meet_count);

sets *duration, *minimum, and *maximum to the corresponding attributes of the monitor’s
constraint, and *meet_count to the number of meets derived from the monitored event whose
duration is *duration (or to the total number of meets if *duration is KHE_ANY_DURATION).
Function

void KheDistributeSplitEventsMonitorDebug(
KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.5.3. Assign time monitors

An assign time monitor has tag KHE_ASSIGN_TIME_MONITOR_TAG and monitors an event which
is one point of application of one assign time constraint. Functions

KHE_ASSIGN_TIME_CONSTRAINT KheAssignTimeMonitorConstraint(
KHE_ASSIGN_TIME_MONITOR m);

KHE_EVENT KheAssignTimeMonitorEvent(KHE_ASSIGN_TIME_MONITOR m);

return the assign time constraint and event being monitored. Function

void KheAssignTimeMonitorDebug(KHE_ASSIGN_TIME_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An assign time monitor does not have provably zero fixed cost when KheMeetAssignFix

has been called for each of the meets derived from the event it monitors and the monitor has
cost 0 when attached, because the assignments may be to other meets whose assignments are not
fixed. The full assignment paths leading out of the monitored meets would need to be fixed; but
that would be awkward to implement and give no efficiency payoff, because then the monitor
would never be updated anyway. So an assign time monitor never has provably zero cost.

6.5. Event monitors 151

6.5.4. Prefer times monitors

A prefer times monitor has tag KHE_PREFER_TIMES_MONITOR_TAG and monitors an event which
is one point of application of one prefer times constraint. Functions

KHE_PREFER_TIMES_CONSTRAINT KhePreferTimesMonitorConstraint(
KHE_PREFER_TIMES_MONITOR m);

KHE_EVENT KhePreferTimesMonitorEvent(KHE_PREFER_TIMES_MONITOR m);

return the prefer times constraint and event being monitored. Function

void KhePreferTimesMonitorDebug(KHE_PREFER_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.5.5. Spread events monitors

A spread events monitor has tag KHE_SPREAD_EVENTS_MONITOR_TAG and monitors an event
group which is one point of application of a spread events constraint. It appears in the list of
monitors of all the events in its event group. Functions

KHE_SPREAD_EVENTS_CONSTRAINT KheSpreadEventsMonitorConstraint(
KHE_SPREAD_EVENTS_MONITOR m);

KHE_EVENT_GROUP KheSpreadEventsMonitorEventGroup(
KHE_SPREAD_EVENTS_MONITOR m);

return the spread events constraint and event group being monitored. There are also

int KheSpreadEventsMonitorTimeGroupCount(KHE_SPREAD_EVENTS_MONITOR m);
void KheSpreadEventsMonitorTimeGroup(KHE_SPREAD_EVENTS_MONITOR m, int i,
KHE_TIME_GROUP *time_group, int *minimum, int *maximum, int *incidences);

The first returns the number of time groups (as in the corresponding constraint). The second
returns the i’th time group and the minimum and maximum number of meets wanted there
(again, as in the constraint), plus the current number of meets incident on that time group. If

*incidences is less than *minimum or more than *maximum, a cost is incurred. Function

void KheSpreadEventsMonitorDebug(KHE_SPREAD_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.5.6. Link events monitors

A link events monitor has tag KHE_LINK_EVENTS_MONITOR_TAG and monitors an event group
which is one point of application of a link events constraint. It appears in the list of monitors of
all the events in its event group. Functions

152 Chapter 6. Solution Monitoring

KHE_LINK_EVENTS_CONSTRAINT KheLinkEventsMonitorConstraint(
KHE_LINK_EVENTS_MONITOR m);

KHE_EVENT_GROUP KheLinkEventsMonitorEventGroup(
KHE_LINK_EVENTS_MONITOR m);

return the link events constraint and event group being monitored. Function

void KheLinkEventsMonitorDebug(KHE_LINK_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A link events monitor has provably zero fixed cost when following to the end the chains of
fixed assignments out of the meets of the events it monitors produces the same result for each
event: the same offsets and durations within the same final meets. KheMeetAssignFix and
KheMeetAssignUnFix may detach and attach link events monitors.

Detaching link events monitors is the most important service provided by fixing. Keeping
these monitors up to date is slow, despite the author’s best efforts to optimize. When the times of
a set of linked events change together, an attached link events monitor receives the changes one
by one, forcing it through a tedious sequence of cost changes beginning and ending with 0.

6.5.7. Order events monitors

An order events monitor has tag KHE_ORDER_EVENTS_MONITOR_TAG and monitors two events
which together constitute one point of application of an order events constraint. It appears in
the list of monitors of both events. Functions

KHE_ORDER_EVENTS_CONSTRAINT KheOrderEventsMonitorConstraint(
KHE_ORDER_EVENTS_MONITOR m);

KHE_EVENT KheOrderEventsMonitorFirstEvent(KHE_ORDER_EVENTS_MONITOR m);
KHE_EVENT KheOrderEventsMonitorSecondEvent(KHE_ORDER_EVENTS_MONITOR m);
int KheOrderEventsMonitorMinSeparation(KHE_ORDER_EVENTS_MONITOR m);
int KheOrderEventsMonitorMaxSeparation(KHE_ORDER_EVENTS_MONITOR m);

return the constraint being monitored and the four attributes of the monitor: the two events
monitored, and the minimum and maximum separations. Function

void KheOrderEventsMonitorDebug(KHE_ORDER_EVENTS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An order events monitor has provably zero fixed cost when both of its events are broken
into a single meet, following to the end the chains of fixed assignments out of those two meets
leads to the same final meet, and their separation (the offset into the final meet of the second
meet, minus the duration plus offset into the final meet of the first meet) is in the legal range.
KheMeetAssignFix and KheMeetAssignUnFix may detach and attach order events monitors.

6.6. Event resource monitors 153

6.6. Event resource monitors

An event resource monitor monitors one or more event resources. The monitors (attached or
unattached) which monitor a given event resource may be visited by

int KheSolnEventResourceMonitorCount(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_MONITOR KheSolnEventResourceMonitor(KHE_SOLN soln,

KHE_EVENT_RESOURCE er, int i);

The total cost of these monitors measures how well er is timetabled. Functions

KHE_COST KheSolnEventResourceCost(KHE_SOLN soln, KHE_EVENT_RESOURCE er);
KHE_COST KheSolnEventResourceMonitorCost(KHE_SOLN soln,
KHE_EVENT_RESOURCE er, KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoring er, and the total cost of all monitors
monitoring er of a specific type, defined by tag. KheSolnEventResourceMonitorCost returns
0 when tag does not specify one of the monitor types in the following subsections.

Each point of application of an avoid split assignments constraint is a whole set of event
resources, and a monitor of this kind is attached to each of the event resources in its set. If
KheSolnEventResourceCost(soln, er) is summed over all event resources, such a monitor
is counted repeatedly, so the total may exceed the total cost of all event resource monitors.

Different event resource monitors are affected by sweep times in different ways. The details
are given below for each event resource type.

The following subsections list the various kinds of event resource monitors and the details
specific to each of them. Their types (KHE_ASSIGN_RESOURCE_MONITOR and so on) may be
obtained by downcasting from KHE_MONITOR after checking the type tag.

6.6.1. Assign resource monitors

An assign resource monitor has tag KHE_ASSIGN_RESOURCE_MONITOR_TAG and monitors an
event resource which is one point of application of one assign resource constraint. Functions

KHE_ASSIGN_RESOURCE_CONSTRAINT KheAssignResourceMonitorConstraint(
KHE_ASSIGN_RESOURCE_MONITOR m);

KHE_EVENT_RESOURCE KheAssignResourceMonitorEventResource(
KHE_ASSIGN_RESOURCE_MONITOR m)

return the assign resource constraint and event resource being monitored. Like assign time
monitors, assign resource monitors are never considered to have provably zero fixed cost.

Assign resource monitors are affected by sweep times: an unassigned monitored task has
a cost when it lies within the time sweep, but not when it lies beyond it. This is implemented
at present by ensuring that every assign resource monitor m is detached when it monitors a task
beyond the sweep time,and attached otherwise. This rough implementation is correct when there
is one sweep time per day, the time range of m lies within one day, and m is attached initially.

Function

void KheAssignResourceMonitorDebug(KHE_ASSIGN_RESOURCE_MONITOR m,
int verbosity, int indent, FILE *fp);

154 Chapter 6. Solution Monitoring

is like KheMonitorDebug, only specific to this type of monitor.

6.6.2. Prefer resources monitors

A prefer resources monitor has tag KHE_PREFER_RESOURCES_MONITOR_TAG and monitors an
event resource which is one point of application of one prefer resources constraint. Functions

KHE_PREFER_RESOURCES_CONSTRAINT KhePreferResourcesMonitorConstraint(
KHE_PREFER_RESOURCES_MONITOR m);

KHE_EVENT_RESOURCE KhePreferResourcesMonitorEventResource(
KHE_PREFER_RESOURCES_MONITOR m);

return the prefer resources constraint and event resource being monitored.

Prefer resources monitors are not affected by sweep times, because tasks are assumed to be
unassigned beyond the sweep time, yielding cost 0. So, when given a prefer resources monitor,
KheMonitorSetSweepTime does nothing and KheMonitorSweepTimeRange returns false.

Function

void KhePreferResourcesMonitorDebug(KHE_PREFER_RESOURCES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.6.3. Avoid split assignments monitors

The operations for building avoid split assignments constraints accept a role and event groups,
as required when reading XML. However, they also accept a set of event resources, and these
are what are actually used. Accordingly, one avoid split assignments monitor monitors a set of
event resources, and appears in the list of monitors of each of those event resources. Functions

KHE_AVOID_SPLIT_ASSIGNMENTS_CONSTRAINT
KheAvoidSplitAssignmentsMonitorConstraint(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m)

int KheAvoidSplitAssignmentsMonitorEventGroupIndex(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m)

return the constraint and the index of the set of event resources being monitored, suitable
for passing to functions KheAvoidSplitAssignmentsConstraintEventResourceCount and
KheAvoidSplitAssignmentsConstraintEventResource (Section 3.7.7). There are also

int KheAvoidSplitAssignmentsMonitorResourceCount(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m);

KHE_RESOURCE KheAvoidSplitAssignmentsMonitorResource(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int i);

int KheAvoidSplitAssignmentsMonitorResourceMultiplicity(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int i);

The first returns the number of distinct resources currently assigned to tasks monitored by m. If
m is a defect this number will be at least 2. The second and third return the ith of these distinct

6.6. Event resource monitors 155

resources (in an arbitrary order) and the number of tasks monitored by m to which that resource
is currently assigned. The monitor does not record which tasks those are.

Avoid split assignments monitors are not affected by sweep times, because tasks are
assumed to be unassigned beyond the sweep time, and avoid split assignments monitors
take no notice of unassigned tasks. So, when given an avoid split assignments monitor,
KheMonitorSetSweepTime does nothing and KheMonitorSweepTimeRange returns false.

Function

void KheAvoidSplitAssignmentsMonitorDebug(
KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An avoid split assignments monitor has provably zero fixed cost when the paths of fixed
assignments leading out of the tasks it monitors have the same endpoint. KheTaskAssignFix

and KheTaskAssignUnFix may detach and attach avoid split assignments monitors. Similarly
to link events monitors, the efficiency payoff is significant.

6.6.4. Limit resources monitors

The operations for building limit resources constraints accept event groups and roles, as needed
when reading XML. However, what one limit resources monitor actually monitors is a set of
event resources, and it appears in the lists of monitors of those event resources. Functions

KHE_LIMIT_RESOURCES_CONSTRAINT KheLimitResourcesMonitorConstraint(
KHE_LIMIT_RESOURCES_MONITOR m);

int KheLimitResourcesMonitorEventGroupIndex(
KHE_LIMIT_RESOURCES_MONITOR m);

return the constraint, and the index within it of the set of event resources being monitored,
suitable for passing to functions KheLimitResourcesConstraintEventResourceCount and
KheLimitResourcesConstraintEventResource (Section 3.7.18). These allow the user to
visit the monitored event resources, and thence, using KheEventResourceTaskCount and
KheEventResourceTask, the monitored tasks. There is also

void KheLimitResourcesMonitorActiveDuration(KHE_LIMIT_RESOURCES_MONITOR m,
int *minimum, int *maximum, int *active_durn);

It returns m’s minimum limit (taken from the constraint; it will be 0 when there is no minimum
limit), its maximum limit (also from the constraint; it will be INT_MAX when there is no maximum
limit), and the active duration, which is the total duration of the tasks derived from the event
resources being monitored which are assigned resources from the constraint. The deviation is
the amount (if any) by which *active_durn exceeds *maximum or falls short of *minimum.

Limit resources monitors are affected by sweep times. As for assign resources monitors,
this is implemented in a rough way at present by ensuring that every limit resources monitor m
is detached when it monitors a task beyond the sweep time, and attached otherwise.

Function

156 Chapter 6. Solution Monitoring

void KheLimitResourcesMonitorDebug(KHE_LIMIT_RESOURCES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.7. Resource monitors

A resource monitor monitors a resource. The set of monitors (attached or unattached) which
monitor a given resource may be visited by calling

int KheSolnResourceMonitorCount(KHE_SOLN soln, KHE_RESOURCE r);
KHE_MONITOR KheSolnResourceMonitor(KHE_SOLN soln, KHE_RESOURCE r, int i);

The order is arbitrary and may be changed by calling

void KheSolnResourceMonitorSort(KHE_SOLN soln, KHE_RESOURCE r,
int(*compar)(const void *, const void *));

to sort the monitors into increasing order of compar.

The total cost of these monitors measures how well r is timetabled. Functions

KHE_COST KheSolnResourceCost(KHE_SOLN soln, KHE_RESOURCE r);
KHE_COST KheSolnResourceMonitorCost(KHE_SOLN soln, KHE_RESOURCE r,
KHE_MONITOR_TAG tag);

return the total cost of all the monitors monitoring r, and the total cost of all monitors monitoring
r of a specific type, defined by tag. KheSolnResourceMonitorCost returns 0 when tag does
not specify one of the monitor types in the following subsections.

Generally speaking, resource monitors are affected by sweep times. (The exceptions are
avoid clashes and avoid unavailable times monitors, for which the usual assumption that tasks are
unassigned beyond the sweep time implies cost 0.) The implementations have been done with
care, and almost always yield the best possible lower bound on true cost.

The following subsections list the kinds of resource monitors and their features. Their types
(KHE_AVOID_CLASHES_MONITOR etc.) may be obtained by downcasting from KHE_MONITOR after
checking the type tag. Monitors of type KHE_WORKLOAD_DEMAND_MONITOR, defined in Section
7.3, are also visited by KheSolnResourceMonitorCount and KheSolnResourceMonitor.
However, the timetable monitor for a resource is not visited by these functions; as explained in
Section 6.8, it is retrieved by calling KheResourceTimetableMonitor.

6.7.1. Avoid clashes monitors

An avoid clashes monitor has tag KHE_AVOID_CLASHES_MONITOR_TAG and monitors a resource
which is one point of application of one avoid clashes constraint. Functions

KHE_AVOID_CLASHES_CONSTRAINT KheAvoidClashesMonitorConstraint(
KHE_AVOID_CLASHES_MONITOR m);

KHE_RESOURCE KheAvoidClashesMonitorResource(
KHE_AVOID_CLASHES_MONITOR m);

6.7. Resource monitors 157

return the avoid clashes constraint and resource being monitored. Function

void KheAvoidClashesMonitorDebug(KHE_AVOID_CLASHES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An avoid clashes monitor m may have non-zero KheMonitorLowerBound(m). Let t be the
total duration of the events to which m’s resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greater than m’s weight. Then if t
exceeds the number of times in the cycle, the excess is a lower bound on the number of defects
that m must have in any reasonable solution (one in which violations of m are preferred to
violations of the more expensive assign time constraints). Converting this number of defects into
a cost using m’s cost function in the usual way gives the lower bound.

6.7.2. Avoid unavailable times monitors

This monitor has tag KHE_AVOID_UNAVAILABLE_TIMES_MONITOR_TAG and monitors a resource
which is one point of application of one avoid unavailable times constraint. Functions

KHE_AVOID_UNAVAILABLE_TIMES_CONSTRAINT
KheAvoidUnavailableTimesMonitorConstraint(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m);

KHE_RESOURCE KheAvoidUnavailableTimesMonitorResource(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m);

return the avoid unavailable times constraint and resource being monitored. Function

void KheAvoidUnavailableTimesMonitorDebug(
KHE_AVOID_UNAVAILABLE_TIMES_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

An avoid unavailable times monitor m may have non-zero KheMonitorLowerBound(m).
Suppose m’s resource is subject to an avoid clashes constraint of weight greater than m’s weight.
Let t1 be the total duration of the events to which m’s resource is preassigned which either have
preassigned times or are subject to an assign time constraint of weight greater than m’s weight.
Let t2 be the number of times to be avoided according to m. Then if t1 + t2 exceeds the number of
times in the cycle, the excess is a lower bound on the number of defects that m must have in any
reasonable solution (one in which every meet is assigned a time, and violations of m are preferred
to violations of the more expensive assign time and avoid clashes constraints). Converting this
number of defects into a cost using m’s cost function in the usual way gives the lower bound.

6.7.3. Limit idle times monitors

A limit idle times monitor has tag KHE_LIMIT_IDLE_TIMES_MONITOR_TAG and monitors a
resource which is one point of application of one limit idle times constraint. Functions

158 Chapter 6. Solution Monitoring

KHE_LIMIT_IDLE_TIMES_CONSTRAINT KheLimitIdleTimesMonitorConstraint(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

KHE_RESOURCE KheLimitIdleTimesMonitorResource(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

return the limit idle times constraint and resource being monitored, and

int KheLimitIdleTimesMonitorTimeGroupCount(
KHE_LIMIT_IDLE_TIMES_MONITOR m);

KHE_TIME_GROUP KheLimitIdleTimesMonitorTimeGroup(
KHE_LIMIT_IDLE_TIMES_MONITOR m, int i);

visit the time groups that m monitors, that is, the time groups from the constraint. There is also

KHE_TIME_GROUP KheLimitIdleTimesMonitorTimeGroupState(
KHE_LIMIT_IDLE_TIMES_MONITOR m, int i, int *busy_count, int *idle_count,
KHE_TIME extreme_busy_times[2], int *extreme_busy_times_count);

which, in addition to returning the ith time group, also reports its state, by setting *busy_count

to its number of busy times, *idle_count to its number of idle times, and placing its first and
last busy times into extreme_busy_times[0 .. *extreme_busy_times_count - 1]. If
there are no busy times, *extreme_busy_times_count is 0; if there is one it is 1; otherwise it is
2. Function

void KheLimitIdleTimesMonitorDebug(KHE_LIMIT_IDLE_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.7.4. Cluster busy times monitors

A cluster busy times monitor (tag KHE_CLUSTER_BUSY_TIMES_MONITOR_TAG) monitors a re-
source and offset making one point of application of a cluster busy times constraint. Functions

KHE_CLUSTER_BUSY_TIMES_CONSTRAINT KheClusterBusyTimesMonitorConstraint(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KHE_RESOURCE KheClusterBusyTimesMonitorResource(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

return the cluster busy times constraint and the resource being monitored. Functions

int KheClusterBusyTimesMonitorHistoryBefore(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

int KheClusterBusyTimesMonitorHistoryAfter(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

int KheClusterBusyTimesMonitorHistory(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

return the history before, history after, and history values from m’s constraint, or 0 if not present.
In the high school model, these are always 0. Function

6.7. Resource monitors 159

int KheClusterBusyTimesMonitorOffset(KHE_CLUSTER_BUSY_TIMES_MONITOR m);

returns the offset being monitored. In the high school model, and when the constraint has NULL
for applies_to_tg, the offset is always 0, otherwise the offset is the difference in index between
one useful time in applies_to_tg and the first time in applies_to_tg. Functions

int KheClusterBusyTimesMonitorTimeGroupCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KHE_TIME_GROUP KheClusterBusyTimesMonitorTimeGroup(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i, KHE_POLARITY *po);

return the time groups that m monitors (one for each time group in the cluster busy times con-
straint, adjusted using KheTimeGroupNeighbour by the offset), and their associated polarities.

Two functions report the current state of the monitor, as it varies during the solve.
Function

void KheClusterBusyTimesMonitorActiveTimeGroupCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int *active_group_count,

*open_group_count, int *minimum, int *maximum, bool *allow_zero);

sets *active_group_count to the number of active time groups (busy positive time groups plus
non-busy negative time groups),*open_group_count to the number of time groups not known to
be either active or inactive (because history_after is non-zero, or because there is a non-trivial
sweep time), and *minimum, *maximum, and *allow_zero to the values from the constraint. If m
has non-zero cost, then either *active_group_count + *open_group_count < *minimum or

*active_group_count > *maximum. Function

bool KheClusterBusyTimesMonitorTimeGroupIsActive(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i, KHE_TIME_GROUP *tg,
KHE_POLARITY *po, int *busy_count);

returns true when the time group at index i is currently active. It also sets *tg and *po to the
time group and polarity at index i, and *busy_count to the number of busy times in the time
group. It returns true when *tg is active, that is, when

(*po == KHE_NEGATIVE) == (*busy_count == 0)

as the definition of the constraint specifies.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function

int KheClusterBusyTimesMonitorAtMaxLimitCount(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

It returns 1 if the monitor is not detecting a violation but the number of active time groups equals
the maximum limit, and 0 otherwise. It returns an integer rather than a boolean for consistency
with KheLimitActiveIntervalsMonitorAtMaxLimitCount .

There is a peculiar but apparently unavoidable asymmetry in the handling of cluster time
groups at or after the sweep time: if they are busy they have a definite state, either active or
inactive, but if they are not busy they are open. This can be mitigated by calling

160 Chapter 6. Solution Monitoring

void KheClusterBusyTimesMonitorSetNotBusyState(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i, bool active);

where i is the index of one of m’s time groups, call it tg. This informs m that when tg is at or after
the sweep time and is not busy, it should be considered either active or inactive (depending on
the active parameter) rather than open. No other cases are affected. There are no restrictions on
when this function can be called, relative to setting sweep times or anything else. It may change
the cost of m. Function

void KheClusterBusyTimesMonitorClearNotBusyState(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int i);

returns tg to its default state. (In practice, there is no reason to call this function, because as the
sweep time increases these effects become irrelevant anyway.)

As an experiment, each cluster busy times monitor contains a multiplier, a non-negative
integer whose default value is 1. Each monitor’s cost (including any history adjustment) is
multiplied by its multiplier. By passing a large val, the user can artificially inflate the importance
of m’s constraint. The weight of that constraint is unaffected.

The user can set and retrieve the multiplier by calling

void KheClusterBusyTimesMonitorSetMultiplier(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int val);

int KheClusterBusyTimesMonitorMultiplier(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

The multiplier can be safely changed at any time. If the monitor has non-zero cost when the
multiplier is changed, the solution cost will change immediately.

To reset the multiplier to 1, another call to KheClusterBusyTimesMonitorSetMultiplier

can be made, or KheSolnEnsureOfficialCost (Section 6.3) can be called; it resets all
multipliers to 1. This ensures that the correct solution cost is reported in the end.

As another experiment, the user can set the minimum limit:

int KheClusterBusyTimesMonitorMaximum(KHE_CLUSTER_BUSY_TIMES_MONITOR m);
int KheClusterBusyTimesMonitorMinimum(KHE_CLUSTER_BUSY_TIMES_MONITOR m);
bool KheClusterBusyTimesMonitorSetMinimum(
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int val);

void KheClusterBusyTimesMonitorResetMinimum(
KHE_CLUSTER_BUSY_TIMES_MONITOR m);

KheClusterBusyTimesMonitorMaximum returns m’s maximum limit. This is always equal to the
maximum limit of m’s constraint. KheClusterBusyTimesMonitorMinimum returns the current
value of m’s minimum limit. Its default value is the minimum limit stored unchangeably in m’s
constraint. But KheClusterBusyTimesMonitorSetMinimum can be called at any time to change
the monitor’s minimum limit. If the monitor is attached when this is done, the solution cost may
change immediately. KheClusterBusyTimesMonitorResetMinimum resets the minimum limit
to the value stored in the constraint. Alternatively, KheSolnEnsureOfficialCost (Section 6.3)
can be called; it resets the minimums of all monitors to their original values.

6.7. Resource monitors 161

Finally, function

void KheClusterBusyTimesMonitorDebug(KHE_CLUSTER_BUSY_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.7.5. Limit busy times monitors

A limit busy times monitor (tag KHE_LIMIT_BUSY_TIMES_MONITOR_TAG) monitors a resource
and offset which make up one point of application of a limit busy times constraint. Functions

KHE_LIMIT_BUSY_TIMES_CONSTRAINT KheLimitBusyTimesMonitorConstraint(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

KHE_RESOURCE KheLimitBusyTimesMonitorResource(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

int KheLimitBusyTimesMonitorOffset(KHE_LIMIT_BUSY_TIMES_MONITOR m);

return the limit busy times constraint and the resource and offset being monitored. In the high
school model, and when the constraint has NULL for applies_to_tg, the offset is always 0,
otherwise the offset is the difference in index between one useful time in applies_to_tg and
the first time in applies_to_tg.

The monitored time groups (after applying the offset) are returned by

int KheLimitBusyTimesMonitorTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

KHE_TIME_GROUP KheLimitBusyTimesMonitorTimeGroup(
KHE_LIMIT_BUSY_TIMES_MONITOR m, int i, int *busy_count);

with *busy_count set to the number of busy times in the time group. The time groups are those
of the constraint, adjusted using KheTimeGroupNeighbour by the offset.

Functions

int KheLimitBusyTimesMonitorDefectiveTimeGroupCount(
KHE_LIMIT_BUSY_TIMES_MONITOR m);

void KheLimitBusyTimesMonitorDefectiveTimeGroup(
KHE_LIMIT_BUSY_TIMES_MONITOR m, int i, KHE_TIME_GROUP *tg,
int *busy_count, int *open_count, int *minimum, int *maximum,
bool *allow_zero);

visit the time groups monitored by m that are currently defective. The order in which they appear
depends on their times. This means that if a time group changes from defective to non-defective
then back to defective, it reappears in its previous position in the list. Without this, a traversal of
the list trying to remove each defective time group in turn would not work properly.

For each i, *tg is set to one defective time group, *busy_count is set to the number of
times m’s resource is busy during *tg, *open_count is set to the number of open times in *tg

(determined by the sweep time), and *minimum, *maximum, and *allow_zero come from the
constraint. So either the resource is overloaded during *tg and *busy_count > *maximum, or

162 Chapter 6. Solution Monitoring

it is underloaded during *tg and *busy_count + *open_count < *minimum. Also,

int KheLimitBusyTimesMonitorDeviation(KHE_LIMIT_BUSY_TIMES_MONITOR m);

returns the deviation.

Limit busy times monitors contain a ceiling attribute, set and retrieved by

void KheLimitBusyTimesMonitorSetCeiling(KHE_LIMIT_BUSY_TIMES_MONITOR m,
int ceiling);

int KheLimitBusyTimesMonitorCeiling(KHE_LIMIT_BUSY_TIMES_MONITOR m);

When busy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 8.8.3. The default value of ceiling is INT_MAX, which
effectively turns it off. If m is attached when KheLimitBusyTimesMonitorSetCeiling is called,
it will be detached and reattached by the call.

Function

void KheLimitBusyTimesMonitorDebug(KHE_LIMIT_BUSY_TIMES_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A limit busy times monitor m may have non-zero KheMonitorLowerBound(m). Suppose m’s
resource is subject to an avoid clashes constraint of weight greater than m’s weight. Let t1 be the
total duration of the events to which m’s resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greater than m’s weight. Let t2 be the
number of times in the cycle minus the number of times in m’s constraint’s domain. Then at least
t1 − t2 of the times of the events preassigned to m’s resource must occur in time groups limited by
m. If this exceeds the number of time groups in m’s constraint times its Maximum, then the excess,
converted into a cost in the usual way, gives the lower bound. Monitors are only created for
offsets applicable to all times in the constraint, so this lower bound is the same for all offsets.

6.7.6. Limit workload monitors

A limit workload monitor has tag KHE_LIMIT_WORKLOAD_MONITOR and monitors a resource
which is one point of application of one limit workload constraint. Functions

KHE_LIMIT_WORKLOAD_CONSTRAINT KheLimitWorkloadMonitorConstraint(
KHE_LIMIT_WORKLOAD_MONITOR m);

KHE_RESOURCE KheLimitWorkloadMonitorResource(
KHE_LIMIT_WORKLOAD_MONITOR m);

int KheLimitWorkloadMonitorOffset(KHE_LIMIT_WORKLOAD_MONITOR m);

return the limit workload constraint and the resource and offset being monitored. In the high
school model, and when the constraint has NULL for applies_to_tg, the offset is always 0,
otherwise the offset is the difference in index between one useful time in applies_to_tg and
the first time in applies_to_tg.

The monitored time groups (after applying the offset) are returned by

6.7. Resource monitors 163

int KheLimitWorkloadMonitorTimeGroupCount(
KHE_LIMIT_WORKLOAD_MONITOR m);

KHE_TIME_GROUP KheLimitWorkloadMonitorTimeGroup(
KHE_LIMIT_WORKLOAD_MONITOR m, int i, float *workload);

with *workload set to the current workload of the ith time group. The time groups are from the
constraint, adjusted using KheTimeGroupNeighbour by the offset.

Functions

int KheLimitWorkloadMonitorDefectiveTimeGroupCount(
KHE_LIMIT_WORKLOAD_MONITOR m);

void KheLimitWorkloadMonitorDefectiveTimeGroup(
KHE_LIMIT_WORKLOAD_MONITOR m, int i, KHE_TIME_GROUP *tg,
float *workload, int *open_count, int *minimum, int *maximum,
bool *allow_zero);

visit the time groups monitored by m that are currently defective. The order in which they appear
depends on their times. This means that if a time group changes from defective to non-defective
then back to defective, it reappears in its previous position in the list. Without this, a traversal of
the list trying to remove each defective time group in turn would not work properly.

For each i, *tg is set to one defective time group, *workload is set to the workload of m’s
resource during *tg, *open_count is the number of open times in *tg (determined by the sweep
time), and *minimum, *maximum, and *allow_zero come from the constraint. So either the
resource is underloaded during *tg and *workload < *minimum, or it is overloaded during *tg

and *workload > *maximum. If *open_count > 0, sweep times are in effect, so the comparison
against *minimum is adjusted to allow for the possibility that *open_count more times could be
busy, each with workload per time up to KheResourceTypeMaxWorkloadPerTime(rt), where
rt is the type of m’s resource:

*workload + *open_count * KheResourceTypeMaxWorkloadPerTime(rt) < *minimum

See Section 3.5.1 for KheResourceTypeMaxWorkloadPerTime. Also,

int KheLimitWorkloadMonitorDeviation(KHE_LIMIT_WORKLOAD_MONITOR m);

returns the deviation of m.

Limit workload monitors contain a ceiling attribute, set and retrieved by

void KheLimitWorkloadMonitorSetCeiling(KHE_LIMIT_WORKLOAD_MONITOR m,
int ceiling);

int KheLimitWorkloadMonitorCeiling(KHE_LIMIT_WORKLOAD_MONITOR m);

When workload > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 8.8.3. The default value of ceiling is INT_MAX, which
effectively turns it off. If m is attached when KheLimitWorkloadMonitorSetCeiling is called,
it will be detached and reattached by the call.

Function

164 Chapter 6. Solution Monitoring

void KheLimitWorkloadMonitorDebug(KHE_LIMIT_WORKLOAD_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A limit workload monitor m may have non-zero KheMonitorLowerBound(m). This is true
in all cases, but at present KHE only calculates a potentially non-zero lower bound when m

monitors the whole cycle. In that case, add up the workloads of the tasks to which m’s resource
is preassigned. If this exceeds the maximum of the corresponding limit workload constraint,
converting the excess into a cost using m’s cost function in the usual way gives the lower bound.

6.7.7. Limit active intervals monitors

A limit active intervals monitor has tag KHE_LIMIT_ACTIVE_INTERVALS_MONITOR_TAG and
monitors a resource and offset which together make one point of application of one limit active
intervals constraint. Limit active intervals constraints occur only in the employee scheduling
model, so limit active intervals monitors also occur only in that model. Functions

KHE_LIMIT_ACTIVE_INTERVALS_CONSTRAINT
KheLimitActiveIntervalsMonitorConstraint(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

KHE_RESOURCE KheLimitActiveIntervalsMonitorResource(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

return the limit active intervals constraint and the resource being monitored. Functions

int KheLimitActiveIntervalsMonitorMinimum(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

int KheLimitActiveIntervalsMonitorMaximum(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

return the minimum and maximum limits from the constraint.

int KheLimitActiveIntervalsMonitorHistoryBefore(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

int KheLimitActiveIntervalsMonitorHistoryAfter(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

int KheLimitActiveIntervalsMonitorHistory(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

return the history before, history after, and history values from m’s constraint, or 0 if not
present. Function

int KheLimitActiveIntervalsMonitorOffset(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

returns the offset being monitored. When the constraint has NULL for applies_to_tg, the offset
is 0, otherwise it is the difference in index between one useful time in applies_to_tg and the
first time in applies_to_tg. Functions

6.7. Resource monitors 165

int KheLimitActiveIntervalsMonitorTimeGroupCount(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

KHE_TIME_GROUP KheLimitActiveIntervalsMonitorTimeGroup(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, KHE_POLARITY *po);

return the time groups that m monitors (one for each time group in the limit active intervals con-
straint, adjusted using KheTimeGroupNeighbour by the offset), and their associated polarities.

There are also functions which report the state of the monitor during the solve. Function

bool KheLimitActiveIntervalsMonitorTimeGroupIsActive(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, KHE_TIME_GROUP *tg,
KHE_POLARITY *po, int *busy_count);

returns true when the time group at index i is currently active. It sets *tg and *po to the time
group and polarity at index i, and *busy_count to the number of busy times in the time group.
It returns the value of the condition (*po == KHE_NEGATIVE) == (*busy_count == 0), as the
definition of the constraint specifies.

For visiting defective active intervals (active intervals whose length is less than the
minimum limit or greater than the maximum limit from the constraint), functions

int KheLimitActiveIntervalsMonitorDefectiveIntervalCount(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

void KheLimitActiveIntervalsMonitorDefectiveInterval(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, int *history_before,
int *first_index, int *last_index, int *history_after, bool *too_long);

return the number of defective active intervals and attributes of the ith defective active interval:

*history_before. If the interval includes the first time group, the part of its length from
before there (i.e. KheLimitActiveIntervalsMonitorHistory(m)), otherwise 0.

*first_index. The index of the first time group in the interval, not including any history
part, so always at least 0.

*last_index. The index of the last time group in the interval, not including any history
part, so always at most KheLimitActiveIntervalsMonitorTimeGroupCount(m) - 1.

*history_after. If the interval includes the last time group, the part of its length from
after the last time group. This must be 0 when the the interval violates a maximum limit.

*too_long. Since this is a defective interval, its length must either be too long or too short.
This value is true if it is too long, and false if it is too short.

The value compared with the limits is

*history_before + (*last_index - *first_index + 1) + *history_after

See Jeff Kingston’s paper on history for the rationale for this. All these definitions hold good
(although their consequences are not quite obvious) when there is a sweep time.

In rare cases,KheLimitActiveIntervalsMonitorDefectiveInterval sets *last_index

166 Chapter 6. Solution Monitoring

to -1. This indicates that there is a defective interval lying entirely within the history range. A
solver can do nothing about this; it must check this condition and do nothing when it occurs.

KheLimitActiveIntervalsMonitorDefectiveInterval visits the defective intervals
in increasing order of *first_index. This ensures that if, between calls to this function, the
solution is changed, then changed back again to its previous state, a partially completed traversal
of defective intervals using this function is not invalidated.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function

int KheLimitActiveIntervalsMonitorAtMaxLimitCount(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m);

It returns the number of active intervals which do not violate any limits, but whose length equals
the maximum limit. It has been considered most efficient to not maintain this value incremen-
tally; instead, the list of non-violating intervals is scanned when this function is called.

There is a peculiar but apparently unavoidable asymmetry in the handling of time groups at
or after the sweep index: if they are busy they have a definite state, either active or inactive, but
if they are not busy they are open. This can be mitigated by calling

void KheLimitActiveIntervalsMonitorSetNotBusyState(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i, bool active);

where i is the index of one of m’s time groups, call it tg. This informs m that when tg is at or after
the sweep index and is not busy, it should be considered either active or inactive (depending on
the active parameter) rather than open. No other cases are affected. There are no restrictions
on when this function can be called, relative to setting the sweep index or anything else. It may
change the cost of m. Function

void KheLimitActiveIntervalsMonitorClearNotBusyState(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int i);

returns tg to its default state. (In practice, there is no reason to call this function, because as the
sweep index increases these effects become irrelevant anyway.)

For example, suppose that some resource r has requested that a certain time group tg

be kept free. Suppose that r is subject to a limit active intervals monitor m, whose ith time
group is a subset of tg. Then we can expect that time group to be free, and hence active if it
is negative and inactive if it is positive. This expectation can be conveyed to m by calling
KheLimitActiveIntervalsMonitorSetNotBusyState . This can make a significant difference
to time sweep solvers when m has a non-trivial minimum limit (2 or more), by penalizing them
for starting a new sequence of busy days just before a resource is due for some free time.

Finally, function

void KheLimitActiveIntervalsMonitorDebug(
KHE_LIMIT_ACTIVE_INTERVALS_MONITOR m, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.8. Timetable monitors 167

6.8. Timetable monitors

A timetable is a record of what is going on at each time. As part of monitoring cost, KHE
monitors the timetable of each event and each resource.

6.8.1. Event timetable monitors

Function

KHE_EVENT_TIMETABLE_MONITOR KheEventTimetableMonitor(KHE_SOLN soln,
KHE_EVENT e);

returns the event timetable monitor of event e. Type KHE_EVENT_TIMETABLE_MONITOR is a
subtype of KHE_MONITOR with tag KHE_EVENT_TIMETABLE_MONITOR_TAG.

An event timetable monitor always has cost 0. When it is attached, a particular set of meets
is known to it at any moment: the set of meets derived from e that are assigned a time. The
monitor offers these operations, which report which meets are running at each time:

int KheEventTimetableMonitorTimeMeetCount(
KHE_EVENT_TIMETABLE_MONITOR etm, KHE_TIME time);

KHE_MEET KheEventTimetableMonitorTimeMeet(
KHE_EVENT_TIMETABLE_MONITOR etm, KHE_TIME time, int i);

KheEventTimetableMonitorTimeMeetCount returns the number of meets running at time, and
KheEventTimetableMonitorTimeMeet returns the ith of these meets. Closely related is

bool KheEventTimetableMonitorTimeAvailable(
KHE_EVENT_TIMETABLE_MONITOR etm, KHE_MEET meet, KHE_TIME time);

which returns true if moving meet within etm, or adding it to etm, so that its starting time is
time, would neither place meet partly off the end of the timetable nor cause clashes.

An event timetable monitor offers no operations which report its set of meets directly. For
that, call functions KheEventMeetCount and KheEventMeet from Section 4.2.7 to obtain the
meets derived from a particular event; the timetabled meets are those with an assigned time.

As usual, event timetable monitors are created by KheSolnMake and exist for as long as the
solution does. There is one for each event. Link events monitors (but not spread events monitors)
depend on event timetable monitors.

Unlike most monitors, event timetable monitors are not attached initially. The event
timetable monitor returned by KheEventTimetableMonitor may be unattached and so not up
to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some event
timetable monitor is detached, that event timetable monitor is detached. Thus, unless the user
chooses to attach an event timetable monitor explicitly, it will be attached only as needed by
other monitors. Detaching an event timetable monitor does nothing unless no attached monitors
depend on it. In practice, when using an event timetable monitor etm, it is best to call

if(!KheMonitorAttachedToSoln((KHE_MONITOR) etm))
KheMonitorAttachToSoln((KHE_MONITOR) etm);

168 Chapter 6. Solution Monitoring

beforehand, and

KheMonitorDetachFromSoln((KHE_MONITOR) etm);

afterwards, unless etm must be attached, because some monitor that depends on it is attached.

Although it would make sense to treat an event timetable monitor as a group monitor
(Section 6.9), that option is not offered. The user who wants all the problems associated with a
given event to be channelled through a single monitor must create a group monitor, separate from
the event timetable monitor, and add the appropriate monitors to it in the usual way.

Event timetable monitors may be debugged by calling KheEventTimetableMonitorDebug

(defined below) as usual. And

void KheEventTimetableMonitorPrintTimetable(
KHE_EVENT_TIMETABLE_MONITOR etm, int cell_width, int indent, FILE *fp);

prints a conventional tabular timetable, using Days and possibly Weeks time groups from the
instance to determine its shape. Parameter cell_width is the width of each cell, in characters.

The user may create an event timetable monitor by calling

KHE_EVENT_TIMETABLE_MONITOR KheEventTimetableMonitorMake(KHE_SOLN soln,
KHE_EVENT_GROUP eg);

The result monitors the meets of soln derived from the events of eg, and thus offers a way to keep
track of which events of eg are running at each time, something which is not otherwise available
in KHE. It can be attached and detached at will in the usual way. Initially, it is detached, so in
practice its creation would always be followed by a call to KheMonitorAttachToSoln.

To delete an event timetable monitor made in this way, call

KheEventTimetableMonitorDelete(KHE_EVENT_TIMETABLE_MONITOR etm);

This function begins by detaching etm if it is attached. Function

void KheEventTimetableMonitorDebug(KHE_EVENT_TIMETABLE_MONITOR etm,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

6.8.2. Resource timetable monitors

Function

KHE_RESOURCE_TIMETABLE_MONITOR KheResourceTimetableMonitor(
KHE_SOLN soln, KHE_RESOURCE r);

returns the resource timetable monitor of resource r. Type KHE_RESOURCE_TIMETABLE_MONITOR
is a subtype of KHE_MONITOR with tag KHE_RESOURCE_TIMETABLE_MONITOR_TAG. Functions

6.8. Timetable monitors 169

KHE_SOLN KheResourceTimetableMonitorSoln(
KHE_RESOURCE_TIMETABLE_MONITOR rtm);

KHE_RESOURCE KheResourceTimetableMonitorResource(
KHE_RESOURCE_TIMETABLE_MONITOR rtm);

return rtm’s solution and resource attributes.

A resource timetable monitor always has cost 0. When it is attached, a particular set of tasks
is known to it at any moment: those assigned the resource (either directly, or indirectly via other
tasks) whose enclosing meet is assigned a time (either directly, or indirectly via other meets).
The monitor offers these operations, which report which tasks are running at each time:

int KheResourceTimetableMonitorTimeTaskCount(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME time);

KHE_TASK KheResourceTimetableMonitorTimeTask(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME time, int i);

KheResourceTimetableMonitorTimeTaskCount returns the number of tasks running at time;
KheResourceTimetableMonitorTimeTask returns the ith of these tasks.

Other functions are offered which may be more convenient in some cases. Function

bool KheResourceTimetableMonitorTimeAvailable(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_MEET meet, KHE_TIME time);

returns true if moving meet within rtm, or adding it to rtm, so that its starting time is time,
would neither place meet partly off the end of the timetable nor cause clashes. And

bool KheResourceTimetableMonitorTimeGroupAvailable(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME_GROUP tg,
bool ignore_nocost, bool certain);

returns true when the resource monitored by rtm is free at all of the times of tg. If
ignore_nocost is true, tasks t for which KheTaskNonAssignmentHasCost(t, certain) re-
turns false are ignored. Function

bool KheResourceTimetableMonitorTaskAvailableInFrame(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TASK task, KHE_FRAME frame,
KHE_TASK ignore_task);

is similar but more elaborate. For each time that task and its descendants is running, it finds
the time group containing that time in frame. It returns true when all of those time groups are
available. If ignore_task is non-NULL, it ignores any task whose proper root is ignore_task.
This is useful, for example, when checking whether a swap of the assignments of task and
ignore_task would create no cases of two tasks running in the same time group of frame.

Next we have

void KheResourceTimetableMonitorAddProperRootTasks(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME_GROUP tg,
bool include_preassigned, KHE_TASK_SET ts);

170 Chapter 6. Solution Monitoring

This adds to existing task set ts the proper root tasks of the tasks of rtm that overlap with time
group tg. It does not add tasks that are already present. If include_preassigned is true,
preassigned tasks are included, otherwise they aren’t. Omitting them makes sense when the tasks
will be reassigned.

One can also get direct access to the times where the resource has clashes:

int KheResourceTimetableMonitorClashingTimeCount(
KHE_RESOURCE_TIMETABLE_MONITOR rtm);

KHE_TIME KheResourceTimetableMonitorClashingTime(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, int i);

These work in the usual way, visiting each clashing time in turn. The times are kept in increasing
time index order, which is handy when repairing clashes, because it means that removing a clash
then reinstating it does not change the order that the times appear.

A resource timetable monitor offers no operations which report its set of tasks directly.
For that, one can use KheResourceAssignedTaskCount and KheResourceAssignedTask from
Section 4.6.1 to obtain all the tasks assigned the resource; the timetabled ones are just those
whose enclosing meet has an assigned time.

As usual, resource timetable monitors are created by KheSolnMake and exist for as long as
the solution does. There is one for each resource. All resource monitors (except possibly limit
workload monitors) depend on resource timetable monitors.

Unlike most monitors, resource timetable monitors are not attached initially. The resource
timetable monitor returned by KheResourceTimetableMonitor may be unattached and so not
up to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some resource
timetable monitor is detached, that resource timetable monitor is detached. Thus, unless the
user chooses to attach a resource timetable monitor explicitly, it will be attached only as needed
by other monitors. Detaching a resource timetable monitor does nothing unless no attached
monitors depend on it. So when using a resource timetable monitor rtm, it is best to call

if(!KheMonitorAttachedToSoln((KHE_MONITOR) rtm))
KheMonitorAttachToSoln((KHE_MONITOR) rtm);

beforehand, and

KheMonitorDetachFromSoln((KHE_MONITOR) rtm);

afterwards, unless rtm must be attached, because some monitor that depends on it is attached.

Although it would make sense to treat a resource timetable monitor as a group monitor
(Section 6.9), that option is not offered. The user who wants all the problems associated with a
given resource to be channelled through a single monitor must create a group monitor, separate
from the resource timetable monitor, and add the appropriate monitors to it in the usual way.

Here are two functions created to support the needs of particular solvers. First,

int KheResourceTimetableMonitorAtMaxLimitCount(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME t);

6.8. Timetable monitors 171

returns the sum, over all cluster busy times and limit active intervals monitors that monitor rtm’s
resource at time t, of the values returned by those monitors’AtMaxLimitCount functions. It is an
efficient way to find out, during time sweep resource assignment, whether assignments at time t
have brought any of these monitors to their maximum limits. Second,

void KheResourceTimetableMonitorAddRange(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, int first_time_index,
int last_time_index, KHE_GROUP_MONITOR gm);

adds to gm all cluster and limit busy times monitors which monitor rtm, are derived from
constraints which apply to every resource of the type of rtm’s resource, and whose range (as
given by KheClusterBusyTimesMonitorRange and KheLimitBusyTimesMonitorRange) lies
between the times indexed by first_time_index and last_time_index inclusive. A monitor
is not added if KheGroupMonitorHasChildMonitor reports that it is already there. This function
is used by combinatorial grouping.

At present, all resource timetable monitors are created automatically when the solution is
created. The KHE user is offered nothing equivalent to KheEventTimetableMonitorMake.

Function

void KheResourceTimetableMonitorDebug(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, int verbosity,
int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor. There is also

void KheResourceTimetableMonitorSetDebug(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, KHE_TIME_GROUP tg, bool val);

If val is true, this marks the times of tg for debugging. Whenever rtm’s timetable changes at
any of these times, a one-line debug print is produced on stderr giving the resource, the time,
and a brief indication of the change. This is useful for working out why a resource is busy (or
not) during a given time group. If val is false this debugging is turned off at the times of tg.

Finally, there is

void KheResourceTimetableMonitorPrintTimetable(
KHE_RESOURCE_TIMETABLE_MONITOR rtm, int cell_width, int indent, FILE *fp);

which prints a tabular timetable, using Days and possibly Weeks time groups from the instance
to determine its shape. Parameter cell_width is the width of each cell, in characters.

6.9. Group monitors

Sometimes the cost of a single monitor is needed: for example, when reporting problems to the
user. And the total cost of all monitors is always needed, since that is the cost of the solution.

Sometimes something in between these two extremes is needed: the cost of a set of related
monitors. To support this, the monitors of a solution are organized into a directed acyclic graph,
or dag for short, of arbitrary depth. Each monitor reports its cost to its parent monitors. The dag

172 Chapter 6. Solution Monitoring

is often a tree, in which case the picture looks like this:

Soln

Group
monitor

Group
monitor

Non-group
monitor

Non-group
monitor …

Non-group
monitor

Solution

The leaves are the non-group monitors, the various monitors described previously which monitor
the solution directly. The internal nodes are called group monitors, because they monitor a set
of monitors (their children). The cost of a group monitor is the sum of the costs of its children.

The solution object itself is a group monitor (initially, the only one). It supports all the
group monitor operations, plus the many other operations described earlier.

Group monitors have type KHE_GROUP_MONITOR, a concrete subtype of KHE_MONITOR, like
KHE_ASSIGN_TIME_MONITOR etc. KHE_GROUP_MONITOR is a supertype of KHE_SOLN, so upcast

(KHE_GROUP_MONITOR) soln

is safe, although often unnecessary, since many operations on type KHE_GROUP_MONITOR have
KHE_SOLN versions. For example, since KHE_GROUP_MONITOR is itself a subtype of KHE_MONITOR,
the total cost of all monitors could be found by calling

KheMonitorCost((KHE_MONITOR) soln)

but of course the equivalent KHE_SOLN version, KheSolnCost, is easier to use.

When the solution changes at some point, the change is reported to the non-group monitors
that monitor that point. Each updates its cost and reports any change to its parents, which update
their cost and report to their parents, and so on until there are no parents. The dag usually has
a single root, the solution object itself, but it does not have to be that way, because the links that
join non-group and group monitors to their parent monitors can be added and deleted at will.

6.9.1. Basic operations on group monitors

Unlike other types of monitors, group monitors other than the solution object can be freely
created and deleted. Function

KHE_GROUP_MONITOR KheGroupMonitorMake(KHE_SOLN soln, int sub_tag,
char *sub_tag_label);

creates a new group monitor with no parents and no children. It is passed the solution as a

6.9. Group monitors 173

parameter, and it remembers it, but it is not made a child of it. Functions

int KheGroupMonitorSubTag(KHE_GROUP_MONITOR gm);
char *KheGroupMonitorSubTagLabel(KHE_GROUP_MONITOR gm);

return the sub_tag and sub_tag_label attributes of gm. These are used to distinguish kinds of
group monitors. If sub_tag_label is non-NULL, it is printed when debugging. The values of
these attributes in solution objects are -1 and "Soln". The term ‘sub-tag’ is used because group
monitors already have a tag attribute, whose value is KHE_GROUP_MONITOR_TAG.

A group monitor other than the solution object may be deleted by calling

void KheGroupMonitorDelete(KHE_GROUP_MONITOR gm);

Its children will no longer have it as a parent, and its parents will no longer have it as a child. For
each parent of gm, the hole in the parent’s list of child monitors is plugged by moving the last
child monitor to gm’s position. For each child of gm, the hole in the child’s list of parent monitors
is plugged by moving the last parent monitor to gm’s position.

Every group monitor can have any number of child monitors, and every monitor (group or
non-group) can have any number of parent monitors. Even the solution object can have parents,
allowing monitoring of the total cost of a set of solutions. The operations for adding children to
a group monitor and removing them are

void KheGroupMonitorAddChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);
void KheGroupMonitorDeleteChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);

Here m could be a non-group monitor or a group monitor. KheGroupMonitorAddChildMonitor
makes m a child of gm, and gm a parent of m. It aborts if this would create a cycle in the dag (only
possible when m is a group monitor). KheGroupMonitorDeleteChildMonitor removes m from
gm, leaving m with one less parent and gm with one less child. The resulting holes are plugged as
described above for deleting group monitors. It aborts if m is not a child of gm. There is also

bool KheGroupMonitorHasChildMonitor(KHE_GROUP_MONITOR gm, KHE_MONITOR m);

which returns true when m is a child of gm. It is useful when m may already be a child of gm:

if(!KheGroupMonitorHasChildMonitor(gm, m))
KheGroupMonitorAddChildMonitor(gm, m);

No-one is checking that one monitor does not become the child of another twice over; and if it
does, its cost will be counted twice in the cost of its parent.

For group monitor m, KheMonitorLowerBound(m) sums the lower bounds of m’s children.
It may increase when a descendant is added, and decrease when a descendant is removed.

Initially, all non-group monitors are made children of the solution object, and all of them
except demand monitors are attached to the solution, so that KheSolnCost is the total cost of all
non-demand monitors, which is indeed the cost of the solution. Care is needed when grouping
not to inadvertently disconnect monitors from the solution, since then their costs will not be
counted, or to connect them via multiple paths, since then their costs will be counted multiple
times. It is usually best to make a new group monitor a child of the solution immediately:

174 Chapter 6. Solution Monitoring

gm = KheGroupMonitorMake(soln, sub_tag, sub_tag_label);
KheGroupMonitorAddChildMonitor((KHE_GROUP_MONITOR) soln,
(KHE_MONITOR) gm);

And when deleting a group monitor, the best option may be helper function

void KheGroupMonitorBypassAndDelete(KHE_GROUP_MONITOR gm);

It calls KheGroupMonitorDelete, but first it makes gm’s children into children of gm’s parents,
if any, thus keeping them linked in. There is also

void KheSolnBypassAndDeleteAllGroupMonitors(KHE_SOLN soln);

which applies KheGroupMonitorBypassAndDelete to every group monitor of soln.

Functions

int KheGroupMonitorChildMonitorCount(KHE_GROUP_MONITOR gm);
KHE_MONITOR KheGroupMonitorChildMonitor(KHE_GROUP_MONITOR gm, int i);

visit the child monitors of group monitor gm in the usual way. If gm is the solution object, these
versions of the functions allow the user to avoid the upcast:

int KheSolnChildMonitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnChildMonitor(KHE_SOLN soln, int i);

Functions

int KheMonitorParentMonitorCount(KHE_MONITOR m);
KHE_GROUP_MONITOR KheMonitorParentMonitor(KHE_MONITOR m, int i);

visit the parent monitors of m. There is also

bool KheMonitorDescendant(KHE_MONITOR m1, KHE_MONITOR m2);

which returns true if m1 is a descendant of m2, including when the two are equal, and

void KheMonitorParentMonitorsSort(KHE_MONITOR m);

which sorts the parent monitors of m so that traversal using KheMonitorParentMonitorCount

and KheMonitorParentMonitor visits them in order of increasing solution index. And

void KheGroupMonitorDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

A group monitor has the usual attach and detach operations, but they do nothing substantial;
in particular, they do not change its cost. They just mark the monitor as attached or detached.
Perhaps they should attach and detach it from its children, but they don’t.

6.9. Group monitors 175

6.9.2. Defects

Informally,a defect is a specific problem with a solution. In KHE, the word has a formal meaning
as well: a defect is a monitor whose cost is non-zero.

It can be helpful to target defects directly, rather than wasting time changing parts of the
solution where there are no defects. This is especially the case near the end of the solve process,
when there may be thousands of monitors but only a handful of defects. To support this, KHE
offers fast access to those child monitors of a group monitor which are defects:

int KheGroupMonitorDefectCount(KHE_GROUP_MONITOR gm);
KHE_MONITOR KheGroupMonitorDefect(KHE_GROUP_MONITOR gm, int i);

When a monitor’s cost changes from zero to non-zero, the monitor is added to its parents’defect
lists; and when its cost changes from non-zero to zero it is removed. This takes a negligible
amount of time. When the group monitor is the solution there are convenience versions:

int KheSolnDefectCount(KHE_SOLN soln);
KHE_MONITOR KheSolnDefect(KHE_SOLN soln, int i);

There is also

void KheGroupMonitorDefectDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

which is like KheGroupMonitorDebug applied to gm, except that it prints only defective
children, and

void KheGroupMonitorDefectTypeDebug(KHE_GROUP_MONITOR gm,
KHE_MONITOR_TAG tag, int verbosity, int indent, FILE *fp);

which is like KheGroupMonitorDefectDebug except that it prints only children of type tag.

If a solution is changed and then changed back again to its original state, its cost returns
to its original value, but there are two ways in which its defects can be different. First, they may
appear in a different order. Second, although the number of defects which are demand monitors
(Chapter 7) must return to its original value, the demand monitors that make up that number
may change. This is because there are many maximum matchings in general, and KHE does not
guarantee to find any particular one of them.

In practice, one wants to traverse a list of defects and try to repair them. Quite commonly,
an attempt to repair a defect will remove it temporarily and then reinstate it if the repair was
not successful. This will cause the defect to be shifted to the end of the defect list. A simple
traversal of the defects from first to last will visit some defects more than once, and others not at
all. To handle this problem, it is necessary to make a copy of the defects and traverse the copy.
Although every defect will have non-zero cost at the time it is copied, as the list is traversed,
after the solution changes or if the list includes demand monitors, one cannot assume that every
monitor on the copy list will have non-zero cost.

To find the total cost of all monitors of a given type in the descendants of gm, call

KHE_COST KheGroupMonitorCostByType(KHE_GROUP_MONITOR gm,
KHE_MONITOR_TAG tag, int *defect_count);

176 Chapter 6. Solution Monitoring

It returns the number of defects, in *defect_count, as well as the cost. It traverses the whole
sub-dag of monitors of gm (actually, just the defects), so it is slow: it is intended for reporting,
not for solving. It returns 0 when tag is KHE_GROUP_MONITOR_TAG, because it attributes cost to
the monitors that originally generated it. Version

KHE_COST KheSolnCostByType(KHE_SOLN soln, KHE_MONITOR_TAG tag,
int *defect_count);

may be called when the group monitor is the solution object. The values returned by these
functions are displayed in a convenient tabular form by functions

void KheGroupMonitorCostByTypeDebug(KHE_GROUP_MONITOR gm,
int verbosity, int indent, FILE *fp);

void KheSolnCostByTypeDebug(KHE_SOLN soln,
int verbosity, int indent, FILE *fp);

which print one line for each kind of monitor under gm or soln for which there are defects.

6.9.3. Tracing

Sometimes a solver needs to know which monitors have experienced a change in cost recently.
Ejection chain solvers, for example, need this information, and monitor tracing provides it.

Tracing involves objects of type KHE_TRACE. To create one, call

KHE_TRACE KheTraceMake(KHE_GROUP_MONITOR gm);

where gm is the group monitor to be traced. The solution may be traced by upcasting it:

t = KheTraceMake((KHE_GROUP_MONITOR) soln);

The group monitor that a trace object is for can be found by calling

KHE_GROUP_MONITOR KheTraceGroupMonitor(KHE_TRACE t);

To delete a trace object, call

void KheTraceDelete(KHE_TRACE t);

This will call KheTraceEnd(t) below if needed. KHE keeps a free list of trace objects in the
solution object, so many trace objects can be created and deleted at virtually no cost.

Actual tracing is initiated and ended by calling

void KheTraceBegin(KHE_TRACE t);
void KheTraceEnd(KHE_TRACE t);

These must be called in matching pairs. KheTraceBegin removes any information left over
from any preceding trace, and attaches t to its group monitor so that it can record what happens.
KheTraceEnd detaches t from its group monitor. Different trace objects may be attached and
detached quite independently of each other, even when they have the same group monitor.

After the trace ends, the following functions may be called:

6.9. Group monitors 177

KHE_COST KheTraceInitCost(KHE_TRACE t);
int KheTraceMonitorCount(KHE_TRACE t);
KHE_MONITOR KheTraceMonitor(KHE_TRACE t, int i);
KHE_COST KheTraceMonitorInitCost(KHE_TRACE t, int i);

KheTraceInitCost returns the initial cost of t’s group monitor (at the time the trace began);
KheTraceMonitorCount returns the number of child monitors of t’s group monitor whose
cost changed during the trace; KheTraceMonitor returns the ith of these child monitors; and
KheTraceMonitorInitCost(t, i) returns the initial cost of KheTraceMonitor(t, i). Also,

KHE_COST KheTraceMonitorCostIncrease(KHE_TRACE t, int i);

returns KheMonitorCost(KheTraceMonitor(t, i)) - KheTraceMonitorInitCost(t, i).
It will be negative when the monitor’s cost decreased.

The list of child monitors whose cost has changed never contains the same monitor m twice,
no matter how many times m’s cost changes during the trace. This is desirable, but it means that
when m’s cost changes, this list has to be searched to see if m is already present. So it is best to
use tracing on group monitors that group only a small number of monitors; or if a large group
monitor like the solution object is traced, to trace it for only small sequences of operations that
are not likely to change the cost of a large number of monitors.

These functions may be called during a trace as well as after it, returning values as though
the trace had just ended. While it is not an error to call KheGroupMonitorAddChildMonitor
or KheGroupMonitorDeleteChildMonitor while tracing the group monitor concerned, it is not
recommended. A solution cannot be copied while one of its group monitors is being traced.

For the convenience of ejection chain algorithms, function

void KheTraceReduceByCostIncrease(KHE_TRACE t, int max_num);

sorts the monitors by decreasing KheTraceMonitorCostIncrease, removes all monitors whose
cost increase is zero or negative, then keeps removing monitors from the end until at most
max_num remain. These may be accessed with KheTraceMonitorCount,KheTraceMonitor, and
KheTraceMonitorInitCost as usual. The other monitors are gone and cannot be got back.

Finally, function

void KheTraceDebug(KHE_TRACE t, int verbosity, int indent, FILE *fp);

prints t onto fp with the given verbosity and indent, showing monitors whose cost changed.

Chapter 7. Matchings and Evenness

Suppose a decision is made to run five Music meets simultaneously,when the school has only two
Music teachers and two Music rooms. Clearly, when teachers and rooms are assigned later, there
will be major problems, but until then the usual cost function will not reveal any problems.

More subtly, suppose there are eight teachers, and that three of them teach English only,
three teach History only, and two teach both. Suppose a decision is make to run five English
meets and five History meets simultaneously. Then there are enough English teachers to teach
the five English meets, and there are enough History teachers to teach the five History meets, but
there are not enough English and History teachers, taken together, to teach the ten meets.

Matchings (officially,unweighted bipartite matchings) detect such problems. Although not
compulsory, they are often helpful. This chapter describes them in general, how they apply to
timetabling, and how to use them in KHE.

The functions defined here are everything that the KHE platform offers to support matching.
They are used as is for some things, such as diagnosing failure to match, but for setting up a
matching to begin with and deleting it later, in practice it is better to use the solver functions
KheMatchingBegin and KheMatchingEnd (Section 8.8.1) since they call the functions defined
here in just the right way.1

7.1. Introducing bipartite matching

A bipartite graph is an undirected graph whose nodes are divided into two sets, such that every
edge connects a node of one set to a node of the other. A matching is a subset of the edges
such that no two edges touch the same node. A maximum matching is a matching containing as
many edges as possible. The bipartite matching problem is the problem of finding a maximum
matching in a bipartite graph. For example, here is a bipartite graph (at left), and the same graph
with a maximum matching shown in bold (at right):

There is a standard polynomial-time algorithm for this problem.

In timetabling, where bipartite matching has been used for many years [2, 4, 14], it is usual
for one of the two sets of nodes to represent variables (slots, events, etc.) demanding something

1Prior to Version 2.10, most of the setup code was in the platform. The current arrangement is better in every way.

178

7.1. Introducing bipartite matching 179

to be assigned to them, while the other set represents values (times, resources, etc.) which are
available to supply these demands. So these sets are called the demand nodes and the supply
nodes here. A maximum matching assigns supply nodes to as many demand nodes as possible,
given that each demand node requires any one of the supply nodes it is connected to, and each
supply node may be assigned to at most one demand node. Although the problem is formally
symmetrical between the two kinds of nodes, in timetabling it is not symmetrical: it does not
matter if some supply nodes are not matched, but it does matter if some demand nodes are
not matched.

One does not usually want to make the assignments indicated by a maximum matching,
because there are other constraints not modelled by it, and the aim is to find, not just any
maximum matching, but one satisfying these other constraints. Instead, the matching helps to
evaluate the current state. Because it is maximum, it indicates that there must be at least a certain
number of problems, in the form of unassigned demand nodes, in any solution incorporating the
decisions already made, and that is valuable information when evaluating those decisions.

Some applications of matching to timetabling utilize the idea of a tixel, the author’s term for
one resource at one time (the name recalls the pixel of computer graphics). For example, teacher
Smith during the first time on Mondays is one tixel; it may be represented by the ordered pair

(Smith,Mon1)

This is also called a supply tixel, because it can supply the demands of events for teachers. The
events are said to contain demand tixels. For example, an event of duration 2 which requests
student group 8A, one English teacher, and one room, is said to contain six demand tixels. This
is shorthand for saying that it demands six supply tixels.

Underlying the high school timetabling problem is a matching that we will call the global
tixel matching. Its supply nodes are the supply tixels, one for each resource of the instance at
each time. Its demand nodes are the demand tixels of the events of the instance. Edges connect
demand tixels to those supply tixels that suit them. For example, a demand for student group 8A
would be connected to supply tixels whose resource is 8A; a demand for an English teacher at
time Mon1 would be connected to those supply tixels whose resource is an English teacher and
whose time is Mon1. Each demand tixel wants to be assigned one supply tixel, and each supply
tixel may only be assigned to one demand tixel (otherwise there would be a timetable clash). So
a matching is indeed required, and a maximum matching will have the fewest problems.

As decisions are made, in the form of assignments of times to meets or resources to tasks
(or domain reductions, for example from all qualified resources to a smaller set of preferred
resources), the demand tixels affected by these decisions become connected to fewer supply
tixels. When the maximum matching is recalculated (there is an efficient algorithm for doing this
incrementally as the graph changes) there may be more unmatched nodes than before, suggesting
that the decisions made may have been poor ones, and that alternatives should be explored.

The global tixel matching is useful for evaluating instances before solving begins. It can
reveal, for example, that the supply of computer laboratories is insufficient to cover the demand,
and other problems of that kind. It turns out to be very powerful late in the solve process, when
resources are being assigned after times have been assigned, provided it is enhanced with tixels
expressing resource unavailabilities and workload limits (Section 7.3). However, it is quite weak
before times are assigned, because it does not understand that the supply tixels assigned to events

180 Chapter 7. Matchings and Evenness

must be correlated in time: it does not perceive the contradiction in assigning, say, the two supply
tixels (Smith,Mon1) and (Lab6,Wed5) to an event of duration 1.

An example given earlier, of scheduling five Music events simultaneously when there are
only two Music teachers and two Music rooms, shows that useful checks can be made when
deciding to run events simultaneously, even though their actual time is not fixed. Whatever time
is ultimately assigned to such events, each resource can supply at most one tixel to satisfy their
demands. So the demand tixels for one time of the events concerned may be matched with a set
of supply nodes, one for each resource. This will be called local tixel matching. The tixels are
rather different: they share a common generic time rather than holding a variety of true times.

7.2. Basic operations

By default, a solution contains no matching. To add one, and later to delete it, call

void KheSolnMatchingBegin(KHE_SOLN soln);
void KheSolnMatchingEnd(KHE_SOLN soln);

(As already remarked, solver functions KheMatchingBegin and KheMatchingEnd from Section
8.8.1will usually be better in practice.) The matching is also deleted when its solution is deleted,
since a matching without a solution makes no sense. KheSolnMatchingBegin does not add any
demand nodes, and KheSolnMatchingEnd requires all demand nodes that have been added (by
calls that we’ll come to later) since the preceding KheSolnMatchingBegin to have been deleted
before it is called.

A solution can have at most one matching, and KHE will abort if KheSolnMatchingBegin
is called twice without an interveningKheSolnMatchingEnd. When present, the matching is kept
up to date automatically as the solution changes. A lazy implementation is used: no matching
is done until a query is received (for example, a request for the current number of unmatched
demand nodes). This allows the time spent matching to be amortized over all operations
carried out since the previous query. There is no way for the user to observe the laziness. The
key operation, of bringing the matching up to date (making it maximum) runs in time roughly
proportional to the number of unmatched nodes in the graph when it is called.

Function

bool KheSolnHasMatching(KHE_SOLN soln);

returns true when soln has a matching. Most of the operations of this chapter assume that the
matching is present. If it isn’t, some may abort, while others may do nothing.

A demand node is a kind of monitor; we use the terms demand node and demand monitor
interchangeably. Demand monitorsmay be attached and detached separately as usual. Detaching
a demand monitor removes its node from the matching graph.

In the usual way, a demand monitor contributes a cost to the solution when it is attached to
the solution and linked in as a descendant of the solution object (considered as a group monitor).
The cost is 0 when the node is matched, and some non-negative value when it is unmatched. This
value, the cost to report when the node is unmatched, is set and retrieved by functions

7.2. Basic operations 181

void KheSolnMatchingSetWeight(KHE_SOLN soln, KHE_COST weight);
KHE_COST KheSolnMatchingWeight(KHE_SOLN soln);

The value is the same for all demand nodes, because this is unweighted bipartite matching. Any
change in weight is reflected immediately in the costs of all demand monitors.

The matching has a type that may be changed at any moment:

void KheSolnMatchingSetType(KHE_SOLN soln, KHE_MATCHING_TYPE mt);
KHE_MATCHING_TYPE KheSolnMatchingType(KHE_SOLN soln);

KHE_MATCHING_TYPE is the enumerated type

typedef enum {
KHE_MATCHING_TYPE_EVAL_INITIAL,
KHE_MATCHING_TYPE_EVAL_TIMES,
KHE_MATCHING_TYPE_EVAL_RESOURCES,
KHE_MATCHING_TYPE_SOLVE

} KHE_MATCHING_TYPE;

A full explanation of these values is given in the following section. Just briefly, however,
KHE_MATCHING_TYPE_SOLVE implements a kind of local tixel matching and is the best choice
when solving; it is also the default value. The others are variants of global tixel matching. A
change of type is reflected immediately in the costs of all demand monitors.

For the most part, matchings work quietly behind the scenes without attention from the user.
However, there is an important optimization that only the user can invoke. Suppose that some
changes are made to the solution as an experiment, then either retained or undone. Then KHE
will run faster if that part of the program is bracketed by calls to these functions:

void KheSolnMatchingMarkBegin(KHE_SOLN soln);
void KheSolnMatchingMarkEnd(KHE_SOLN soln, bool undo);

Calls to these operations must occur in matching pairs, possibly nested. If undo is true, then
KheSolnMatchingMarkEnd assumes without checking that all changes to soln since the cor-
responding call to KheSolnMatchingMarkBegin have been undone. It uses this information to
bring the matching up to date more quickly than could be done without it. To encourage their use,
both functions are well-defined even when there is no matching: in that case, they do nothing.

As an aid to debugging, function

void KheSolnMatchingDebug(KHE_SOLN soln, int verbosity,
int indent, FILE *fp);

ensures that the matching is up to date, then prints its current state onto fp. Verbosity 1prints just
the number of unmatched demand monitors, verbosity 2 prints those monitors, and verbosity 3
prints all demand monitors and the supply nodes they are matched with.

182 Chapter 7. Matchings and Evenness

7.3. Supply nodes and demand nodes

Supply nodes are created automatically behind the scenes, and are not accessible to the user.
There is one supply node for each resource at each time of each meet m that is not assigned to
another meet. When such an assignment is made, the supply nodes of m are deleted, since the
two meets then run simultaneously.

The rest of this section deals with demand nodes. These are of two kinds: ordinary demand
nodes and workload demand nodes. To create and delete an ordinary demand node, call

KHE_ORDINARY_DEMAND_MONITOR KheOrdinaryDemandMonitorMake(
KHE_TASK task, int offset, KHE_MONITOR orig_m);

void KheOrdinaryDemandMonitorDelete(KHE_ORDINARY_DEMAND_MONITOR odm);

An ordinary demand node represents a demand for one resource at one time made by task at
offset (between 0 inclusive and the duration of the task exclusive). The originating monitor,
orig_m, is the monitor that led to the creation of this demand monitor. It would probably be an
assign resource monitor for task, although there is no strict rule; it may be NULL.

The usual monitor operations (attach and detach, etc.) may be obtained by upcasting from
KHE_ORDINARY_DEMAND_MONITOR to KHE_MONITOR as usual. There are also these operations
specific to ordinary demand monitors:

KHE_TASK KheOrdinaryDemandMonitorTask(KHE_ORDINARY_DEMAND_MONITOR odm);
int KheOrdinaryDemandMonitorOffset(KHE_ORDINARY_DEMAND_MONITOR odm);
KHE_MONITOR KheOrdinaryDemandMonitorOriginatingMonitor(
KHE_ORDINARY_DEMAND_MONITOR odm);

void KheOrdinaryDemandMonitorDebug(KHE_ORDINARY_DEMAND_MONITOR odm,
int verbosity, int indent, FILE *fp);

Functions

int KheTaskDemandMonitorCount(KHE_TASK task);
KHE_ORDINARY_DEMAND_MONITOR KheTaskDemandMonitor(KHE_TASK task, int i);

visit the ordinary demand monitors associated with task, attached or detached. In practice there
will be one of these for each legal offset, although that is not an absolute requirement.

We turn now to workload demand nodes. These originate in constraints on the availability
of resources. For example, if resource r is unavailable at time Mon1, we might want to remove
supply node (r, Mon1), but there is no way to do that, so instead we add a workload demand
node that matches only with that supply node. To create and delete such a node, call

KHE_WORKLOAD_DEMAND_MONITOR KheWorkloadDemandMonitorMake(
KHE_SOLN soln, KHE_RESOURCE r, KHE_TIME_GROUP tg, KHE_MONITOR orig_m);

void KheWorkloadDemandMonitorDelete(KHE_WORKLOAD_DEMAND_MONITOR wdm);

KheWorkloadDemandMonitorMake creates one tixel of demand which matches with all supply
nodes whose resource is r and whose time is an element of time group tg. In our example, tg
would be the singleton time group containing time Mon1. As usual, orig_m is the monitor that
originates this demand (in our example it would be an avoid unavailable times monitor), and the

7.3. Supply nodes and demand nodes 183

usual monitor operations are available by upcasting. There are also these operations specific to
workload demand monitors:

KHE_RESOURCE KheWorkloadDemandMonitorResource(
KHE_WORKLOAD_DEMAND_MONITOR wdm);

KHE_TIME_GROUP KheWorkloadDemandMonitorTimeGroup(
KHE_WORKLOAD_DEMAND_MONITOR wdm);

KHE_MONITOR KheWorkloadDemandMonitorOriginatingMonitor(
KHE_WORKLOAD_DEMAND_MONITOR wdm);

void KheWorkloadDemandMonitorDebug(KHE_WORKLOAD_DEMAND_MONITOR wdm,
int verbosity, int indent, FILE *fp);

There are no functions specifically for visiting workload demand monitors. They are classed as
resource monitors and can be visited along with the other resource monitors for a given resource
r by calling KheSolnResourceMonitorCount and KheSolnResourceMonitor (Section 6.7).

Ordinary and workload demand monitorsare created in the detached state. Users who create
these monitors are free to attach each of them immediately after it is created, if they wish.

Before leaving demand monitors we need to explain matching types in detail. An ordinary
demand node’s own meet is the meet its task lies in. Its root meet is the meet reached by
following the chain of assignments (possibly empty) out of its own meet to a meet that contains
no assignment. Its own offset is its offset in its own meet, and its root offset is its offset in its root
meet (the sum of its own offset and the offsets along the assignment path).

When linking an ordinary demand node to supply nodes, there are at least two ways to take
time into account:

A. Link it only to ordinary supply nodes lying in cycle meets at offsets that represent the times
of the time domain of its own meet, shifted by its own offset.

B. Link it only to ordinary supply nodes lying in its root meet at its root offset.

Informally, (A) evaluates the initial state of time assignment, whereas (B) evaluates its current
state in a way that ensures that simultaneous demands compete for the same supply nodes, as in
local tixel matching. And there are at least two ways to take resources into account:

1. Link it to supply nodes representing the resources of its task’s domain.

2. Link it to supply nodes representing the resources of its task’s root task’s domain. If the
root task is a cycle task, this will link only to supply nodes representing that resource.

Informally, (1) evaluates the initial state of resource assignment,whereas (2) evaluates the current
state. The four matching types produce the four conjunctions of these conditions:

A B
1 KHE_MATCHING_TYPE_EVAL_INITIAL KHE_MATCHING_TYPE_EVAL_TIMES

2 KHE_MATCHING_TYPE_EVAL_RESOURCES KHE_MATCHING_TYPE_SOLVE

Type (B2) is suited to solving; the others are suited to evaluation before or after solving.

184 Chapter 7. Matchings and Evenness

7.4. Diagnosing failure to match

KHE’s usual methods of organizing monitors, such as grouping and tracing, may be applied to
demand monitors. This section offers three other ways to visit unmatched demand monitors.

7.4.1. Visiting unmatched demand nodes

The unmatched demand nodes may be visited by functions

int KheSolnMatchingDefectCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMatchingDefect(KHE_SOLN soln, int i);

Each monitor is either an ordinary demand monitor or a workload demand monitor; a call to
KheMonitorTag followed by a downcast will produce the specific type. Then functions defined
earlier give access to the part of the solution being monitored by these monitors.

Unmatched demand nodes with higher indexes tend to have become unmatched more
recently than demand nodes with lower indexes. When the number of unmatched demand nodes
increases, it is reasonable to take the last unmatched demand node as an indication of what went
wrong. However, it will usually be better to use grouping and tracing to localize problems.

7.4.2. Hall sets

Hall sets are the definitive method of diagnosing failure to match. They are fine for occasional
use, such as for generating a report to the user, but too slow for repeated use during solving.

Suppose there is a set D of demand nodes, whose outgoing edges all lead to nodes in some
set S of supply nodes. Then every node in D must be matched with a node in S, or not matched at
all. If |D| > |S|, then at least |D| − |S| nodes of D will be unmatched in any maximum matching.

It turns out that every case of an unmatched node can be explained in this way, often
utilizing sets D and S that are small enough to understand in user terms: they might represent the
demand and supply of Science laboratories, for example. Such a D and S, with every edge out
of D leading to S, and |D| > |S|, is called a Hall set after the mathematician Philip Hall. Given a
maximum matching, every unmatched demand node lies in a Hall set.

The following functions examine the Hall sets of a matching. They all begin by building
the Hall sets if the ones currently stored are not up to date. This means that any change to the
solution invalidates everything returned by all previous calls to these functions.

The number of Hall sets is returned by

int KheSolnMatchingHallSetCount(KHE_SOLN soln);

This is not usually the same as the number of unmatched demand nodes, since there may be
several of those in one Hall set. No node lies in two Hall sets. The number of supply and demand
nodes in the i’th Hall set may be found by calling

int KheSolnMatchingHallSetSupplyNodeCount(KHE_SOLN soln, int i);
int KheSolnMatchingHallSetDemandNodeCount(KHE_SOLN soln, int i);

By the way that Hall sets are defined, KheSolnMatchingHallSetDemandNodeCount(soln, i)

7.4. Diagnosing failure to match 185

must be larger than KheSolnMatchingHallSetSupplyNodeCount(soln, i).

The j’th supply node of the i’th Hall set can only be an ordinary supply node, but, in case
other kinds of supply nodes are added in future, the following function is used to find the meet
it lies in, its offset within that meet, and the resource it represents:

bool KheSolnMatchingHallSetSupplyNodeIsOrdinary(KHE_SOLN soln,
int i, int j, MEET *meet, int *meet_offset, KHE_RESOURCE *r);

At present this always returnstrue. A report to the user should distinguish the cases when *meet
is and is not a cycle meet. The j’th demand node of the i’th Hall set is returned by

KHE_MONITOR KheSolnMatchingHallSetDemandNode(KHE_SOLN soln,
int i, int j);

It will be either an ordinary demand node or a workload demand node as usual. Finally,

void KheSolnMatchingHallSetsDebug(KHE_SOLN soln,
int verbosity, int indent, FILE *fp);

prints the Hall sets of m’s matching onto fp with the given verbosity and indent. The verbosity
must be at least 1 but otherwise does not affect what is printed.

7.4.3. Finding competitors

Given an unmatched demand monitor m returned by KheSolnMatchingHallSetDemandNode or
KheSolnMatchingDefect, a competitor of that monitor is either m itself or a monitor whose
removal would allow m to match. Competitors are similar to the demand nodes of Hall sets, ex-
cept that they relate to a single unmatched demand node. They are themselves always matched.
Finding competitors amounts to redoing the search for an augmenting path for the failed node
and noting the demand nodes that are visited along the way.

Functions

void KheSolnMatchingSetCompetitors(KHE_SOLN soln, KHE_MONITOR m);
int KheSolnMatchingCompetitorCount(KHE_SOLN soln);
KHE_MONITOR KheSolnMatchingCompetitor(KHE_SOLN soln, int i);

may be used together to visit the competitors of unmatched demand monitor m:

KheSolnMatchingSetCompetitors(soln, m);
for(i = 0; i < KheSolnMatchingCompetitorCount(soln); i++)
{
competitor_m = KheSolnMatchingCompetitor(soln, i);
... visit competitor_m ...

}

The competitors are visited in breadth-first order, beginning with m (which the user may choose
to skip by initializing i in the loop above to 1 rather than 0). There may be any number of
competitors other than m, including none, and they may be ordinary demand monitors and
workload demand monitors.

186 Chapter 7. Matchings and Evenness

The solution contains one set of competitors which remains constant except when reset by
a call to KheSolnMatchingSetCompetitors. If the solution changes, this set of competitors
remains well-defined as a set of monitors, but becomes out of date as a set of competitors.

Competitors are useful because they can be found quickly, but they are not definitive in
the way that Hall sets are: in unusual cases, a given unmatched monitor may have different
competitors in different maximum matchings. For example, consider these two matchings:

A

A

B

B

C

C

D

D

E

E

A

A

B

B

C

C

D

D

E

E

Both are maximum, since all three supply nodes are matched in each; but the competitors of C
in the first matching are A and B, while the competitors of C in the second are D and E.

It is important not to change the solution when traversing competitors. Even if it is changed
back again, the unmatched demand nodes may be different afterwards. In the usual case where
the aim is to move one meet that is competing for some scarce resources, the right approach is to
use the loop to find those meets, store them, and move them after it ends.

In applications such as ejection chains it is important to understand what the defect really
is. In the case of unmatched demand nodes, the true defect is the Hall set. This may be
approximated in practice by the set of competitors. Thus, a repair should operate on the set of
competitors independently of their order or which one happens to be the unmatched one.

7.5. Evenness monitoring

Suppose that a school has seven Mathematics teachers, and that at some time there are seven
Mathematics lessons running simultaneously. All seven teachers must be utilized at that time,
which, although feasible, will restrict the options for resource assignment later.

Unless the teachers are very overworked, there must be other times when few Mathematics
lessons are running. The Mathematics lessons are distributed unevenly through the cycle.

KHE offers a kind of monitor, of type KHE_EVENNESS_MONITOR, which monitors this kind
of evenness. These work similarly to demand monitors; they are created and removed by

void KheSolnEvennessBegin(KHE_SOLN soln);
void KheSolnEvennessEnd(KHE_SOLN soln);

although the call to KheSolnEvennessEnd may be omitted when evenness monitoring is wanted
for the lifetime of the solution. Evenness monitors are created by KheSolnEvennessBegin but

7.5. Evenness monitoring 187

not attached initially. There is one evenness monitor for each resource partition of the instance
and each time of the cycle, which keeps track of how many tasks whose domains lie within
that partition (as determined by KheResourceGroupPartition) are running at that time. The
monitor reports a deviation when this number exceeds some limit, which is usually set at one
less than the number of resources in the partition. Thus, the deviation would be zero when six
Mathematics teachers are needed, and one when seven are needed. Function

bool KheSolnHasEvenness(KHE_SOLN soln);

returns true when evennness monitors are present.

Like demand monitoring, evenness monitoring depends on the resources demanded at each
time. Unlike demand monitoring, however, domains that cross partition boundaries are not taken
into account, and evenness is only monitored at the root level of the layer tree. Despite these
simplifications, evenness monitoring is potentially useful for giving early warning of demand
problems, especially when used in conjunction with domain tightening (Section 11.3).

When present, evenness monitors may be found in the list of all monitors kept in the
solution, and attached and detached in the usual way. More useful in practice are functions

void KheSolnAttachAllEvennessMonitors(KHE_SOLN soln);
void KheSolnDetachAllEvennessMonitors(KHE_SOLN soln);

which visit each evenness monitor and ensure that it is attached or detached. The usual
operations on monitors may be carried out by upcasting to type KHE_MONITOR as usual. There
are also operations specific to evenness monitors:

KHE_RESOURCE_GROUP KheEvennessMonitorPartition(KHE_EVENNESS_MONITOR m);
KHE_TIME KheEvennessMonitorTime(KHE_EVENNESS_MONITOR m);
int KheEvennessMonitorCount(KHE_EVENNESS_MONITOR m);

These return the partition being monitored, the time being monitored, and the number of tasks
whose domains lie within that partition that are currently running at that time (or 0 if m is
unattached). It would be useful to be able to retrieve the specific tasks that go to make up this
count, but that information is not kept. If it is needed, it is necessary to search the cycle meet
overlapping the time, and all the meets assigned to that cycle meet directly or indirectly, to find
the tasks running at the monitored time whose domains lie within the monitored partition.

Each evenness monitor also contains a limit, such that when the count goes above that limit
a deviation is reported. This limit can be retrieved and changed at any time by calling

int KheEvennessMonitorLimit(KHE_EVENNESS_MONITOR m);
void KheEvennessMonitorSetLimit(KHE_EVENNESS_MONITOR m, int limit);

Its default value is the number of resources in the partition, minus this same number divided by
six and rounded down. Thus, when there are less than six resources, the value is the number of
resources; when there are between six and eleven resources, the value is one less than the number
of resources; and so on. This seems to work reasonably well in practice. Another way to ignore
unevenness in small partitions would be to detach their monitors.

The deviation is KheEvennessMonitorCount(m) - KheEvennessMonitorLimit(m), or 0
if this number is negative. This is converted into a cost by multiplying by a weight (there is no

188 Chapter 7. Matchings and Evenness

choice of cost function). The weight may be retrieved, and set at any time, by

KHE_COST KheEvennessMonitorWeight(KHE_EVENNESS_MONITOR m);
void KheEvennessMonitorSetWeight(KHE_EVENNESS_MONITOR m, KHE_COST weight);

The default weight is the smallest non-zero weight, KheCost(0, 1). Helper function

void KheSolnSetAllEvennessMonitorWeights(KHE_SOLN soln, KHE_COST weight);

sets the weights of all evenness monitors at once. Finally, function

void KheEvennessMonitorDebug(KHE_EVENNESS_MONITOR m,
int verbosity, int indent, FILE *fp);

is like KheMonitorDebug, only specific to this type of monitor.

Evenness is not monitored in the current version of KheGeneralSolve (Section 8.4),
because tests run by the author showed run time increases of about 20%, for little or no gain.
Although it has some beneficial effects, evenness monitoring tends to disrupt node regularity and
reduce diversity, since it causes very similar solutions to have slightly different costs.

Part B

Solvers

189

Chapter 8. Introducing Solvers

A solver is a function that finds a solution, or changes a solution, or potentially changes one. This
chapter introduces solvers, defines interfaces for them, and presents a few. It has also evolved
into a repository for features called on by solvers: time limits, options, statistics, and so on.

Solvers operate at a high level and should not be cluttered with implementation details:
their source files will include khe_platform.h as usual, but should not include header file
khe_interns.h which gives access to KHE’s internals. Thus, the user of KHE is as well
equipped to write a solver as its author.

Many solvers are packaged with KHE. They are the subject of this part of the manual, all of
which is implemented using khe_platform.h but not khe_interns.h. To gain access to these
solvers, simply include header file khe_solvers.h, which lies in subdirectory src_solvers of
the KHE distribution. It includes header file khe_platform.h, so you can omit it.

8.1. Keeping track of running time

Before we can get to grips with solvers, we need to describe (in this section) KHE’s functions
for handling time (real time, that is), and (in the following section) how the detailed behaviour
of solvers can be controlled using options.

For the sake of compilations that do not have the Unix system functions that report time, file
khe_solvers.h has a KHE_USE_TIMING preprocessor flag. Its default value is 1; changing it to 0
will turn off all calls to Unix timing system functions. If that is done, the functions documented
in this section will still compile and run without error, but they will return placeholder values.

First up we have

char *KheDateToday(void);

This returns the current date as a string in static memory, or "?" if KHE_USE_TIMING is 0.

KHE offers timer objects, of type KHE_TIMER, which keep track of running time. A
timer object stores its start time, the time that it was most recently created or reset. It may
also store a time limit, in which case it can report whether that much time has passed since its
start time. Storing a time limit does not magically stop the program at the time limit; it is up to
solvers to check the time limit periodically and stop themselves when it is reached. Function
KheOptionsTimeLimitReached (Section 8.2) is the right way to check, as we’ll eventually see.

Timers represent a time as a floating point number of seconds. KHE_NO_TIME, a synonym
for -1.0, means ‘no time’. Function

float KheTimeFromString(char *str);

converts a string into a floating point time. If str is "-", it returns KHE_NO_TIME, otherwise
it returns the number of seconds represented by str, in the format secs, or mins:secs, or

190

8.1. Keeping track of running time 191

hrs:mins:secs. For example, 0.5 is 0.5 seconds, and 5:0 is 5 minutes. Conversely,

char *KheTimeShow(float secs, char buff[20]);

returns secs in string form, using buff for scratch memory. It writes in a more readable format
than the input format, for example "2.5 secs" or "5.0 mins".

To make a new timer object in arena a, call

KHE_TIMER KheTimerMake(char *tag, float limit_in_seconds, HA_ARENA a);

The tag parameter, which must be non-NULL, identifies the timer, and also appears in debug
output. The limit_in_seconds parameter is the time limit; it may be KHE_NO_TIME. The timer’s
start time is set to the time that KheTimerMake is called. Also,

KHE_TIMER KheTimerCopy(KHE_TIMER timer, HA_ARENA a);

returns a copy of timer in arena a. Nothing is reset.

To retrieve the attributes of a timer, call

char *KheTimerTag(KHE_TIMER timer);
float KheTimerTimeLimit(KHE_TIMER timer);

KheTimerTimeLimit may return KHE_NO_TIME. To change them, call

void KheTimerResetStartTime(KHE_TIMER timer);
void KheTimerResetTimeLimit(KHE_TIMER timer, float limit_in_seconds);

KheTimerResetStartTime resets timer’s start time to the time that it is called.
KheTimerResetTimeLimit resets timer’s time limit to limit_in_seconds, which may be
KHE_NO_TIME as usual.

These functions give access to elapsed time:

float KheTimerElapsedTime(KHE_TIMER timer);
float KheTimerRemainingTime(KHE_TIMER timer);
bool KheTimerTimeLimitReached(KHE_TIMER timer);

KheTimerElapsedTime returns the amount of time that has elapsed since the most recent call to
KheTimerMake or KheTimerResetStartTime for the timer.

KheTimerRemainingTime returns the amount of time remaining until the time limit is
reached: the time limit minus the elapsed time. However, there are two special cases. First, if
the time limit is passed it returns 0.0 rather than a negative result. And second, if timer has no
time limit the result is logically infinite, but what is actually returned is KHE_NO_TIME.

KheTimerTimeLimitReached returnstrue when the elapsed time is equal to or greater than
the time limit (always false when the time limit is KHE_NO_TIME). Finally,

void KheTimerDebug(KHE_TIMER timer, int verbosity, int indent, FILE *fp);

produces a debug print of timer onto fp with the given verbosity and indent.

Complex solvers may want to keep track of several time limits simultaneously, for example

192 Chapter 8. Introducing Solvers

a global limit plus a limit on the running time of one phase. For this there are objects of type
KHE_TIMER_SET, representing sets of timers. To create a new, empty timer set in arena a, call

KHE_TIMER_SET KheTimerSetMake(HA_ARENA a);

To make a copy of a timer set, call

KHE_TIMER_SET KheTimerSetCopy(KHE_TIMER_SET timer_set, HA_ARENA a);

To add and delete timers, call

void KheTimerSetAddTimer(KHE_TIMER_SET timer_set, KHE_TIMER timer);
void KheTimerSetDeleteTimer(KHE_TIMER_SET timer_set, KHE_TIMER timer);

KheTimerSetDeleteTimer aborts if timer is not present in timer_set. There is also

bool KheTimerSetContainsTimer(KHE_TIMER_SET timer_set, char *tag,
KHE_TIMER *timer);

which seaches for a timer with the given tag in timer_set. If there is one, it sets *timer to one
such timer and returns true, otherwise it returns false.

This time around there are only two functions for elapsed time:

float KheTimerSetRemainingTime(KHE_TIMER_SET timer_set);
bool KheTimerSetTimeLimitReached(KHE_TIMER_SET timer_set);

A KheTimerSetElapsedTime function would make no sense, because different timers may have
different start times. KheTimerSetRemainingTime returns the minimum of the remaining times
of the timer set’s timers that have time limits (never negative as usual), or KHE_NO_TIME if there
are no such timers. KheTimerSetTimeLimitReached returns true if at least one of the timers
of timer_set has reached its time limit. This is the logical moment to stop if several time limits
are present. Finally,

void KheTimerSetDebug(KHE_TIMER_SET timer_set, int verbosity,
int indent, FILE *fp)

produces a debug print of timer_set onto fp with the given verbosity and indent.

The usual way to keep track of running time is by calling the timer functions of options
objects (Section 8.2). These just delegate to a timer set object stored within the options object.

8.2. Options, running time, and time limits

Solvers have an options parameter of type KHE_OPTIONS, holding options that influence their
behaviour. This type is similar to a Unix environment: it is a symbol table with strings for its
keys and values. The KHE main program allows options to be passed in via the command line.

To create a new options object containing the empty set of options, call

KHE_OPTIONS KheOptionsMake(HA_ARENA a);

It is created in arena a, which it remembers and returns in

8.2. Options, running time, and time limits 193

HA_ARENA KheOptionsArena(KHE_OPTIONS options);

There is no operation to delete an options object; instead, delete its arena.

Options can be changed at any time, so when solving in parallel it is important for different
options objects to be passed to each solve. These can be created by copying using

KHE_OPTIONS KheOptionsCopy(KHE_OPTIONS options, HA_ARENA a);

The copy is stored in arena a. KheArchiveParallelSolve and KheInstanceParallelSolve

(Section 8.5) do this.

To set an option, and to retrieve the previously set value, the calls are

void KheOptionsSet(KHE_OPTIONS options, char *key, char *value);
char *KheOptionsGet(KHE_OPTIONS options, char *key, char *dft);

KheOptionsGet returns the value associated with key in the most recent call to KheOptionsSet

with that key. If there is no such call, it returns dft, reflecting the principle that solvers should
not rely on their options being set, but rather should be able to choose a suitable value when they
are absent—a value that may depend upon circumstances, not necessarily a fixed default value.

By convention, when an option represents a Boolean, its legal values are "false" and
"true". On the KHE command line, omitting the option omits it from the options object, which
usually means that its value is intended to be false, while including it, either in the full form
"option=true" or the short form "option", gives it value "true". Functions

void KheOptionsSetBool(KHE_OPTIONS options, char *key, bool value);
bool KheOptionsGetBool(KHE_OPTIONS options, char *key, bool dft);

make it easy to handle Boolean options. KheOptionsSetBool calls KheOptionsSet, with value
"true" or "false" depending on value. KheOptionsGetBool calls KheOptionsGet, returning
an actual Boolean rather than a string. It aborts if the value is not "false" or "true". If there
is no value it returns dft, which, as explained above, would usually be false.

Another common case is when an option represents an integer. Convenience functions

void KheOptionsSetInt(KHE_OPTIONS options, char *key, int value);
int KheOptionsGetInt(KHE_OPTIONS options, char *key, int dft);

make this case easy. KheOptionsSetInt calls KheOptionsSet, with value equal to value in
string form. KheOptionsGetInt calls KheOptionsGet, then returns the value converted to an
integer. It aborts if the value is not an integer. If there is no value it returns dft.

It is also possible to associate an arbitrary pointer with a key, by calling functions

void KheOptionsSetObject(KHE_OPTIONS options, char *key, void *value);
void *KheOptionsGetObject(KHE_OPTIONS options, char *key, void *dft);

These work in much the same way as the other functions.

When KheOptionsCopy is called, by KheArchiveParallelSolve for example, object
options are shared between the copies. Care is needed, since sharing mutable objects between
threads is not safe. The KHE solvers avoid problems here by not adding any object options until

194 Chapter 8. Introducing Solvers

after the copying has been done: only single-threaded solve functions add them.

Options can be roughly classified into two kinds. One kind is for end users, to allow them to
try out different possibilities. Options of this kind are not set by KHE’s solvers, only used. The
other kind is for KHE’s solvers, to allow them to vary the behaviour of other solvers that they
call. These are set by KHE’s solvers, so it is usually futile for the end user to set them.

Throughout this Guide, options are described along with the solvers they influence. As
an aid to managing option names, there is a convention for beginning option names with a
three-character prefix:

gs_ Options set or consulted by general solvers
ps_ Options set or consulted by parallel solvers
ss_ Options set or consulted by structural solvers
ts_ Options set or consulted by time solvers
rs_ Options set or consulted by resource solvers
es_ Options set or consulted by ejection chain solvers

Some options are set by one kind of solver and consulted by another; such options are hard to
classify. The sole option consulted by the KHE main program has no prefix. It is:

no_print

If this Boolean option appears in the first list of options on the khe -s or khe -r command
line, then solving will proceed as usual but the result archive will not be printed.

The default values of all Boolean options consulted by KHE code are always false; for the other
options, a default value is always given as part of the description of the option.

Options objects are passed around through solvers, making them a good, if not entirely
natural, place to keep other things which are not options, strictly speaking. In particular, each
options object contains a timer set (Section 8.1) which may be used to keep track of running time
and impose time limits. The relevant functions are

KHE_TIMER KheOptionsAddTimer(KHE_OPTIONS options, char *tag,
float limit_in_seconds);

void KheOptionsDeleteTimer(KHE_OPTIONS options, KHE_TIMER timer);
bool KheOptionsContainsTimer(KHE_OPTIONS options, char *tag,

KHE_TIMER *timer);
bool KheOptionsTimeLimitReached(KHE_OPTIONS options);
float KheOptionsRemainingTime(KHE_OPTIONS options);
void KheOptionsTimerSetDebug(KHE_OPTIONS options, int verbosity,
int indent, FILE *fp);

KheOptionsAddTimer creates a new timer with the given attributes and adds it to the timer set
within options. KheOptionsDeleteTimer deletes the given timer from that timer set; it must
be present. KheOptionsContainsTimer searches the timer set for a timer with the given tag.
KheOptionsRemainingTime returns the remaining time, and KheOptionsTimeLimitReached

returnstrue if any of the timer set’s time limits have been reached. KheOptionsTimerSetDebug
produces a debug print of the timer set of options onto fp with the given verbosity and indent.
These functions are simple delegations to the corresponding timer set functions.

8.2. Options, running time, and time limits 195

Finally, there is one stray function,

KHE_FRAME KheOptionsFrame(KHE_OPTIONS options, char *key, KHE_SOLN soln);

This returns a shared common frame for use by solvers, as described in Section 5.10.

8.3. Do-it-yourself solving

KHE offers many solvers, leaving several questions up for debate: are they all useful? which
order should they be called in? how much running time should be given to each? KHE makes it
easy to investigate these questions empirically, by means of options for do-it-yourself solving.

There are three of these options: gs for general solving, ts for time solving, and rs for
resource solving. The values of these three options all follow this little grammar:

<solver> ::= <item> { "," <item> }
<item> ::= [<int> ":"] <id> ["(" <solver> ")"]

Here { and } mean zero or more of what they enclose, [and] mean that what they enclose
is optional, <id> is an identifier from a fixed set of short names for solvers defined in this and
following chapters, <int> is an integer concerned with time limits, as explained below, and
values in quotes appear literally within the option.

Items separated by commas are run in the order they appear. Where an <id> is followed by
"(" <solver> ")", the solver specified by <id> is run, then <solver> is run, and then whatever
<id> (but not <solver>) did is undone. This is used for structural solvers: solvers that install
matchings, detach monitors, and so on. Their actions are undone after <solver> ends.

Do-it-yourself solving also allows you to specify how the available running time is to be
apportioned among the solvers, if you wish. This is done in two steps.

First, set an overall time limit. For example,

gs_time_limit="10:0"

sets an overall time limit of 10 minutes. There are also ts_time_limit and rs_time_limit
options which limit the time given to the time assignment and resource assignment phases
(options ts and rs), in conjunction with (not replacing) any gs_time_limit value. None of
these time limits is required; omitting one means ‘no time limit’.

The second step is to prefix an integer time weight to each item. Each item in a sequence
making up one solver gets an amount of time proportional to its weight. For example, the
hypothetical solver

"3: s1, 1: s2, 1: s3"

apportions 60% of the available time to s1, 20% to s2, and 20% to s3.

A time weight must be a non-negative integer. Omitted time weights default to 1. Time
weight 0 means that the item’s solver will not be called, even when there is no time limit.

Each solver is expected to return promptly when its share of available time is up. It can
and should find this out, without caring what its time limit is or who imposed it, by periodically

196 Chapter 8. Introducing Solvers

calling KheOptionsTimeLimitReached (Section 8.2). Do-it-yourself solving sets timers which
influence KheOptionsTimeLimitReached, but it cannot compel a solver to return on time. If a
solver returns late, the time available to following solvers is reduced, possibly to zero, in which
case they are not called. If a solver returns early, the time available to following solvers is
increased. Either way, the proportions given by the following time weights are preserved.

One function, KheDoItYourselfSolverParseAndRun, is exported by the source file that
implements do-it-yourself solving. It parses an option value and runs it. It is easy to use, but it is
not intended for end users. It is called by the three documented do-it-yourself solver functions.

8.4. General solving

We have defined a solver to be a function that finds a solution, or changes a solution, or poten-
tially changes one. A general solver solves an instance completely, unlike, say, a time solver
which only finds time assignments, or a resource solver which only finds resource assignments.
A general solver may split meets, build layer trees and task trees, assign times and resources, and
so on without restriction.

The recommended interface for a general solver, defined in khe.h, is

typedef KHE_SOLN (*KHE_GENERAL_SOLVER)(KHE_SOLN soln, KHE_OPTIONS options);

It will usually return the solution it is given, but it may return a different solution to the same
instance, in which case it should delete the solution it is given. Its second parameter, options,
is a set of options (Section 8.2) which may be used to vary the behaviour of the solver.

The main general solver distributed with KHE is

KHE_SOLN KheGeneralSolve2024(KHE_SOLN soln, KHE_OPTIONS options);

This single-threaded solver works by calling functions defined elsewhere in this guide. It returns
the solution it is given. The name includes the year it was completed and will change from time
to time. In publications and solution group names it is referred to as KHE20, KHE24, etc.

If memory runs out while KheGeneralSolve2024 is solving soln, by default it will abort.
This can be changed by calling HaArenaSetJmpEnvBegin (Appendix A.1.2) on soln’s arena set.
KheArchiveParallelSolve and KheInstanceParallelSolve (Section 8.5) do this.

KheGeneralSolve2024 assumes that soln is as returned by KheSolnMake, so it carries on
from there. To begin with, it checks options for the options listed below, and handles them
as described there. Then it calls a few functions that are basically unavoidable when starting
a solve: KheSolnSplitCycleMeet (Section 4.5.3), KheSolnMakeCompleteRepresentation
(Section 4.3), KheLayerTreeMake (Section 9.1), and KheTaskTreeMake (Section 11.3). It also
sets option es_split_moves, to true if the instance contains soft split assignments constraints,
and to false otherwise, for the convenience of other solvers which might be wondering whether
there is any point in splitting or merging meets.

KheGeneralSolve2024 then switches to do-it-yourself solving, using option gs (described
in detail below) as its guide. Then it calls a few functions that again are basically unavoidable
when ending a solve: KheSolnEnsureOfficialCost (Section 6.3), KheMergeMeets (Section
9.7.2), KheSolnTryTaskUnAssignments (Section 12.11), and KheSolnTryMeetUnAssignments

8.4. General solving 197

(Section 10.4). It also sets the running time field of the solution to the wall clock time since it
began. This is not necessarily what the caller wants, but it can easily be reset after the function
returns if not. Finally it returns the solution object it was given, highly modified.

By convention, options set or consulted directly by KheGeneralSolve2024 have names
beginning with gs. Here is the full list:

gs

A string option containing a do-it-yourself solver which determines most of what
KheGeneralSolve2024 does. See below for futher details.

gs_diversifier

An integer option which, when set, causes KheGeneralSolve2024 to set the diversifier of
the solution it is given to the given value. When omitted, the diversifier retains the value it
has when KheGeneralSolve2024 is called.

gs_time_limit

A string option defining a soft time limit for each call to KheGeneralSolve2024. The
format is as for function KheTimeFromString described above (Section 8.1): either "-",
meaning no time limit (the default value), or secs, or mins:secs, or hrs:mins:secs.
For example, 10 is 10 seconds, and 5:0 is 5 minutes. Enforcement is up to particular
solvers; this option merely calls KheOptionsAddTimer (Section 8.2).

gs_unassignment_off

A Boolean option which, when "true", instructs KheGeneralSolve2024 to omit the calls
to KheSolnTryTaskUnAssignments (Section 12.11) and KheSolnTryMeetUnAssignments

(Section 10.4) at the end.

gs_debug_monitor_id

This option is a string identifying a monitor. It has two or more fields, separated by slashes.
The first field is a constraint Id; the others identify a point of application of the constraint.
For example, "Constraint:5/Nurse3/27" is the monitor for constraint "Constraint:5"
at point of application Nurse3, offset 27. This option is used by KheGeneralSolve2024

to define option gs_debug_monitor, as explained next. The conversion from string to
monitor is carried out by function KheSolnRetrieveMonitor (Section 6.2).

gs_debug_monitor

This option is set at the start of KheGeneralSolve2024, when gs_debug_monitor_id is
present, to the monitor identified by gs_debug_monitor_id. Any solver can reference it
and use it as a hint to produce debug output relevant to that monitor. At present only ejectors
do this: they produce debug output focussed on answering the question ‘Why is the defect
represented by this monitor not removed by the ejection chain algorithm?’.

gs_debug_rtm

This option is a string whose format is resource:timegroup. When present it
causes KheGeneralSolve2024 to call KheResourceTimetableMonitorSetDebug (Sec-
tion 6.8.2) to set up debugging of the resource timetable monitor of resource

at the times of timegroup. This will abort if macro DEBUG_CELL in file
khe_resource_timetable_monitor.c does not have value 1.

198 Chapter 8. Introducing Solvers

KheGeneralSolve2024 is affected indirectly by many other options, via the solvers it calls.

Option gs is a do-it-yourself solver (Section 8.3) which determines most of what
KheGeneralSolve2024 does, as described earlier. The solvers it is able to call are these:

<item> Meaning

do(<solver>) Run <solver>. Useful for apportioning running time.

ts Call KheCombinedTimeAssign (Section 10.9).

rs Call KheCombinedResourceAssign (Section 12.12).

gdl(<solver>) Call KheDetachLowCostMonitors (Section 8.6.1), then run
<solver>, then undo what KheDetachLowCostMonitors did.

gts(<solver>) Install a separate matching, run <solver>, then uninstall it.
‘Separate’means that unmatched demand nodes can be accessed
but do not contribute to the cost of the solution (Section 8.8.1).

gti(<solver>) Install an integrated matching, run <solver>, then uninstall it.
‘Integrated’ means that unmatched demand nodes contribute to
the cost of the solution (Section 8.8.1).

gem(<solver>) Install evenness monitoring (Section 7.5), run <solver>, then
uninstall it.

gpu Call KhePropagateUnavailableTimes (Section 8.6.3).

Actually everything callable from any of the gs, ts, and rs options is callable from all of them.
But for sanity it seems best to partition solvers into general, time, and resource kinds.

It is wrong to call a solver from within itself. Also gti should not be called from within
gts, and gts should not be called from within gti. The result in such cases is unpredictable.

The default value of gs is

gs="gpu, ts, rs"

Calls on gts and gti appear within the default values of ts and rs. The default values do not call
gdl or gem, because the author has not found them to be useful. However they are available.

Function

void KheSolveDebug(KHE_SOLN soln, KHE_OPTIONS options, char *fmt, ...);

produces a one-line debug of the current state of a solve. For conciseness it always prints onto
stderr with indent 2. The print contains soln’s instance name, diversifier, cost, and running
time (if options contains a timer called "gs_time_limit"; if not, the running time is omitted),
and ends with whatever fprintf(stderr, fmt, ...) would produce, followed by a newline.

8.5. Parallel solving

Function

8.5. Parallel solving 199

void KheArchiveParallelSolve(KHE_ARCHIVE archive,
KHE_GENERAL_SOLVER solver, KHE_OPTIONS options,
KHE_SOLN_TYPE soln_type, HA_ARENA_SET as);

solves the instances of archive in parallel.

Each individual solve is carried out by solver, which is passed a fresh solution and a copy
of options. The fresh solution is as returned by KheSolnMake except that the diversifier is set,
as explained below.

If solutions are saved (see options ps_soln_group and ps_first_soln_group below),
parameter soln_type determines whether they are left as they are or reduced to placeholders
(Section 4.2.6). KHE_SOLN_WRITABLE_PLACEHOLDER is recommended because it recycles a large
amount of memory, while still permitting the solutions to be written. Only if further processing
of the solutions is intended would they be left as they are, by passing KHE_SOLN_ORDINARY.

Each call to KheSolnMake is passed an arena set. There is one arena set per thread, with as

(which must be non-NULL) serving one thread and freshly created arena sets serving the others.
At the end, any solutions needing to be kept are copied into arenas of as, and the other arena sets
are merged back into as, so no memory is lost. If further parallel solving of these solutions is
attempted, it will be necessary to copy them into arenas from distinct arena sets first.

Before each call to solver, KheArchiveParallelSolve calls HaArenaSetJmpEnvBegin

(Appendix A.1.2) on the arena set of the solution passed to solver. This ensures that if memory
runs out while solver is running, KheArchiveParallelSolve can take back control and handle
the problem. What it does is to take the solution object passed to solver (which contains a
valid value, the value just before solver ran out of memory) and use that as the final solution,
recording in its description metadata field that memory ran out.

There is also

KHE_SOLN KheInstanceParallelSolve(KHE_INSTANCE ins,
KHE_GENERAL_SOLVER solver, KHE_OPTIONS options,
KHE_SOLN_TYPE soln_type, HA_ARENA_SET as);

Behind the scenes it is the same, but it solves a single instance rather than an entire archive, and
it returns any one best solution rather than storing solutions in a solution group.

All objects created by these two functions, except for solutions that are kept, are deleted
before they return. This includes all copies of options, and all freshly created arena sets.

Options consulted by parallel solvers have names beginning with ps_. Here is the full list:

ps_threads

The number of threads used for solving. This includes the initial thread, the one that called
KheArchiveParallelSolve or KheInstanceParallelSolve, so the value must be at least
1. If ps_threads is absent, or present but KHE has been compiled with multi-threading
off, its value is taken to be 1.

ps_make

The number of solutions KheArchiveParallelSolve and KheInstanceParallelSolve

are supposed to make per instance. If ps_make is absent, its value is taken to be 1. The
number actually made will be less than this in two cases: when time runs out before all the

200 Chapter 8. Introducing Solvers

solves are started, and when an evidently optimal solution is found before all the solves are
started. A solution is evidently optimal when its cost equals the lower bound returned by
KheMonitorCost((KHE_MONITOR) soln). This value is usually 0.

ps_no_diversify

For each instance, the solutions passed to solver are identical except that the diversifier of
the first is 0, the diversifier of the second is 1, and so on. The solver may use these values
to create diverse solutions. Boolean option ps_no_diversify, when "true", gives the
same diversifier (namely 0) to all solutions. All solutions should then turn out the same,
except when there are time limits: they can cut off solving at slightly different moments.

ps_keep

The maximum number of solutions that KheArchiveParallelSolve keeps (stores in
ps_soln_group below) per instance. If ps_keep is absent, its value is taken to be 1.
The best ps_keep solutions are kept. KheInstanceParallelSolve does not consult this
option; it always keeps (in fact, returns) one solution, the best it found.

ps_soln_group

A string option, which, if present, causes a solution group to be added to archive holding
the best ps_keep solutions to each instance. The value of the string is the name of the
solution group. If there is already a solution group in archive with that name, the name is
extended so that it does not clash with existing solution group names.

If ps_soln_group is omitted, or its name is wrong, no solution group is made. When
solutions have been found but they are not in the result archive, this is the usual reason.
Alternatively, the solution group could have been added to the archive in memory, but the
archive has not been written out to a file.

ps_first_soln_group

Like ps_soln_group except that the solution group holds one solution for each instance,
the one whose solve was started first. This solution will thus be added to two solution groups
if ps_soln_group and ps_first_soln_group are both present and the solution is one of
the ps_keep best for its instance. (Actually, in that case the solution is copied, owing to the
possible need to store different running times in the two versions, as explained just below
under option ps_time_measure.) The author has at times used

ps_first_soln_group=KHE20 ps_soln_group=KHE20x8

to get the results of a single run and of a best of 8 run, while producing only eight (not nine)
solutions. If present, ps_first_soln_group will precede the other in the archive.

ps_time_measure

Measuring running time is awkward for parallel solving. This option says how to do it.

If ps_time_measure is "omit", the parallel solver does not set the solutions’running times.
They have the values given to them by solver. If solver is KheGeneralSolve2024, for
example, each holds the wall clock time from when KheGeneralSolve2024 was called to
when it returns. This is useful when all solutions are kept, for showing how running times
vary. It is misleading when ps_threads exceeds the number of processors.

If ps_time_measure is "shared", each instance monopolizes all threads while its solutions

8.5. Parallel solving 201

are being constructed. There is some idle time for some threads while they wait for others
to finish off the current instance, making the total wall clock time of the solve somewhat
larger than for "omit". Then the running times of all solutions for one instance are set to
the same value: the wall clock time from when the first solve of their instance began until
the last solve ended. This is useful when only the best, or the few best, solutions are being
kept, because it records in those solutions how long it really takes to find them, given that
all the solutions have to be found, albeit in parallel, before the few can be chosen.

If ps_time_measure is "auto" (the default value), then the behaviour is as for "omit"

when ps_keep >= ps_make, and as for "shared" when ps_keep < ps_make.

This option only affects the solutions stored in ps_soln_group. The solutions stored in
ps_first_soln_group have the running times given to them by solver.

ps_time_limit

A string option defining a soft time limit for solving each instance. The parallel solver
will stop initiating solves of an instance once the wall clock time since it initiated the first
solve of that instance exceeds this limit, even if the requested ps_make solves have not all
begun. The format is as for function KheTimeFromString described above (Section 8.1):
either "-", meaning no time limit (which is the default value), or secs, or mins:secs,
or hrs:mins:secs. For example, 10 is 10 seconds, and 5:0 is 5 minutes. What
ps_time_limit does is quite weak; in practice, setting gs_time_limit (Section 8.4) will
be more effective.

ps_avail_mem

An integer option that informs the solve how much memory is available, measured in bytes.
When present, the value is divided by ps_threads and the result passed as memory limit
to each thread’s arena set, ensuring that no thread can monopolize memory. Special value
sysinfo causes the value to be taken from the Linux sysinfo system function, provided
the USE_SYSINFO flag, defined at the top of khe_solvers.h, has value 1. Value sysinfo is
the default when available, otherwise the default behaviour is to install no memory limits.

Parallelism is obtained via functions pthread_create and pthread_join from the Posix
threads library. KHE has been carefully designed to ensure that operations carried out in parallel
on distinct solutions cannot interfere with each other. If you do not have Posix threads, a simple
workaround documented in KHE’s makefile will allow you to compile KHE without it. The only
difference is that KheArchiveParallelSolve and KheInstanceParallelSolve will find their
solutions sequentially rather than in parallel.

8.6. Monitor adjustments

In this section we present solvers which adjust monitors.

8.6.1. Detaching low-cost monitors

On difficult instances it might make sense to forget about monitors whose violation only costs
a small amount, and concentrate on monitors whose violations are more serious. This idea is
implemented by

202 Chapter 8. Introducing Solvers

void KheDetachLowCostMonitors(KHE_SOLN soln, KHE_COST min_weight,
KHE_GROUP_MONITOR low_cost_gm);

It detaches all monitors whose combined weight is less than min_weight. For example,

KheDetachLowCostMonitors(soln, KheCost(1, 0), NULL);

detaches all monitors for soft constraints.

If low_cost_gm is non-NULL, all monitors that were detached by this operation (all monitors
whose combined weight is less than min_weight that were not already detached) are made
children of low_cost_gm. One can then call

void KheAttachLowCostMonitors(KHE_GROUP_MONITOR low_cost_gm);

to reattach these monitors whenever desired. They will no longer be children of low_cost_gm
after this is done.

8.6.2. Changing the multipliers of cluster busy times monitors

Cluster busy times monitors have a multiplier, which is an integer that their true costs are
multiplied by (Section 6.7.4). To aid in the use of multipliers, there is an operation

void KheSetMonitorMultipliers(KHE_SOLN soln, char *str, int val);

which finds each cluster busy times constraint c whose name or Id contains str, and sets the
multiplier of every monitor derived from c to val. To return the monitors to their original state,
make the same call again, but with val set to 1.

8.6.3. Propagating unavailable times to resource monitors

A resource r’s unavailable times, Ur, is a set of times taken from certain monitors of non-zero
weight that apply to r: all times in avoid unavailable times monitors, all times in limit busy
times monitors with maximum limit 0, and all times in positive time groups of cluster busy
times constraints with maximum limit 0. In this section we do not care about the weight of these
monitors, provided it is non-zero. We simply combine all these times into Ur.

Suppose that r has a cluster busy times or limit active intervals monitor m with a time group
T such that T ⊆ Ur. Then, although T could be busy, it is not likely to be busy, and it is reasonable
to let m know this, by calling KheClusterBusyTimesMonitorSetNotBusyState (Section 6.7.4)
or KheLimitActiveIntervalsMonitorSetNotBusyState (Section 6.7.7).

KHE offers a solver that implements this idea:

bool KhePropagateUnavailableTimes(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);

For each resource r of type rt in soln’s instance (or for each resource of the instance if rt is
NULL), it calculates Ur, and, if Ur is non-empty, it checks every time group T in every cluster busy
times and limit active intervals monitor for r. For each T ⊆ Ur, it calls the function appropriate
to the monitor, with active set to false if T is positive, and to true if T is negative. It returns
true if it changed anything.

8.6. Monitor adjustments 203

There is no corresponding function to undo these settings. As cutoff indexes increase they
become irrelevant anyway.

8.6.4. Changing the minimum limits of cluster busy times monitors

Cluster busy times monitors have a KheClusterBusyTimesMonitorSetMinimum operation
(Section 6.7.4) which changes their minimum limits. This section presents a method of making
these changes which might be useful during solving.

This method calculates the demand for resources at particular times, which only really
makes sense after all times are assigned. So it could reasonably be classified as a resource
structural solver, but since it helps to adjust monitor limits it has been documented here.

Consider this example from nurse rostering. Suppose each resource has a maximum limit
on the number of weekends it can be busy. Since each resource can work at most 2 shifts per
weekend, summing up these maximum limits and multiplying by 2 gives the maximum number
of shifts that resources can work on weekends. We call this the supply of weekend shifts.

Now suppose we find the number of weekend shifts that the instance requires nurses for.
Call this the demand for weekend shifts.

If demand equals or exceeds supply, each resource needs to work its maximum number of
weekends,or else some demands will not be covered. In that case, the resources’maximum limits
are also minimum limits. The solver described here calculates supply and demand. It leaves it
to the user to call KheClusterBusyTimesMonitorSetMinimum, or whatever.

To create a solver for doing this work, call

KHE_CLUSTER_MINIMUM_SOLVER KheClusterMinimumSolverMake(HA_ARENA a);

It uses memory taken from arena a. There is no operation to delete the solver; it is deleted when
a is freed. To carry out one solve, call

void KheClusterMinimumSolverSolve(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_SOLN soln, KHE_OPTIONS options, KHE_RESOURCE_TYPE rt);

It uses options to find the common frame and event timetable monitor. It considers tasks and
resources of type rt only. It can be called any number of times to solve problems with unrelated
values of soln, options, and rt.

The attributes of the most recent solve may be found by calling

KHE_SOLN KheClusterMinimumSolverSoln(KHE_CLUSTER_MINIMUM_SOLVER cms);
KHE_OPTIONS KheClusterMinimumSolverOptions(
KHE_CLUSTER_MINIMUM_SOLVER cms);

KHE_RESOURCE_TYPE KheClusterMinimumSolverResourceType(
KHE_CLUSTER_MINIMUM_SOLVER cms);

These will all be NULL before the first solve. If a new solve is begun with the same attributes as
the previous solve, it will produce the same outcome if the solution has not changed.

The solve first finds the constraints suited to what it does: all cluster busy times constraints
with non-zero cost and a non-zero number of time groups which are pairwise disjoint (always

204 Chapter 8. Introducing Solvers

true in practice) and either all positive, in which case a non-trivial maximum limit must be
present, or all negative, in which case a non-trivial minimum limit must be present.

For each maximal non-empty subset of these constraints with the same time groups
(ignoring polarity) and the same ‘applies to’ time group, the solve makes one group, with its own
supply and demand, for each offset of the ‘applies to’ time group. To visit these groups, call

int KheClusterMinimumSolverGroupCount(KHE_CLUSTER_MINIMUM_SOLVER cms);
KHE_CLUSTER_MINIMUM_GROUP KheClusterMinimumSolverGroup(
KHE_CLUSTER_MINIMUM_SOLVER cms, int i);

There are several operations for querying a group. To visit its constraints, call

int KheClusterMinimumGroupConstraintCount(KHE_CLUSTER_MINIMUM_GROUP cmg);
KHE_CLUSTER_BUSY_TIMES_CONSTRAINT KheClusterMinimumGroupConstraint(

KHE_CLUSTER_MINIMUM_GROUP cmg, int i);

To retrieve its constraint offset, call

int KheClusterMinimumGroupConstraintOffset(KHE_CLUSTER_MINIMUM_GROUP cmg);

The time groups may be retrieved from its first constraint. To find its supply, call

int KheClusterMinimumGroupSupply(KHE_CLUSTER_MINIMUM_GROUP cmg);

This is calculated as described above for weekends; here is a fully general description.

For each constraint c of cmg we calculate a supply, as follows. Suppose first that the
constraint has non-trivial maximum limit max and that all its time groups are positive. Find, for
each time group tg of c, the number of frame time groups that tg intersects with (taking the
offset into account). This is the maximum number of times from tg that a resource can be busy
for. Take the max largest of these numbers and add them to get the supply of c.

If c has a non-trivial minimum limit min and all its time groups are negative, set max to
the number of time groups minus min and proceed as in the positive case. (For more on this
transformation, see the theorem at the end of Section 3.7.14.)

For each resource r of type rt we find a supply, as follows. If r is a point of application of
at least one constraint, its supply is the minimum of the supplies of its constraints. Otherwise,
its supply is the sum, over all time groups tg, of the number of frame time groups tg intersects
with. KheClusterMinimumGroupSupply is the sum, over all resources r, of the supply of r.

To find a group’s demand, call

int KheClusterMinimumGroupDemand(KHE_CLUSTER_MINIMUM_GROUP cmg);

This is the sum, over all times in the time groups of the group’s constraints (taking the offset into
account), of the number of tasks of type rt running at each time.

Finally,

void KheClusterMinimumGroupDebug(KHE_CLUSTER_MINIMUM_GROUP cmg,
int verbosity, int indent, FILE *fp);

8.6. Monitor adjustments 205

produces a debug print of cmg onto fp with the given verbosity and indent.

There is also an operation for finding the group of a given monitor:

bool KheClusterMinimumSolverMonitorGroup(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_CLUSTER_BUSY_TIMES_MONITOR cbtm, KHE_CLUSTER_MINIMUM_GROUP *cmg);

If cms has a group containing cbtm’s constraint and offset (there can be at most one), this function
returns true and sets *cmg to that group. Otherwise it returns false and sets *cmg to NULL.

It is up to the caller to take it from here. For example, after carrying out a solve, for each
cluster monitor m one could call KheClusterMinimumSolverMonitorGroup to see whether
it is subject to a group. Then if that group’s demand equals or exceeds its supply, a call to
KheClusterBusyTimesMonitorSetMinimum increasesm’sminimum limit. And so on. However,
the solver does offer some convenience functions to help with this:

void KheClusterMinimumSolverSetBegin(KHE_CLUSTER_MINIMUM_SOLVER cms);
void KheClusterMinimumSolverSet(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_CLUSTER_BUSY_TIMES_MONITOR m, int val);

void KheClusterMinimumSolverSetEnd(KHE_CLUSTER_MINIMUM_SOLVER cms,
bool undo);

KheClusterMinimumSolverSetBegin begins a run of changes to monitors’ minimum limits.
KheClusterMinimumSolverSet makes a call to KheClusterBusyTimesMonitorSetMinimum,
and remembers that the call was made. KheClusterMinimumSolverSetEnd ends the run of
changes, and if undo is true it also undoes them (in reverse order), returning the monitor limits
to their values when the run began. Use of these functions is optional.

For convenience there is also

void KheClusterMinimumSolverSetMulti(KHE_CLUSTER_MINIMUM_SOLVER cms,
KHE_RESOURCE_GROUP rg);

where rg’s resource type must equal cms’s. It calls KheClusterMinimumSolverMonitorGroup
for each cluster busy times monitor m for each resource of rg. If that returnstrue and the group’s
demand equals or exceeds its supply, then m’s minimum limit is changed to its maximum limit.
Neither KheClusterMinimumSolverSetBegin nor KheClusterMinimumSolverSetEnd are
called. The user must call KheClusterMinimumSolverSetBegin first, as usual, and is free to
call KheClusterMinimumSolverSetEnd immediately with undo set to false, or later with undo

set to true. It is probably not a good idea to not call KheClusterMinimumSolverSetEnd at all,
since that will leave cms unable to accept calls to KheClusterMinimumSolverSetBegin.

Finally, function

void KheClusterMinimumSolverDebug(KHE_CLUSTER_MINIMUM_SOLVER cms,
int verbosity, int indent, FILE *fp);

produces the usual debug print of cms onto fp with the given verbosity and indent.

Cluster minimum solvers deal only with cluster busy times constraints. Other constraints
might help to reduce supply further. For example, if a resource is unavailable for an entire day,
that will reduce supply by 1. At present these kinds of ideas are not taken into account.

206 Chapter 8. Introducing Solvers

8.7. Monitor grouping

To group two or more monitors means to make them children of a common parent group monitor.
There are several reasons why this might be done, the main ones being correlation grouping,
where monitors are grouped because they monitor the same thing, and focus grouping, where the
parent group monitor is a focus for some operation.

8.7.1. Introduction

We’ll start by making a few points about monitor grouping in general.

Solutions often contain structural constraints: nodes, restricted domains, fixed assignments,
and so on. A solver is expected to respect such constraints,unless its specification explicitly states
otherwise. They are part of the solution, and every solver should be able to deal with them. In
the same way, a solver may find that some monitors have been deliberately detached before it
starts running. For example, all monitors of soft constraints may have been detached, because
the caller wants the solver to concentrate on hard constraints. A solver should not change the
attachmentsof monitors to the solution,unless its specification explicitly statesotherwise. Its aim
is to minimize KheSolnCost(soln), however that is defined by soln’s monitor attachments.

There are two ways to exclude a monitor from contributing to the solution cost: by
detaching it using KheMonitorDetachFromSoln, and by ensuring that there is no path from it to
the solution group monitor. The first way is usually best, because it is the efficient way.

Some solvers need specific monitor groupings. The Kempe meet move (Section 10.2.2) is
an example: its precondition specifies that a particular group monitor must be present. This is
permissible, and as with all preconditions it imposes a requirement on the caller of the operation
to ensure that the precondition is satisfied when the operation is called. But such requirements
should not prohibit the presence of other group monitors. For example, the implementation
of the Kempe meet move operation begins with a tiny search for the group monitor it requires.
If other group monitors are present nearby, that is not a problem. If this example is followed,
multiple requirements for group monitors will not conflict.

There is a danger that group monitors will multiply, slowing down the solve and confusing
its logic. It is best if each function that creates a group monitor takes responsibility for deleting
it later, even if this means creating the same group monitors several times over. Timing tests
conducted by the author show that adding and deleting the group monitors used by the various
solvers in this guide takes an insignificant amount of time.

It is convenient to have standard values for the sub-tags and sub-tag labels of the group
monitors created by grouping functions, both correlation and focus. So KHE defines type

8.7. Monitor grouping 207

typedef enum {
KHE_SUBTAG_SPLIT_EVENTS, /* "SplitEventsGroupMonitor" */
KHE_SUBTAG_DISTRIBUTE_SPLIT_EVENTS, /* "DistributeSplitEventsGroupMonitor" */
KHE_SUBTAG_ASSIGN_TIME, /* "AssignTimeGroupMonitor" */
KHE_SUBTAG_PREFER_TIMES, /* "PreferTimesGroupMonitor" */
KHE_SUBTAG_SPREAD_EVENTS, /* "SpreadEventsGroupMonitor" */
KHE_SUBTAG_LINK_EVENTS, /* "LinkEventsGroupMonitor" */
KHE_SUBTAG_ORDER_EVENTS, /* "OrderEventsGroupMonitor" */
KHE_SUBTAG_ASSIGN_RESOURCE, /* "AssignResourceGroupMonitor" */
KHE_SUBTAG_PREFER_RESOURCES, /* "PreferResourcesGroupMonitor" */
KHE_SUBTAG_AVOID_SPLIT_ASSIGNMENTS, /* "AvoidSplitAssignmentsGroupMonitor" */
KHE_SUBTAG_AVOID_CLASHES, /* "AvoidClashesGroupMonitor" */
KHE_SUBTAG_AVOID_UNAVAILABLE_TIMES, /* "AvoidUnavailableTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_IDLE_TIMES, /* "LimitIdleTimesGroupMonitor" */
KHE_SUBTAG_CLUSTER_BUSY_TIMES, /* "ClusterBusyTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_BUSY_TIMES, /* "LimitBusyTimesGroupMonitor" */
KHE_SUBTAG_LIMIT_WORKLOAD, /* "LimitWorkloadGroupMonitor" */
KHE_SUBTAG_LIMIT_ACTIVE_INTERVALS, /* "LimitActiveIntervalsGroupMonitor" */
KHE_SUBTAG_LIMIT_RESOURCES, /* "LimitResourcesGroupMonitor" */
KHE_SUBTAG_ORDINARY_DEMAND, /* "OrdinaryDemandGroupMonitor" */
KHE_SUBTAG_WORKLOAD_DEMAND, /* "WorkloadDemandGroupMonitor" */
KHE_SUBTAG_KEMPE_DEMAND, /* "KempeDemandGroupMonitor" */
KHE_SUBTAG_NODE_TIME_REPAIR, /* "NodeTimeRepairGroupMonitor" */
KHE_SUBTAG_LAYER_TIME_REPAIR, /* "LayerTimeRepairGroupMonitor" */
KHE_SUBTAG_TASKING, /* "TaskingGroupMonitor" */
KHE_SUBTAG_ALL_DEMAND /* "AllDemandGroupMonitor" */

} KHE_SUBTAG_STANDARD_TYPE;

for the sub-tags, and the strings in comments, obtainable by calling

char *KheSubTagLabel(KHE_SUBTAG_STANDARD_TYPE sub_tag);

for the corresponding sub-tag labels. There is also

KHE_SUBTAG_STANDARD_TYPE KheSubTagFromTag(KHE_MONITOR_TAG tag);

which returns the appropriate sub-tag for a group monitor whose children have the given tag.

When adding and deleting groupings, these public functions are often helpful:

void KheMonitorAddSelfOrParent(KHE_MONITOR m, int sub_tag,
KHE_GROUP_MONITOR gm);

bool KheMonitorHasParent(KHE_MONITOR m, int sub_tag,
KHE_GROUP_MONITOR *res_gm);

Consult the documentation in source file khe_ss_grouping.c to find out what they do.

208 Chapter 8. Introducing Solvers

8.7.2. Focus groupings

Focus groupings are monitor groupings that are not correlation groupings (that is, they do not
group monitors which monitor the same thing). They group uncorrelated monitors for particular
purposes, such as efficient access to defects.

Focus groupings are often built on correlation groupings: if a monitor that a focus grouping
handles is a child of a correlation group monitor, the correlation group monitor goes into the
focus grouping, replacing the individual monitors which are its children.

A focus grouping makes one group monitor, called a focus group monitor, not many. The
focus group monitor is not made a child of the solution object, nor are its children unlinked from
any other parents that they may have. So it does not disturb existing calculations in any way;
rather, it adds a separate calculation on the side. It follows that a focus grouping can be removed
by passing the focus group monitor to KheGroupMonitorDelete.

Functions for creating focus groupings appear elsewhere in this guide. They include
KheKempeDemandGroupMonitorMake, needed by Kempe and ejecting meet moves (Section
10.2.2), and several functions used by ejection chain repair algorithms (Section 13.6.2).

8.7.3. Correlation groupings

Two monitors are correlated when they monitor the same thing, not necessarily formally, but in
reality. For example, if two events are joined by a link events constraint, and one is fixed to the
other, then two spread events monitors, one for each event, will be correlated.

A defect is a specific point of imperfection in a solution, represented concretely by a
monitor with non-zero cost. Correlated defects are a problem for some solvers, notably for
ejection chains. The cost of each defect separately might not be large enough to end the chain if
removed, causing an ejection chain to terminate in failure, whereas if it was clear that there was
really only one problem, the chain might be able to repair it and continue.

We solve this problem as follows. Suppose we know that monitors m1 and m2 are correlated.
We introduce a group monitor g, make m1 and m2 children of g, and ensure that when handling
defects we use g, not m1 and m2. For example, ejection chains would ensure that focus groupings
start_gm and continue_gm have g among their children, not m1 and m2. When m1 and m2 signal
a defect, the signal is received as the single defect g, not as the two defects m1 and m2.

A correlation grouping is a set of group monitors, each of which groups some correlated
monitors. Installing a correlation grouping should not disturb existing groupings, or change the
solution cost. So a function which creates a correlation grouping works as follows.

Monitors not relevant to the grouping remain untouched. Relevant monitors are partitioned
into sets Si of monitors that monitor the same thing, and so could be grouped; and then each Si is
partitioned again into sets Sij of monitors that have the same parents. For each Sij of cardinality
at least 2, create a group monitor g, make each s ∈ Sij a child of g, make g a child of each of the
common parents, and unlink each s from its other parents.

Group monitors that are part of a correlation grouping are given sub-tags that identify them
as such. These are used in two ways. Whenever a focus grouping wants to add a certain monitor,
it should check first whether that monitor has a parent which is part of a correlation grouping.
In that case it should add the parent, not the original monitor, taking care to not add the same

8.7. Monitor grouping 209

parent twice. (Notice that the same result is then produced whether the focus grouping is added
first or the correlation grouping is added first.) Second, a function which deletes a correlation
grouping can do so by visiting all monitors relevant to the grouping and deleting those parents
whose sub-tag identifies them as part of the correlation grouping. The deleting is done by calls
to KheGroupMonitorBypassAndDelete. Clearly, this will return the monitor structure to its state
before the grouping was added.

8.7.4. Functions for correlation grouping

One correlation grouping that does everything turns out to be best. These functions provide it:

void KheGroupCorrelatedMonitors(KHE_SOLN soln);
void KheUnGroupCorrelatedMonitors(KHE_SOLN soln);

KheGroupCorrelatedMonitors adds the grouping; KheUnGroupCorrelatedMonitors removes it.

The rest of this section explains KheGroupCorrelatedMonitors in detail. Here are three
points that apply throughout what follows. They won’t be mentioned again because it would get
too tedious. First, grouping does not care whether a monitor is attached or detached, and so it
groups both kinds. It is quite safe to attach and detach monitors while they are grouped. Second,
the groupings described below are the larger ones, denoted Si in Section 8.7.3. The further
division into the Sij based on equal parents is always done as well. Third, if an Sij contains just
one monitor, adding a group monitor would accomplish nothing useful and is not done.

Grouping correlated event monitors. KheGroupCorrelatedMonitors begins by partition-
ing the events of soln’s instance into classes, placing events into the same class when following
the fixed assignment paths out of their meets proves that their meets must run at the same times.
It then groups event monitors as follows.

Split events and distribute split events monitors. For each class, it groups together
the split events and distribute split events monitors that monitor the events of that class. It
gives sub-tag KHE_SUBTAG_SPLIT_EVENTS to any group monitors it creates. There is also a
KHE_SUBTAG_DISTRIBUTE_SPLIT_EVENTS subtag, but it is not used.

Assign time monitors. For each class, it groups the assign time monitors that monitor the
events of that class, giving sub-tag KHE_SUBTAG_ASSIGN_TIME to any group monitors.

Prefer times monitors. Within each class, it groups those prefer times monitors that
monitor events of that class whose constraints request the same set of times, giving sub-tag
KHE_SUBTAG_PREFER_TIMES to any group monitors.

Spread events monitors. For each spread events monitor, it finds the set of classes that hold
the events it monitors. It groups spread events monitors whose sets of classes are equal, giving
sub-tag KHE_SUBTAG_SPREAD_EVENTS to any group monitors. Strictly speaking, only monitors
whose constraints request the same time groups with the same limits should be grouped, but that
check is not currently being made.

Link events monitors. It does nothing with these monitors, because they are usually handled
structurally, by KheLayerTreeMake (Section 9.1).

Order events monitors. For each order events monitor, it finds the sequence of two classes
that hold the two events it monitors. (If these classes are the same, there is probably a conflict
between an order events monitor and a link events monitor. The order events monitor remains

210 Chapter 8. Introducing Solvers

ungrouped in that case.) It groups order events monitors whose sequences of classes are equal,
giving sub-tag KHE_SUBTAG_ORDER_EVENTS to any group monitors. Strictly speaking, only
monitors whose constraints request the same event separations should be grouped, but that check
is not currently being made.

Grouping correlated event resource monitors. Next, KheGroupCorrelatedMonitors

partitions the event resources of soln’s instance into classes, placing event resources into the
same class when following the fixed assignment paths out of their tasks proves that they must be
assigned the same resources. It then groups event resource monitors as follows.

Assign resource monitors. For each class, it groups the assign resource monitors of that
class’s event resources, giving sub-tag KHE_SUBTAG_ASSIGN_RESOURCE to any group monitors.

Prefer resources monitors. Within each class, it groups those prefer resources monitors that
monitor the event resources of that class whose constraints request the same set of resources,
giving sub-tag KHE_SUBTAG_PREFER_RESOURCES to any group monitors.

Avoid split assignments monitors. There seems to be no useful correlation grouping of these
monitors, so nothing is done with them. They may be handled structurally, in which case they
will have provably zero fixed cost and will be already detached.

Limit resources monitors. These occur in nurse rostering instances and in practice place
limits on the number of nurses (of a particular type, perhaps) assigned to a given shift. There
seems to be no useful correlation grouping of such monitors, so nothing is done with them.

Grouping correlated resource monitors. Students who follow the same curriculum have
the same timetable. So for each resource type rt whose resources are all preassigned, according
to KheResourceTypeDemandIsAllPreassigned(rt) (Section 3.5.1), the resource monitors of
rt’s resources are grouped by KheGroupCorrelatedMonitors as follows.

Avoid clashes monitors. It groups those avoid clashes monitors derived from the same
constraint whose resources attend the same events, giving sub-tag KHE_SUBTAG_AVOID_CLASHES

to any group monitors.

Avoid unavailable times monitors. It groups avoid unavailable times monitors derived from
the same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG_AVOID_UNAVAILABLE_TIMES.

Limit idle times monitors. It groups limit idle times monitors derived from the same con-
straint whose resources attend the same events, giving sub-tag KHE_SUBTAG_LIMIT_IDLE_TIMES

to any group monitors.

Cluster busy times monitors. It groups cluster busy times monitors derived from the
same constraint whose resources attend the same events, giving any group monitors sub-tag
KHE_SUBTAG_CLUSTER_BUSY_TIMES.

Limit busy times monitors. IKheGroupCorrelatedMonitorst groups limit busy times moni-
tors derived from the same constraint whose resources attend the same events, giving sub-tag
KHE_SUBTAG_LIMIT_BUSY_TIMES to any group monitors.

Limit workload monitors. It groups limit workload monitors derived from the same con-
straint whose resources attend the same events, giving sub-tag KHE_SUBTAG_LIMIT_WORKLOAD to
any group monitors.

Limit active intervals monitors. It groups limit active intervals monitors de-

8.7. Monitor grouping 211

rived from the same constraint whose resources attend the same events, giving sub-tag
KHE_SUBTAG_LIMIT_ACTIVE_INTERVALS to any group monitors.

Fixed assignments between meets are taken into account when deciding whether two
resources attend the same events. As far as resource monitors are concerned, it is when the
resource is busy that matters, not which meets it attends.

Grouping correlated demand monitors. KheGroupCorrelatedMonitors groups demand
monitors as follows. A limit monitor holding them can be created separately (Section 8.7.2).

Ordinary demand monitors. For each set of meets such that the fixed assignment paths out
of those meets end at the same meet, it groups the demand monitors of those meets’tasks, giving
sub-tag KHE_SUBTAG_ORDINARY_DEMAND to any group monitors. The reasoning is that the only
practical way to repair an ordinary demand defect is to change the assignment of its meet (or
some other clashing meet), which will affect all the demand monitors grouped with it here.

Actually the situation is a little more nuanced. What has just been said is correct for time
assignment, when moves of unfixed meets are the only repairs available. During resource
assignment it is usual to use the global tixel matching only as a limit monitor (or not at all),
making other groupings of demand monitors irrelevant. This leaves undetermined the grouping
to use if repairs that combine changes to both time and resource assignments are ever tried.

Workload demand monitors. These remain ungrouped. Workload demand defects appear
only indirectly, as competitors of ordinary demand defects.

8.8. Matchings

The KHE platform implements bipartite matching (Chapter 7), but leaves the details of setting
it up in practice to the user. This section fills in those details.

8.8.1. Introduction

Creating and deleting the matching is a simple as calling

void KheMatchingBegin(KHE_SOLN soln, bool integrated);
void KheMatchingEnd(KHE_SOLN soln);

KheMatchingBegin calls KheSolnMatchingBegin, then adds suitable ordinary and workload
demand nodes (Section 8.8.2), as well as detaching or otherwise adjusting some monitors to
avoid double counting (Section 8.8.3). KheMatchingEnd undoes what KheMatchingBegin does,
including calling KheSolnMatchingEnd.

Setting integrated to false produces a separate matching, which means that the matching
is kept separate from the regular calculation of solution cost. This is achieved by attaching all
demand monitors (so that they are included in the matching graph and kept up to date as the
solution changes) but not making them descendants of the solution (so that they don’t contribute
to its cost). Do-it-yourself solvers (Section 8.3) have item gts for this. Solvers can still take the
matching into account despite the separateness, by calling KheSolnMatchingDefectCount and
KheSolnMatchingDefect (Section 7.4), which return the unmatched demand nodes.

An example of separate matching is the resource assignment invariant, which states that
as resource assignment proceeds the number of unmatched demand nodes must not increase.

212 Chapter 8. Introducing Solvers

The details don’t concern us here (see Section 12.2); our point is that this approach allows
the matching to influence the solve while keeping it separate from the regular calculation of
solution cost.

Setting parameter integrated to true produces an integrated matching, which means that
the cost of the matching is included in the cost of the solution. This is achieved by attaching all
demand monitors as for separate matching, but also making them descendants of the solution.
Each unmatched demand node contributes a cost to the solution cost; there is no need to call
KheSolnMatchingDefectCount. Do-it-yourself solvers (Section 8.3) have item gti for this.

The main advantage of integrated matching is that it allows any solver to benefit from
the matching without accessing it explicitly. But there are problems. One is that the weight
of each demand node, considered as a monitor, suddenly matters. Finding a suitable weight
can be awkward, especially considering that every demand node has to have the same weight.
KheMatchingBegin chooses KheCost(1, 0) (that is, hard cost 1) as the weight, although the
implementation has been written to allow this value to be passed as a parameter if that turns out
to be needed in the future. We will refer to this important weight as W from here on.

The other main problem is double counting, where the matching reports some defect and
some other monitor reports it too, effectively doubling its weight, making it more important than
it really is. This may not matter much when W is a hard weight, but anyway KheMatchingBegin

tries to eliminate double counting, as explained in Section 8.8.3.

Double counting resembles correlated monitors (Section 8.7.3), in involving two monitors
that monitor the same thing. But there is a vital difference. Two correlated monitors are part of
the official cost of the solution; both have a right to be there. An integrated matching is not part
of the official cost, so the aim changes from merely recognizing the correlation to minimizing
the distance from the official cost while retaining the advantages of detecting matching defects.

8.8.2. Demand nodes

Apart from calling KheSolnMatchingBegin, the main task of KheMatchingBegin is to create an
appropriate set of demand nodes. This section explains how this is done.

KheMatchingBegin ignores detached monitors and monitors of weight less than W: it
behaves as though they are not there at all. This is important for integrated matching, which
replaces some of the monitors it does not ignore with demand monitors of weight W. It is less
important for separate matching, but even there we do not want to place some minor monitor
with soft weight 1 on the same footing as an important monitor with weight W.

An ordinary demand node represents a demand for one resource at one offset of one task.
A first thought is that KheMatchingBegin should create one of these for each offset of each task.
So it does, but with three exceptions. The first two never occur in practice; the third does.

First, if some resource does not have an attached avoid clashes monitor with weight at least
W, then part of the rationale for the matching is absent, the part that says that each supply node
may match with at most one demand node. So KheMatchingBegin omits demand nodes for tasks
of the same resource type as any resource that does not have such an avoid clashes monitor.

Second, if some meet does not have either a preassigned time or an attached assign time
monitor with weight at least W, then that meet does not have to be assigned a time at all, and by
omitting to assign a time one can avoid all clashes involving that meet. So KheMatchingBegin

8.8. Matchings 213

omits all demand nodes for tasks from meets of this kind.

Third, if some task does not have either a preassigned resource or an attached assign
resource monitor of weight at least W, it does not have to be assigned a resource at all, and so
KheMatchingBegin omits its demand nodes. This case arises in nurse rostering, when a shift
needs at least a and at most b nurses. The last b − a tasks have no assign resource monitors. Or
if assignment is desirable but not essential, there may be attached assign resource monitors of
weight less than W, which are ignored as usual.

In addition to ordinary demand nodes, KheMatchingBegin adds workload demand nodes,
used to take account of avoid unavailable times monitors, limit busy times monitors, and limit
workload monitors, collectively called workload demand monitors here. Again, only attached
monitors of weight W or more are noticed.

For example, suppose that the cycle has 40 times, and teacher Smith has a workload limit
of 30 times and is unavailable at time Mon1. Then ten workload demand nodes are wanted, one
demanding supply tixel (Smith,Mon1), and the other nine demanding Smith at one unconstrained
time. In this way, 10 of Smith’s 40 supply nodes have to match with workload demand nodes,
leaving 30 available for matching with ordinary demand nodes; and one of the workload demand
nodes also has to match with Mon1, leaving Smith unavailable for regular work at that time.

It is important to include workload demand nodes, since otherwise the problems reported by
the matching will be unrealistically few. They are the same for all matching types, and the same
for separate and integrated matching, although when setting up for integrated matching we also
have to avoid double counting, as discussed below (Section 8.8.3).

For the purposes of matchings only, a workload requirement is a requirement imposed on
a resource saying that it should be occupied attending meets for at most a given number of the
times of some time group. We can represent a workload requirement concisely by the pair n T,
where the resource is implicit, n is the number of times, and T is the time group. For example,
if r is unavailable at time Mon1, this would give rise to workload requirement 0 {Mon1}.

To make the workload demand nodes for a given resource r,KheMatchingBegin first makes
a set of workload requirements derived from the avoid unavailable times, limit busy times,
and limit workload monitors of r (attached and of weight at least W, as usual). It places these
requirements into a tree structure that we will present shortly, and then generates r’s workload
demand nodes in the course of a postorder traversal of this tree.

If m is an avoid unavailable times monitor, or a limit busy times monitor whose Maximum

attribute is 0, then for each time t in m’s constraint’s domain, KheMatchingBegin generates
workload requirement 0 {t} . If m is a limit busy times monitor with Maximum greater than 0, then
for each time group T in m’s constraint, KheMatchingBegin generates workload requirement
n T, where n is Maximum. The Minimum attribute is ignored.

A limit workload monitor is like a limit busy times monitor whose time group contains all
the times of the cycle, so one workload requirement is generated, with the entire cycle as time
group. The number of this requirement requires careful calculation, involving the workloads of
all events. The remainder of this section explains this calculation.

Let k be the integer eventually given to the workload requirement. Initialize k to the
Maximum attribute of the limit workload constraint. For each event resource er, let d(er) be its
duration and w(er) be its workload. The basic idea is that if r is assigned to er, then d(er) − w(er)

214 Chapter 8. Introducing Solvers

should be added to k. For example, a resource with workload limit 30 that is assigned to an event
resource with duration 3 and workload 2 needs a workload requirement of 31, not 30. And if r
is assigned to an event with duration 6 but workload 12, then k needs to be decreased by 6.

In some cases, preassignments or domain restrictions make it certain that r will be assigned
to some event, and in those cases the adjustment can be done safely in advance. For example,
if every staff member attends a weekly meeting with duration 1 and workload 0, then their
workload requirements can all be increased by 1 to compensate. Similarly, if r will definitely
not be assigned to some event, then the event’s duration and workload have no effect on r.

The residual problem cases are those event resources er whose workload and duration
differ, which r may be assigned to but not necessarily. In these cases, an inexact model is used
which preserves the guarantee that the number of unmatched nodes is a lower bound on the final
number, but the number is weaker (that is, smaller) than the ideal.

If w(er) > d(er), then er is ignored. This case can only make the problem harder, so
ignoring it means that the number returned will be smaller than the ideal. If w(er) < d(er), then
d(er) − w(er) is added to k, just as though r was assigned to er. If r is ultimately assigned to
er, then this will be exact; if it is not, then again it will weaken the bound, by overestimating r’s
available workload.

These tests are actually applied to clusters of events known to be running simultaneously,
because of required link events constraints or preassignments and other time domain restrictions.
Each resource can be assigned to at most one of the event resources of the events of a cluster, so
only one of the events, the one whose modelling is least exact, needs to be taken account of.

Once a complete set of workload requirements for resource r has been assembled, the next
step is to convert these requirements into workload demand nodes. The following explanation
of how this is done is adapted from [9].

When converting workload requirements into workload demand nodes, the relationships
between the requirements’time groups affect the outcome. In general, an exact conversion seems
to be possible only when these time groups satisfy the subset tree condition: each pair of time
groups is either disjoint, or else one is a subset of the other.

For example, suppose the cycle has five days of eight times each, and resource r is required
to be occupied for at most thirty times altogether and at most seven on any one day, and to be
unavailable at times Fri6, Fri7, and Fri8. These requirements form a tree (in general, a forest):

30 Times

7 Mon 7 Tue 7 Wed 7 Thu 7 Fri

0 Fri6 0 Fri7 0 Fri8

A postorder traversal of this tree may be used to deduce that workload demand nodes for r are
needed for one Mon time, one Tue time, one Wed time, one Thu time, one Fri6 time, one Fri7
time, one Fri8 time, and three arbitrary times. In general, each tree node contributes a number of
demand nodes equal to the size of its time group minus its number minus the number of demand
nodes contributed by its proper descendants, or none if this number is negative.

8.8. Matchings 215

The tree is built by inserting the workload requirements in decreasing order of the weight
of the monitors that led to them, ignoring requirements that fail the subset tree condition. For
example, a failure would occur if, in addition to the above requirements, there were limits on the
number of morning and afternoon times. The constraints which give rise to such requirements
are still monitored by other monitors, but their omission from the matching causes it to report
fewer unmatchable nodes than the ideal. Fortunately, such overlapping requirementsdo not seem
to occur in practice, at least, not as hard constraints.

8.8.3. Avoiding double counting

When an integrated matching is installed, several cases of double counting arise which can bias a
solver. Since it is important to preserve the matching, so that problems such as six simultaneous
Science classes and only five Science laboratories are detected, KheMatchingBegin solves this
problem by detaching the non-demand monitors that double count with the demand monitors, as
far as possible. Here now are the details.

The work described here is only done for integrated matchings. As usual, only attached
monitors of weight at least W are taken into account. They double count with demand monitors
of weight W, so detaching them produces solution costs which are roughly equal to the regular
costs. When W is Khe(1, 0) (the value used at present) and all monitors with hard costs have
cost Khe(1, 0) (which is usual, many instances choosing to not distinguish different degrees of
hardness), the resulting costs are exactly equal to the regular costs, except that they include the
advance warnings that matchings give—a very desirable state of affairs.

Attached avoid clashes monitors of weight at least W. We simply detach these monitors,
since each clash also appears as one unmatched demand node.

Attached avoid unavailable times monitors of weight at least W. Again we detach these
monitors, since each violation appears as one unmatched demand node.

Attached limit busy times monitors that give rise to workload demand monitors. As far as
upper limits are concerned we could again detach, but we have to consider lower limits as well.

The obvious solution is to break each limit busy times monitor into two, an underload
monitor and an overload monitor, and detach the overload monitor but not the underload monitor.
KHE expresses this idea in a different way, chosen because it also solves the problem presented
by limit workload monitors, to be discussed in their turn.

Limit busy times monitors have two attributes, Minimum and Maximum, such that less than
Minimum busy times is an underload, and more than Maximum is an overload. Add a third attribute,
Ceiling, such that Ceiling >= Maximum, and specify that, with higher priority than the usual
rule, when the number of busy times exceeds Ceiling the deviation is 0.

Function KheLimitBusyTimesMonitorSetCeiling (Section 6.7.5) may be called to set the
ceiling. Setting it to INT_MAX (the default value) produces the usual rule. Setting it to Maximum

is equivalent to detaching overload monitoring.

Attached limit workload monitors that give rise to workload demand monitors. Limit
workload monitors are similar to limit busy times monitors whose set of times is the entire cycle.
However, the demand monitors derived from a limit workload monitor do not necessarily model
even the upper limit exactly. This problem can be solved as follows.

Consider a resource with a limit workload monitor and some workload demand monitors

216 Chapter 8. Introducing Solvers

derived from it, and suppose that all of these monitors are attached. As the resource’s workload
increases, it crosses from a ‘white region’ of zero cost into a ‘grey region’ where the limit
workload monitor has non-zero cost but the workload demand monitors do not, and then into a
‘black region’ where both the limit workload monitor and the workload demand monitors have
non-zero cost. This black region is the problem.

The problem is solved by adding a Ceiling attribute to limit workload monitors, as for
limit busy times monitors. Function KheLimitWorkloadMonitorSetCeiling (Section 6.7.6)
sets the ceiling. As before, the default value is INT_MAX. The appropriate alternative value is not
Maximum, but rather a value which marks the start of the black region, so that the limit workload
monitor’s cost drops to zero as the workload crosses from the grey region to the black region. In
this way, all workload overloads are reported, but by only one kind of monitor at any one time.

There is one anomaly in this arrangement: a repair that reduces workload from the black
region to the grey region does not always decrease cost. This is a pity but it is very much a
second-order problem, given that the costs involved are all hard costs, so that in practice repairs
are wanted that reduce them to zero. What actually happens is that one repair puts a resource
above the white zone, and this stimulates a choice of next repair which returns it to the white
zone. Repairs which move between the grey and black zones are possible but are not likely, so
it does not matter much if their handling is imperfect.

The appropriate value for Ceiling is the number of times in the cycle minus the total
number of workload demand monitors for the resource in question, regardless of their origin.
When the resource’s workload exceeds this value, there will be at least one demand defect, and
it is time for the limit workload monitor to bow out.

8.9. Generating files of tables and graphs

KHE offers a module for generating files containing tables and graphs. Any number of files may
be generated simultaneously, even in parallel, although an individual file cannot be generated
in parallel. One file may contain any number of tables and graphs, and these can be generated
simultaneously, although not in parallel.

To begin and end a file, call

KHE_FILE KheFileBegin(char *file_name, KHE_FILE_FORMAT fmt);
void KheFileEnd(KHE_FILE kf);

This writes a file called file_name in sub-directory stats (which the user must have created
previously) of the current directory. The file is opened by KheFileBegin and closed by
KheFileEnd. KheFileEnd also reclaims all memory (taken from a specially created arena) used
by all tables and graphs of that file. Three file formats are supported:

typedef enum {
KHE_FILE_PLAIN,
KHE_FILE_LOUT,
KHE_FILE_LOUT_STANDALONE,
KHE_FILE_LATEX

} KHE_FILE_FORMAT;

8.9. Generating files of tables and graphs 217

These represent plain text, Lout, standalone Lout (i.e. ready for converstion to Encapsulated
PostScript) and LaTeX. Only the two Lout values support graphs. To generate the actual tables
and graphs, see the following subsections.

8.9.1. Tables

To generate tables, make matching pairs of calls to the following functions in between the calls
to KheFileBegin and KheFileEnd:

KHE_TABLE KheTableBegin(KHE_FILE kf, int col_width, char *corner,
bool with_average_row, bool with_total_row, bool highlight_cost_minima,
bool highlight_time_minima, bool highlight_int_minima);

void KheTableEnd(KHE_TABLE kt);

The table is begun by KheTableBegin, and finished, including being written out to file kf, by
KheTableEnd. Where the file format permits, a label will be associated with the table: the file
name for the first table, the file name followed by an underscore and 2 for the second table, and
so on. The value of the table is created in between these two calls, by calling functions to be
presented shortly. Because the entire table is saved in memory until KheTableEnd is called, these
other calls may occur in any order. In particular it is equally acceptable to generate a table row
by row or column by column.

Parameter col_width determines the width in characters of each column when the format
is KHE_FILE_PLAIN; it is ignored by the other formats. Parameter corner is printed in the top
left-hand corner of the table. It must be non-NULL, but it can be the empty string.

Each entry in the table has a type, which may be either string, cost, time (really just an
arbitrary float), or int. If with_average_row is true, the table ends with an extra row. Each
entry in this row contains the average of the non-blank, non-string entries above it, if they all have
the same type; otherwise the entry is blank. If with_total_row is true, the effect is the same
except that totals are printed, not averages.

If highlight_cost_minima is true, the minimum values of type cost in each row appear
in bold font, or marked by an asterisk in plain text. Parameters highlight_time_minima and
highlight_int_minima are the same except that they highlight values of type time or int.

A caption can be added by calling

void KheTableCaptionAdd(KHE_TABLE kt, char *fmt, ...);

at any time between KheTableBegin and KheTableEnd, as often as desired. This does what
printf would do with the arguments after file_name. The results of all calls are saved and
printed as a caption by KheTableEnd.

In any given table, each row except the first (header) row must be declared, by calling

void KheTableRowAdd(KHE_TABLE kt, char *row_label, bool rule_below);

The rows appear in the order of the calls. Parameter row_label both identifies the row and
appears in the first (header) column of the table. If rule_below is true, the row will have a rule
below it. The header row always has a rule below it, and there is always a rule below the last row
(not counting any average or total row).

218 Chapter 8. Introducing Solvers

In the same way, non-header columns are declared, in order, by calls to

void KheTableColAdd(KHE_TABLE kt, char *col_label, bool rule_after);

where col_label both identifies the column and appears in the first (header) row of the table,
and setting rule_after to true causes a rule to be printed after the column.

To add an entry to the table, call any one of these functions:

void KheTableEntryAddString(KHE_TABLE kt, char *row_label,
char *col_label, char *str);

void KheTableEntryAddCost(KHE_TABLE kt, char *row_label,
char *col_label, KHE_COST cost);

void KheTableEntryAddTime(KHE_TABLE kt, char *row_label,
char *col_label, float time);

void KheTableEntryAddInt(KHE_TABLE kt, char *row_label,
char *col_label, int val);

These add an entry to kt at row row_label and column col_label, aborting if these are
unknown or an entry has already been added there. If no entry is ever added at some position,
the table will be blank there. The entry’s format depends on the call. For example,

KheTableEntryAddCost(file_name, row_label, col_label, KheSolnCost(soln));

adds a solution cost to the table which will be formatted in the standard way.

Strings passed to these functions are copied where required, so mutating strings are not a
concern. There is no locking, so calls which create and add to tables should be single-threaded.

8.9.2. Graphs

To generate graphs in Lout format, make matching pairs of calls to the following functions in
between the calls to KheFileBegin and KheFileEnd:

KHE_GRAPH KheGraphBegin(KHE_FILE kf);
void KheGraphEnd(KHE_GRAPH kg);

To set options which control the overall appearance of the graph, call

void KheGraphSetWidth(KHE_GRAPH kg, float width);
void KheGraphSetHeight(KHE_GRAPH kg, float height);
void KheGraphSetXMax(KHE_GRAPH kg, float xmax);
void KheGraphSetYMax(KHE_GRAPH kg, float ymax);
void KheGraphSetAboveCaption(KHE_GRAPH kg, char *val);
void KheGraphSetBelowCaption(KHE_GRAPH kg, char *val);
void KheGraphSetLeftCaptionAndGap(KHE_GRAPH kg, char *val, char *gap);
void KheGraphSetRightCaptionAndGap(KHE_GRAPH kg, char *val, char *gap);

These determine the width and height of the graph (in centimetres), the maximum x and y values,
and the small captions above, below, to the left of, and to the right of the graph. If calls to these
functions are not made, the options remain unspecified, causing Lout’s graph package to substi-

8.9. Generating files of tables and graphs 219

tute default values for them in its usual way. The caption values must be valid Lout source.

KheGraphSetLeftCaptionAndGap and KheGraphSetRightCaptionAndGap have the extra
gap parameter. This controls the gap between the caption and the graph. For example,

KheGraphSetLeftCaptionAndGap(kg, "Caption", "0c");

produces the minimum gap (0 cm), but a larger value is usually needed, to avoid unsightly
overstriking. The value of gap can also be NULL, in which case Lout’s default value is used.

There is also

void KheGraphSetKeyLabel(KHE_GRAPH kg, char *val);

which sets the ‘key label’ of the graph. This is the first line of the graph’s key, described below.
Omitting to call this function is fine; it just means that this first line is omitted.

Any number of datasets may be displayed on one graph; each dataset is a sequence of
points. Often there is just one dataset. To create a dataset, call

KHE_DATASET KheDataSetAdd(KHE_GRAPH kg, KHE_DATASET_POINTS_TYPE points_type,
KHE_DATATSET_PAIRS_TYPE pairs_type, char *label);

where points_type has type

typedef enum {
KHE_DATASET_POINTS_NONE,
KHE_DATASET_POINTS_CROSS,
KHE_DATASET_POINTS_SQUARE,
KHE_DATASET_POINTS_DIAMOND,
KHE_DATASET_POINTS_CIRCLE,
KHE_DATASET_POINTS_TRIANGLE,
KHE_DATASET_POINTS_PLUS,
KHE_DATASET_POINTS_FILLED_SQUARE,
KHE_DATASET_POINTS_FILLED_DIAMOND,
KHE_DATASET_POINTS_FILLED_CIRCLE,
KHE_DATASET_POINTS_FILLED_TRIANGLE

} KHE_DATASET_POINTS_TYPE;

and says what to print at each data point (nothing, or a cross, etc.), and pairs_type has type

220 Chapter 8. Introducing Solvers

typedef enum {
KHE_DATATSET_PAIRS_NONE,
KHE_DATATSET_PAIRS_SOLID,
KHE_DATATSET_PAIRS_DASHED,
KHE_DATATSET_PAIRS_DOTTED,
KHE_DATATSET_PAIRS_DOT_DASHED,
KHE_DATATSET_PAIRS_DOT_DOT_DASHED,
KHE_DATATSET_PAIRS_DOT_DOT_DOT_DASHED,
KHE_DATASET_PAIRS_YHISTO,
KHE_DATASET_PAIRS_SURFACE_YHISTO,
KHE_DATASET_PAIRS_FILLED_YHISTO,
KHE_DATASET_PAIRS_XHISTO,
KHE_DATASET_PAIRS_SURFACE_XHISTO,
KHE_DATASET_PAIRS_FILLED_XHISTO

} KHE_DATASET_PAIRS_TYPE;

and says what connects each successive pair of points (nothing, a solid line, a dashed line, a
histogram, etc.). These are converted into values of the points and pairs options of the @Data
symbol of Lout’s Graph package. The Lout User’s Guide has examples of what is produced.

When the label parameter of KheDataSetAdd is non-NULL, one line is added to the key of
the graph, a small area in the top left-hand corner which indicates what each data set represents.
The line shows two points and what they are separated by, followed by the label. The first line
of the key may be set separately, by calling KheGraphSetKeyLabel as described above.

Function

void KhePointAdd(KHE_DATASET kd, float x, float y);

adds a point to a dataset. The points are generated in the order received, so in practice, successive
calls to KhePointAdd on the same dataset should have increasing x values.

Several datasets can be built simultaneously. This can be useful for recording several
quantities as a solver proceeds.

8.10. Exponential backoff

One strategy for making solvers faster is to do a lot of what is useful, and not much of what isn’t
useful. When something is always useful, it is best to simply do it. When something might be
useful but wastes a lot of time when it isn’t, it is best to try it, observe whether it is useful, and
do more or less of it accordingly. Solvers that do this are said to be adaptive.

For example, suppose there is a choice of two or more methods of doing something. In
that case, information can be kept about how successful each method has been recently, and the
choice can be weighted towards recently successful methods.

However, this section is concerned with a different situation, involving just one method.
Suppose there is a sequence of opportunities to apply this method, and that as each opportunity
arrives, the solver can choose to apply the method or not. Typically, the method will be a repair
method: repair is optional. If the solver accepts the opportunity, the method is then run and either
succeeds (does something useful) or fails (does nothing useful). Otherwise, the solver declines

8.10. Exponential backoff 221

the opportunity. So opportunities are classified as successful, failed, or declined.

Exponential backoff from computer network implementation is a form of adaptation suited
to this situation. It works as follows. If the solver applies the method and it is successful, then it
forgets all history and will accept the next opportunity. But if the solver applies the method and
it fails, then it remembers the total number of failed opportunities F (including this one) since
the last successful opportunity, and does not accept another opportunity until after it has declined

F−12 opportunities. Declined opportunities do not count as failures.

Here are some examples. Each character is one opportunity;S is a successful opportunity (or
the start of the sequence), F is a failed one, and . is a declined one. Each successful opportunity
makes a fresh start, so the examples all begin with S and contain only F and . thereafter:

S
SF.
SF.F..
SF.F..F....
SF.F..F....F........

and so on. Every complete trace of exponential backoff can be broken at each S into sub-traces
like these. Methods that always succeed are tried at every opportunity. Methods that always fail
are tried only about log2n times, where n is the total number of opportunities.

Other rules for which opportunities to accept could be used, rather than waiting until F−12
opportunities have been declined. For example, every opportunity could be accepted, which
amounts to having no backoff at all. The principles are the same, only the rule changes.

KHE offers three operations which together implement exponential backoff:

KHE_BACKOFF KheBackoffBegin(KHE_BACKOFF_TYPE backoff_type, HA_ARENA a);
bool KheBackoffAcceptOpportunity(KHE_BACKOFF bk);
void KheBackoffResult(KHE_BACKOFF bk, bool success);

KheBackoffBegin creates a new backoff object in arena a, passing a backoff_type value
of type

typedef enum {
KHE_BACKOFF_NONE,
KHE_BACKOFF_EXPONENTIAL

} KHE_BACKOFF_TYPE;

which determines which rule is used: none or exponential. KheBackoffAcceptOpportunity is
called when an opportunity arises, and returns true if that opportunity should be accepted. In
that case, the next call must be to KheBackoffResult, reporting whether or not the method was
successful. As usual, the backoff object’s memory is reclaimed when the arena is deleted.

Suppose that the program pattern without exponential backoff is

222 Chapter 8. Introducing Solvers

while(...)
{
...
if(opportunity_has_arisen)
success = try_repair_method(soln);

...
}

Then the modified pattern for including exponential backoff is

bk = KheBackoffBegin(KHE_BACKOFF_EXPONENTIAL);
while(...)
{
...
if(opportunity_has_arisen && KheBackoffAcceptOpportunity(bk))
{
success = try_repair_method(soln);
KheBackoffResult(bk, success);

}
...

}

Each successful KheBackoffAcceptOpportunity is followed by a call to KheBackoffResult.

All backoff objects hold a few statistics, kept only for printing by KheBackoffDebug

below, and a boolean flag which is true if the next call must be to KheBackoffResult. When
exponential backoff is requested, a backoff object also maintains two integers, C and M. C is
the number of declines since the last accept (or since the backoff object was created). M is the
maximum number of opprtunities that may be declined, defined by

M =

0 if F = 0
F−12 if F ≥ 1

where F is the number of failures since the last success (or since the backoff object was
created). The next call to KheBackoffAcceptOpportunity will return true if C ≥ M. The
implementation will not increase M if that would cause an overflow. Overflow is very unlikely,
since an enormous number of opportunities would have to occur first.

Function

char *KheBackoffShowNextDecision(KHE_BACKOFF bk);

returns "ACCEPT" when the next call to KheBackoffAcceptOpportunity will return true, and
"DECLINE" when it will return false. There is also

void KheBackoffDebug(KHE_BACKOFF bk, int verbosity, int indent, FILE *fp);

Verbosity 1 prints the current state, including a ‘!’ when the flag is set, on one line. Verbosity 2
prints some statistics: the number of opportunities so far, and how many are successful, failed,
and declined, in a multi-line format. There is also

8.10. Exponential backoff 223

void KheBackoffTest(FILE *fp);

which may be called to test this module.

8.11. Thread-safe random numbers

Incredibly, C has no standard thread-safe way to generate random numbers. There is rand_r, but
that is obsolete; there is random_r, but that is a nonstandard glibc extension; there is drand48, but
that is not thread-safe; and there is drand48_r, but that is a GNU extension and is not portable.
This is according to the manual entries on the author’s machine.

So KHE offers the KHE_RANDOM_GENERATOR type, representing a random number generator.
It does not use heap memory. To declare a random number generator, do this:

KHE_RANDOM_GENERATOR rgen;

If this is local to some function, then each call on that function (including calls in different
threads) will have its own independent generator. To initialize it, passing a seed, call

void KheRandomGeneratorInit(KHE_RANDOM_GENERATOR *rgen, uint32_t seed);

It would make sense to pass a solution’s diversifier as the seed:

KheRandomGeneratorInit(&rgen, KheSolnDiversifier(soln));

so that different solutions get different random numbers. To obtain one random number, call

uint32_t KheRandomGeneratorNext(KHE_RANDOM_GENERATOR *rgen);

It returns a fairly random unsigned 32-bit integer, good enough for solvers, but not cryptography.
It may be more convenient to call

int KheRandomGeneratorNextRange(KHE_RANDOM_GENERATOR *rgen,
int first, int last);

This uses the result of a call to KheRandomGeneratorNext to find a random integer between
first and last inclusive. Finally,

void KheRandomGeneratorTest(uint32_t seed, int count,
int first, int last, int indent, FILE *fp);

initializes a random number generator using seed, then prints out count random numbers in the
range first to last inclusive, onto file fp, indented indent spaces.

8.12. Intervals

Include file khe_solvers.h includes this type definition:

224 Chapter 8. Introducing Solvers

typedef struct khe_interval_rec {
int first;
int last;

} KHE_INTERVAL;

It represents an interval, that is, a sequence of consecutive integers. The first member is first,
and the last is last.

The usual use for intervals is to represent a set of consecutive time groups from the common
frame. Just their indexes are stored; the frame itself is held elsewhere. However other uses for
intervals are quite acceptable.

The condition last >= first - 1 must hold. Values of first and last that violate it
cause an abort. But last == first - 1 is acceptable and denotes an empty interval.

When an interval is empty, last is determined by first, but first is free to take on any
value. This raises the question of whether two empty intervals with different values for first
are equal or not. The answer to this question varies with the operation, as follows.

Most of the time, empty intervals are treated like empty sets of integers. For example, all
empty intervals are considered to be equal, even when their first attributes differ. The few
exceptions are flagged by the statement ‘empty intervals are not empty sets’. They mainly handle
cases where we want to start with an empty interval and grow it, and first is significant because
it denotes the point that the interval grows from.

Function

KHE_INTERVAL KheIntervalMake(int first, int last);

makes and returns a new interval with the given first and last attributes. It checks the
condition last >= first - 1 and aborts if it does not hold. No arena is needed, because
KHE_INTERVAL is not a pointer type. Functions

int KheIntervalFirst(KHE_INTERVAL in);
int KheIntervalLast(KHE_INTERVAL in);

return the first and last attributes of in. Two empty intervals can return different values for
first and also for last. These two functions are implemented by macros in khe_solvers.h.

Function

int KheIntervalLength(KHE_INTERVAL in);

returns the length of in, possibly 0 when the interval is empty. Function

bool KheIntervalEmpty(KHE_INTERVAL in);

returns true when in is empty. Function

bool KheIntervalContains(KHE_INTERVAL in, int index);

returns true when in contains index. Functions

8.12. Intervals 225

bool KheIntervalEqual(KHE_INTERVAL in1, KHE_INTERVAL in2);
bool KheIntervalSubset(KHE_INTERVAL in1, KHE_INTERVAL in2);
bool KheIntervalDisjoint(KHE_INTERVAL in1, KHE_INTERVAL in2);

return true when in1 and in2 are equal, when in1 is a subset of in2, and when in1 and in2 are
disjoint (have an empty intersection). Functions

KHE_INTERVAL KheIntervalUnion(KHE_INTERVAL in1, KHE_INTERVAL in2);
KHE_INTERVAL KheIntervalIntersection(KHE_INTERVAL in1, KHE_INTERVAL in2);

return the union and intersection of in1 and in2. If either of in1 and in2 is empty, the union
is the other; otherwise the union includes all integers from min(in1.first, in2.first) to
max(in1.last, in2.last) inclusive. Some of these integers may not lie in either of in1 and
in2, in which case the result is not a true set union. If in1 and in2 are disjoint, the intersection
is empty; otherwise the intersection includes all integers from max(in1.first, in2.first) to
min(in1.last, in2.last) inclusive. In either case the result is a true set intersection.

Function

int KheIntervalTypedCmp(KHE_INTERVAL in1, KHE_INTERVAL in2);

comparesin1 and in2, returning-1 if in1 is lexicographically less than in2,1 if it is lexicograph-
ically greater, and 0 if in1 and in2 are equal. Empty intervals are not empty sets. Function

int KheIntervalCmp(const void *t1, const void *t2);

is an untyped version of KheIntervalTypedCmp, suited to qsort and HaArraySort. Finally,

char *KheIntervalShow(KHE_INTERVAL in, KHE_FRAME frame)

returns a display of in in static memory. If frame != NULL, then in is considered to be a set of
indexes into frame, and time group Ids are printed rather than integers.

Chapter 9. Time-Structural Solvers

This chapter documents the solvers packaged with KHE that modify the time structure of a
solution: split and merge its meets, add nodes and layers, and so on. These solvers may alter
time and resource assignments, but they only do so occasionally and incidentally to their
structural work.

9.1. Layer tree construction

KHE offers a solver for building a layer tree holding the meets of a given solution:

KHE_NODE KheLayerTreeMake(KHE_SOLN soln);

The root node of the tree, holding the cycle meets, is returned. The function has no special access
to data behind the scenes. Instead, it works by calling basic operations and helper functions:

• It calls KheMeetSplit to satisfy split events constraints and other influences on the number
and duration of meets, as far as possible. It is usual to call KheLayerTreeMake when each
event is represented in soln by a single meet of the full duration (that is, after KheSolnMake
and KheSolnMakeCompleteRepresentation), but some meets may be already split. In any
case, KheLayerTreeMake does not create, delete, or merge meets.

• It calls KheMeetBoundMake with a NULL meet bound group to set the time domains of meets
to satisfy preassigned times, prefer times constraints, and other influences on time domains,
as far as possible. For each meet, one call to KheMeetBoundMake is made for each possible
duration. It is usual to call KheLayerTreeMake at a moment when the time domains of
the meets are not restricted by meet bounds, but some meets may already have bounds. In
any case, KheLayerTreeMake only adds bounds, never removes them, so it either leaves a
domain unchanged, or reduces it to a subset of its initial value.

• It calls KheMeetAssign in trivial cases where there is no doubt that the assignments will be
final. Precisely, if there are two events of equal duration linked by a link events constraint
and split into meets of equal durations, and the algorithm places one in a parent node and
the other in a child of that parent, then, provided the child node itself has no children (which
would render the case non-trivial), the meets of the child node will be assigned to meets of
the parent node, and the child node will be deleted in accordance with the convention given
in Chapter 10, that meets whose assignments will never change should not lie in nodes.

• It calls KheMeetAssignFix to fix all the assignments it makes (as defined immediately
above). These can be unfixed afterwards if desired.

226

9.1. Layer tree construction 227

• It calls KheNodeMake and KheNodeAddMeet to ensure that for each event there is one node
holding the meets of that event, unless these meets receive the trivial assignments just de-
scribed. There is also a node (the root node returned by KheLayerTreeMake, also accessible
as KheSolnNode(soln, 0)) holding the cycle meets. Any other meets (usually none) are
not placed into nodes. KheLayerTreeMake requires soln to contain no nodes initially.

• It calls KheNodeAddParent to reflect link events constraints (even between events whose
durations differ), as far as possible, and the need to ultimately assign every meet to a cycle
meet. When KheLayerTreeMake returns, every node is a descendant of the root node.

• Some instances contain events which have already been split, with the fragments presented
as distinct events. It is best if the nodes holding the meets derived from these fragments are
merged. So for each pair of distinct events which appear to be part of one course because
they share a spread events constraint or avoid split assignments constraint, if certain other
conditions (Section 9.1.5) are satisfied, the nodes holding the meets of those two events are
merged by a call to KheNodeMerge.

These elements interact in ways that make most of them impossible to separate. For example,
the splitting of an event into meets needs to be influenced not just by the event’s own split events
constraints and distribute split events constraints, but also by the constraints of the events that it
is linked to by link events constraints.

Logically, order events constraints should also affect the construction of layer trees. In the
version of KHE documented here they are not consulted, but this will change.

Although KheLayerTreeMake does not call KheLayerMake, resource layers (sets of events
that share a common preassigned resource which has a hard avoid clashes constraint) strongly
influence its behaviour. It ensures that the events of each layer are split into meets which can be
packed into the cycle meets without overlapping in time, except in the unlikely case where the
total duration of the events of the layer exceeds the total number of times in the cycle.

For each meet with a pre-existing assignment to some target_meet, KheLayerTreeMake
tries to place meet into a child node of target_meet’s node. In exceptional circumstances, this
may not be possible, and then the pre-existing assignment is removed by KheLayerTreeMake.
Suppose there is an event with two meets, both assigned to other meets. If those two other meets
are both derived from the same event, or if they are both cycle meets, then all is well; but if not,
one of the original meets will be unassigned. This is done because KheLayerTreeMake tracks
relations between events, not meets, and cannot cope with the idea of one event being assigned
partly to one event and partly to another. A meet will also be unassigned when there is a cycle
of assignments, but that should never occur in practice.

The above attempts to be a complete specification of KheLayerTreeMake, sufficient for
using it. For the record, the following subsections explain how it works in detail.

9.1.1. Overview

KheLayerTreeMake uses a constructive heuristic which runs quickly. It works by examining the
relevant constraints and taking actions to satisfy them, giving priority to those with higher weight.
It does not search through a large space of possible solutions to find the best. This is appropriate,
because in practice good solutions are easy to find. The problem is more about giving due weight

228 Chapter 9. Time-Structural Solvers

to the many influences on the solution than about real solving.

KheLayerTreeMake begins by unassigning meets to remove cases where two meets derived
from a single event are assigned to meets not both derived from the same event or both cycle
meets, and splitting meets whose duration exceeds the number of times in the instance into meets
of duration within that bound. This allows the remainder of the algorithm to assume that each
event is preassigned to at most one other event, and that there are no oversize meets.

In practice, it is likely that the constraints of an instance will cooperate harmoniously, but
for completeness it is necessary to handle cases where they do not. For example, there is nothing
to prevent a link events constraint from linking two events, one of which is required by a split
events constraint to split into three meets, while the other is required to split into one.

There is a data structure,described in the following sections,which embodies all the require-
ments that the final layer tree must satisfy, including how events are to be split into meets, and
how meets are to be grouped into nodes. It is an invariant that at least one layer tree must satisfy
all these requirements. Initially, the data structure embodies no requirements at all. A long series
of jobs is then applied to it, each inspired by some constraint or other feature of the instance to
request that the data structure add some new requirements to the ones it currently embodies. If
no layer trees would satisfy both the old and new requirements, the job is rejected (it is ignored);
otherwise, it is accepted (its requirements are added). There are also cases in which some of the
requirements of a job are accepted but others have to be rejected. The jobs are sorted by decreas-
ing priority, which is usually the combined weight of the constraint that inspired the job. In this
way, contradictory requests are resolved by giving preference to requests of higher priority.

Here is the full list of job types, with brief descriptions. How each job modifies the data
structure will be explained later. The jobs not derived from constraints have high priority.

Pre-existing splits. Each already split event e generates a job requiring the meets that e is
ultimately split into to be packable into (created by further splitting of) the pre-existing meets.

Preassigned times. XHSTT specifies that a meet derived from an event with a preassigned
time must be assigned that time. Several simultaneous meets derived from one event are unlikely
to be wanted, so this job requests that a preassigned event be not split further than its pre-existing
splits, and that the meets’ time domains be set to singleton domains.

Pre-existing assignments and link events constraints. These are interpreted as requests to
create parent-child links between nodes.

Avoid clashes constraints. Each resource subject to a required avoid clashes constraint
gives rise to a job which requests that the layer tree recognize that the events to which the
resource is preassigned cannot overlap in time.

Split events constraints and distribute split events constraints. These request restrictions on
the number of meets that an event may be split into, and their durations.

Spread events constraints. If the events of an event group of a spread events constraint
are split into too many or too few meets, then a non-zero number of deviations of the constraint
becomes inevitable. The job tries to tighten the requirements on the number of meets of the
events concerned, to the point where this problem cannot arise.

Prefer times constraints. This kind of job requests that the time domain of the meets of an
event which have a certain duration be reduced to satisfy a prefer times constraint. This may lead
to an empty domain for meets of that duration; if so, then there can be no meets of that duration

9.1. Layer tree construction 229

at all, which may prevent the job from being accepted.

After all jobs have been applied, the data structure is traversed and a layer tree is built.
Finally, KheLayerTreeMake examines each pair of events connected by a spread events or avoid
split assignments constraint, and if those events’ nodes satisfy the conditions given in Section
9.1.5, it merges them by calling KheNodeMerge.

9.1.2. Linking

The data structure used by KheLayerTreeMake must be close enough to the layer tree to make
it straightforward to derive an actual layer tree at the end. In fact, it needs to represent the set of
layer trees that satisfy the requirements of all the jobs accepted so far. This section explains how
this is done for linking, and later sections explain the parts that handle splitting and layering.

If meet s1can be assigned to meet s2 at offset o1, and s2 can be assigned to s3 at offset o2, then
it is always possible to assign s1 directly to s3 at offset o1 + o2. Thus, the relation of assignability
between meets is transitive. Although it is not safe to assign a meet to itself, it does no harm to
pretend here that assignability is reflexive as well.

In some cases, two meets are assignable to each other. They must have equal durations
and time domains, but that is not unusual. By a well-known fact about reflexive and transitive
relations, two-way assignability is an equivalence relation between meets.

Similar relations can be defined between events. Let A(e1,e2) hold when the meets of e1can
be assigned to the meets of e2 at non-overlapping offsets. Define

S(e1,e2) = A(e1,e2) ∧ A(e2,e1)

Again, A is reflexive and transitive, and S is an equivalence relation.

The data structure used for linking events includes a representation of relations A and S.
The equivalence classes defined by S are represented by nodes of a graph, containing the events
of the class and connected to other equivalence classes by directed edges representing A. A could
be an arbitrary directed acyclic graph, but in fact it is limited to a tree: each equivalence class is
recorded as assignable to at most one other equivalence class. Relational nodes will always be
called classes, to avoid confusion with layer tree nodes.

The child classes of each equivalence class are organized into layers. That additional
structure is not needed for linking, however, so its description will be deferred to Section 9.1.4.

Initially, each event lies in its own class, plus there is one class with no events, representing
the cycle meets. Every event class is a child of the cycle meets class. Thus, initially relation S is
empty, and relation A records only the basic fact that every event is assignable to the cycle meets
to begin with. This is quite true, since, at this initial stage, before any jobs are accepted, the data
structure believes that each event’s domain is the entire cycle, that each event is free to split into
meets of duration 1, and that there are no layers.

Basing the data structure on events, rather than on meets, seems to be right, but it does cause
differences between the meets of one event to be overlooked. For example, the data structure
believes that all meets derived from the same event have the same time domain.

Jobs that link events together do so by proposing elements of A and S to the data structure,
which accepts them when it can. An S proposal is a request to merge the equivalence classes

230 Chapter 9. Time-Structural Solvers

containing its two events into one (if they are not already the same); an A proposal is a request to
replace one parent link by another (which must still imply the first by transitivity). A proposal
could be rejected for various reasons: it might lead to a directed acyclic graph which is not a
tree, or cause events from the same layer to overlap in time, or lead to unacceptable restrictions
on how events are to be split (as in the example at the start of this chapter), and so on.

Pre-existing assignments are proposed first as elements of S, and if that fails as elements of
A. The second proposal at least cannot fail to be accepted, because these jobs have maximum
priority and do not contradict each other. A link events constraint job first proposes all pairs
of linked events of equal duration as elements of S, and then all pairs regardless of duration as
elements of A. In general, an A proposal could require that the whole set of classes lying on a
cycle of A links be evaluated for merging, but this particular way of making proposals ensures
that, in fact, only pairwise merges need to be evaluated.

Each equivalence class has a class leader, one of its own events. When an equivalence class
is created, its leader is the sole event it initially contains, and when two classes are merged, one
of the two leaders is chosen to be the leader of the merged class. For convenience, we pretend
that the cycle meets are derived from a single cycle event which is the leader of their class.

If class C contains an event e which is assigned to an event outside C, then the event e is
assigned to lies in the parent class of C. There may not be two such events in C unless they are
assigned to the same event at the same offset. The leader must be one of these events. The data
structure only becomes aware of assignments when the jobs representing them are accepted.

If C does not contain an event which is assigned to another event outside the class, then
it must contain at least one event which is not assigned at all, since otherwise there would be a
cycle of assignments within the class. Any such unassigned event may be the leader.

These conditions are trivially satisfied when a class is created, by making its sole event the
leader. When two classes are merged, there are various possibilities, including failure to merge
when the two leaders are assigned to distinct events outside both classes.

When constructing the final layer tree, all the unassigned events of each class except
the leader are placed in layer tree nodes which are made children of the node containing the
leader. Similarly, the nodes containing the leaders of child classes become children of the node
containing the leader of the parent class. In reality, of course, it is the meets derived from these
events by the splitting algorithm to be described next that are placed into these nodes.

9.1.3. Splitting

Given an event e of duration d, any mathematical partition of d is a possible outcome of splitting
e. For example, if e has duration 6, the possible outcomes are the eleven partitions

6
5 1

4 2
4 1 1

3 3
3 2 1

3 1 1 1
2 2 2

2 2 1 1
2 1 1 1 1

1 1 1 1 1 1

One element of a partition is called a part, and is the duration of one meet.

Any condition that limits how an event is split defines a subset of this set of partitions. For
example, if a split events constraint states that an event of duration 6 should be split into exactly
four meets, that is equivalent to requiring the partition to be either 3 1 1 1 or 2 2 1 1.

Each equivalence class holds a set of events of equal duration that are assignable to each

9.1. Layer tree construction 231

other. These will eventually be partitioned into meets in the same way. In addition to the events,
the class holds the requirements that the final partition must satisfy. These define a subset of the
set of all partitions of the duration, but it is not possible to store the subset directly, because for
large durations it may be very large. One partition is stored, however: the lexically minimum one
satisfying the requirements. (A lexically minimum partition has minimum largest part, and so
on recursively. For example, 1 1 1 1 1 1is the lexically minimum partition of 6.) It is an invariant
that the set of partitions satisfying the requirements may not be empty.

In the special case of the equivalence class that represents the cycle meets, the requirements
are fixed to allow exactly one partition: the one representing the durations of the cycle meets.

The requirements on partitions are of two kinds. First, there are the local requirements.
These are mainly lower and upper bounds on the total number of parts, and on the number of
parts of each possible duration, modelled on the corresponding fields of the split events and
distribute split events constraints. Another kind of local requirement arises when a pre-existing
split job is accepted: if an event of duration 6 is already split into meets of duration 4 and 2,
say, when the algorithm begins, then, to be acceptable, a partition must be packable into partition
4 2. One partition is packable into another if splitting some parts of the second partition and
discarding others can produce the first. For example, 2 1 1 is packable into 2 2 2, but neither of
3 1 1 1 and 2 2 1 1 is packable into the other.

Second, there are the structural requirements. Each parent class has an arbitrary number
of child classes, whose events will eventually be assigned to the parent class’s events. So the
lexically minimum partition of each child class must be packable into the parent class. In
these calculations the constraint always flows upwards: the child’s lexically minimum partition
is taken as given, and the parent’s minimum partition is adjusted (if possible) to ensure that
the child’s is packable into it. When a child class’s minimum partition changes, the parent’s
requirements must be re-tested. In this way, a change to a partition propagates upwards through
the structure until it either dies out or causes some class to have no legal partitions. In the second
case, the job which originated the changes must be rejected.

Some of the child classes may be organized into layers. In that case, each layer’s classes,
taken together, must be packable into the parent class. Each layer is represented by a split layer
object, as explained in detail in the next section. That object contains a minimum partition which
must be packable into the parent class, just like the minimum partitions of child classes.

Deciding whether any partitions satisfy even the local requirements is non-trivial: is it
safe to place two events into one class, when one is already split into partition 4 2 and the other
is already split into partition 3 2 1? Some simple checks are made, then a full generate-and-test
enumeration is begun and interrupted at the first success. The enumeration produces the lexically
minimum acceptable partition first, which is then stored and propagated upwards. Fortunately,
packability can be tested very quickly in practice, despite being an NP-complete bin packing
problem, because event durations are usually small.

At the end, after the last job is processed, each event of each class is split into meets whose
durations form the lexically minimum partition of that class.

9.1.4. Layering

The relation between meets and layers (sets of events that share a common preassigned resource

232 Chapter 9. Time-Structural Solvers

with a required avoid clashes constraint) is a many-to-many relation: a layer may contain any
number of meets, and a meet may lie in any number of layers.

Suppose that meet s1 lies in layer l and is assigned to meet s2. KHE enforces the rule that
any assignment of s2 may not be such as to cause s1 to overlap in time with any other meet of l.
In a sense, s2 (actually, that part of it assigned s1) becomes a member of l while s1 is assigned to
it. We say that s1 lies directly in l, and s2 lies indirectly in l.

An event lies directly in a layer if any of its meets lie directly in the layer. An equivalence
class lies directly in a layer if any of its events lie directly in the layer, and it lies indirectly in the
layer if any of its child classes lie in the layer, either directly or indirectly. This is because the
events of child classes will eventually be assigned to the events of the class.

The layering aspect of KheLayerTreeMake is based on an object called a split layer, which
represents one element of the many-to-many relation between equivalence classes and layers. In
other words, there is one split layer object for each case of an equivalence class lying in a layer,
directly or indirectly. Its attributes are the class, the resource defining the layer, the set of all child
classes of the class that lie in the layer, and a partition, whose value will be defined shortly.

When an equivalence class lies directly in a layer (when it contains an event that lies directly
in the layer), none of its child classes can lie in the layer, since that would mean that two events
of the same layer overlap in time. So in that case the set of child classes must be empty. To keep
it that way, the partition contains as many 1’s as the duration of the class. This makes it clear that
there is no room for any child classes in the layer, without constraining the division of the class’s
events into sub-events in any way.

When an equivalence class lies indirectly in a layer, some of its child classes lie in the layer.
Their total duration must not exceed the duration of the class, and their meets, taken together,
must be packable into the class, since they are disjoint in time. So in this case the set of child
classes may be (in fact, must be) non-empty, and the partition holds the multiset union of the
lexically minimum partitions of the child classes.

The job which adds a layer to the data structure adds its events one by one. In the unlikely
event that the duration of the layer exceeds the number of times in the cycle, or bin packing
problems prevent an event being added, the job rejects the event, which amounts to ignoring the
presence of the preassigned resource in that event.

Adding an event to a layer means that the event’s class and all its ancestors must get split
layer objects for the layer. For all these classes, moving upwards until either there are no more
ancestors or a class already has a split layer object for the layer, either add a new split layer object
holding just the current child class, or add the child class to an existing split layer object.

While the upward propagation adds new split layer objects, there is no possibility of failure,
since a layer containing a single event is no more constraining than the event alone (the event is
already present, only its membership of a layer is changing). But if an existing split layer object
is reached, the class must be added to it, and so its partition grows, possibly leading to an empty
set of acceptable partitions in the parent, causing rejection of the request.

9.1.5. Merging

As mentioned earlier, when instances contain events which have already been split, it is best to
merge the nodes containing those events. The advantages include ensuring that how the instance

9.1. Layer tree construction 233

is presented does not affect the way it is solved, exposing symmetries which could be expensive
if left hidden, and taking a step towards regularity.

Node merging is carried out after the main part of the layer tree construction algorithm
is complete and a layer tree is present. For each pair of events that share a spread events or
avoid split assignments constraint, the first meet of each event is found and the chain of fixed
assignments is followed to the first unfixed meet and from there to the node. The two nodes thus
found are candidates for merging. If they both exist, and they are distinct, and the first meet in
each contains the same preassigned resources (counting resources in meets assigned to the meet,
directly or indirectly, as well as resources in the meet itself), then the nodes are merged.

Only nodes which share at least one preassigned resource are merged. This ensures that it is
right to assign non-overlapping times to the meets of a node, which is what solvers usually do.

Requiring the same preassigned resources turns out to be important, because of the way that
layers are built from nodes, not from meets. If some of the meets of a node contain a resource
but others do not, then when the nodes containing that resource are formed into a layer later, the
layer’s duration may be longer than the cycle length, making it awkward to timetable.

9.2. Time-equivalence

Two sets of meets are time-equivalent if it can be shown, by following fixed meet assignments,
that each set of meets must occupy the same set of times as the other while fixed assignments
remain in place. This may be true even when none of the meets is assigned a time.

Two events are time-equivalent if their sets of meets are time-equivalent. Usually, this
is because they are joined by a link events constraint which is being handled structurally, for
example by KheLayerTreeMake (Section 9.1).

Two resources are time-equivalent if they have the same resource type (call it rt),
KheResourceTypeDemandIsAllPreassigned(rt) (Section 3.5.1) is true, and the sets of meets
containing their preassigned tasks are time-equivalent. Time-equivalent resources are busy at the
same times. They are usually students who choose the same courses.

It is clear that time-equivalence between sets of meets is an equivalence relation, as is
time-equivalence between events and between resources. So the events and resources of an
instance can be partitioned into time-equivalence classes. These classes are calculated by a
time-equivalence solver, which can be created and deleted by calling

KHE_TIME_EQUIV KheTimeEquivMake(void);
void KheTimeEquivDelete(KHE_TIME_EQUIV te);

To perform the calculation for a particular soln, call

void KheTimeEquivSolve(KHE_TIME_EQUIV te, KHE_SOLN soln);

However, the usual way to obtain a time-equivalence object is by calling

KHE_TIME_EQUIV KheTimeEquivOption(KHE_OPTIONS options,
char *key, KHE_SOLN soln);

with key "ss_time_equiv". This returns a solved time equivalence object stored in options

234 Chapter 9. Time-Structural Solvers

under key; if it is not present, it creates one, solves it, and adds it to options before returning it.

The equivalence classes of events are event groups which can be visited by

int KheTimeEquivEventGroupCount(KHE_TIME_EQUIV te);
KHE_EVENT_GROUP KheTimeEquivEventGroup(KHE_TIME_EQUIV te, int i);

in the usual way. The equivalence class for a given event is returned efficiently by

KHE_EVENT_GROUP KheTimeEquivEventEventGroup(KHE_TIME_EQUIV te,
KHE_EVENT e);

If e is not time-equivalent to any other event, a singleton event group containing e is returned.
There is also

int KheTimeEquivEventEventGroupIndex(KHE_TIME_EQUIV te, KHE_EVENT e);

which returns the value i such that KheTimeEquivEventGroup(te, i) contains e.

Similarly, the equivalence classes of resources are resource groups which can be visited by

int KheTimeEquivResourceGroupCount(KHE_TIME_EQUIV te);
KHE_RESOURCE_GROUP KheTimeEquivResourceGroup(KHE_TIME_EQUIV te, int i);

in the usual way. The equivalence class for a given resource is returned efficiently by

KHE_RESOURCE_GROUP KheTimeEquivResourceResourceGroup(KHE_TIME_EQUIV te,
KHE_RESOURCE r);

If r is not time-equivalent to any other resource, including the case when its resource type is not
all preassigned, a singleton group containing r is returned. Again,

int KheTimeEquivResourceResourceGroupIndex(KHE_TIME_EQUIV te,
KHE_RESOURCE r);

returns the value i such that KheTimeEquivResourceGroup(te, i) contains r.

All of these results reflect the state of the solution at the time of the most recent call to
KheTimeEquivSolve(te); they are not updated as the solution changes.

9.3. Layers

Layers were introduced in Section 5.3, but no easy way to build a set of layers was provided.
This section remedies that deficiency and adds some useful aids to solving with layers.

9.3.1. Layer construction

The usual rationale for the existence of a layer is that its nodes’ meets must not overlap in time
because they contain preassignments of a common resource. Function

KHE_LAYER KheLayerMakeFromResource(KHE_NODE parent_node,
KHE_RESOURCE r);

9.3. Layers 235

builds a layer of this kind. It calls KheLayerMake to make a new child layer of parent_node,
and KheLayerAddResource to add r to this layer. Then, each child node of parent_node which
contains a meet preassigned r (either directly within the node, indirectly within descendant
nodes, or in meets assigned, directly or indirectly, to those meets) is added to the layer.

The layering of node parent_node is a particular set of layers which is useful when
assigning times to the child nodes of parent_node, created by calling function

void KheNodeChildLayersMake(KHE_NODE parent_node);

This will delete any existing child layers of parent_node and add the layers of the layering.

The layering is built as follows. First, for each resource of the instance that possesses a
required avoid clashes constraint, one layer is built by calling KheLayerMakeFromResource

above. If it turns out to be empty, it is immediately deleted again. Each pair of these layers such
that one’s node set is a subset of the other’s is merged with KheLayerMerge. Finally, each child
of parent_node not in any layer goes into a layer (with no resources) by itself.

The layers emerge from KheNodeChildLayersMake in whatever order they happen to be.
The user will probably need to sort them, by calling KheNodeChildLayersSort (Section 5.3),
passing it a user-defined comparison function. Section 10.8.2 has an example of a comparison
function that seems to work well in practice.

After sorting, there may be value in calling

void KheNodeChildLayersReduce(KHE_NODE parent_node);

This merges some layers of marginal utility into others, as follows. Suppose there is a layer L
whose nodes all appear in earlier layers. Then if the meets of the nodes are assigned layer by
layer, L’s nodes will all be assigned before time assignment reaches L. Arguably, L could be
deleted without harm. However, it does contain one piece of useful information: it knows that
the meets to which its resources are preassigned will all be assigned times after L is assigned. If
this information is to be preserved, L’s resources need to be moved forwards to the first earlier
layer that is true of. For each node N of L, find the minimum over all layers containing N of
the index of the layer. This is the index of the layer during whose time assignment N will be
assigned. Then find the maximum, over all nodes N of L, of these minima. This is index of the
layer whose assignment will complete the assignment of all the nodes of L. If this is smaller than
L’s index, KheNodeChildLayersReduce deletes L and moves its resources to this earlier layer.

Two important facts about layers and layerings must be borne in mind. First, they reflect
the state of the layer tree at a particular moment. If, after they are built, the tree is restructured (if
nodes are moved, etc.) they become out of date and useless. Second, building a layering is slow
and should not be done within the inner loops of a solver.

Altogether, it seems best to regard layers as temporary structures, created when required by
KheChildLayersMake and destroyed by KheChildLayersDelete. In between these two calls,
nodes may be merged and split, but it is best not to move them. A useful convention, supported
by several of KHE’s solvers that use layers, is to assume that if child layers are present, then they
are up to date. Such solvers begin by calling KheChildLayersMake if there are no layers, and
end by calling KheChildLayersDelete, but only if they called KheChildLayersMake.

236 Chapter 9. Time-Structural Solvers

9.3.2. Layer coordination

High schools usually contain forms or years, which are sets of students of the same age who
follow the same curriculum, at least approximately. These students may be grouped into classes,
each represented by one student group resource. At some times, the student group resources of
one form might attend the same events, or linked events. For example, they might all attend a
common Sport event, or they might all attend Mathematics at the same times so that they can be
regrouped by ability at Mathematics. At other times, they might attend quite different events,
but over the course of the cycle they all attend the same amount of each different kind of event:
so many times of English, so many of Science, so many of a shared elective, and so on.

As an aid to producing a regular timetable, it might be helpful to coordinate the timetables
of student groups from the same form: run all the form’s English classes simultaneously, all
its Mathematics classes simultaneously, and so on. Where resources are insufficient to support
this, changes can be made later. In this way, a regular timetable is produced to begin with, and
irregularities are introduced only where necessary.

The XML format does not explicitly identify forms, or even say which resource type
contains the student group resources. This is in fact an advantage, because it forces us to look
for structure that aids regularity. We then coordinate the timetabling of resources that possess the
useful structure, without knowing or caring whether they are in fact student group resources.

Coordination will only work when the chosen resources attend similar events. This was
the rule when inferring resource partitions (Section 3.5.6), so we take the resource partition as
the structural equivalent of the form. The events should occupy all or most of the times of the
cycle, otherwise coordination eliminates too many options for spreading them in time. ‘Forms’
of teachers and rooms are rarely useful, just because they do not satisfy these conditions.

After KheLayerTreeMake returns, it is the nodes lying directly below the root node that need
to be coordinated, not events or meets. Two child nodes may be coordinated by moving one of
them so that it is a child node of the other. KHE offers solver function

void KheCoordinateLayers(KHE_NODE parent_node, bool with_domination);

which carries out such moves on some of the children of parent_node, as follows.

KheCoordinateLayers is only interested in resources whose layers have duration at
least 90% of the duration of parent_node. For each pair of such resources lying in the same
resource partition, it checks whether their two layers are similar by building the layers with
KheLayerMakeFromResource and calling KheLayerSimilar (Section 9.3). If so, it uses
KheNodeMove (Section 9.5.3) to make each node of the second layer a child of the corresponding
node of the first, unless the two nodes are the same, forcing these nodes to be simultaneous. It
does not assign meets, or remove them from nodes. Finally, it removes the two layers it made.

If with_domination is false, the behaviour is as described. If with_domination is true,
a slight generalization is used. Suppose that one of the two layers has duration equal to the
duration of parent_node, and all but one of its nodes is similar to some node in the other layer.
Then the dissimilar nodes of the other layer (possibly none) might as well be made children of
the one dissimilar node of that layer, since if the other nodes are coordinated they must run
simultaneously with it anyway. (The durations of their meets may be incompatible; that is not
checked at present, although it should be.) So that is done.

9.3. Layers 237

In unusual cases the duration of a layer can be larger after coordinating than before. At the
end, if any layers have duration larger than the parent node’s duration, KheCoordinateLayers
tries to reduce the duration of those layers to the parent node’s duration, by finding cases where
one node of a layer can be safely moved to below another.

9.4. Runarounds

Layer coordination can lead to problems assigning resources. For example, suppose that the five
student groups of the Year 7 form each attend one Music event, and that the school has two Music
teachers and two Music rooms. Each event is easily accommodated individually, but when the
Year 7 layers are coordinated, they run simultaneously and exceed resource limits.

These problems do not arise in large faculties with sufficient resources to accommodate an
entire form at once. Thus they do not invalidate the basic idea of node layer coordination. What
is needed is a local fix for these problems. This is what runarounds provide: a way to spread the
events concerned through the times they need, without abandoning coordination altogether.

9.4.1. Minimum runaround duration

Consider the case above where there are not enough Music resources to run the Year 7 Music
events simultaneously. If these events lie in nodes that are children of a common parent (one may
lie in the parent itself), it is easy to detect this problem: carry out a time assignment at the parent,
and see whether the cost of the solution increases. This is assuming that the matching monitors,
which detect unsatisfiable resource demands, are attached.

More generally, we can ask how large the duration of the parent node has to be in order to
ensure that there is no cost increase. This quantity is called the minimum runaround duration
of the node. It will be equal to the duration when there is no problem, and larger when there is a
problem. It can be calculated as follows. While a time assignment of the child nodes produces
a state of higher cost than the unassigned state, add new meets to the parent node. The duration
of the parent node when this process ends is its minimum runaround duration. Function

bool KheMinimumRunaroundDuration(KHE_NODE parent_node,
KHE_TIME_SOLVER time_solver, KHE_TIME_OPTIONS options,
int *duration);

sets *duration to the minimum runaround duration of parent_node and returns true, except
in an unlikely case, documented below, when it returns false with *duration undefined.

KheMinimumRunaroundDuration first unassigns all the child meets and saves the unas-
signed cost. It then carries out the time assignment trials just described. For each trial after the
first it adds one fresh meet to parent_node for each of its original meets, utilizing their durations
and time domains, but with no event resources. So the result’s duration must be a multiple of the
duration of parent_node. Before returning, it unassigns all the children and removes the meets it
added, leaving the tree in its initial state, unless some child meets were assigned to begin with.

Parameter time_solver is a time assignment solver which is called to carry out each trial.
A simple solver, such as KheSimpleAssignTimes from Section 10.4, should be sufficient here.

Increasing the duration at each trial by the full duration of the node may seem excessive, and

238 Chapter 9. Time-Structural Solvers

there are cases where fewer additional meets would be enough. However, those cases require the
child nodes’ assignments to overlap in ways that do not work out well in practice, because they
may lead to split assignments in the tasks affected.

How many trials are needed? In reasonable instances, each child node’s duration should
be no greater than the parent node’s duration. Thus, after as many trials as there are child nodes
plus one, there should be enough room in the parent node to assign every child meet at an offset
which does not overlap with any other, or with the original parent meets. This is the number of
trials that KheMinimumRunaroundDuration carries out. It stops early if one succeeds with cost
no greater than the unassigned cost. It returns false only when each trial either did not assign
all the child meets (that is, the call on time_solver returned false) or did assign them all, but
at a higher cost than the unassigned cost.

9.4.2. Building runarounds

Nodes may be classified into three types. A fixed node has no child nodes. There is no possibility
of spreading the events of a fixed node and its descendants through more times than the node’s
duration. A problem node has minimum runaround duration larger than its duration, like the
node of Music events used as an example above. It must have child nodes, and timetabling them
simultaneously is known to be inferior to spreading them out further. The remaining nodes are
free nodes: they have child nodes which may run simultaneously, or not, as convenient.

Using KheNodeMerge to merge problem nodes with other problem nodes and free nodes can
eliminate problem nodes without greatly disrupting regularity. For example, merging a Music
problem node of duration 2 and minimum runaround duration 6 with a free node of duration 4
produces a merged node of duration 6 which can usually be timetabled without problems.

If a merged node can be timetabled without the cost of the solution increasing, it may be
kept, and is then called a runaround node. (The term runaround is used by manual timetablers
known to the author to describe this kind of timetable, where events like the Music events are
‘run around’ with other events.) Otherwise it must be split up again and some other merging
tried instead. It only remains, then, to decide which sets of nodes to try to merge.

Regularity is easier to attain when nodes have the same duration, so if there are already many
nodes of a certain duration, it is helpful if a merged node also has that duration. Nevertheless,
a node should not be added to a merge merely to make up some duration: merging limits the
choices open to later phases of the solve, so it should be done only when necessary.

A minimum runaround duration could be very large, close to the duration of the whole
cycle. For example, suppose there is a single teacher, the school chaplain, who gives each of
the five Year 7 student groups 6 times of religious instruction per week. Those events have a
minimum runaround duration of 30. When the minimum runaround duration of a node is larger
than a certain value, the algorithm given below ignores the node: its events will be awkward to
timetable, but runarounds as defined here are not the answer.

To build runaround nodes from the child nodes of parent_node, call

void KheBuildRunarounds(KHE_NODE parent_node,
KHE_NODE_TIME_SOLVER mrd_solver, KHE_TIME_OPTIONS mrd_options,
KHE_NODE_TIME_SOLVER runaround_solver,
KHE_TIME_OPTIONS runaround_options);

9.4. Runarounds 239

where mrd_solver and mrd_options are passed to KheMinimumRunaroundDuration

when minimum runaround durations need to be calculated, and runaround_solver and
runaround_options are used to timetable merged nodes. KheSimpleAssignTimes is sufficient
for mrd_solver, and KheRunaroundNodeAssignTimes works well as runaround_solver. All
nodes are unassigned afterwards.

It would not do to merge (for example) a node that includes both Year 7 and Year 8 events
with a node that includes only Year 7 ones. So KheBuildRunarounds first works out which
resources are preassigned to events in or below which nodes (taking account only of preassigned
resources which have required avoid clashes constraints, and whose events occupy at least 90%
of the duration of parent_node), and partitions the child nodes of parent_node into disjoint
subsets, such the nodes in each subset have the same preassigned resources.

For each disjoint subset independently, KheBuildRunarounds tries to build a merged node
around each of the subset’s problem nodes in turn, largest minimum runaround duration first.
When doing this, it prefers to build a node of a particular duration u, and it prefers to use other
problem nodes (again, largest minimum runaround duration first), but it will also use free nodes
(minimum duration first). It is heuristic, but it usually works well. It is not limited to sequences
of pairwise mergings, as clustering algorithms often are. Here is the algorithm in detail:

1. The input is a set of nodes N (one disjoint subset as above), plus u, a desirable duration for a
merged node, and v, a maximum duration for a merged node. The output is M, the final set
of nodes. Write d(n) for the duration of node n, r(n) for its minimum runaround duration,
and d(X) for the total duration of the set of nodes X.

2. Initialize M to empty. Sort N to put free nodes first, in decreasing duration order, problem
nodes next, in increasing minimum runaround duration order, and fixed nodes last.

3. If N is empty, stop. Otherwise delete the last element of N and call it n.

4. If n is fixed, problem with r(n) ≥ v, or free, move it to M and return to Step 3.

5. Here n must be a problem node satisfying r(n) < v. Within each of the following cases,
some non-empty subsets X of N are defined. In each case, r(n) ≤ d(n) + d(X), so a merged
node consisting of n merged with X is likely to work well. For each case in turn, and for
each set X defined within each case in turn, remove X from N, merge n and X, and timetable
the resulting merged node. If that is successful (all events timetabled with no increase in
solution cost), add the merged node to M and return to Step 3. If it fails, split the merged
node up again, return the nodes of X to their former places in N, and try the next set X; or
if there are no more sets, add n to M and return to Step 3.

Case 1. For each x ∈ N from last to first such that r(n) ≤ d(n) + d(x) = u ≤ v, let X = {x} .

Case 2. For each i from 1to |N| such that Xi, the last i elements of N, satisfies the condition
r(n) ≤ d(n) + d(Xi) ≤ v, let X = Xi.

KheBuildRunarounds calls KheMinimumRunaroundDuration to find minimum runaround
durations, passing mrd_solver to it. It calls KheNodeMerge to merge nodes, runaround_solver
to timetable merged nodes, and KheNodeSplit to undo failed merges. It uses one-fifth of the
duration of parent_node for v. For u, it builds a frequency table of the durations of child nodes

240 Chapter 9. Time-Structural Solvers

of parent_node. It then chooses the duration for which the frequency times the duration is
maximum. This weights the choice away from small durations, which are not very useful.

9.5. Rearranging nodes

Earlier sections of this chapter contain the major solvers which work with nodes. This section
contains a miscellany of smaller helper funtions which rearrange nodes.

9.5.1. Node merging

Two nodes may be merged by calling

bool KheNodeMergeCheck(KHE_NODE node1, KHE_NODE node2);
bool KheNodeMerge(KHE_NODE node1, KHE_NODE node2, KHE_NODE *res);

The nodes may be merged if they have the same parent node, possibly NULL.

The meets of the result, *res, are the meets of node1 followed by the meets of node2, and
the child nodes of *res are the child nodes of node1 followed by the child nodes of node2.
The two nodes must either lie in the same layers and have the same parent, or have no parent,
otherwise KheNodeMerge aborts. This implies that node merging cannot violate the cycle rule,
or any rule. As usual with merging, node1 and node2 are undefined afterwards (actually, node1
is recycled as *res and node2 is freed), but one may write, for example,

KheNodeMerge(node1, node2, &node1);

to re-use variable node1 to hold the result.

Merging permits the meets of the child nodes of the two nodes to be assigned to the meets
of either node, rather than to just one as before. For example, suppose the layer tree rooted at
node1 contains the Science events of several groups of Year 7 students, and the layer tree rooted
at node2 contains the Music events of the same groups of students. Then originally the Science
events must be simultaneous and the Music events must be simultaneous, but afterwards the two
kinds of events may intermingle. This may be useful if there are few Music teachers and Music
rooms, so that the Music events must be spread out in time. This kind of arrangement is well
known to manual timetablers; it has various names, including runaround.

There is no operation to split a node into two nodes. However, KheNodeMerge may be
undone using marks and paths as usual.

9.5.2. Node meet splitting and merging

Node meet splitting and merging (not to be confused with node merging above) split the meets
of a node as much as possible, and merge them together as much as possible:

void KheNodeMeetSplit(KHE_NODE node, bool recursive);
void KheNodeMeetMerge(KHE_NODE node, bool recursive);

Both operations always succeed, although they may do nothing.

For every offset of every meet of node, KheNodeMeetSplit calls KheMeetSplit, passing

9.5. Rearranging nodes 241

it the recursive parameter. In this way, the meets become as split up as possible.

KheNodeMeetMerge sorts the meets so that meets assigned to the same target meets are
adjacent, with their target offsets in increasing order, using KheMeetIncreasingAsstCmp from
Section 5.2. Unassigned meets go at the end. It then tries to merge each pair of adjacent meets.
Any calls to KheMeetMerge it makes are passed the recursive parameter.

9.5.3. Node moving

A node may be made the child of parent_node, instead of its current parent, by calling

bool KheNodeMoveCheck(KHE_NODE child_node, KHE_NODE parent_node);
bool KheNodeMove(KHE_NODE child_node, KHE_NODE parent_node);

This does the same as the sequence

KheNodeDeleteParent(child_node);
KheNodeAddParent(child_node, parent_node);

except that this sequence will fail if any of child_node’s meets are assigned initially, whereas
KheNodeMove deals with such assignments and can fail only the cycle rule.

In most cases, KheNodeMove begins by deassigning those meets of child_node that are
assigned. However, there is one interesting exception. Suppose that child_node’s new parent
node is an ancestor of child_node’s current parent node:

child_node

child_node

parent_node

parent_node
→

parent_node

parent_node

child_node

child_node

In each case where a complete chain of assignments reaches from a meet meet of child_node
to a meet of parent_node, meet will be assigned afterwards, to the meet at the end of the chain,
with offset equal to the sum of the offsets along the chain. This is valid (it does not change the
timetable). Where there is no complete chain, meet will be unassigned afterwards.

For example, suppose node p has accumulated children to make the timetable regular, but
now the children’s original freedom to be assigned elsewhere needs to be restored:

while(KheNodeChildCount(p) > 0)
KheNodeMove(KheNodeChild(p, 0), KheNodeParent(p));

KheNodeMove preserves the current timetable during these relinkings.

9.5.4. Vizier nodes

A vizier (Arabic wazir) is a senior official, the one who actually runs the country while the
nominal ruler gets the adulation. In a similar way, a vizier node sits below another node and does
what that other node nominally does: act as the common parent of the subordinate nodes, and

242 Chapter 9. Time-Structural Solvers

hold the meets that those nodes’ meets assign themselves to.

Any node can have a vizier, but only the cycle node really has a use for one. By connecting
everything to the cycle node indirectly via a vizier, it becomes trivial to try time repairs in
which the meets of the vizier node change their assignments, effecting global alterations such as
swapping everything on Tuesday morning with everything on Wednesday morning. Function

KHE_NODE KheNodeVizierMake(KHE_NODE parent_node);

inserts a new vizier node directly below parent_node. Afterwards, parent_node has exactly
one child node, the vizier; it may be accessed using KheNodeChild(parent_node, 0) as usual,
and it is also the return value. For every meet pm of the parent node, the vizier has one meet
vm with the same duration as pm and assigned to pm at offset 0. The domain of vm is NULL; its
assignment is not fixed. Each child node of parent_node becomes a child of the vizier; each
child layer of parent_node becomes a child layer of the vizier; each meet assigned to a meet of
the parent node becomes assigned to the corresponding meet of the vizier. If parent_node has
zones, the vizier is given new corresponding zones, and the parent node’s zones are removed.

All this leaves the timetable unchanged, including constraints imposed by domains and
zones. The vizier takes over without affecting anyone’s existing rights and privileges. A vizier
node is not different from any other node; only its role is special.

KheNodeSwapChildNodesAndLayers (Section 5.2) is used to move the child nodes and
layers to the vizier node, so they are the exact same objects after the call as before. But although
the zones added to the vizier correspond exactly with the original zones, they are new objects.

To remove a vizier node, call

void KheNodeVizierDelete(KHE_NODE parent_node);

Here parent_node must have no child layers, no zones, and exactly one child node, assumed
to be the vizier. It calls KheNodeSwapChildNodesAndLayers again, to make the child nodes of
the vizier into child nodes of parent_node, and the child layers of the vizier into child layers of
parent_node. Any assignments to meets in the child nodes of the vizier must be to meets in the
vizier, and they are converted into assignments to meets in parent_node where possible (when
the target meet in the vizier is itself assigned). New zones are created in parent_node based on
the zones and meet assignments in the vizier. Finally the vizier and its meets are deleted.

Zones are not preserved across calls to KheNodeVizierMake and KheNodeVizierDelete

in the exact way that child nodes and child layers are. The zones added to the vizier node by
KheNodeVizierMake are new objects, although they do correspond exactly with the zones in
parent_node. The zones added to parent_node by KheNodeVizierDelete are also new, and
there will be a zone in a given parent meet at a given offset only if there was a meet in the vizier
which was assigned that parent meet and was running (with a zone) at that offset. If vizier meets
overlap in time (not actually prohibited), that will further confuse the reassignment of zones. It
may be best to follow KheNodeVizierDelete by a call to some function which ensures that every
offset of every parent meet has a zone, for example KheNodeExtendZones (Section 9.6).

Function KheNodeMeetSplit (Section 9.5.2) is useful with vizier nodes. Splitting a vizier’s
meets non-recursively opens the way to fine-grained swaps, between half-mornings instead of
full mornings, and so on. A wild idea, that the author has not tried, is to have an unsplit vizier
with its own split vizier. Then the larger swaps and the smaller ones are available together.

9.5. Rearranging nodes 243

9.5.5. Flattening

Although layer coordination and runaround building are useful for promoting regularity, there
may come a point where these kinds of voluntary restrictions prevent assignments which satisfy
more important constraints, and so they must be removed.

What is needed is to flatten the layer tree. Two functions are provided for this. The first is

void KheNodeBypass(KHE_NODE node);

This requires node to have a parent, and it moves the children of node so that they are children
of that parent. The second is

void KheNodeFlatten(KHE_NODE parent_node);

It moves nodes as required to ensure that all the proper descendants of parent_node initially are
children of parent_node on return.

Both functions use KheNodeMove to move nodes. They cannot fail, because KheNodeMove

fails only when there is a problem with the cycle rule, which cannot occur here. Both functions
are ‘interesting exceptions’ (Section 9.5.3) where assignments are preserved. By convention
(Chapter 10), meets with fixed, final assignments should not lie in nodes. If that convention is
followed, these functions do not affect such meets.

9.6. Adding zones

Suppose a layer of child nodes of node n has its meets assigned to the meets of n at various
offsets. Define one zone for each child node c of the layer, whose meet-offsets are the ones at
which c’s meets are running. Helper function

void KheLayerInstallZonesInParent(KHE_LAYER layer);

installs these zones, first deleting any existing zones of the parent node of layer, then installing
one zone for each child node of layer containing at least one assigned meet. Such zones form
an image of how one child layer (the first to be assigned, usually) is assigned. An algorithm can
use them as a template when assigning the other child layers, or when repairing the assignments
of any child layers, including the first layer.

KheLayerInstallZonesInParent installs zones representing the assignments of one layer
into the layer’s parent node. If the duration of the parent node exceeds the duration of the layer,
some offsets in some parent node meets will not be assigned any zone. This seems likely to be a
problem, or at least a lost opportunity. What to do about it is not clear.

Arguably, zones should be derived from all layers, not just one, in a way that gives every
offset a zone. But that is not easy to do, even heuristically. Anyway, there are advantages in using
zones derived from a good assignment of some layer, since the assignment proves that those
zones work well. This suggests taking the zones installed by KheLayerInstallZonesInParent

and extending them until every offset has a zone. Accordingly, function

void KheNodeExtendZones(KHE_NODE node);

ensures that every offset of every meet of node has a zone, by assigning one of node’s existing

244 Chapter 9. Time-Structural Solvers

zones to each offset in each meet of node that does not have a zone—unless node has no zones
to begin with, in which case it does nothing.

For each (zone, meet) pair where the meet has at least one offset without a zone, the
algorithm finds one option for adding some of the zone to the meet (how much to add, and
where), and assigns a priority to the option. Then it selects an option of minimum priority, carries
it out, and repeats. It runs out of options only when every offset in every meet has a zone.

An option for adding some of a given zone to a given meet is found as follows. If the zone is
already present in the meet, it is best to add it at offsets adjacent to the offsets it already occupies,
if possible. If the zone is not already present, it is best to add it adjacent to existing offsets or the
ends of the meet, in a continuous run, to avoid fragmentation of the offsets it occupies as well as
the offsets it doesn’t occupy. Constraints on zone durations arise either way. Within the limits
imposed by them, it is best to aim for an ideal zone duration, which in a completely unoccupied
meet is the meet duration divided by the total number of zones, but which is adjusted to take
account of existing zone durations, with higher being a better option than lower. As the option
is decided on, it is assigned a priority based on whether it utilizes an underutilized zone, avoids
fragmentation, and approximates to the ideal zone duration.

9.7. Meet splitting and merging

This section presents features which modify the meet splits made by layer tree construction.

9.7.1. Analysing split defects

Given a defect (a monitor of non-zero cost), it is usually easy to see what needs to be done to
repair it: if there is a clash, move one of the clashing meets away; if there is a split assignment,
try to find a resource to assign to all the tasks; and so on.

Split defects, that is, split events and distribute split events monitors of non-zero cost, are
awkward to analyse in this way, partly because split events monitors monitor both the number
of meets and their durations, and partly because several split events and distribute split events
monitors may cooperate in constraining how a given event is split into meets.

KHE offers a split analyser which analyses the split events and distribute split events
monitors of a given event, and comes up with a sequence of suggestions as to how any defects
among those monitors could be repaired using splits or merges (or both: for example, if there are
too few meets of a given duration, that could be corrected by splitting larger meets or by merging
smaller ones). To create and subsequently delete a split analyser object, call

KHE_SPLIT_ANALYSER KheSplitAnalyserMake(KHE_SOLN soln);
void KheSplitAnalyserDelete(KHE_SPLIT_ANALYSER sa);

In practice, it is better to obtain a split analyser object from the "ss_split_analyser" option,
which can be done by a call to

KHE_SPLIT_ANALYSER KheSplitAnalyserOption(KHE_OPTIONS options,
char *key, KHE_SOLN soln);

with key "ss_split_analyser". This creates a split analyser and stores it in options if it is

9.7. Meet splitting and merging 245

not already present. The option name is conventional; any name could have been chosen.

To carry out the analysis for a particular event, call

void KheSplitAnalyserAnalyse(KHE_SPLIT_ANALYSER sa, KHE_EVENT e);

After doing this, the sequence of suggestions for e which are splits may be retrieved by calling

int KheSplitAnalyserSplitSuggestionCount(KHE_SPLIT_ANALYSER sa);
void KheSplitAnalyserSplitSuggestion(KHE_SPLIT_ANALYSER sa, int i,
int *merged_durn, int *split1_durn);

for i between 0 and KheSplitAnalyserSplitSuggestionCount(sa) - 1 as usual. Each split
suggestion suggests splitting any meet of duration *merged_durn into two fragments, one with
duration *split1_durn. Similarly, the sequence of merge suggestions may be retrieved by

int KheSplitAnalyserMergeSuggestionCount(KHE_SPLIT_ANALYSER sa);
void KheSplitAnalyserMergeSuggestion(KHE_SPLIT_ANALYSER sa, int i,
int *split1_durn, int *split2_durn);

Each suggests merging any two meets with durations *split1_durn and *split2_durn.

Each suggestion is distinct from the others. No notice is taken of constraint weights,
except that constraints of weight zero are ignored. The suggestions are updated only by calls to
KheSplitAnalyserAnalyse; they are unaffected by later changes to the solution. So they go out
of date after a split or merge, but become up to date again if that split or merge is undone.

Function

void KheSplitAnalyserDebug(KHE_SPLIT_ANALYSER sa, int verbosity,
int indent, FILE *fp);

places a debug print of sa onto fp with the given verbosity and indent, including suggestions.

9.7.2. Merging adjacent meets

It sometimes happens that at the end of a solve, two meets derived from the same event are
adjacent in time and not separated by a break. If the same resources are assigned to both, they
can be merged, which may remove a spread defect and thus reduce the overall cost. Function

void KheMergeMeets(KHE_SOLN soln);

unfixes meet splits in all meets derived from events and carries out all merges that reduce solution
cost. For each event e, it takes the meets derived from e that have assigned times and sorts them
chronologically. Then, for each pair of adjacent meets in the sorted order, it tries KheMeetMerge,
keeping the merge if it succeeds and reduces cost.

KheMergeMeets can be called at any time. The best time to call it is probably at the very
end of solving, or possibly after time assignment.

Chapter 10. Time Solvers

A time solver assigns times to meets, or changes their assignments. This chapter presents a
specification of time solvers, and describes the time solvers packaged with KHE.

10.1. Specification

If time solvers share a specification, where possible, it is easy to replace one by another, pass one
as a parameter to another, and so on. This section recommends such a specification.

In hierarchical timetabling, ‘time assignment’ means the assignment of the meets of child
nodes to the meets of a parent node, so the recommended interface is

typedef bool (*KHE_NODE_TIME_SOLVER)(KHE_NODE parent_node,
KHE_OPTIONS options);

This typedef appears in khe_solvers.h. The intended meaning is that such a node time solver
should assign or reassign some or all of the meets of the proper descendants of parent_node:
it might assign the unassigned meets of the child nodes of parent_node, or reassign the
meets of proper descendants of parent_node, and so on. It is free to reorganize the tree below
parent_node, provided that every descendant of parent_node remains a descendant. It must
not change anything in or above parent_node. In the tree below parent_node it may add,
delete, split, and merge meets. Some solvers (e.g.ejection chains) do actually do this, so the caller
must take care to avoid the error (very easily made, as the author can testify) of assuming that the
set of meets after a time solver is called is the same as before. The options parameter is as in
Section 8.2; by convention, options consulted by time solvers have names beginning with ts_.

A solver should return true when it has changed the solution (usually for the better, but not
necessarily), and when it is not sure whether it did or not. It should return false when it did not
change the solution. The caller may use this information to evaluate the helpfulness of the solver,
or to decide whether to follow it with a repair step, and so on.

A second time solver type is defined in khe_solvers.h:

typedef bool (*KHE_LAYER_TIME_SOLVER)(KHE_LAYER layer,
KHE_OPTIONS options);

Instead of assigning or reassigning meets in the proper descendants of some parent node, a layer
time solver assigns or reassigns meets in the nodes of layer and their descendants, like a node
time solver for the parent node of layer, but limited to layer. The solver is free to reorganize
the layer tree below the nodes of layer (but not to alter the nodes of layer), provided every
descendant of each node of layer remains a descendant of that node.

If all time solvers follow these rules, then meets that do not lie in nodes will never be visited
by them. The recommended convention is that meets should not lie in nodes if and only if they
already have assignments that should never be changed.

246

10.1. Specification 247

Time assignment solvers (and solvers generally) are free to use the back pointers of the
solution entities they target. However, since there is potential for conflict here when one solver
calls another, the following conventions are recommended.

If solver S does not use back pointers (if it never sets any), then this should be documented,
and solvers that call S may assume that back pointers will be unaffected by it. If S uses back
pointers (if it sets at least one), then this should be documented, and solvers that call S must
assume that back pointers in the solution objects targeted by S will not be preserved. As a safety
measure, solvers should set the back pointers that they have used to NULL before returning.

10.2. Helper functions

The functions presented in this section assign and unassign meets, but are not complete time
solvers in themselves. Instead, they are helper functions that time solvers might find useful.

10.2.1. Node assignment functions

This section presents several functions which affect the assignments of the meets of one node.

These functions swap the assignments of the meets of two nodes:

bool KheNodeMeetSwapCheck(KHE_NODE node1, KHE_NODE node2);
bool KheNodeMeetSwap(KHE_NODE node1, KHE_NODE node2);

Both node1 and node2 must be non-NULL. Both functions return true if the nodes have the
same number of meets, and a sequence of KheMeetSwap operations applied to corresponding
meets would succeed. KheNodeMeetSwapCheck just makes the check, while KheNodeMeetSwap
performs the meet swaps as well. If node1 and node2 are the identical same node, false is
returned. As usual when swapping, the code fragment

if(KheNodeMeetSwap(node1, node2))
KheNodeMeetSwap(node1, node2);

is guaranteed to change nothing, whether the first swap succeeds or not.

To maximize the chances of success it is naturally best to sort the meets before calling these
functions, probably like this:

KheNodeMeetSort(node1, &KheMeetDecreasingDurationCmp);
KheNodeMeetSort(node2, &KheMeetDecreasingDurationCmp);

This sorting has been omitted from KheNodeMeetSwapCheck and KheNodeMeetSwap for
efficiency, since each node’s meets need to be sorted only once, yet the node may be swapped
many times. The user is expected to sort the meets of every relevant node, perhaps like this:

for(i = 0; i < KheSolnNodeCount(soln); i++)
KheNodeMeetSort(KheSolnNode(soln, i), &KheMeetDecreasingDurationCmp);

before any swapping begins. Some other functions, for example KheNodeRegular (Section 5.2),
also sort meets, so care is needed.

248 Chapter 10. Time Solvers

These functions propagate one node’s assignments to another:

bool KheNodeMeetRegularAssignCheck(KHE_NODE node, KHE_NODE sibling_node);
bool KheNodeMeetRegularAssign(KHE_NODE node, KHE_NODE sibling_node);

KheNodeMeetRegularAssignCheck calls KheNodeMeetRegular (Section 5.2) to check that the
two nodes are regular, and if they are, it goes on to check that each meet in sibling_node is
assigned, and that each meet of node is either already assigned to the same meet and offset that
the corresponding meet of sibling_node is assigned to, or else may be assigned to that meet
and offset. KheNodeMeetRegularAssign makes all these checks too, and then carries out the
assignments if the checks all pass.

To unassign all the meets of node, call

void KheNodeMeetUnAssign(KHE_NODE node);

Even preassigned meets are unassigned, so some care is needed here.

10.2.2. Kempe and ejecting meet moves

The Kempe meet move is a well-known generalization of moves and swaps. It originates as a
move of one meet, say from time t1 to time t2 (in reality, from one meet and offset to another meet
and offset). If this initial move creates clashes with other meets, then they are moved from t2 to t1.
If that in turn creates clashes with other meets, then they are moved from t1 to t2, and so on until
all clashes are removed. The result is usually a move or swap, but it can be more complex.

The Kempe meet move is not unlike an ejection chain algorithm. Instead of removing a
single defect at each step, it removes an arbitrary number, but it tries only one repair: moving to
t2 on odd-numbered steps and to t1 on even-numbered steps.

Suppose the original meet m1 has duration d1. Usually, the Kempe meet move only moves
meets of duration d1, and only from t1 to t2 (on odd-numbered steps) and from t2 to t1 (on even-
numbered steps). However, when m1 is being moved to a different offset in the same target meet,
the Kempe meet move does not commit itself to this until it has examined the first meet, call it m2,
which has to be moved on the second step. If m2 was immediately adjacent to m1 in time before
m1was moved on the first step, it is acceptable for m2 to have a duration d2 which is different from
d1. In that case, all meets moved on odd-numbered steps must have duration d1, and all meets
moved on even-numbered steps must have duration d2, and each meet is moved to the opposite
end of the block of adjacent times that m1 and m2 were together assigned to originally.

Kempe meet moves need to know what clashes they have caused. Clashes occur between
preassigned tasks. So the first step is to search the meet being moved, and if necessary the meets
assigned to that meet (and so on recursively) for the first preassigned task: a task derived from
a preassigned event resource. If there are no preassigned tasks, there can be no clashes. In that
case, the Kempe meet move operation does exactly what an ordinary meet move would do.

If there is a first preassigned task, then clashes are possible and must be detected. This
is done via the matching, partly because it is the fastest way, and partly because it works at any
level of the layer tree, unlike avoid clashes monitors, which work only at the root. Accordingly,
the matching must be present, as witnessed by the presence of a first demand monitor in the first
preassigned task of the meet to be moved. If this demand monitor is not present, a Kempe move

10.2. Helper functions 249

is not possible, and the operation returns false.

Furthermore, preassigned demand monitors must be attached, and grouped (directly or
indirectly) under a group monitor with sub-tag KHE_SUBTAG_KEMPE_DEMAND, by calling

KHE_GROUP_MONITOR KheKempeDemandGroupMonitorMake(KHE_SOLN soln);

before making any Kempe meet moves. This is a focus grouping, as defined in Section 8.7.2.
The group monitor’s children are the ordinary demand monitors of the preassigned tasks of soln.
No primary groupings are relevant here so primary group monitors never replace the ordinary
demand monitors. The operation will abort if it cannot find a group monitor with this sub-tag
among the parents of the first demand monitor of the first preassigned task.

Use of the matching raises the question of whether Kempe meet moves should try to remove
demand defects other than simple clashes: clashes involving a resource which possesses a hard
avoid clashes constraint which is preassigned to two meets which are running at the same time.
The author’s view is that it should not. When there is a simple clash caused by one meet moving
to a time, the only possible resolution is for the other to move away. With demand defects in
general, there may be multi-way clashes which can be resolved by moving one of several meets
away, and that is not what the Kempe meet move is about.

Assuming that the grouping is done correctly, then, a call to

bool KheKempeMeetMove(KHE_MEET meet, KHE_MEET target_meet,
int offset, bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

will make a Kempe meet move. It is similar to KheMeetMove in moving the current assignment
of meet to target_meet at offset, but it requires meet to be already assigned so that it knows
where to move clashing meets back to. It does not use back pointers or visit numbers. It sets

*demand to the total demand of the meets it moves, to give the caller some idea of the disruption
it caused, and it sets *basic to true if it did not find any meets that needed to be moved back the
other way, so that what it did was just a basic meet move. The kempe_stats parameter is used
for collecting statistics about Kempe meet moves, as described below; it may be NULL if statistics
are not wanted. There is also

bool KheKempeMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

which moves meet to the cycle meet and offset representing time t.

If preserve_regularity is false, these functions ignore zones. One way to take zones
into account is to call KheMeetMovePreservesZones (Section 5.4) first. In theory this is inade-
quate when meets of different durations are moved, but the inadequacy will virtually never arise
in practice. The other way is to set preserve_regularity to true, and then the functions will
use KheNodeIrregularity (Section 5.4) to measure the irregularity of the nodes affected,before
and after; the operation will fail if the total irregularity of the nodes affected has increased.

KheKempeMeetMove succeeds, returning true, if it moves meet to target_meet at offset,
possibly moving other meets as well, to ensure that the final state has no new simple clashes and
no new cases of a preassigned resource attending a meet at a time when it is unavailable. It fails,

250 Chapter 10. Time Solvers

returning false, in these cases:

• The matching is not present.

• Some call to KheMeetMove, which is used to make the individual moves, returnsfalse. This
includes the case where meet is already assigned to target_meet at offset, which, as pre-
viously documented, is defined to fail for the practical reason that the move accomplishes
nothing and pursuing it can only waste time.

• Moving some meet makes some preassigned resource busy when it is unavailable.

• A meet which needs to be moved is not currently assigned to the expected target meet
(either meet’s original target meet or target_meet, depending on whether the current
step is odd or even), or has the wrong duration or offset. This prevents the changes from
spreading beyond the expected area of the solution.

• preserve_regularity is true but the operation increases irregularity (discussed above).

• Some meet needs to be moved, but it has already moved during this operation, indicating
that the classical graph colouring reason for failure has occurred.

If KheKempeMeetMove fails, it leaves the solution in the state it was in at the failure point. In prac-
tice, it must be enclosed in KheMarkBegin and KheMarkEnd (Section 4.8), so that undoing can
be used to clean up the mess. This could easily have been incorporated into KheKempeMeetMove,
producing a version that left the solution unchanged if it failed. However, the caller will probably
want to enclose the operation in KheMarkBegin and KheMarkEnd anyway, since it may need to
be undone for other reasons, so cleanup is left to the caller.

The kempe_stats parameter is an object (the usual pointer to a private record) used to
record statistics about Kempe meet moves. If statistics are wanted, then to create and delete a
Kempe stats object, call

KHE_KEMPE_STATS KheKempeStatsMake(HA_ARENA a);
void KheKempeStatsDelete(KHE_KEMPE_STATS kempe_stats);

Actually the usual way to obtain a KHE_KEMPE_STATS object is from the ts_kempe_stats option,
via a call to

KHE_KEMPE_STATS KheKempeStatsOption(KHE_OPTIONS options, char *key);

with key "ts_kempe_stats". This returns the Kempe stats object stored under key, first creating
it with KheKempeStatsMake and adding it to the options object if it is not present.

Each time a Kempe stats object is passed to a successful call to KheKempeMeetMove or
KheKempeMeetMoveTime, its statistics are updated. They can be retrieved at any time using the
following functions.

A step of a Kempe meet move is a move of one meet. The statistics include a histogram
of the number of successful Kempe meet moves with step_count steps, for each step_count,
retrievable by calling

10.2. Helper functions 251

int KheKempeStatsStepHistoMax(KHE_KEMPE_STATS kempe_stats);
int KheKempeStatsStepHistoFrequency(KHE_KEMPE_STATS kempe_stats,
int step_count);

int KheKempeStatsStepHistoTotal(KHE_KEMPE_STATS kempe_stats);
float KheKempeStatsStepHistoAverage(KHE_KEMPE_STATS kempe_stats);

These return the maximum step_count for which there is at least one Kempe meet move, or 0
if none; the number of Kempe meet moves with step_count steps; the total number of steps
over all Kempe meet moves; and the average number of steps. This last is only safe to call if
KheKempeStatsStepHistoTotal > 0.

A phase of a Kempe meet move is a move of one or more meets in one direction. For
example, a Kempe move that turns out to be an ordinary move has one phase; one that turns out
to move one meet in one direction, then two in the other, has two phases; and so on. The statistics
include a histogram of the number of successful Kempe meet moves with phase_count phases,
for each phase_count, retrievable by calling

int KheKempeStatsPhaseHistoMax(KHE_KEMPE_STATS kempe_stats);
int KheKempeStatsPhaseHistoFrequency(KHE_KEMPE_STATS kempe_stats,
int phase_count);

int KheKempeStatsPhaseHistoTotal(KHE_KEMPE_STATS kempe_stats);
float KheKempeStatsPhaseHistoAverage(KHE_KEMPE_STATS kempe_stats);

These return the maximum phase_count for which there is at least one Kempe meet move, or 0
if none; the number of Kempe meet moves with phase_count phases; the total number of phases
over all Kempe meet moves; and the average number of phases. This last is only safe to call if
KheKempeStatsPhaseHistoTotal > 0.

Functions

bool KheEjectingMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset,
bool allow_eject, bool preserve_regularity, int *demand, bool *basic);

bool KheEjectingMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool allow_eject, bool preserve_regularity, int *demand, bool *basic);

offer a variant of the Kempe meet move called the ejecting meet move. This begins by moving
meet to target_meet at offset, and then finds the meets that need to be moved back the other
way exactly as for Kempe meet moves (using the same group monitor), but instead of moving
them, it unassigns them and stops. This is when allow_eject is true; when allow_eject

is false, if any meets need to be ejected, instead of doing that the function returns false.
KheEjectingMeetMove does not require meet to be assigned initially (the move may be an as-
signment), not does it carry out any checking of the durations and offsets of the meets it unas-
signs. All other details are as for Kempe meet moves. Similarly,

bool KheBasicMeetMove(KHE_MEET meet, KHE_MEET target_meet,
int offset, bool preserve_regularity, int *demand);

bool KheBasicMeetMoveTime(KHE_MEET meet, KHE_TIME t,
bool preserve_regularity, int *demand);

are variants in which even the unassignments are omitted. They are the same as KheMeetMove

252 Chapter 10. Time Solvers

and KheMeetMoveTime as far as changing the solution goes, differing from them only in
optionally preserving regularity, and in reporting demand. No group monitor is needed.

Finally, functions

bool KheTypedMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset,
KHE_MOVE_TYPE mt, bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

bool KheTypedMeetMoveTime(KHE_MEET meet, KHE_TIME t,
KHE_MOVE_TYPE mt, bool preserve_regularity, int *demand, bool *basic,
KHE_KEMPE_STATS kempe_stats);

allow the type of move (unchecked, checked, ejecting, or Kempe) to be selected on the fly, using
parameter mt, which has type

typedef enum {
KHE_MOVE_UNCHECKED,
KHE_MOVE_CHECKED,
KHE_MOVE_EJECTING,
KHE_MOVE_KEMPE,

} KHE_MOVE_TYPE;

Unchecked means basic, checked means ejecting with false for allow_eject, ejecting means
ejecting with true for allow_eject, and Kempe means Kempe. These functions switch on mt

and call the appropriate variant. The kempe_stats parameter is only passed to Kempe moves.

The rest of this section describes KheKempeMeetMove’s implementation. It is an important
operation, so its implementation must be robust, and must squeeze every drop of utility out of
the basic idea. KheEjectingMeetMove is just a cut-down version of KheKempeMeetMove.

A frame (nothing to do with type KHE_FRAME) is a set of adjacent positions in a target
meet, defined by the target meet, a start offset into the target meet, and a stop offset, which may
equal the duration of the target meet, but be no larger. The set of positions runs from the start
offset inclusive to the stop offset exclusive. A meet lies in a frame when it is assigned to that
frame’s target meet, and the set of positions it occupies in that target meet is a subset of the set
of positions defined by the frame.

The Kempe meet move operation defines four frames. On odd-numbered steps, including
the move of the original meet, every move is of a meet lying in a frame called the odd-from frame
to a frame called the odd-to frame. Similarly, every meet move on even-numbered steps is from
the even-from frame to the even-to frame.

The odd-from frame and the odd-to frame have the same duration, and the even-from frame
and the even-to frame have the same duration. When a meet is moved, its new target meet is the
target meet of the to frame of its step, and its offset in that target meet is defined by requiring
its offset in its to frame to equal its former offset in its from frame. This completely determines
where the meet is moved to, and ensures that the timetable of moved meets is replicated in the to
frame exactly as it was in the from frame.

The implementation will now be described, assuming that the four frames are given. How
they are defined will be described later.

10.2. Helper functions 253

First, if there are no preassigned tasks within meet or within meets assigned to meet, directly
or indirectly, then KheKempeMeetMove calls KheMeetMove and returns its result. Otherwise, it
finds the group monitor it needs as described above and begins to trace it. It then carries out a
sequence of steps. As each step begins, there is a given set of meets to move, and the step tries
to move them. An empty set signals success.

On odd-numbered steps, KheKempeMeetMove moves the given set of meets from their
offsets in the odd-from frame to the same offsets in the odd-to frame. This will fail if any of
the meets do not lie entirely within the odd-from frame, and if any call to KheMeetMove returns
false. Even-numbered steps are the same, using the even-from frame and even-to frame.

The set of meets to move on the first step contains just meet. At the end of each step, the set
of meets for the next step is found, as follows. The monitor trace is used to find the preassigned
demand monitors whose cost increased during the current step. For each of these monitors,
KheMonitorFirstCompetitor and KheMonitorNextCompetitor (Section 7.4.3) are used to
find the demand monitors competing with them for supply. These can be of four kinds:

1. A workload demand monitor derived from an avoid unavailable times monitor signals that
a preassigned resource has moved to an unavailable time, so fail.

2. Any other workload demand monitor signals a workload overload other than an unavailable
time, so ignore it. At a higher level, this defect might cause failure, but, as explained above,
the Kempe meet move itself only takes notice of simple clashes and unavailabilities.

3. A demand monitor derived from an unpreassigned task does not signal a simple clash, so
ignore it, on the same reasoning as the previous item.

4. A demand monitor derived from a preassigned task signals a simple clash. The appropriate
enclosing meet of the task (the one on the chain of assignments leading out of the task’s
meet just before the expected target meet) is found. If there is no such meet, or it was moved
on a previous step, fail. If it was moved on the current step, or is already scheduled to move
on the next step, ignore it. Otherwise schedule it to be moved on the next step.

A task is taken to be preassigned when a call to KheTaskIsPreassigned (Section 4.6.3), with
as_in_event_resource set to false, returns true.

It remains to explain how the four frames are defined.

Given the call KheKempeMeetMove(meet, target_meet, offset, ...), the target meet
of the odd-from frame and the even-to frame is KheMeetAsst(meet), and the target meet of the
even-from frame and the odd-to frame is target_meet. These may be equal, or not.

The odd frames have the same duration, and the even frames have the same duration.
Usually, all frames have the same duration, the odd-from frame and the even-to frame are equal,
and the even-from frame and the odd-to frame are equal. This is the separate case:

odd-from frame odd-to frame

even-to frame even-from frame
odd-number

odd-numbered steps

e

even-numbered steps

But there is another possibility, the combined case. Suppose the odd-from frame and the

254 Chapter 10. Time Solvers

even-from frame are adjacent in time (suppose they have the same target meet, and the start
offset of either equals the stop offset of the other). Call the union of their two sets of offsets the
combined block. In that case, the durations of the odd-from frame and the even-from frame may
differ. The odd-to frame occupies the opposite end of the combined block from the odd-from
frame, and the even-to frame occupies the opposite end from the even-from frame:

odd-from frame even-from frame

even-to frame odd-to frame

combined combined block

Four diagrams could be drawn here, showing cases where the odd-from frame has shorter and
longer duration than the even-from frame, and where it appears to the left and right of the
even-from frame. But in all these cases, meets move between the frames in the same way.

To find these frames, first make the initial move of meet to target_meet at offset. This is
an odd-numbered move, so it moves a meet from the odd-from frame to the odd-to frame. But it
is defined by the caller, so no frames are needed. If it fails, then fail. Otherwise, find the resulting
clashing meets. This may cause failure in various cases, as explained above; if successful, all
the clashing meets will currently be assigned to target_meet at various offsets. If there are no
clashing meets, the initial move suffices, so return success. Otherwise, let the initial clash frame
be the smallest frame enclosing the clashing meets. The even-from frame will be a superset of
this frame, to allow all the clashing meets to move legally on the second step.

Next, see whether the separate case applies, as follows. The initial meet must lie inside
the odd-to frame after it moves. Since the even-from frame must equal the odd-to frame in the
separate case, let the even-from frame be the initial clash frame, enlarged as little as possible to
include the initial meet after it moves. Then the odd-from frame is defined completely by the
requirements that its duration must equal the duration of the even-from frame, and that the offset
of the initial meet in the odd-from frame before it moves must equal its offset in the odd-to frame,
and so in the even-from frame, after it moves. Once the odd-from frame is defined in this way,
check that it does not protrude out either end of its target meet, nor overlap with the even-from
frame. If it passes this check, set the odd-to frame equal to the even-from frame, and set the
even-to frame equal to the odd-from frame. The separate case applies.

Otherwise, see whether the combined case applies, as follows. If the initial meet’s original
target meet is not target_meet, or its original position overlaps the initial clash frame, then the
combined case does not apply, and so the entire operation fails. Otherwise, set the even-from
frame to the initial clash frame, and set the odd-from frame to the smallest frame which both
includes the initial meet’s original position and also abuts the even-from frame. This frame
must exist; no further checks are needed. Set the odd-to frame to occupy the opposite end of the
combined block from the the odd-from frame, and set the even-to frame to occupy the opposite
end of the combined block from the even-from frame. The combined case applies.

10.3. Meet bound groups and domain reduction 255

10.3. Meet bound groups and domain reduction

The functions described in this section do not assign meets. Instead, they reduce meet domains.

10.3.1. Meet bound groups

Meet domains are reduced by adding meet bound objects to meets (Section 4.5.4). Frequently,
meet bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of meet bounds—but it is convenient to have a
standard for it, so KHE defines a type KHE_MEET_BOUND_GROUP with suitable operations.

To create a meet bound group, call

KHE_MEET_BOUND_GROUP KheMeetBoundGroupMake(KHE_SOLN soln);

To add a meet bound to a meet bound group, call

void KheMeetBoundGroupAddMeetBound(KHE_MEET_BOUND_GROUP mbg,
KHE_MEET_BOUND mb);

To visit the meet bounds of a meet bound group, call

int KheMeetBoundGroupMeetBoundCount(KHE_MEET_BOUND_GROUP mbg);
KHE_MEET_BOUND KheMeetBoundGroupMeetBound(KHE_MEET_BOUND_GROUP mbg, int i);

To delete a meet bound group, including deleting all the meet bounds in it, call

bool KheMeetBoundGroupDelete(KHE_MEET_BOUND_GROUP mbg);

This function returns true when every call it makes to KheMeetBoundDelete returns true.

10.3.2. Exposing resource unavailability

If a meet contains a preassigned resource with some unavailable times, run times will be reduced
if those times are removed from the meet’s domain, since then futile time assignments will be
ruled out quickly. This idea is implemented by

void KheMeetAddUnavailableBound(KHE_MEET meet, KHE_COST min_weight,
KHE_MEET_BOUND_GROUP mbg);

This makes a meet bound based on the available times of the resources preassigned to meet and
to meets with fixed assignments to meet, directly or indirectly. It adds this bound to meet, and to
mbg if mbg is non-NULL.

The meet bound is an occupancy bound whose default time group is the full cycle minus
KheAvoidUnavailableTimesConstraintUnavailableTimes(c) for each avoid unavailable
times constraint c for the relevant resources whose combined weight is at least min_weight. For
example, setting min_weight to 0 includes all constraints; setting it to KheCost(1, 0) includes
hard constraints only. Each time group is adjusted for the offset in meet of the meet containing
the preassigned resource. If the resulting time group is the entire cycle, as it will be, for example,
when meet’s preassigned resources are always available, then no meet bound is made.

256 Chapter 10. Time Solvers

There is also

void KheSolnAddUnavailableBounds(KHE_SOLN soln, KHE_COST min_weight,
KHE_MEET_BOUND_GROUP mbg);

which calls KheMeetAddUnavailableBound for each non-cycle meet in soln whose assignment
is not fixed, taking care to visit the meets in a safe order (parents before children).

10.3.3. Preventing cluster busy times and limit idle times defects

This section presents a function which reduces the cost of cluster busy times and limit idle times
monitors, by reducing heuristically the domains of the meets to which the monitors’resources are
preassigned, before time assignment begins. For example, suppose teacher Jones is limited by a
cluster busy times constraint to attend for at most three of the five days of the week. Choose any
three days and reduce the time domains of the meets that Jones is preassigned to to those three
days. Then those meets cannot cause a cluster busy times defect for Jones.

But first, we need to consider the alternatives. One is to do nothing special during the
initial time assignment, and repair any defects later. But there are likely to be many defects then,
casting doubt on the value of the initial assignment, since repairing cluster busy times defects is
time-consuming and difficult. Repairing limit idle times defects is easier, but it still takes time.

A second alternative is to take these monitors into account as part of the usual method of
constructing an initial assignment of times to meets. The usual method is to group the meets into
layers (sets of meets which must be disjoint in time, because they share preassigned resources)
and assign the layers in turn. Some monitors are handled during layer assignment, including
demand and spread events monitors. Cluster busy times monitors can be too, as follows.

Suppose there is a cluster busy times monitor for resource r requiring that r be busy on at
most four of the five days of the cycle. Create a meet with duration equal to the number of times
in one day, whose domain is the set of first times on all days. Add a task preassigned r to this
meet. Then, in the course of assigning r’s layer, this meet will be assigned a time, and if there
are no clashes, the other meets preassigned r will be limited to at most four days as required. At
the author’s university, this method is used to give most students two half-days off.

There are a few detailed problems: a whole-day meet may not be assignable to any cycle
meet, and the author’s best method of assigning the meets of one layer (Section 10.6) works best
when there are several meets of each duration, whereas here there may be only one whole-day
meet. These problems can be surmounted by reducing the domains of the other meets instead
of adding a new meet. But there are other problems—problems that may be called fundamental,
because they arise from handling clustering one layer at a time.

A resource is lightly loaded when it is preassigned to meets whose total duration is much
less than the cycle’s duration. Cluster busy times monitors naturally apply to lightly loaded
resources, because heavily loaded ones don’t have the free time that makes clustering desirable.
In university problems,each layer is a set of meets preassigned just one resource: a lightly loaded
student. The layers are fairly independent, being mutually constrained only by the capacities of
class sections. Under these conditions, handling clustering one layer at a time works well.

But now consider the situation, common in high schools, where each meet contains two
preassigned resources,one student group resource and one teacher resource. Suppose the student

10.3. Meet bound groups and domain reduction 257

group resources are heavily loaded, and the teacher resources are lightly loaded and subject
to cluster busy times constraints. It is best to timetable the meets one student group layer at a
time, because the student group resources are heavily loaded, but this leaves no place to handle
the teachers’ cluster busy times monitors. Even if the meets were assigned in teacher layers,
those layers are often not independent: electives, for example, have several simultaneous meets,
requiring several teachers to have common available times.

This brings us to the third alternative, the subject of this section. Before time assignment
begins, reduce the domains of meets subject to cluster busy times and limit idle times monitors
to guarantee that the monitors have low (or zero) cost, whatever times are assigned later. Use the
global tixel matching to avoid mistakes which would make meets unassignable. Function

void KheSolnClusterAndLimitMeetDomains(KHE_SOLN soln,
KHE_COST min_cluster_weight, KHE_COST min_idle_weight,
float slack, KHE_MEET_BOUND_GROUP mbg, KHE_OPTIONS options);

does this. It adds meet bounds to meets, and to mbg if mbg is non-NULL, based on cluster busy
times monitors with combined weight at least min_cluster_weight, and on limit idle times
monitors with combined weight at least min_idle_weight. Minimum limits are ignored. See
below for precisely which monitors are included. If KheOptionsDiversify(options) is true,
the result is diversified by varying the order in which domain reductions for limit idle times
monitors are tried.

Carrying out all possible domain reductions is almost certainly too extreme; it gives other
solvers no room to move. Parameter slack is offered to avoid this problem. For each resource
r, function KheSolnClusterAndLimitMeetDomains keeps track of p(r), the total duration of
the events preassigned r, and a(r), the total duration of the times available to these events, given
the reductions made so far. Clearly, it is important for the function to ensure a(r) ≥ p(r), since
otherwise these events will not have room to be assigned. But, letting s be the value of slack,
the function actually ensures a(r) ≥ s ⋅ p(r), or rather, it does not apply any reduction that makes
this condition false. The minimum acceptable value of slack is 1.0, which is almost certainly
too small. A value around 1.5 seems more reasonable.

The remainder of this section describes the issues involved in reducing domains, and how
KheSolnClusterAndLimitMeetDomains works in detail.

A set of resources may be time-equivalent: sure to be busy at the same times. There
would be no change in cost if all the cluster busy times and limit idle times monitors of a set of
time-equivalent resources applied to just one of them: their costs depend only on when their
resource is busy. So although for simplicity the following discussion speaks of individual
resources, in fact KheSolnClusterAndLimitMeetDomains deals with sets of time-equivalent
resources, taken from the time_equiv option of its options parameter. It obtains this by calling
KheTimeEquivOption (Section 9.2), which creates the option if it is not already present.

A cluster busy times monitor for a resource r is included when its combined weight is at
least min_cluster_weight, its Maximum limit is less than its number of time groups, and each
time group is either disjoint from or equal to each time group of each previously included monitor
for r. A limit idle times monitor for a resource r of type rt is included when its combined weight
is at least min_idle_weight, rt satisfies KheResourceTypeDemandIsAllPreassigned(rt) ,
its time groups are disjoint from each other, and each time group is either disjoint from or equal

258 Chapter 10. Time Solvers

to each time group of each previously included monitor for that resource. The time groups are
usually days, so the disjoint-or-equal requirement is usually no impediment.

An exclusion operation, or just exclusion, is the addition of an occupancy meet bound
(Section 4.5.4) to each meet preassigned a given resource, ensuring that those meets do not
overlap a given set of times. An exclusion is successful if its calls to KheMeetAddMeetBound

succeed and do not increase the number of unmatched demand tixels in the global tixel matching.
KheSolnClusterAndLimitMeetDomains keeps only successful exclusions; unsuccessful ones
are tried, then undone. It repeatedly tries exclusions until for each monitor, either a guarantee
of sufficiently low cost is obtained, or no further successful exclusions are available. Exclusions
based on cluster busy times monitors are tried first, since they are most important. After they
have all been tried, the algorithm switches to exclusions based on limit idle times monitors.

Build a graph with one vertex for each resource. For each resource, the aim is to exclude
some of its cluster busy times monitors’ time groups from its meets, enough to satisfy those
monitors’Maximum limits. Thinking of each time group as a colour, the aim is to assign a given
number of distinct colours from a given set to each vertex.

If some meet (or set of linked meets) has several preassigned resources, those resources
should exclude some of the same time groups, to leave others available. Linked meets with
preassigned teachers a, b, c, d, and e must not be excluded from Mondays by a, from Tuesdays
by b, and so on. The global tixel matching test prevents this extreme example, but we also need
to avoid even approaching it. So when two resources share meets, this evidence that they should
have similar exclusions is recorded by connecting their vertices by a positive edge whose cost is
the total duration of the meets they share.

Even when two resources share no meets, they may still influence each other’s exclusions,
when there is an intermediate resource which shares meets with both of them. Two teachers who
teach the same student group are an example of this. If some time group is excluded by one of
the teachers, it would be better if it was not excluded by the other, since that again limits choice.
In this case the two resources’ vertices are joined by a negative edge whose cost is the total
duration of the meets they share with the intermediate resource. If there are several intermediate
resources, the maximum of their costs is used.

Negative edges produce a soft graph colouring problem: a good result gives overlapping
sets of colours to vertices connected by positive edges, and disjoint sets of colours to vertices
connected by negative edges. This connection with graph colouring rules out finding an
optimum solution quickly, but it also suggests a simple heuristic which is likely to work well,
since it is based on the successful saturation degree heuristic for graph colouring.

A vertex is open when a(v) > s ⋅ p(v) (as explained above), and it has at least one untried ex-
clusion with at least one cluster busy times monitor which would benefit from that exclusion. If
there are no open vertices, the procedure ends. Otherwise an open vertex is chosen for colouring
whose total cost of edges (positive and negative) going to partly or completely coloured vertices
is maximum, with ties broken in favour of vertices of larger degree.

Once an open vertex is chosen, the cost of each of its untried colours is found, and the
untried colours are tried in order of increasing cost until one of them succeeds or all have been
tried. The cost of a colour c is the total cost of outgoing negative edges to vertices containing c,
minus the total cost of outgoing positive edges to vertices containing c.

The numbers used by the heuristic are adjusted to take account of the idea that one vertex

10.3. Meet bound groups and domain reduction 259

requiring several colours is similar to several vertices, each requiring one colour, and connected
in a clique by strongly negative edges. In particular, being partly coloured increases a vertex’s
chance of being chosen for colouring, as does requiring more than one more colour.

Saturation degree heuristics are often initialized by finding and colouring a large clique, but
nothing of that kind is attempted here. A time group which is a subset of the unavailable times
of its resource should always be excluded. This is done, wherever applicable, at the start, after
which there may be several partly coloured vertices.

When handling limit idle times monitors, individual times are excluded instead of entire
time groups. The time groups of limit idle times monitors are compact, and the excluded times
lie at the start or end of one of these time groups. Exclusions which remove a last unexcluded
time are tried first, followed by exclusions which remove a first unexcluded time.

Whether an idle exclusion is needed depends on the following calculation. As above, let
the preassigned duration p(v) of a vertex v be the total duration of the meets that v’s resource is
preassigned to. Let the availability a(v) of vertex v be the number of times that these same meets
may occupy. Initially this is the number of times in the cycle, but as time groups are excluded
during the cluster busy times phase it shrinks, and then as individual times are excluded during
the limit idle times monitor phase it shrinks further.

As explained above, when an exclusion would cause a(v) ≥ s ⋅ p(v) to become false, it is
prevented. Assuming this obstacle is not present, consider limit idle times monitor m within v.
A worst-case estimate of its number of deviations d(m) can be found as follows.

Let a(m), the availability of m, be the total number of unexcluded times in m’s time groups.
Since time groups are disjoint, a(m) ≤ a(v). The worst case for m occurs when as many meets
as possible are assigned times outside its time groups, leaving many unassigned and potentially
idle times inside. The maximum duration of meets that can be assigned outside m’s time groups
is a(v) − a(m), leaving a minimum duration of

MD(m) = max(0,p(v) − (a(v) − a(m)))

to be assigned within m’s time groups. This assignment leaves a(m) − MD(m) of m’s available
places unfilled. A little algebra shows that this difference is non-negative, given a(v) ≥ p(v).

Let M(m) be m’s Maximum attribute. The worst-case deviation d(m) is the amount by which
the number of unfilled places exceeds M(m), that is,

d(m) = max(0,a(m) − MD(m) − M(m))

If d(m) is positive, an exclusion which reduces a(m) further may be tried, and multiplying d(m)
by w(m), the combined weight of m’s constraint, gives a priority for trying such an exclusion.

Limit idle times monitors are tried in decreasing d(m)w(m) order, updated dynamically, and
modified by propagating exclusions across positive edges. Negative edges are not used.

10.4. Some basic time solvers

This section presents some basic time solvers. The simplest are

260 Chapter 10. Time Solvers

bool KheNodeSimpleAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);
bool KheLayerSimpleAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

They assign those meets of the child nodes of parent_node (or of the nodes of layer) that are
not already assigned. For each such meet, in decreasing duration order, they try all offsets in all
meets of the parent node. If KheMeetAssignCheck permits at least one of these, the best is made,
measuring badness by calling KheSolnCost; otherwise the meet remains unassigned, and the
result returned will be false. These functions do not use options or back pointers.

There is one wrinkle. When assigning a meet which is derived from an event e, these
functions will not assign the meet to a meet which is already the target of an assignment of some
other meet derived from e. This is because if two meets from the same event are assigned to the
same meet, they are locked into being adjacent, or almost adjacent, in time, undermining the only
possible motive for splitting them apart.

These functions are not intended for serious timetabling. They are useful for simple
tasks: assigning nodes whose children are known to be trivially assignable, finding minimum
runaround durations (Section 9.4.1), and so on.

The logical order to assign times to the nodes of a layer tree is postorder (from the bottom
up), since until a node’s children are assigned to it, its resource demands are not clear. Function

bool KheNodeRecursiveAssignTimes(KHE_NODE parent_node,
KHE_NODE_TIME_SOLVER solver, KHE_OPTIONS options);

applies solver to all the nodes in the subtree rooted at parent_node, in postorder. It returns
true when every call it makes on solver returns true. It uses options and back pointers if and
only if solver uses them. For example,

KheNodeRecursiveAssignTimes(parent_node, &KheNodeSimpleAssignTimes, NULL);

carries out a simple assignment at each node, and

KheNodeRecursiveAssignTimes(parent_node, &KheNodeUnAssignTimes, NULL);

unassigns all meets in all proper descendants of parent_node.

Functions

bool KheNodeUnAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);
bool KheLayerUnAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

unassign any assigned meets of parent_node’s child nodes (or of layer’s nodes). They do not
use options or back pointers. Also,

bool KheNodeAllChildMeetsAssigned(KHE_NODE parent_node);
bool KheLayerAllChildMeetsAssigned(KHE_LAYER layer);

return true when the meets of the child nodes of parent_node (or of layer) are all assigned.

Preassigned meets could be assigned separately first, then left out of nodes so that they
are not visited by time assignment algorithms. The problem with this is that a few times may be
preassigned to obtain various effects, such as Mathematics first in the day, and this should not

10.4. Some basic time solvers 261

affect the way that forms are coordinated. Accordingly, the author favours handling preassigned
meets along with other meets, as far as possible.

However, when coordination is complete and real time assignment begins, it seems best
to assign preassigned meets first, for two reasons. First, preassignments are special because
they have effectively infinite weight. There is no point in searching for alternatives. Second,
preassignments cannot be handled by algorithms that are guided by total cost, because they have
no assign time constraints, so there is no reduction in cost when they are assigned. Functions

bool KheNodePreassignedAssignTimes(KHE_NODE root_node,
KHE_OPTIONS options);

bool KheLayerPreassignedAssignTimes(KHE_LAYER layer,
KHE_OPTIONS options);

search the child nodes of root_node, which must be the overall root node, or the nodes of layer,
whose parent must be the overall root node, for unassigned meets whose time domains contain
exactly one element. KheMeetAssignTime is called on each such meet to attempt to assign that
one time to the meet, and the result is true when all of these calls return true. These functions
do not use options or back pointers.

KHE’s solvers assume that it is always a good thing to assign a time to a meet. However,
occasionally there are cases where cost can be reduced by unassigning a meet, because the cost
of the resulting assign time defect is less than the total cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSolnTryMeetUnAssignments(KHE_SOLN soln);

for use at the end. It tries unassigning each meet of soln in turn. If any unassignment reduces
the cost of soln, it is not reassigned. The result is true if any unassignments were kept.

10.5. A time solver for runarounds

Time solver

bool KheRunaroundNodeAssignTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

assigns times to the unassigned meets of the child nodes of parent_node, using an algorithm
specialized for runarounds. It tries to spread similar nodes out through parent_node as much
as possible. By definition, some resources are scarce in runaround nodes, so it is good to spread
demands for similar resources as widely as possible. It works well on symmetrical runarounds,
but it can fail in more complex cases. If that happens, it undoes its work and makes a call to
KheNodeLayeredAssignTimes(parent_node, false) from Section 10.8.2. This is not a very
appropriate alternative, but any assignment is better than none.

KheRunaroundNodeAssignTimes begins by finding the child layers of parent_node using
KheNodeChildLayersMake (Section 9.3.1), and placing similar nodes at corresponding indexes
in the layers, using KheLayerSimilar (Section 5.3). It then assigns the unassigned meets of
these nodes. Its first priority is to not increase solution cost; its second is to avoid assigning two
child meets to the same parent meet (this would prevent them from spreading out in time); and

262 Chapter 10. Time Solvers

its third is to prevent corresponding meets in different layers from overlapping in time.

The algorithm is based on a procedure (let’s call it Solve) which accepts a set of child
layers, each accompanied by a set of triples of the form

(parent_meet, offset, duration)

meaning that parent_meet is open to assignment by a child meet of the layer, at the given offset
and duration. The task of Solve is to assign all the unassigned meets of the nodes of its layers.

The initial call to Solve is passed all the child layers. Each layer’s triples usually contain
one triple for each parent meet, with offset 0 and the duration of the parent meet for duration,
indicating that the parent meets are completely open for assignment. If any meets are assigned
already, the triples are modified accordingly to record the smaller amount of open space.

Solve begins by finding the maximum duration, md, of an unassigned meet in any of its
layers. It assigns all meets with this duration in all layers itself, and then makes recursive calls to
assign the meets of smaller duration. For each layer, it takes the meets of duration md in the order
they appear in the layer and its nodes. It assigns these meets to consecutive suitable positions
through the layer, shifting the starting point of the search for suitable positions by one place in
the parent layer as it begins each layer. It never makes an assignment which increases the cost
of the solution, and it makes an assignment which causes two child meets to be assigned to the
same parent meet only as a last resort. If some meet fails to assign, the whole algorithm fails and
the problem is passed on to KheNodeChildLayersAssignTimes as described above.

As meets are assigned, the offsets and durations of the triples change to reflect the fact that
the parent meets are more occupied. After all assignments of meets of duration md are complete,
the layers are sorted to bring layers with equal triples together. Each set of layers with equal
triples is then passed to a recursive call to Solve, which assigns its meets of smaller duration.

The purpose of handling sets of layers with equal triples together in this way can be seen in
an example. Suppose the parent node has two doubles and each child node has one double. Then
there are two ways to assign the child’s double; half the child layers will get one of these ways,
the other half will get the other way. The layers in each half have identical assignments so far,
undesirably but inevitably. By bringing them together we maximize the chance that the recursive
call which assigns the singles will find a way to vary the remaining assignments.

10.6. Extended layer matching with Elm

A good way to assign times to meets is to group the meets into nodes, group the nodes into layers,
and assign times to the meets layer by layer. The advantage of doing it this way is that the meets
of one layer strongly constrain each other, because they share preassigned resources so must be
disjoint in time. Assigning times to the meets of one layer, then, is a key step.

Any initial assignment of times to the meets of one layer will probably require repair. But
repair is time-consuming, and it will help if the initial assignment has few defects—as a first
priority, few demand defects, but also few defects of other kinds. The method presented in this
section, called extended layer matching, or Elm for short, is the author’s best method of finding
an initial assignment of times to the meets of one layer.

If all meets have duration 1 and minimizing ordinary demand defects is the sole aim, the

10.6. Extended layer matching with Elm 263

problem can be solved efficiently using weighted bipartite matching. Make each meet a node
and each time a node, and connect each meet to each time it may be assigned, by an edge whose
cost is the number of demand defects that assignment causes. Among all matchings with the
maximum number of edges, choose one of minimum cost and make the indicated assignments.

Elm is based on this kind of weighted bipartite matching, called layer matching by the
author, making it good at minimizing demand defects. It is extended with ideas that heuristically
reduce other defects. Layer matching was called meta-matching in the author’s early work,
because it operates above another matching, the global tixel matching.

Elm can be used without understanding it in detail, by calling

bool KheElmLayerAssign(KHE_LAYER layer,
KHE_SPREAD_EVENTS_CONSTRAINT sec, KHE_OPTIONS options);

KheElmLayerAssign finds an initial assignment of the meets of the child nodes of layer to the
meets of the parent node of layer, leaving any existing assignments unchanged, and returning
true if every meet of layer is assigned afterwards. It works well with the reduced meet domains
installed by solvers such as KheSolnClusterAndLimitMeetDomains (Section 10.3.3) for
minimizing cluster busy times and limit idle times defects. It tries to minimize demand defects,
and if layer’s parent node has zones, it also tries to make its assignments meet and node regular
with those zones, which should help to minimize spread events defects. If the diversify option
of options (Section 8.2) is true, it consults the solution’s diversifier, and its results may vary
with the diversifier. It does not repair its assignment, leaving that to other functions.

Parameter sec is optional (may be NULL); a simple choice for it would be any spread events
constraint whose number of points of application is maximal. If sec is present, the algorithm
tries to assign the same number of meets to each of sec’s time groups. To see why, consider an
example of the opposite. Suppose the events are to spread through the days, and the Wednesday
times are assigned eight singles, while the Friday times are assigned four doubles. It’s likely
that some events will end up meeting twice on Wednesdays and not at all on Fridays. The sec

parameter acts only with low priority. It is mainly useful on the first layer, when there are no
zones and the segmentation is more or less arbitrary.

10.6.1. Introducing layer matching

This section introduces layer matching. Later sections describe the implementation. Suppose
some layer has three meets of duration 2 and two meets of duration 1, like this:

These child meets have to be assigned to non-overlapping offsets in the meets of the parent node
(the parent meets). Suppose there are three parent meets of duration 2 and three of duration 1:

and suppose (for the moment) that assignments are only possible between meets of the same
duration. Then a bipartite graph can represent all the possibilities:

264 Chapter 10. Time Solvers

The child meets (the bottom row) are the demand nodes, and the parent meets (the top row) are the
supply nodes. Each edge representsone potential assignment of one child meet. Not all edges are
present: some are missing because of unequal durations, others because of preassignments and
other domain restrictions. For example, the last child meet above appears to be preassigned.

When one of the potential assignments is made, there is a change in solution cost. Each
edge may be labelled by this change in cost. Suppose that a matching of maximum size (number
of edges) is found whose cost (total cost of selected edges) is minimum. There is a reasonably
efficient algorithm for doing this. This matching is the layer matching; it defines a legal assign-
ment for some (usually all) child meets, and its cost is a lower bound on the change in solution
cost when these meets are assigned to parent meets without any overlapping, as is required since
the child meets share a layer and thus presumably share preassigned resources.

The lower bound is only exact if each assignment changes the solution cost independently
of the others. This is true for many kinds of monitors, but not all, and it is one reason why the
lower bound produced by the matching is not exact. In fact, costs contributed by limit idle
times, cluster busy times, and limit busy times monitors only confuse layer matching. So for
each resource of the layer, any attached monitors of these kinds are detached at the beginning of
KheElmLayerAssign and re-attached at the end.

Parent meets usually have larger durations than child meets, allowing choices in packing
the children into the parents. The parent node typically represents the week, so it might have,
say, 10 meets each of duration 4 (representing 5 mornings and 5 afternoons), whereas the child
meets typically represent individual lessons, so they might have durations 1and 2. A segment of
parent meet target_meet is a triple

(target_meet, offset, durn)

such that it is legal to assign a child meet of duration durn to target_meet at offset. A
segmentation of the parent meets is a set of non-overlapping segments that covers all offsets of
all parent meets. It is the segments of a segmentation, not the parent meets themselves, that are
used as supply nodes. There may be many segmentations, but the layer matching uses only one.
This is the other reason why the lower bound is not exact.

A layer matching graph is a bipartite graph with one demand node for each meet of a
given layer, and one supply node for each segment of some segmentation of the meets of the
layer’s parent node. For each unassigned child meet meet, there is one edge to each parent
segment whose duration equals the duration of meet and to which meet is assignable according
to KheMeetAssignCheck. The cost of the edge is the cost of the solution when the assignment
is made, found by making the assignment, calling KheSolnCost, then unassigning again. (Using
the solution cost rather than the change in cost ensures that edge costs are always non-negative,
as required behind the scenes.) For each assigned child meet meet, a parent segment with meet’s
target meet, offset, and duration is the only possible supply node that the meet can be connected
to; if present, the edge cost is 0.

10.6. Extended layer matching with Elm 265

A layer matching is a set of edges from the graph such that no node is an endpoint of two
or more of the selected edges. A best matching is a layer matching of minimum cost (sum of
edge costs) among all matchings of maximum size (number of edges).

The layer giving rise to the demand nodes consists of nodes, each of which typically
contains a set of meets for one course. This set of meets will typically want to be spread through
the cycle, not bunched together. Each meet generates a demand node, and a set of demand nodes
whose meets are related in this way is called a demand node group.

There is also a natural grouping of supply nodes, with each supply node group consisting of
those supply nodes which originated from the same parent meet. Thus, the supply nodes of one
group are adjacent in time.

It would be good to enforce the following rule: two demand nodes from the same demand
node group may not match with two supply nodes from the same supply node group (because
if they did, all chance of spreading out the demand nodes in time would be lost). There is no
hope of guaranteeing this rule, because there are cases where it must be violated, and because
minimizing cost while guaranteeing it appears to be an NP-complete problem. However, Elm
encourages it. When finding a minimum-cost matching, it adds an artificial increment to the cost
of each augmenting path that would violate it, thus making those paths relatively uncompetitive
and unlikely to be applied. The approach is purely heuristic, but it usually works well.

The overall structure of the layer matching graph is now clear. There are demand nodes,
each representing one meet of the layer, grouped into demand node groups representing courses.
There are supply nodes, each representing one segment of one meet of the parent node, grouped
into supply node groups representing the meets of the parent node. Edges between supply
nodes and demand nodes are not defined explicitly; they are determined by the durations and
assignability of the meets and segments.

10.6.2. The core module

This section describes the core module, which implements the layer matching graph, including
maintaininga best matching. Elm also has helper modules, described in following sections. They
have no behind-the-scenes access to the graph; they use only the operations described here.

The core module follows the previous description closely, except that it uses ‘demand’ for
‘demand node’, ‘demand group’ for ‘demand node group’, and so on—for brevity, and so that
‘node’ always means an object of type KHE_NODE. This Guide will do this too from now on.

Elm’s types and functions (apart from KheElmLayerAssign) are declared in a header file of
their own, called khe_elm.h. So to access the functions described from here on,

#include "khe_solvers.h"
#include "khe_elm.h"

must be placed at the start of the source file.

We begin with the operations on type KHE_ELM, representing one elm. An elm for a given
layer is created by

KHE_ELM KheElmMake(KHE_LAYER layer, KHE_OPTIONS options, HA_ARENA a);

and deleted by deleting or recycling a. If the diversify option of options is true, then the

266 Chapter 10. Time Solvers

layer’s solution’s diversifier is used to diversify the elm. In addition to the elm itself,KheElmMake
creates one demand group for each child node of layer, containing one demand for each meet
of the child node. It also creates one supply group for each meet of the layer’s parent node,
containing one supply representing the entire meet. The sets of meets in the parent and child
nodes should not change during the elm’s lifetime,although the state of one meet (its assignment,
domain, etc.) may change.

The layer and options may be accessed by

KHE_LAYER KheElmLayer(KHE_ELM elm);
KHE_OPTIONS KheElmOptions(KHE_ELM elm);

To access the demand groups, call

int KheElmDemandGroupCount(KHE_ELM elm);
KHE_ELM_DEMAND_GROUP KheElmDemandGroup(KHE_ELM elm, int i);

in the usual way. To access the supply groups, call

int KheElmSupplyGroupCount(KHE_ELM elm);
KHE_ELM_SUPPLY_GROUP KheElmSupplyGroup(KHE_ELM elm, int i);

An elm also holds a best matching as defined above. The functions related to it are

int KheElmBestUnmatched(KHE_ELM elm);
KHE_COST KheElmBestCost(KHE_ELM elm);
bool KheElmBestAssignMeets(KHE_ELM elm);

KheElmBestUnmatched returns the number of unmatched demands in the best matching.
KheElmBestCost returns its cost—not a solution cost, but a sum of edge costs, each of which is
a solution cost. KheElmDemandBestSupply, defined below, reports which supply a given demand
is matched with. To assign the unassigned meets of elm’s layer according to the best matching,
call KheElmBestAssignMeets; it returns true if every meet is assigned afterwards. Elm updates
the best matching only when one of these four functions is called, for efficiency.

Elm has a ‘special node’ which is begun and ended by calling

void KheElmSpecialModeBegin(KHE_ELM elm);
void KheElmSpecialModeEnd(KHE_ELM elm);

While the special mode is in effect,Elm assumes that edges can change their presence in the layer
matching graph but not their cost. So when updating edges in special mode, Elm only needs to
find whether each edge is present or not, which is much faster than finding costs as well.

To support splitting supplies so that their numbers in each time group of a spread events
constraint are approximately equal, these functions are offered:

void KheElmUnevennessTimeGroupAdd(KHE_ELM elm, KHE_TIME_GROUP tg);
int KheElmUnevenness(KHE_ELM elm);

KheElmUnevennessTimeGroupAdd instructs elm to keep track of the number of supplies whose
starting times lie within tg. KheElmUnevenness returns the sum over all these time groups of

10.6. Extended layer matching with Elm 267

a quantity related to the square of this number. For a given set of supplies, this will be smaller
when they are distributed evenly among the time groups than when they are not.

Function

void KheElmDebug(KHE_ELM elm, int verbosity, int indent, FILE *fp);

produces a debug print of elm onto fp with the given verbosity and indent. Demands are
represented by their meets, and supplies are represented by their meets, offsets, and durations. If
verbosity >= 2, the print includes the best matching. Function

void KheElmDebugSegmentation(KHE_ELM elm, int verbosity,
int indent, FILE *fp);

is similar except that it concentrates on elm’s segmentation.

Demand groups have type KHE_ELM_DEMAND_GROUP. To access their attributes, call

KHE_ELM KheElmDemandGroupElm(KHE_ELM_DEMAND_GROUP dg);
KHE_NODE KheElmDemandGroupNode(KHE_ELM_DEMAND_GROUP dg);
int KheElmDemandGroupDemandCount(KHE_ELM_DEMAND_GROUP dg);
KHE_ELM_DEMAND KheElmDemandGroupDemand(KHE_ELM_DEMAND_GROUP dg, int i);

These return dg’s enclosing elm, the child node of the original layer that gave rise to dg, dg’s
number of demands, and its ith demand.

Elm maintains edges between demands and supplies automatically. But if a demand’s meet
changes in some way (for example, if its domain changes), Elm has no way of knowing that this
has occurred. When the meets of the demands of a demand group change, the user must call

void KheElmDemandGroupHasChanged(KHE_ELM_DEMAND_GROUP dg);

to inform Elm that the edges touching the demands of dg must be remade before being used.

A demand group may contain any number of zones. If there are none, then zones have
no effect. If there is at least one zone, then the demand group’s demands may match only with
supplies that begin in one of its zones. The value NULL counts as a zone. Functions

void KheElmDemandGroupAddZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);
void KheElmDemandGroupDeleteZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);

add and delete a zone from dg, including calling KheElmDemandGroupHasChanged. The value
of zone may be NULL. To check whether dg contains a given zone, call

bool KheElmDemandGroupContainsZone(KHE_ELM_DEMAND_GROUP dg, KHE_ZONE zone);

To visit the zones of a demand group, call

int KheElmDemandGroupZoneCount(KHE_ELM_DEMAND_GROUP dg);
KHE_ZONE KheElmDemandGroupZone(KHE_ELM_DEMAND_GROUP dg, int i);

Function

268 Chapter 10. Time Solvers

void KheElmDemandGroupDebug(KHE_ELM_DEMAND_GROUP dg,
int verbosity, int indent, FILE *fp);

sends a debug print of dg with the given verbosity and indent to fp.

Demands have type KHE_ELM_DEMAND. To access their attributes, call

KHE_ELM_DEMAND_GROUP KheElmDemandDemandGroup(KHE_ELM_DEMAND d);
KHE_MEET KheElmDemandMeet(KHE_ELM_DEMAND d);

These return the enclosing demand group, and the meet that gave rise to the demand.

As explained above, when a demand’s meet changes in some way that affects the demand’s
edges, Elm must be informed. For a single demand, this is done by calling

void KheElmDemandHasChanged(KHE_ELM_DEMAND d);

This is called by KheElmDemandGroupHasChanged for each demand in its demand group. To find
out which supply d is matched with in the best matching, call

bool KheElmDemandBestSupply(KHE_ELM_DEMAND d,
KHE_ELM_SUPPLY *s, KHE_COST *cost);

If d is matched with a supply in the best matching, KheElmDemandBestSupply sets *s to that
supply and *cost to the cost of the edge, and returns true; otherwise it returns false. And

void KheElmDemandDebug(KHE_ELM_DEMAND d, int verbosity,
int indent, FILE *fp);

sends a debug print of d with the given verbosity and indent to fp.

Supply groups have type KHE_ELM_SUPPLY_GROUP. To access their attributes, call

KHE_ELM KheElmSupplyGroupElm(KHE_ELM_SUPPLY_GROUP sg);
KHE_MEET KheElmSupplyGroupMeet(KHE_ELM_SUPPLY_GROUP sg);
int KheElmSupplyGroupSupplyCount(KHE_ELM_SUPPLY_GROUP sg);
KHE_ELM_SUPPLY KheElmSupplyGroupSupply(KHE_ELM_SUPPLY_GROUP sg, int i);

These return sg’s enclosing elm, the meet of the layer’s parent node that gave rise to it, its number
of supplies (segments), and its ith supply. And

void KheElmSupplyGroupDebug(KHE_ELM_SUPPLY_GROUP sg,
int verbosity, int indent, FILE *fp);

sends a debug print of sg with the given verbosity and indent to fp.

Supplies have type KHE_ELM_SUPPLY. To access their attributes, call

KHE_ELM_SUPPLY_GROUP KheElmSupplySupplyGroup(KHE_ELM_SUPPLY s);
KHE_MEET KheElmSupplyMeet(KHE_ELM_SUPPLY s);
int KheElmSupplyOffset(KHE_ELM_SUPPLY s);
int KheElmSupplyDuration(KHE_ELM_SUPPLY s);

KheElmSupplySupplyGroup is the enclosing supply group, KheElmSupplyMeet is the enclosing

10.6. Extended layer matching with Elm 269

supply group’s meet, and KheElmSupplyOffset and KheElmSupplyDuration return an offset
and duration within that meet, defining one segment.

To facilitate calculations with zones, each supply maintains the set of distinct zones that its
offsets lie in. These may be accessed by calling

int KheElmSupplyZoneCount(KHE_ELM_SUPPLY s);
KHE_ZONE KheElmSupplyZone(KHE_ELM_SUPPLY s, int i);

A NULL zone counts as a zone, so KheElmSupplyZoneCount is always at least 1.

To facilitate the handling of preassigned and previously assigned demands, Elm offers

void KheElmSupplySetFixedDemand(KHE_ELM_SUPPLY s, KHE_ELM_DEMAND d);
KHE_ELM_DEMAND KheElmSupplyFixedDemand(KHE_ELM_SUPPLY s);

KheElmSupplySetFixedDemand informs elm that d is the only demand suitable for matching
with s, or if d is NULL (the default), that there is no restriction of that kind. If d != NULL, d’s
duration must equal the duration of s. A call to KheElmDemandHasChanged(d) is included.
KheElmSupplyFixedDemand returns s’s current fixed demand, possibly NULL.

To facilitate the handling of irregular monitors, a supply can be temporarily removed from
the graph (so that it does not match any demand) and subsequently restored:

void KheElmSupplyRemove(KHE_ELM_SUPPLY s);
void KheElmSupplyUnRemove(KHE_ELM_SUPPLY s);

KheElmSupplyRemove aborts if s has a fixed demand. A removed supply merely becomes
unmatchabled, it does not get deleted from node lists and so on. Function

bool KheElmSupplyIsRemoved(KHE_ELM_SUPPLY s);

reports whether s is currently removed.

When KheElmMake returns, there is one demand group for each child node, one demand for
each child meet, one supply group for each parent meet, and one supply for each supply group,
with offset 0 and duration equal to the duration of the meet. All this is fixed except that supplies
may be split and merged by calling

bool KheElmSupplySplitCheck(KHE_ELM_SUPPLY s, int offset, int durn,
int *count);

bool KheElmSupplySplit(KHE_ELM_SUPPLY s, int offset, int durn,
int *count, KHE_ELM_SUPPLY *ls, KHE_ELM_SUPPLY *rs);

void KheElmSupplyMerge(KHE_ELM_SUPPLY ls, KHE_ELM_SUPPLY s,
KHE_ELM_SUPPLY rs);

KheElmSupplySplitCheck returns true when s may be split so that one of the fragments has
the given offset and duration. If so, it sets *count to the total number of fragments that would
be produced, either 1, 2, or 3. KheElmSupplySplit is the same except that it actually performs
the split when possible, leaving s with the given offset and duration. Splitting is possible when

270 Chapter 10. Time Solvers

KheElmSupplyFixedDemand(s) == NULL &&
KheElmSupplyOffset(s) <= offset &&
offset + durn <= KheElmSupplyOffset(s) + KheElmSupplyDuration(s)

This says that s is not fixed to some demand, and that offset and durn define a set of offsets
lying within the set of offsets currently covered by s. Otherwise it returns false.

If KheElmSupplyOffset(s) < offset, then a supply *ls is split off s at left, holding
the offsets from KheElmSupplyOffset(s) inclusive to offset exclusive; otherwise *ls is
set to NULL. If offset + durn < KheElmSupplyOffset(s) + KheElmSupplyDuration(s),
then a supply *rs is split off s at right, holding the offsets from offset + durn inclusive to
KheElmSupplyOffset(s) + KheElmSupplyDuration(s) exclusive; otherwise *rs is set to
NULL. The original s is left with offsets from offset inclusive to offset + durn exclusive.

KheElmSupplyMerge undoes the corresponding KheElmSupplySplit. Either or both of ls
and rs may be NULL. No meet splitting or merging is carried out by these operations.

Finally,

void KheElmSupplyDebug(KHE_ELM_SUPPLY s, int verbosity,
int indent, FILE *fp);

sends a debug print of s with the given verbosity and indent to fp.

10.6.3. Splitting supplies

The elm returned by KheElmMake has only a trivial segmentation, with one segment per parent
meet. Few or no demands will match with these supplies, because only demands and supplies of
equal duration match. So the initial supplies have to be split using KheElmSupplySplit.

Elm has a helper module which splits supplies heuristically. It offers just one function:

void KheElmSplitSupplies(KHE_ELM elm, KHE_SPREAD_EVENTS_CONSTRAINT sec);

If the diversify option of elm’s options attribute is true, its result varies depending on the
layer’s solution’s diversifier. The sec parameter of KheElmSplitSupplies may be NULL. If
non-NULL, KheElmSplitSupplies tries to find a segmentation in which each time group of sec
covers the same number of segments, as explained for KheElmLayerAssign above.

KheElmSplitSupplies works as follows. Begin by handling demands whose meets are
preassigned or already assigned. For each such demand, split a supply to ensure that exactly
the right segment is present, and use KheElmSupplySetFixedDemand to fix the supply to the
demand. If the required split cannot be made, the demand remains permanently unmatched.

Sort the remaining demands by increasing size of their meets’domains (in practice this also
sorts by decreasing duration), breaking ties by decreasing demand. Use KheMeetAssignFix to
ensure that these meets cannot be assigned. This removes them from the matching to begin with
(strictly speaking, it prevents them from having any outgoing edges in the matching graph).

For each demand in turn, unfix its meet and observe the effect of this on the best matching.
If the size of the best matching increases by one, proceed to the next demand. Otherwise, the
demand has failed to match, and this must be corrected (if possible) by splitting segments of
larger duration into smaller segments that it can match with. For each supply whose duration

10.6. Extended layer matching with Elm 271

is larger than the duration of the demand, try splitting the supply in all possible ways into two
or three smaller segments such that at least one of the fragments has the same duration as the
demand. If there was at least one successful split, redo the best of them.

The best split is determined by an evaluation with five components:

1. The split must be successful: it must increase the size of the best matching by one. Only
successful splits are eligible for use; if there are none, the demand remains unmatched.

2. It is better to split a segment into two fragments than into three. For example, when splitting
a double from a meet of duration 4, it is better to take the first two times or the last two,
rather than the middle two, since the latter leaves fewer choices for future splits.

3. If the parent node has zones, it is desirable to use a segment overlapping only one zone, to
produce meet regularity (Section 5.4) with the layer used to create the zones.

4. The split should produce a best matching whose cost is as small as possible.

5. If sec != NULL, the split should encourage the evenness that sec’s presence requests.

These are combined lexicographically: later criteria only apply when earlier ones are equal.
Meet regularity has higher priority than cost because cost can often be improved later, whereas
meet regularity once lost is lost forever.

After all demands are processed, if any supplies have duration larger than the duration of
all demands, split them into smaller pieces, preferably supplies regular with the zones, if any.
This adds more edges, and so may reduce the cost of the best matching, at no risk to its size. It is
important when timetabling layers of small duration, such as layers containing staff meetings.

10.6.4. Improving node regularity

When the parent node has zones,KheElmSplitSupplies produces good meet regularity but does
nothing to promote node regularity. This can be done by following it with a call to

void KheElmImproveNodeRegularity(KHE_ELM elm);

implemented by another Elm helper module. It does nothing when there are no zones. When
there are, it removes edges from the matching graph to improve the node regularity of the edges
with respect to the zones. If requested by the diversify option of elm’s options attribute, it
consults the solution’s diversifier, and the edges it removes vary with the diversifier.

The problem of removing edges from a layer matching graph to maximize node regularity
with zones while keeping the matching cost low may seem obscure, but it is one of the keys to
effective time assignment in high school timetabling. Bin packing is reducible to this problem,
so it is NP-complete. Even the small instances (up to ten nodes in each layer, say) that occur
in practice seem hard to solve to optimality. The author tried a tree search which would have
produced an optimal result, but could not make it efficient, even with several pruning rules. So
KheElmImproveNodeRegularity is heuristic.

Although many kinds of defects contribute to the edge costs that make up the matching
cost, in practice the cost is dominated by demand cost (including the cost of avoid clashes and

272 Chapter 10. Time Solvers

avoid unavailable times defects). Every unit of demand cost incurred when assigning a time
represents an unassignable resource at that time, implying that either the final solution will have
a significant defect, or else that the time assignment will have to be changed later.

However, not all demand costs are equally important. When the cost is incurred by a child
node with no children, all of the meets of that node at that time will have to be moved later, which
is very disruptive. An assignment scarcely deserves to be called node-regular if that is going to
happen. But when the cost is incurred by a child node with children, after flattening it is often
possible to remove the defect by moving just one meet, disrupting node regularity only slightly.
So it is important to give priority to nodes with no children.

This is done in two ways. First, the cost of edges leading out of meets whose nodes have
no children is multiplied by 10. Second, when evaluating alternatives while improving node
regularity, the cost of the best matching is divided into two parts: the total cost of edges leading
out of meets in nodes with no children (the without-children cost) and the total cost of the
remaining edges (the with-children cost), and without-children cost takes priority.

The heuristic sorts the child nodes by decreasing duration. Nodes with equal duration are
sorted by increasing number of children. Although it is important to minimize without-children
cost, even at the expense of with-children cost, it would be wrong to maximize without-children
node regularity at the expense of with-children node regularity. Node regularity is generally
harder to achieve for nodes of longer duration, so they are handled first.

For each child node in sorted order, the heuristic generates a sequence of sets of zones. For
each set of zones, it reduces the matching edges leading out of the meets of the child node so that
they go only to segments whose times overlap with the times of the zones. A best set of zones is
chosen, the limitation of the child node’s meets to those nodes is fixed, and the heuristic proceeds
to the next child node.

The best set is the first one with a lexicographically minimum value of the triple

(without_children_cost, zones_cost, with_children_cost)

The without_children_cost and with_children_cost components are as defined above.
The zones_cost component measures the badness of the set of zones. It is the number of zones
in the set (we are trying to minimize this number, after all), adjusted to favour zones of smaller
duration and zones already present in sets fixed on previously, to encourage the algorithm to use
up zones completely wherever possible.

The algorithm for generating sets of zones generates all sets of cardinality 1, then all sets of
cardinality 2, then one set containing every zone that the current best matching touches. This last
set is included to ensure that at least one set leading to a reasonable matching cost is tried. A few
optimizations are implemented, including skipping sets of insufficient duration, and skipping
zones known to be fully utilized already.

10.6.5. Handling irregular monitors

Each edge of the layer matching graph is assigned a cost by making one meet assignment and
measuring the solution cost afterwards. This amounts to assuming that the cost of each edge is
independent of which other edges are present in the best matching. Costs come from monitors,
and the truth of this assumption varies with the monitor type, as follows.

10.6. Extended layer matching with Elm 273

Assign time and prefer times costs. Independent when the cost function is Linear, which
it always is in practice for these kinds of monitors.

Split events and distribute split events costs. Not changed by meet assignments.

Spread events costs. Non-independent. Previous sections have addressed this problem, by
varying path costs to discourage two demands from one demand group from matching with
two supplies from one supply group, and by improving node regularity.

Link events costs. Not changed by meet assignments when handled structurally, which they
always are in practice.

Order events costs. Non-independent when both events lie in the current layer.

Assign resource, prefer resources, and avoid split assignments costs. Not changed by
meet assignments.

Avoid clashes costs. Independent, because clashes are never introduced within one layer.

Avoid unavailable times costs. Independent when the cost function is Linear.

Limit idle times, cluster busy times, and limit busy times costs. Non-independent when
present (when resources subject to them are preassigned in the layer’s meets).

Limit workload costs. Not changed by meet assignments.

Demand costs. Independent when they monitor clashes and unavailable times. More subtle
interactions can be non-independent, but most layer matchings are built when the timetable
is incomplete and subtle demand overloads are unlikely.

Order events, limit idle times, cluster busy times, and limit busy times monitors stand out as
needing attention. These will be called irregular monitors.

At present, the author has no experience with order events monitors, so Elm does nothing
with them. The irregular monitors handled by Elm are those limit idle times, cluster busy times,
and limit busy times monitors of the resources of the layer match’s layer which are attached at the
time the elm is created. The Elm core module stores these monitors in an array, accessible via

int KheElmIrregularMonitorCount(KHE_ELM elm);
KHE_MONITOR KheElmIrregularMonitor(KHE_ELM elm, int i);
void KheElmSortIrregularMonitors(KHE_ELM elm,
int(*compar)(const void *, const void *));

KheElmIrregularMonitorCount and KheElmIrregularMonitor visit them in the usual way.
KheElmSortIrregularMonitors sorts them; compar is a function suited to passing to qsort

when sorting an array of monitors. Core function

bool KheElmIrregularMonitorsAttached(KHE_ELM elm);

returns true if all irregular monitors are currently attached. By definition, this is true initially.

As a first step in handling the irregular monitors of its layer, Elm offers functions

void KheElmDetachIrregularMonitors(KHE_ELM elm);
void KheElmAttachIrregularMonitors(KHE_ELM elm);

274 Chapter 10. Time Solvers

to detach any irregular monitors that are not already detached, and attach any that are not already
attached. KheElmLayerAssign uses them to detach irregular monitors at the start and reattach
them at the end. This ensures that the best matching never takes them into account. It would
only cause confusion if it did.

For improving its performance when irregular monitors are present, Elm offers

void KheElmReduceIrregularMonitors(KHE_ELM elm);

If irregular monitors are attached, it detaches them. It installs the best matching’s assignments,
attaches irregular monitors, and remembers the solution cost. Then for each supply s, it detaches
irregular monitors, removes s from the graph, installs the best matching’s assignments, attaches
irregular monitors, remembers the solution cost, and restores s to the graph. If none of the
removals improves cost, it returns irregular monitors to their original state of attachment and
terminates. Otherwise, it permanently removes the supply that produced the best cost and repeats
from the start.

Some optimizations avoid futile work. If removing s would reduce the total duration of
supply nodes to below the total duration of demand nodes, or reduce the number of supplies of
s’s duration to below the number of demands of s’s duration, the removal of s is not tried. And
the function returns immediately if the layer has no irregular monitors.

KheElmReduceIrregularMonitors is a plausible way to attack limit idle times and limit
busy times defects, but it is not radical enough for cluster busy times defects. These are better
handled by other means, such as KheSolnClusterAndLimitMeetDomains (Section 10.3.3).

10.7. Time repair

This section presents the time solvers packaged with KHE that take an existing time assignment
and repair it (that is, attempt to improve it). However carefully an initial time assignment is made,
it must proceed in steps, and it can never incorporate enough forward-looking information to
ensure that each step does not create problems for later steps. So a repair phase after the initial
assignment is complete seems to be a practical necessity.

10.7.1. Node-regular time repair using layer node matching

Suppose we have a time assignment with good node regularity, but with some spread and
demand defects. Repairs that move meets arbitrarily might fix some defects, but the resulting
loss of node regularity might have serious consequences later, during resource assignment. This
section offers one idea for repairing time assignments without sacrificing node regularity.

One useful idea is to make repairs which are node swaps: swaps of the assignments of (the
meets of) entire nodes. The available swaps are quite limited, because the nodes concerned must
lie in the same layers and have the same number of meets with the same durations.

For any parent node, take any set of child nodes lying in the same layers whose meets are
all assigned. Build a bipartite graph in which each of these child nodes is one demand node, and
the set of assignments of its meets is one supply node. An assignment is a triple of the form

(target_meet, offset, durn)

10.7. Time repair 275

as for layer matchings (Section 10.6), but here a supply node is a set of triples, not one triple.

For each case where a child node can be assigned to a set of triples, because the number
of triples and their durations match the node’s number of meets and durations, add an edge to
the graph labelled by the change in solution cost when the corresponding set of assignments is
made. Find a maximum matching of minimum cost in this graph and reassign the child nodes
in accordance with it. The existing assignment is one maximum matching, so this will either
reproduce that or find something which has a good chance of being better. Function

bool KheLayerNodeMatchingNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

applies these ideas to the child nodes of parent_node, returning true if it considers its work to
have been useful, as is usual for time repair solvers. First, if parent_node has no child layers
it calls KheNodeChildLayersMake to build them. Then it partitions the child nodes so that the
nodes of each partition lie in the same set of layers. Then, for each partition in turn, it builds
the weighted bipartite graph and carries out the corresponding reassignments. If the solution
cost does not decrease, the reassignments are undone. It continues cycling around the partitions
until n reassignments have occurred without a cost decrease, where n is the number of partitions.
Finally, if it made layers to begin with it removes them. A related function is

bool KheLayerNodeMatchingLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

It starts with the child nodes of layer rather than all the child nodes of its parent.

On a real instance, KheLayerNodeMatchingNodeRepairTimes found no improvements at
all after all layers were assigned. Applied after each layer after the first was assigned, it found
one improvement, which reduced the number of unassignable tixels by 1or 2. This improvement
was carried through to the final solution: the median number of unassigned tixels when solving
16 instances was reduced from about 9 to about 7, and there were modest reductions in spread
defects and split assignment defects as well. The extra run time was about 0.6 seconds.

10.7.2. Ejection chain time repair

Time solvers

bool KheEjectionChainNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

bool KheEjectionChainLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

use ejection chains (Chapter 13) to repair the assignments of the meets of the descendants of
the child nodes of parent_node, or the assignments of the meets of the descendants of the child
nodes of layer. For full details of these functions, consult Section 13.6.1.

10.7.3. Tree search layer time repair

Very large-scale neighbourhood (VLSN) search [1, 12] deassigns a relatively large chunk of the
solution, then reassigns it in a hopefully better way. If the chunk is chosen carefully, it may be

276 Chapter 10. Time Solvers

possible to find an optimal reassignment in a moderate amount of time.

One well-known VLSN neighbourhood is the set of meets of one layer (a set of meets which
must be disjoint in time, usually because they have a resource in common). For example, finding
a timetable for one university student is a kind of layer reassignment, with the choices of times
for the meets determined by when sections of the student’s courses are running. Function

bool KheTreeSearchLayerRepairTimes(KHE_SOLN soln, KHE_RESOURCE r);

reassigns the meets of soln currently assigned resource r, using a tree search. Once the number
of nodes explored reaches a fixed limit, it switches to a simple heuristic, giving up the guarantee
of optimality to ensure that running time remains moderate. Function

bool KheTreeSearchRepairTimes(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
bool with_defects);

calls KheTreeSearchLayerRepairTimes for each resource in soln’s instance (or each of type
rt, if rt is non-NULL). If with_defects is true, these calls are only made for resources with
at least one resource defect, otherwise they are made for all resources. The rest of this section
describes KheTreeSearchLayerRepairTimes in detail.

If a tree search is given a high standard to reach, it will run quickly because many paths will
fail the standard and get pruned, and so it is quite likely to run to completion and reach that high
standard if it is reachable at all. If it is given a low standard, it will run more slowly and quite
possibly not run to completion. Either approach is legitimate, but a choice has to be made.

Because VLSN search is relatively slow, it seems best to use it near the end of a solve, when
there are few defects left to target. KheTreeSearchLayerRepairTimes is intended to be used
as a last resort in this way, when there is likely to be just one or two defects related to the layer
being targeted. Accordingly, it aims high, for an assignment with no defects at all. It prunes paths
whenever it can see that there is a defect that cannot be corrected by further assignments.

The meets are first sorted into decreasing duration order and unassigned. Each is given a
current domain, which is initially its usual domain minus any starting times that would cause the
meet to overlap a time when any of its resources are unavailable. Then a traditional tree search
is carried out, which at each node of level i assigns a time from its current domain to the ith meet
in the sorted list. The best leaf is remembered and replaces the original set of assignments if its
solution cost is smaller. Three rules are used for pruning the tree.

First, any assignment which returns false or causes the number of unmatched demand
tixels to exceed its value in the initial solution is rejected.

Second, after a fixed number of nodes is reached, new nodes are still explored, but only the
first assignment that does not increase the number of unmatched demand tixels is tried therein.

Third, a form of forward checking is used. Let m1 and m2 be meets of the layer, and let t1
and t2 be times. At the start, a set of exclusions is built, each of the form

(m1, t1) ⇒ ¬(m2, t2)

This means that if m1 is assigned starting time t1, then m2 may not be assigned starting time t2.
While the search is running, when m1 is assigned t1 this exclusion is applied, removing t2 from the
domain of m2. When m1 is unassigned later, the exclusion is removed (m2 must come later in the

10.7. Time repair 277

list of meets to be assigned than m1, so that at the moment m1 is assigned, m2 is not assigned).

Following is a list of true statements about various situations:

• Since the meets all share a resource, no two of the meets may overlap in time.

• Two meets linked by a spread events constraint cannot be assigned within the same time
group of that constraint, when that time group has a Maximum attribute of 1.

• Two meets linked by an order events constraint must be assigned in a certain chronological
order, possibly with a given separation.

• Given two meets with the same duration and the same resources, and monitored by the same
event monitors, it is safe (and useful for avoiding symmetrical searches) to arbitrarily insist
that the first one in the assignment list should appear earlier in the cycle than the second.

Each statement gives rise to exclusions, and all these exclusions are added, except that at present
a couple of shortcuts are being used: order events constraints are not currently taken into account,
and the symmetry breaking idea of the last point is being applied to a different set of pairs of
meets, namely those which are linked by a spread events constraint and have the same duration.

Exclusions are used in two ways. First, when a meet’s turn comes to be assigned, only
times in its current domain (its initial domain minus any exclusions) are tried. Second, each meet
keeps a count of the number of times in its current domain. If this number ever drops to 0, the
assignment that caused that to happen is rejected immediately.

On instance IT-I4-96, with limit 10000, this method improved the timetables of four
resources, reducing final cost from 0.00397 to 0.00390, and adding about 2 seconds to total run
time. There was wide variation in the completeness of the search: for some resources, every
possible timetable was tried; for others, there was only time to try timetables that assigned the
first meet to the first time. It did not reduce the 0.00067 cost of the best of 8 solutions, nor find
any improvements when solving instance AU-BG-98. A run with limit 1000000 improved a fifth
resource in IT-I4-96, and showed that many searches do reach even this quite large limit.

10.7.4. Meet set time repair and the fuzzy meet move

Another VLSN idea is to use a tree search to repair the assignments of an arbitrary (but small)
set of meets. Given a set of meets, build the set of all target meets they are assigned to, and for
each target meet, the set of offsets within it that they are running. The aim is to reassign the meets
optimally within these same target meets and offsets. The only pruning rule is that the number
of unmatched demand tixels may not exceed its initial value.

The functions that implement this idea are

KHE_MEET_SET_SOLVER KheMeetSetSolveBegin(KHE_SOLN soln, int max_meets);
void KheMeetSetSolveAddMeet(KHE_MEET_SET_SOLVER mss, KHE_MEET meet);
bool KheMeetSetSolveEnd(KHE_MEET_SET_SOLVER mss);

KheMeetSetSolveBegin makes a meet-set solver object which coordinates the operation.
KheMeetSetSolveAddMeet adds one meet to the solver, and may be called any number of times,
building up a set of meets. If the number of meets added reaches the max_meets parameter of

278 Chapter 10. Time Solvers

KheMeetSetSolveBegin, further calls to KheMeetSetSolveAddMeet are allowed but ignored.
Finally, KheMeetSetSolveEnd uses a tree search to find an optimal reassignment of the meets to
(collectively) their original target meets and offsets, returning true if it reduced the cost of the
solution, and frees the memory used by the solver object. If the number of nodes in the search
tree exceeds a given fixed limit, the search switches to a simple linear heuristic at each remaining
tree node, losing the guarantee of optimality but ensuring that run times remain moderate.

As a first application of these functions, KHE offers

bool KheFuzzyMeetMove(KHE_MEET meet, KHE_MEET target_meet, int offset,
int width, int depth, int max_meets);

This may move meet to target_meet at offset, but not necessarily. Instead, it selects a set
of meets likely to be affected by that move, including meet, and passes them all to the meet set
solver above for (hopefully) optimal reassignment. It returns true if and only if it changed the
solution, which will be if and only if it reduced the cost of the solution.

The point of KheFuzzyMeetMove is that if the caller has identified this move as likely to be
useful, but with some uncertainty about its consequences, it allows the move to be tried, but with
adjustments in the neighbourhood to get the most out of it. These adjustments are not unlike
those made by Kempe meet moves, only more general and more costly in run time.

Two sets of meets are selected. To be in the first set, a meet has to be assigned to the same
target meet as meet, at an offset lying between meet’s current offset minus width, and meet’s
current offset plus width. Furthermore, if depth is 1 (the smallest reasonable value), a selected
meet has to share a resource (assigned or preassigned) with meet. If depth is 2, a selected meet
has to share a resource with a meet that would be selected when the depth is 1, and so on: the
depth signifies the maximum length of a chain of shared resources that must connect a selected
meet to meet. The second set of meets is the same as the first, only defined using target_meet

and offset instead of meet’s current target meet and offset.

As for meet set time repair, at most max_meets meets will be selected. If width and depth

are small, it is reasonable for max_meets to be INT_MAX.

10.8. Layered time assignment

The heart of time assignment when layer trees are used is to assign the meets of the child nodes
of a given parent node to the meets of the parent node. A layered time assignment is one which
groups the child nodes into layers and assigns them layer by layer. This is a good way to do it,
since the nodes of each layer strongly constrain each other (they must be disjoint in time).

KheElmLayerAssign (Section 10.6) is KHE’s main solver for assigning the meets of the
child nodes of one layer. But there is work to be done to prepare the way for calling this function,
beyond the structural work of building the layer tree. This section presents KHE’s functions for
carrying out this preparatory work and calling KheElmLayerAssign.

10.8.1. Layer assignments

When assigning layers it is useful to be able to record an assignment of the meets of a layer, for
undoing and redoing later. Marks and paths could do this, but they record every step. A layer

10.8. Layered time assignment 279

assignment algorithm could be very long and wandering, so it is better to record just its result.

Accordingly, KHE offers the layer assignment object, with type KHE_LAYER_ASST:

KHE_LAYER_ASST KheLayerAsstMake(KHE_SOLN soln);
void KheLayerAsstDelete(KHE_LAYER_ASST layer_asst);
void KheLayerAsstBegin(KHE_LAYER_ASST layer_asst, KHE_LAYER layer);
void KheLayerAsstEnd(KHE_LAYER_ASST layer_asst);
void KheLayerAsstUndo(KHE_LAYER_ASST layer_asst);
void KheLayerAsstRedo(KHE_LAYER_ASST layer_asst);
void KheLayerAsstDebug(KHE_LAYER_ASST layer_asst, int verbosity,
int indent, FILE *fp);

KheLayerAsstMake and KheLayerAsstDelete make and delete one. KheLayerAsstBegin is
called before some algorithm for assigning layer is run. It records which of layer’s meets are
unassigned then. KheLayerAsstEnd is called after the algorithm ends. For each meet recorded
by KheLayerAsstBegin, it records the assignment of that meet. KheLayerAsstUndo undoes the
recorded assignments, and KheLayerAsstRedo redoes them. KheLayerAsstDebug produces a
debug print of layer_asst onto fp.

10.8.2. A solver for layered time assignment

Time solver

bool KheNodeLayeredAssignTimes(KHE_NODE parent_node, KHE_OPTIONS options);

assigns the meets of the child nodes of parent_node to the meets of parent_node, calling
KheElmLayerAssign (Section 10.6) to assign them layer by layer. Existing assignments of the
meets affected may change. The implementation is described at the end of this section.

If parent_node is the cycle node, KheNodePreassignedAssignTimes should be called
first, to give priority to demands made by preassigned meets.

KheNodeLayeredAssignTimes is influenced by three options:

ts_no_node_regularity

A Boolean option which, when true, instructs KheNodeLayeredAssignTimes , as well as
KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes (Sec-
tion 13.6.1), to not try to make the assignments node-regular (Section 5.4). Node regularity
will usually be appropriate for the cycle node, but not for other nodes, since in practice they
are runaround nodes, and irregularity is wanted in them rather than regularity.

ts_layer_swap
KheNodeLayeredAssignTimes usually assigns each layer in turn, in a heuristically
chosen order. But if the Boolean ts_layer_swap option is true, it does something more
interesting. For each layer i other than the first and last, it (a) tries assigning and repairing
layer i followed by layer i + 1, then (b) tries assigning and repairing layer i + 1followed by
layer i. If the solution cost after (a) is less than after (b), it leaves (a)’s assignment of layer
i in place and proceeds to the next layer; otherwise it leaves (b)’s assignment of layer i + 1
in place and proceeds to the next layer. So one layer is assigned on each iteration, as usual,
but it could be either the usual one or the next one.

280 Chapter 10. Time Solvers

ts_layer_repair

An option which instructs KheNodeLayeredAssignTimes which of its layers to repair after
assignment. It has three values, "none" meaning repair no layers, "all" meaning repair all
layers, and "exp" meaning use exponential backoff to decide which layers to repair. When
the option is absent its value is taken to be "all".

ts_layer_time_limit

A string option defining a soft time limit for assigning a layer. The format is that accepted
by KheTimeFromString (Section 8.1): secs, or mins:secs, or hrs:mins:secs. There
is also the special value -, meaning ‘set no limit’, and this is the default value.

The rest of this section describes the implementation of KheNodeLayeredAssignTimes.

If parent_node has no layers, KheNodeLayeredAssignTimes first makes them, by calling
KheNodeChildLayersMake (Section 9.3.1). It then sorts the layers,assigns and optionally repairs
them, and ends with KheNodeChildLayersDelete if it called KheNodeChildLayersMake.

When sorting the layers, the first priority is to ensure that already assigned layers come
first. These are marked by assigning visit number 1 to them. Among unvisited layers, a heuristic
rule is used: decreasing value of the sum of the duration and the duration of meets that have
already been assigned, minus the number of meets. The reasoning here is that layers with
larger durations are harder to assign, and they become even harder when many of their meets’
assignments are already decided on (since the algorithm does not change them); but, on the other
hand, the more meets there are, the smaller their durations must be for a given overall duration,
making assignment easier. Here is the layer comparison function; it may be called separately:

int KheNodeLayeredLayerCmp(const void *t1, const void *t2)
{
KHE_LAYER layer1 = * (KHE_LAYER *) t1;
KHE_LAYER layer2 = * (KHE_LAYER *) t2;
int value1, value2, demand1, demand2;
if(KheLayerVisitNum(layer1) != KheLayerVisitNum(layer2))
return KheLayerVisitNum(layer2) - KheLayerVisitNum(layer1);

value1 = KheLayerDuration(layer1) - KheLayerMeetCount(layer1) +
KheLayerAssignedDuration(layer1);

value2 = KheLayerDuration(layer2) - KheLayerMeetCount(layer2) +
KheLayerAssignedDuration(layer2);

if(value1 != value2)
return value2 - value1;

demand1 = KheLayerDemand(layer1);
demand2 = KheLayerDemand(layer2);
if(demand1 != demand2)
return demand2 - demand1;

return KheLayerParentNodeIndex(layer1) -
KheLayerParentNodeIndex(layer2);

}

As a last resort it compares total demand, then layer indexes, to give a non-zero result in all cases:
qsort’s specification is non-deterministic, which is best avoided, if the result is zero.

10.8. Layered time assignment 281

KheNodeLayeredAssignTimes sets the time_vizier_node option to false before making
the call that repairs the first layer, and resets it to its original value afterwards. It’s a small point,
but a vizier node would be redundant when repairing the first layer.

Let the whole-timetable monitors be the limit idle times, cluster busy times, and limit busy
times monitors. These depend on the whole timetable of their resource, or large parts of it. The
other resource monitors either depend on local parts of the timetable (avoid clashes and avoid
unavailable times monitors) or are independent of the timetable (limit workload monitors).

In practice, evaluating a whole-timetable monitor before its resource’s layer is assigned is
problematical, since it depends on the whole timetable, which does not exist then. For example,
a partial timetable may have idle times which could well be filled later when its resource’s other
meets are assigned times. Accordingly, KheNodeLayeredAssignTimes begins by detaching all
whole-timetable monitors of all resources in all its layers. Just before assigning each layer, it
attaches the whole-timetable monitors of the resources of the layer.

This detachment of whole-timetable monitors is similar to the detachment of irregular
monitors during the assignment of one layer by Elm (Section 10.6.5). Both detachments are
done because the monitors in question would not produce useful cost information if attached.
However, in the case of Elm that is because of the particular algorithm employed, whereas here
it is because of something more fundamental: the fact that only a partial timetable is present.

The remainder of this section describes the three extra things that are done when the
time_node_regularity option of options is true.

First, when a meet from another layer is already assigned (because it is preassigned,
usually), it is good to make that same assignment to a meet of the same duration in the first layer,
for regularity between the two meets. Such an assignment to a meet of the first layer is called
a parallel assignment. If there is a node from another layer containing two or more assigned
meets, then it is good to make the corresponding parallel assignments within one node of the first
layer, for regularity between the nodes; and if two nodes from one layer contain assigned meets,
it is good to make the corresponding parallel assignments to distinct nodes of the first layer. The
layer solver that makes these parallel assignments to the meets of the first layer is called only
when time_node_regularity is true, but it is also available separately:

bool KheLayerParallelAssignTimes(KHE_LAYER layer, KHE_OPTIONS options);

It makes parallel assignments to layer heuristically, returning true if every assigned meet in
every sibling layer of layer has a parallel assignment afterwards. It uses no options.

Second, KheElmLayerAssign takes a spread events constraint as an optional parameter.
When time_node_regularity is true, KheNodeLayeredAssignTimes searches the instance
for a spread events constraint with as many points of application as possible, and passes this
constraint (if any) to KheElmLayerAssign.

Third, and most important, when time_node_regularity is true, after the first layer has
been assigned and optionally repaired, KheNodeLayeredAssignTimes uses the first layer’s
assignments to define zones in the parent node, by calling KheLayerInstallZonesInParent

(Section 5.4) and KheNodeExtendZones (Section 9.6). These zones encourage the following
calls to KheElmLayerAssign and KheEjectionChainLayerRepairTimes to find and preserve
zone-regular assignments.

282 Chapter 10. Time Solvers

10.9. Putting it all together

There is a ts option which allows you to define a do-it-yourself time solver (Section 8.3) built
from the pieces presented in this and the preceding chapter. The default value of this option
defines a reasonable solver which we will come to later.

The value of ts must be a <solver> as defined in Section 8.3. Here is the current list of
valid items and their meanings:

<item> Meaning

tcl Call KheCoordinateLayers (Section 9.3.2).

tbr Call KheBuildRunarounds (Section 9.4.2).

trt Call KheNodeRecursiveAssignTimes (Section 10.4) on each child
of the cycle node, passing KheRunaroundNodeAssignTimes (Section
10.5) as the assignment function.

tpa Call KheNodePreassignedAssignTimes (Section 10.4).

tnp(<solver>) If not all events have preassigned times, call <solver>. If all events
have preassigned times, do nothing.

ttp(<solver>) Call KheTaskingTightenToPartition (Section 11.4.3) on each
tasking, run <solver>, then undo the tightening.

tmd(<solver>) Call KheSolnClusterAndLimitMeetDomains (Section 10.3.3), run
<solver>, then undo what the clustering and limiting did.

tnl Call KheNodeLayeredAssignTimes (Section 10.8.2).

tec Call KheEjectionChainNodeRepairTimes (Section 10.7.2).

tnf Call KheNodeFlatten (Section 9.5.5).

tdz Call KheNodeDeleteZones (Section 5.4).

KheSolnTryMeetUnAssignments has been omitted because the general solver calls it.

The remarks about time limits in Section 8.3 apply to time solving. There is a
ts_time_limit option for placing a time limit on time assignment. For example,

ts_time_limit="2:0"

sets an overall time limit for time assignment (including repair) of 2 minutes. Time weights may
be used to apportion the available time among the various solvers as usual.

All of this is carried out by function

bool KheCombinedTimeAssign(KHE_NODE cycle_node, KHE_OPTIONS options);

This sets the ts_time_limit time limit if that option is present, then assigns times using the
value of option ts as its guide, and finally deletes the time limit if it sets it. The easiest way to call
it is to include ts in the gs option (Section 8.4), causing the general solver to call it for you.

The ts option has default value

gta(tcl, tbr, trt, tpa, tnp(ttp(tnl, tec, tnf, tdz, tec)))

10.9. Putting it all together 283

The global tixel matching is installed throughout. This seems to be essential, since otherwise
some time assignment solver will fail to recognize that assigning the same time to six Science
meets will not work when there are only five Science laboratories, and will produce a time
assignment that is of no use to anyone. KheEjectionChainNodeRepairTimes is called twice,
the second time in a more permissive context. All this represents the author’s current idea of how
best to use the various time solvers. It will change as his ideas change.

Chapter 11. Resource-Structural Solvers

This chapter documents the solvers packaged with KHE that modify the resource structure of
a solution: group and ungroup tasks, and so on. These solvers may alter resource assignments,
but they only do so occasionally and incidentally to their structural work.

11.1. Task bound groups

Task domains are reduced by adding task bound objects to tasks (Section 4.6.3). Frequently,
task bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of task bounds—but it is convenient to have a
standard for it, so KHE defines a type KHE_TASK_BOUND_GROUP with suitable operations.

To create a task bound group, call

KHE_TASK_BOUND_GROUP KheTaskBoundGroupMake(KHE_SOLN soln);

To add a task bound to a task bound group, call

void KheTaskBoundGroupAddTaskBound(KHE_TASK_BOUND_GROUP tbg,
KHE_TASK_BOUND tb);

To visit the task bounds of a task bound group, call

int KheTaskBoundGroupTaskBoundCount(KHE_TASK_BOUND_GROUP tbg);
KHE_TASK_BOUND KheTaskBoundGroupTaskBound(KHE_TASK_BOUND_GROUP tbg, int i);

To delete a task bound group, including deleting all the task bounds in it, call

bool KheTaskBoundGroupDelete(KHE_TASK_BOUND_GROUP tbg);

This function returns true when every call it makes to KheTaskBoundDelete returns true.

11.2. Task trees

What meets do for time, tasks do for resources. A meet has a time domain and assignment; a
task has a resource domain and assignment. Link events constraints cause meets to be assigned
to other meets; avoid split assignments constraints cause tasks to be assigned to other tasks.

There are differences. Tasks lie in meets, but meets do not lie in tasks. Task assignments do
not have offsets, because there is no ordering of resources like chronological order for times.

Since the layer tree is successful in structuring meets for time assignment, let us see what
an analogous tree for structuring tasks for resource assignment would look like. A layer tree is a
tree, whose nodes each contain a set of meets. The root node contains the cycle meets. A meet’s
assignment, if present, lies in the parent of its node. By convention, meets lying outside nodes

284

11.2. Task trees 285

have fixed assignments to meets lying inside nodes, and those assignments do not change.

A task tree, then, is a tree whose nodes each contain a set of tasks. The root node contains
the cycle tasks (or there might be several root nodes, one for each resource type). A task’s
assignment, if present, lies in the parent of its node. By convention, tasks lying outside nodes
have fixed assignments to tasks lying inside nodes, and those assignments do not change.

Type KHE_TASKING is KHE’s nearest equivalent to a task tree node. It holds an arbitrary set
of tasks, but there is no support for organizing taskings into a tree structure, since that does not
seem to be needed. It is useful, however, to look at how tasks are structured in practice, and to
relate this to task trees, even though they are not explicitly supported by KHE.

A task is assigned to a non-cycle task and fixed, to implement an avoid split assignments
constraint. Such tasks would therefore lie outside nodes (if there were any). When a solver as-
signs a task to a cycle task, the task would have to lie in a child node of a node containing the
cycle tasks (again, if there were any). So there are three levels: a first level of nodes containing
the cycle tasks;a second level of nodes containing unfixed tasks wanting to be assigned resources;
and a third level of fixed, assigned tasks that do not lie in nodes.

This shows that the three-way classification of tasks presented in Section 4.6.1, into cycle
tasks, unfixed tasks, and fixed tasks, is a proxy for the missing task tree structure. Cycle tasks
are first-level tasks, unfixed tasks are second-level tasks, and fixed tasks are third-level tasks.
KHE_TASKING is only needed for representing second-level nodes, since tasks at the other levels
do not require assignment. By convention, then, taskings will contain only unfixed tasks.

11.3. Task tree construction

KHE offers a solver for building a task tree holding the tasks of a given solution:

bool KheTaskTreeMake(KHE_SOLN soln, KHE_OPTIONS options);

As usual, this solver returns true if it changes the solution. Like any good solver, this function
has no special access to data behind the scenes. Instead, it works by calling basic operations and
helper functions:

• It calls KheTaskingMake to make one tasking for each resource type of soln’s instance,
and it calls KheTaskingAddTask to add the unfixed tasks of each type to the tasking it
made for that type. These taskings may be accessed by calling KheSolnTaskingCount and
KheSolnTasking as usual, and they are returned in an order suited to resource assignment,
as follows. Taskings for which KheResourceTypeDemandIsAllPreassigned(rt) is true
come first. Their tasks will be assigned already if KheSolnAssignPreassignedResources
has been called, as it usually has been. The remaining taskings are sorted by decreasing
order of KheResourceTypeAvoidSplitAssignmentsCount(rt) . These functions are
described in Section 3.5.1. Of course, the user is not obliged to follow this ordering. It is a
precondition of KheTaskTreeMake that soln must have no taskings when it is called.

• It calls KheTaskAssign to convert resource preassignments into resource assignments, and
to satisfy avoid split assignments constraints, as far as possible. Existing assignments are
preserved (no calls to KheTaskUnAssign are made).

286 Chapter 11. Resource-Structural Solvers

• It calls KheTaskAssignFix to fix the assignments it makes to satisfy avoid split assignments
constraints. These may be removed later. At present it does not call KheTaskAssignFix to
fix assignments derived from preassignments, although it probably should.

• It calls KheTaskSetDomain to set the domains of tasks to satisfy preassigned resources,
prefer resources constraints, and other influences on task domains, as far as possible.
KheTaskTreeMake never adds a resource to any domain, however; it either leaves a domain
unchanged, or reduces it to a subset of its initial value.

These elements interact in ways that make them impossible to separate. For example, a prefer
resources constraint that applies to one task effectively applies to all the tasks that are linked to
it, directly or indirectly, by avoid split assignments constraints.

KheTaskTreeMake does not refer directly to any options. However, it calls function
KheTaskingMakeTaskTree, described below, and so it is indirectly influenced by its options.

The implementation of KheTaskTreeMake has two stages. The first creates one tasking for
each resource type of soln’s instance, in the order described, and adds to each the unfixed tasks
of its type. This stage can be carried out separately by repeated calls to

KHE_TASKING KheTaskingMakeFromResourceType(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt);

which makes a tasking containing the unfixed tasks of soln of type rt, or of all types if rt is
NULL. It aborts if any of these unfixed tasks already lies in a tasking.

The second stage is more complex. It applies public function

bool KheTaskingMakeTaskTree(KHE_TASKING tasking,
KHE_TASK_BOUND_GROUP tbg, KHE_OPTIONS options);

to each tasking made by the first stage. When KheTaskingMakeTaskTree is called from within
KheTaskTreeMake, its options parameter is inherited from KheTaskTreeMake.

As described for KheTaskTreeMake, KheTaskingMakeTaskTree assigns tasks and tightens
domains; it does not unassign tasks or loosen domains. Only tasks in tasking are affected.
If tbg is non-NULL, any task bounds created while tightening domains are added to tbg. Tasks
assigned to non-cycle tasks have their assignments fixed, so are deleted from tasking.

The implementation of KheTaskingMakeTaskTree imitates the layer tree construction
algorithm: it applies jobs in decreasing priority order. There are fewer kinds of jobs, but the
situation is more complex in another way: sometimes, some kinds of jobs are wanted but not
others. The three kinds of jobs of highest priority install existing domains and task assignments,
and assign resources to unassigned tasks derived from preassigned event resources. These jobs
are always included; the first two always succeed, and so does the third unless the user has made
peculiar task or domain assignments earlier. The other kinds of jobs are optional, and whether
they are included or not depends on the options (other than rs_invariant) described next.

KheTaskTreeMake consults the following options.

rs_invariant

A Boolean option which, when true, causes KheTaskTreeMake to omit assignments and

11.3. Task tree construction 287

domain tightenings which violate the resource assignment invariant (Section 12.2).

rs_task_tree_prefer_hard_off

A Boolean option which, when false, causes KheTaskTreeMake to make a job for each
point of application of each hard prefer resources constraint of non-zero weight. The
priority of the job is the combined weight of its constraint, and it attempts to reduce the
domains of the tasks of tasking monitored by the constraint’s monitors so that they are
subsets of the constraint’s domain.

rs_task_tree_prefer_soft

Like rs_task_tree_prefer_hard_off except that it applies to soft prefer resources
constraints instead of hard ones, and its sense is reversed so that the default value (false
as usual) omits these jobs. The author has encountered cases where reducing domains to
enforce soft prefer resources constraints is harmful.

rs_task_tree_split_hard_off

A Boolean option which, when false, causes KheTaskTreeMake to make a job for each
point of application of each hard avoid split assignments constraint of non-zero weight.
Its priority is the combined weight of its constraint, and it attempts to assign the tasks of
tasking to each other so that all the tasks of the job’s point of application of the constraint
are assigned, directly or indirectly, to the same root task.

rs_task_tree_split_soft_off

Like rs_task_tree_split_hard_off except that it applies to soft avoid split
assignments constraints rather than hard ones.

rs_task_tree_limit_busy_hard_off

A Boolean option which, when false, causes KheTaskTreeMake to make a job for each
point of application of each limit busy times constraint with non-zero weight and maximum
limit 0. Its priority is the combined weight of its constraint, and it attempts to reduce the do-
mains of those tasks of tasking which lie in events preassigned the times of the constraint,
to eliminate its resources, since assigning them to these tasks must violate this constraint.
However, the resulting domain must have at least two elements; if not, the reduction is un-
done, reasoning that it is too severe and it is better to allow the constraint to be violated.

This flag also applies to cluster busy times constraints with maximum limit 0, or rather to
their positive time groups. These are essentially the same as the time groups of limit busy
times constraints when the maximum limit is 0.

rs_task_tree_limit_busy_soft_off

Like rs_task_tree_limit_busy_hard_off except that it applies to soft limit busy
times constraints rather than hard ones.

By default, all of these jobs except rs_task_tree_prefer_soft are run.

11.4. Resource supply and demand

This section covers several topics which are not closely related, except that, in a general way, they
are all concerned with the supply of and demand for resources.

288 Chapter 11. Resource-Structural Solvers

11.4.1. Classifying resources by available workload

Resources with high workload limits, as indicated by functions KheResourceMaxBusyTimes and
KheResourceMaxWorkload (Section 4.7), may be harder to exploit than resources with lower
workload limits, so it may make sense to timetable them first. Function

bool KheClassifyResourcesByWorkload(KHE_SOLN soln,
KHE_RESOURCE_GROUP rg, KHE_RESOURCE_GROUP *rg1,
KHE_RESOURCE_GROUP *rg2);

helps with that. It partitions rg into two resource groups, rg1 and rg2, such that the highest
workload resources are in rg1, and the rest are in rg2. It returns true if it succeeds with this,
and false if not, which will be because the resources of rg have equal maximum workloads.

If KheClassifyResourcesByWorkload returns true, every resource in rg1 has a maximal
value of KheResourceMaxBusyTimes and a maximal value of KheResourceMaxWorkload, and
every element of rg2 has a non-maximal value of KheResourceMaxBusyTimes or a non-maximal
value of KheResourceMaxWorkload. If it returns false, then rg1 and rg2 are NULL.

11.4.2. Limits on consecutive days

Nurse rostering instances typically place minimum and maximum limits on the number of
consecutive days that a resource can be free,busy, or busy working a particular shift. These limits
are scattered through constraints and may be hard to find. This section makes that easy.

An object called a consec solver is used for this. To create one, call

KHE_CONSEC_SOLVER KheConsecSolverMake(KHE_SOLN soln, KHE_FRAME frame);

It uses memory from an arena taken from soln. Its attributes may be retrieved by calling

KHE_SOLN KheConsecSolverSoln(KHE_CONSEC_SOLVER cs);
KHE_FRAME KheConsecSolverFrame(KHE_CONSEC_SOLVER cs);

The frame must contain at least one time group, otherwise KheConsecSolverMake will abort.

To delete a solver when it is no longer needed, call

void KheConsecSolverDelete(KHE_CONSEC_SOLVER cs);

This works by returning the arena to the solution.

To find the limits for a particular resource, call

void KheConsecSolverFreeDaysLimits(KHE_CONSEC_SOLVER cs, KHE_RESOURCE r,
int *history, int *min_limit, int *max_limit);

void KheConsecSolverBusyDaysLimits(KHE_CONSEC_SOLVER cs, KHE_RESOURCE r,
int *history, int *min_limit, int *max_limit);

void KheConsecSolverBusyTimesLimits(KHE_CONSEC_SOLVER cs, KHE_RESOURCE r,
int offset, int *history, int *min_limit, int *max_limit);

For any resource r, these return the history (see below), the minimum limit, and the maximum
limit on the number of consecutive free days, the number of consecutive busy days, and the

11.4. Resource supply and demand 289

number of consecutive busy times which appear offset places into each time group of frame.
Setting offset to 0 might return the history and limits on the number of consecutive early shifts,
setting it to 1 might return the limits on the number of consecutive day shifts, and so on. The
largest offset acceptable to KheConsecSolverBusyTimesLimits is returned by

int KheConsecSolverMaxOffset(KHE_CONSEC_SOLVER cs);

An offset larger than this, or negative, produces an abort.

The *history values return history: the number of consecutive free days, consecutive busy
days, and consecutive busy times with the given offset in the timetable of r directly before
the timetable proper begins. They are taken from the history values of the same constraints that
determine the *min_limit and *max_limit values.

All these results are based on the frame passed to KheConsecSolverFrame, which would
always be the common frame. They are calculated by finding all limit active intervals constraints
with non-zero weight, comparing their time groups with the frame time groups, and checking
their polarities. In effect this reverse engineers what programs like NRConv do when they
convert specialized nurse rostering formats to XESTT.

If no constraint applies, *history and *min_limit are set to 0, and *max_limit is set to
KheFrameTimeGroupCount(frame). In the unlikely event that more than one constraint applies,

*history and *min_limit are set to the largest of the values from the separate constraints, and

*max_limit is set to the smallest of the values from the separate constraints. Finally,

void KheConsecSolverDebug(KHE_CONSEC_SOLVER cs, int verbosity,
int indent, FILE *fp);

produces the usual debug print of cs onto fp with the given verbosity and indent. When
verbosity >= 2, this prints all results for all resources, using format history|min-max. For
efficiency, these are calculated all at once by KheConsecSolverMake.

11.4.3. Tighten to partition

Suppose we are dealing with teachers, and that they have partitions (Section 3.5.1) which are
their faculties (English, Mathematics, Science, and so on). Some partitions may be heavily
loaded (that is, required to supply teachers for tasks whose total workload approaches the total
available workload of their resources) while others are lightly loaded.

Some tasks may be taught by teachers from more than one partition. These multi-partition
tasks should be assigned to teachers from lightly loaded partitions, and so should not overlap
in time with other tasks from these partitions. Tighten to partition tightens the domain of each
multi-partition task in a given tasking to one partition, returning true if it changes anything:

bool KheTaskingTightenToPartition(KHE_TASKING tasking,
KHE_TASK_BOUND_GROUP tbg, KHE_OPTIONS options);

The choice of partition is explained below. All changes are additions of task bounds to tasks, and
if tbg is non-NULL, all these task bounds are also added to tbg.

It is best to call KheTaskingTightenToPartition after preassigned meets are assigned,
but before general time assignment. The tightened domains encourage time assignment to avoid

290 Chapter 11. Resource-Structural Solvers

the undesirable overlaps. After time assignment, the changes should be removed, since otherwise
they constrain resource assignment unnecessarily. This is what the task bound group is for:

tighten_tbg = KheTaskBoundGroupMake(soln);
for(i = 0; i < KheSolnTaskingCount(soln); i++)
KheTaskingTightenToPartition(KheSolnTasking(soln, i),
tighten_tbg, options);

... assign times ...
KheTaskBoundGroupDelete(tighten_tbg);

The rest of this section explains how KheTaskingTightenToPartition works in detail.

KheTaskingTightenToPartition does nothing when the tasking has no resource type, or
KheResourceTypeDemandIsAllPreassigned (Section 3.5.1) says that the resource type’s tasks
are all preassigned, or the resource type has no partitions, or its number of partitions is less than
four or more than one-third of its number of resources. No good can be done in these cases.

Tasks whose domains lie entirely within one partition are not touched. The remaining
multi-partition tasks are sorted by decreasing combined weight then duration, except that tasks
with a dominant partition come first. A task with an assigned resource has a dominant partition,
namely the partition that its assigned resource lies in. An unassigned task has a dominant
partition when at least three-quarters of the resources of its domain come from that partition.

For each task in turn, an attempt is made to tighten its domain so that it is a subset of one
partition. If the task has a dominant partition,only that partition is tried. Otherwise, the partitions
that the task’s domain intersects with are tried one by one, stopping at the first success, after
sorting them by decreasing average available workload (defined next).

Define the workload supply of a partition to be the sum, over the resources r of the partition,
of the number of times in the cycle minus the number of workload demand monitors for r in
the matching. Define the workload demand of a partition to be the sum, over all tasks t whose
domain is a subset of the partition, of the workload of t. Then the average available workload of
a partition is its workload supply minus its workload demand, divided by its number of resources.
Evidently, if this is large, the partition is lightly loaded.

Each successful tightening increases the workload demand of its partition. This ensures that
equally lightly loaded partitions share multi-partition tasks equally.

In a task with an assigned resource, the dominant partition is the only one compatible
with the assignment. In a task without an assigned resource, preference is given to a dominant
partition, if there is one, for the following reason. Schools often have a few generalist teachers
who are capable of teaching junior subjects from several faculties. These teachers are useful for
fixing occasional problems, smoothing out workload imbalances, and so on. But the workload
that they can give to faculties other than their own is limited and should not be relied on. For
example, suppose there are five Science teachers plus one generalist teacher who can teach junior
Science. That should not be taken by time assignment as a licence to routinely schedule six
Science meets simultaneously. Domain tightening to a dominant partition avoids this trap.

Tightening by partition works best when the rs_invariant option of options is true. For
example, in a case like Sport where there are many simultaneous multi-partition tasks, it will
then not tighten more of them to a lightly loaded partition than there are teachers in that partition.
Assigning preassigned meets beforehand improves the effectiveness of this check.

11.4. Resource supply and demand 291

11.4.4. Balancing supply and demand

This section presents a solver for investigating the balance between supply of and demand for
resources of a given type. Its main aim is to answer this question: if some resource is not used
up to its full capacity, what cost will that have in terms of tasks not assigned?

To create a balance solver, call

KHE_BALANCE_SOLVER KheBalanceSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, HA_ARENA a);

It makes a solver for the supply of and demand for resources of type rt in soln, using memory
from arena a. There is no deletion operation; the solver is deleted when a is freed.

To find the total supply of resources of type rt, call

int KheBalanceSolverTotalSupply(KHE_BALANCE_SOLVER bs);

This calls KheResourceAvailableBusyTimes(soln, r, &res) for each resource r of type rt,
and returns the sum of the res values. As documented in Section 4.7, res is an upper limit on
r’s number of busy times (as imposed by constraints) minus its current number of busy times.

To find the total demand for resources of type rt, call

int KheBalanceSolverTotalDemand(KHE_BALANCE_SOLVER bs);

This is the sum, over all unassigned tasks t of type rt, of the total duration of t, as returned by
KheTaskTotalDuration(t) (Section 4.6.1).

The balance solver analyses this demand by cost reduction. For each task t that contributes
to KheBalanceSolverTotalDemand(bs), it calls KheTaskAssignmentCostReduction (Section
4.6.1) on t, and groups tasks with equal cost reductions. To access these groups, call

int KheBalanceSolverDemandGroupCount(KHE_BALANCE_SOLVER bs);
void KheBalanceSolverDemandGroup(KHE_BALANCE_SOLVER bs, int i,
KHE_COST *cost_reduction, int *total_durn);

KheBalanceSolverDemandGroup returns the information kept about the ith group: the cost
reduction of each of its tasks, and their total duration. KheBalanceSolverTotalDemand returns
the sum of these total durations. The groups are visited in order of decreasing cost reduction.

Using this information it is easy to work out the marginal cost of not utilising a resource r
to its full capacity. Suppose that tasks are assigned in order of decreasing cost reduction, until all
resources are used to capacity. The cost reduction of the last task assigned is the marginal cost
of not fully utilizing r. This value is returned by

KHE_COST KheBalanceSolverMarginalCost(KHE_BALANCE_SOLVER bs);

If supply exceeds demand, there is no marginal cost, and so the value returned is 0. Finally,

void KheBalanceSolverDebug(KHE_BALANCE_SOLVER bs, int verbosity,
int indent, FILE *fp);

produces the usual debug print of bs onto fp with the given verbosity and indent.

292 Chapter 11. Resource-Structural Solvers

11.5. Grouping by resource constraints

Grouping by resource constraints is KHE’s term for a method of grouping tasks together, forcing
the tasks in each group to be assigned the same resource, when all other ways of assigning
resources to those tasks can be shown to have non-zero cost. KheTaskTreeMake also does this,
but its groups are based on avoid split assignments constraints, whereas grouping by resource
constraints makes groups based on resource constraints. The function is

bool KheGroupByResourceConstraints(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options, KHE_TASK_SET ts);

There is no tasking parameter because this kind of grouping cannot be applied to an arbitrary set
of tasks, as it turns out. Instead, it applies to all tasks of soln whose resource type is rt, which
lie in a meet which is assigned a time, and for which non-assignment may have a cost (discussed
later). If rt is NULL, it applies itself to each of the resource types of soln’s instance in turn. It
tries to group these tasks, returning true if it groups any.

For each resource type, KheGroupByResourceConstraints finds whatever groups it can.
It makes each such task group by choosing one of its tasks as the leader task and assigning the
others to it. It makes assignments only to non-cycle tasks that are not already assigned to other
non-cycle tasks, so it does not disturb existing groups. However it does take existing groups into
account, and it will use tasks to which other tasks are asssigned in its own groups.

Tasks which are initially assigned a resource (cycle task) participate in grouping. Such
a task may have its assignment changed to some other task, but in that case the other task will
be assigned the resource. In other words, if one task is assigned a resource initially, and it gets
grouped, then its whole group will be assigned that resource afterwards. Two tasks initially
assigned different resources will never be grouped together.

If ts is non-NULL, every task that KheGroupByResourceConstraints assigns is added to
ts. This makes it easy to remove the groups when they are no longer wanted, by running through
ts and unassigning each of its tasks. KheTaskSetUnGroup (Section 5.6) does this.

KheGroupByResourceConstraints consults option rs_invariant, and also

rs_group_by_rc_off

A Boolean option which, when true, turns grouping by resource constraints off.

rs_group_by_rc_max_days

An integer option which determines the maximum number of consecutive days (in fact,
time groups of the common frame) examined by combinatorial grouping (Section 11.5.4).
Values 0 or 1 turn combinatorial grouping off. The default value is 3.

rs_group_by_rc_combinatorial_off

A Boolean option which, when true, turns combinatorial grouping off.

rs_group_by_rc_profile_off

A Boolean option which, when true, turns profile grouping off.

It also calls KheFrameOption (Section 5.10) to obtain the common frame, and retrieves the event
timetable monitor from option gs_event_timetable_monitor (Section 8.4).

11.5. Grouping by resource constraints 293

KheGroupByResourceConstraints groups tasks whenever it can show that not assigning
the same resource to all of them must incur a cost. That does not mean that they will always be
assigned the same resource in good solutions, any more than, say, a constraint requiring nurses to
work complete weekends is always satisfied in good solutions. However, in practice they usually
are, so it makes sense to require them to be, and decide later whether to break up a few groups.

The following subsections describe how KheGroupByResourceConstraints works in
detail. It has several parts, which are available separately, as we will see. For each resource type,
it starts by building a tasker and adding the time groups of the common frame to it as overlap time
groups (Section 11.5.1). Then, using this tasker, it performs combinatorial grouping by calling
KheCombGrouping (Section 11.5.5), and profile grouping by calling KheProfileGrouping

(Section 11.5.6), first with non_strict set to false, then again with non_strict set to true.

11.5.1. Taskers

A tasker is an object of type KHE_TASKER that facilitates grouping by resource constraints. We’ll
see how to create one shortly; but first, we introduce two other types that taskers use.

Taskers deal directly only with proper root tasks (tasks which are either unassigned, or
assigned directly to a cycle task, that is, to a resource). Taskers consider two proper root tasks
to be equivalent when they have equal domains and assigned resources (possibly NULL), and
they cover the same set of times. (A task covers a time when it, or some task assigned directly
or indirectly to it, is running at that time.) Equivalent tasks are interchangeable with respect
to resource assignment: they may be assigned the same resources, and their effect on resource
constraints is the same. Identifying equivalent tasks is vital in grouping; without it, virtually no
group could be shown to be the only zero-cost option.

A class is an object of type KHE_TASKER_CLASS, representing an equivalence class of tasks
(a set of equivalent tasks). Each task known to a tasker lies in exactly one class. The user cannot
create these classes; they are created and kept up to date by the tasker.

The tasks of an equivalence class may be visited by

int KheTaskerClassTaskCount(KHE_TASKER_CLASS c);
KHE_TASK KheTaskerClassTask(KHE_TASKER_CLASS c, int i);

There must be at least one task, because if a class becomes empty, it is deleted by the tasker.

The three attributes that equivalent tasks share may be retrieved by

KHE_RESOURCE_GROUP KheTaskerClassDomain(KHE_TASKER_CLASS c);
KHE_RESOURCE KheTaskerClassAsstResource(KHE_TASKER_CLASS c);
KHE_TIME_SET KheTaskerClassTimeSet(KHE_TASKER_CLASS c);

These return the domain (from KheTaskDomain) that the tasks of c share, their assigned resource
(from KheTaskAsstResource), and the set of times they each cover. The user must not modify
the value returned by KheTaskerClassTimeSet. Function

void KheTaskerClassDebug(KHE_TASKER_CLASS c, int verbosity,
int indent, FILE *fp);

produces a debug print of c onto fp with the given verbosity and indent.

294 Chapter 11. Resource-Structural Solvers

The other type that taskers use represents one time. The type is KHE_TASKER_TIME. Again,
the tasker creates objects of these types, and keeps them up to date. Function

KHE_TIME KheTaskerTimeTime(KHE_TASKER_TIME t);

returns the time that t represents.

The tasks of an equivalence class all run at the same times, and so for each time, either every
task of an equivalence class is running at that time, or none of them are. Accordingly, to visit
the tasks running at a particular time, we actually visit classes:

int KheTaskerTimeClassCount(KHE_TASKER_TIME t);
KHE_TASKER_CLASS KheTaskerTimeClass(KHE_TASKER_TIME t, int i);

Each equivalence class appears in one time object for each time that its tasks are running, giving
a many-to-many relationship between time objects and class objects. Function

void KheTaskerTimeDebug(KHE_TASKER_TIME t, int verbosity,
int indent, FILE *fp);

produces a debug print of t onto fp with the given verbosity and indent.

We turn now to taskers themselves. To create a tasker, call

KHE_TASKER KheTaskerMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_TASK_SET task_set, HA_ARENA a);

The tasker’s attributes may be accessed by

KHE_SOLN KheTaskerSoln(KHE_TASKER tr);
KHE_RESOURCE_TYPE KheTaskerResourceType(KHE_TASKER tr);
KHE_TASK_SET KheTaskerTaskSet(KHE_TASKER tr);
HA_ARENA KheTaskerArena(KHE_TASKER tr);

A tasker object remains in existence until its arena, a, is deleted or recycled.

KheTaskerMake gathers into the tasker object all proper root tasks (tasks which are either
unassigned, or assigned directly to a cycle task representing a resource) of soln whose resource
type is rt, for which non-assignment may have a cost (see below), and which lie in meets that
have an assigned time. The meets’ time assignments are assumed to be fixed for the lifetime of
the tasker; if they change, errors will occur. From here on, ‘task’means one of these tasks, unless
stated otherwise.

It seems wrong to group a task for which non-assignment has a cost with a task for which
non-assignment has no cost. But what to do about this issue is a puzzle. Simply refusing to group
such tasks would not address all the relevant issues, e.g. whether to include both types in profiles.
At present, if the instance contains at least one assign resource constraint, then only tasks derived
from event resources for which KheEventResourceNeedsAssignment (Section 3.6.3) returns
KHE_YES are considered for grouping. If the instance contains no assign resource constraints,
then only tasks derived from event resources for which KheEventResourceNeedsAssignment

returns KHE_MAYBE are considered for grouping. This is basically a stopgap.

Tasks are grouped by calls to KheTaskMove, each of which assigns one follower task to a

11.5. Grouping by resource constraints 295

leader task. This removes the follower task from the set of tasks of interest to the tasker, and it
usually enlarges the set of times covered by the leader task, placing it into a different equivalence
class. The main purpose of the tasker object is to keep track of these changes.

If task_set is non-NULL, each follower task assigned during grouping is added to it. This
makes it easy to remove the groups later, when they are no longer wanted, by running through
task_set and unassigning each of its tasks. KheTaskSetUnGroup (Section 5.6) does this.

KheTaskerMake places its tasks into classes indexed by time. To visit each time, call

int KheTaskerTimeCount(KHE_TASKER tr);
KHE_TASKER_TIME KheTaskerTime(KHE_TASKER tr, int i);

Here KheTaskerTimeTime(KheTaskerTime(tr, KheTimeIndex(t))) == t for all times t.
KheTaskerTimeCount(tr) returns the same value as KheInstanceTimeCount(ins), where
ins is tr’s solution’s instance. From each KHE_TASKER_TIME object one can access the classes
running at that time, and the tasks of those classes, using functions introduced above.

Finally,

void KheTaskerDebug(KHE_TASKER tr, int verbosity, int indent, FILE *fp);

produces a debug print of tr onto fp with the given verbosity and indent.

11.5.2. Tasker support for grouping

Taskers keep their classes up to date as tasks are grouped. However, they can’t know by magic
that tasks are being grouped. So it’s wrong to call platform operations like KheTaskAssign

and KheTaskMove directly while using a tasker. KheTaskAddTaskBound is also out of bounds.
Instead, proceed as follows.

A grouping is a set of classes used for grouping tasks. A group is made by taking any one
task out of each class in the grouping, choosing one to be the leader task, assigning the others
(called the followers) to it, and inserting the leader task into some other class appropriate to it,
where it is available to participate in other groupings.

When a task is taken out of a class, the class may become empty, in which case the tasker
deletes that class. When the follower tasks are assigned to the leader tasks, the set of times
covered by it usually changes, and the tasker may need to create a new class object to hold it. So
class objects may be both created and destroyed by the tasker when tasks are grouped.

A tasker may handle any number of groupings over its lifetime, but at any moment there is
at most one grouping. The operations for building this current grouping are:

void KheTaskerGroupingClear(KHE_TASKER tr);
bool KheTaskerGroupingAddClass(KHE_TASKER tr, KHE_TASKER_CLASS c);
bool KheTaskerGroupingDeleteClass(KHE_TASKER tr, KHE_TASKER_CLASS c);
int KheTaskerGroupingBuild(KHE_TASKER tr, int max_num, char *debug_str);

These call the platform operations, as well as keeping the tasker up to date.

KheTaskerGroupingClear starts off a grouping, clearing out any previous grouping.

KheTaskerGroupingAddClass, which may be called any number of times, adds c to the

296 Chapter 11. Resource-Structural Solvers

current grouping. If there is a problem with this, it returns false and changes nothing. These
potential problems (there are two kinds) are explained below.

KheTaskerGroupingDeleteClass undoes a call to KheTaskerGroupingAddClass with
the same c that returned true. Deleting c might not be possible, since it might leave the grouping
with no viable leader class (for which see below). KheTaskerGroupingDeleteClass returns
false in that case, and changes nothing. This cannot happen if classes are deleted in stack order
(last in first out), because each deletion then returns the grouping to a viable previous state.

KheTaskerGroupingBuild ends the grouping. It makes some groups and returns the
number it made. Each group is either made completely,or not at all. The number of groups made
is the minimum of max_num and the KheTaskerClassTaskCount values for the classes. It then
removes all classes from the grouping, like KheTaskerGroupingClear does, understanding that
some may have already been destroyed by being emptied out by KheTaskerGroupingBuild.

It is acceptable to add just one class, in which case the ‘groups’are just tasks from that class,
no assignments are made, and nothing actually changes in the tasker’s data structure. If this is
not wanted, then the caller should ensure that KheTaskerGroupingClassCount (see below) is at
least 2 before calling KheTaskerGroupingBuild.

Parameter debug_str is used only by debugging code, to say why a group was made. For
example, its value might be "combinatorial grouping" or "profile grouping".

At any time, the classes of the current grouping may be accessed by calling

int KheTaskerGroupingClassCount(KHE_TASKER tr);
KHE_TASKER_CLASS KheTaskerGroupingClass(KHE_TASKER tr, int i);

in the usual way. They will not usually be returned in the order they were added, however; in
particular, the class that the tasker currently intends to use as the leader class has index 0.

We now describe the two problems that make KheTaskerGroupingAddClass return false.
The first problem concerns leader tasks. Tasks are grouped by choosing one task as the leader
and assigning the others to it. So one of the classes added by KheTaskerGroupingAddClass has
to be chosen as the one that leader tasks will be taken from (the leader class). The tasker does
this automatically in a way that usually works well. (It chooses any class whose tasks are already
assigned a resource, or if there are none of those, a class whose domain has minimal cardinality,
and checks that the first task of each of the other classes can be assigned to the first task of that
class without changing any existing resource assignment.) But in rare cases, the domains of two
classes may be such that neither is a subset of the other, or two classes may be initially assigned
different resources. KheTaskerGroupingAddClass returns false in such cases.

The second problem concerns the times covered by the classes. It would not do to group
together two tasks which cover the same time, because then, when a resource is assigned to the
grouped task, the resource would have a clash. More generally, if a resource cannot be assigned
to two tasks on the same day (for example), then it would not do to group two tasks which cover
two times from the same day. To help with this, the tasker has functions

void KheTaskerAddOverlapFrame(KHE_TASKER tr, KHE_FRAME frame);
void KheTaskerDeleteOverlapFrame(KHE_TASKER tr);

KheTaskerAddOverlapFrame informs the tasker that a resource should not be assigned

11.5. Grouping by resource constraints 297

two tasks that cover the same time group of frame. If this condition would be violated by
some call to KheTaskerGroupingAddClass, then that call returns false and adds nothing.
KheTaskerDeleteOverlapFrame, which is never needed in practice, removes this requirement.

If overlaps are prevented in this way, the same class cannot be added to a grouping twice.
So there is no need to prohibit that explicitly.

When KheTaskerGroupingAddClass returns false, the caller has two options. One is
to abandon this grouping altogether, which is done by not calling KheTaskerGroupingBuild.
The next call to KheTaskerGroupingClear will clear everything out for a fresh start. The other
option is to continue with the grouping, finding other classes to add. This is done by making zero
or more other calls to KheTaskerGroupingAddClass, followed by KheTaskerGroupingBuild.

After one grouping is completed, the user may start another. The tasker will have been
updated by the previous KheTaskerGroupingBuild to no longer contain the ungrouped tasks
but instead to contain the grouped ones. They can become elements of new groups.

KHE_TASKER_CLASS objects may be created by KheTaskerGroupingBuild, to hold the
newly created groups, and also destroyed, because empty classes are deleted. So variables of
type KHE_TASKER_CLASS may become undefined when KheTaskerGroupingBuild is called.

Although KheTaskerGroupingAdd can be used to check whether a class can be added, it
may be convenient to check for overlap in advance. For this there are functions

bool KheTaskerTimeOverlapsGrouping(KHE_TASKER_TIME t);
bool KheTaskerClassOverlapsGrouping(KHE_TASKER_CLASS c);

KheTaskerTimeOverlapsGrouping returns true if t lies in an overlap time group which is
currently covered by a class of the current grouping. KheTaskerClassOverlapsGrouping

returns true if any of the times covered by c is already so covered.

11.5.3. Tasker support for profile grouping

Taskers also have functions which support profile grouping (Section 11.5.6). To set and retrieve
the profile maximum length, the calls are

void KheTaskerSetProfileMaxLen(KHE_TASKER tr, int profile_max_len);
int KheTaskerProfileMaxLen(KHE_TASKER tr);

The profile maximum length can only be set when there are no profile time groups.

To visit the sequence of profile time groups maintained by the tasker, the calls are

int KheTaskerProfileTimeGroupCount(KHE_TASKER tr);
KHE_PROFILE_TIME_GROUP KheTaskerProfileTimeGroup(KHE_TASKER tr, int i);

To make one profile time group and add it to the end of the tasker’s sequence, and to delete a
profile time group, the calls are

KHE_PROFILE_TIME_GROUP KheProfileTimeGroupMake(KHE_TASKER tr,
KHE_TIME_GROUP tg);

void KheProfileTimeGroupDelete(KHE_PROFILE_TIME_GROUP ptg);

298 Chapter 11. Resource-Structural Solvers

The last profile time group is moved to the position of the deleted one, which only makes sense
in practice when all the profile time groups are being deleted. So a better function to call is

void KheTaskerDeleteProfileTimeGroups(KHE_TASKER tr);

which deletes all of tr’s profile time groups. They go into a free list in the tasker.

Functions

KHE_TASKER KheProfileTimeGroupTasker(KHE_PROFILE_TIME_GROUP ptg);
KHE_TIME_GROUP KheProfileTimeGroupTimeGroup(KHE_PROFILE_TIME_GROUP ptg);

retrieve a profile time group’s tasker and time group.

A profile time group’s cover is the number of cover tasks: tasks that cover the time group,
ignoring tasks that cover more than profile_max_len profile time groups. This is returned by

int KheProfileTimeGroupCover(KHE_PROFILE_TIME_GROUP ptg);

The profile time group also keeps track of the domain cover: the number of cover tasks with a
given domain. Two domains are considered to be equal if KheResourceGroupEqual says that
they are. To visit the (distinct) domains of a profile time group, in increasing domain size order,
the calls are

int KheProfileTimeGroupDomainCount(KHE_PROFILE_TIME_GROUP ptg);
KHE_RESOURCE_GROUP KheProfileTimeGroupDomain(KHE_PROFILE_TIME_GROUP ptg,
int i, int *cover);

KheProfileTimeGroupDomain returns the domain cover as well as the domain itself. The sum
of the domain covers is the cover. There is also

bool KheProfileTimeGroupContainsDomain(KHE_PROFILE_TIME_GROUP ptg,
KHE_RESOURCE_GROUP domain, int *cover);

which searches ptg’s list of domains for domain, returning true and setting *cover to the
domain cover if it is found.

KheProfileTimeGroupDomain and KheProfileTimeGroupContainsDomain may return 0
for *cover, when tasks with a given domain enter the profile and later leave it.

Profile grouping algorithms will group tasks while these functions are being called. The
sequence of profile time groups is unaffected by grouping, but covers and domain covers will
change if the grouped tasks cover more than profile_max_len profile time groups. The
domains of a profile time group may also change during grouping, when tasks with unequal
domains are grouped. Altogether it is safest to discontinue a partially completed traversal of the
domains of a profile time group when a grouping occurs.

There are also a few functions on tasker classes that relate to profile time groups. First,

bool KheTaskerClassCoversProfileTimeGroup(KHE_TASKER_CLASS c,
KHE_PROFILE_TIME_GROUP ptg);

returns true if c covers ptg. Each class keeps track of the times from profile time groups that
it covers. Functions

11.5. Grouping by resource constraints 299

int KheTaskerClassProfileTimeCount(KHE_TASKER_CLASS c);
KHE_TASKER_TIME KheTaskerClassProfileTime(KHE_TASKER_CLASS c, int i);

visit these times in an unspecified order.

Function

void KheTaskerProfileDebug(KHE_TASKER tr, int verbosity, int indent,
FILE *fp);

prints the profile groups of tr onto fp, with the classes that cover not more than
profile_max_len of them.

11.5.4. Combinatorial grouping

Suppose that there are two kinds of shifts (tasks), day and night; that a resource must be busy on
both days of the weekend or neither; and that a resource cannot work a day shift on the day after
a night shift. Then resources assigned to the Saturday night shift must work on Sunday, and so
must work the Sunday night shift. So it makes sense to group one Saturday night shift with one
Sunday night shift, and to do so repeatedly until night shifts run out on one of those days.

Suppose that the groups just made consume all the Sunday night shifts. Then those working
the Saturday day shifts cannot work the Sunday night shifts, because the Sunday night shifts are
grouped with Saturday night shifts now, which clash with the Saturday day shifts. So now it is
safe to group one Saturday day shift with one Sunday day shift, and to do so repeatedly until day
shifts run out on one of those days.

Groups made in this way can be a big help to solvers. In instance COI-GPost.xml, for
example, each Friday night task can be grouped with tasks for the next two nights. Good
solutions always assign these three tasks to the same resource, owing to constraints specifying
that the weekend following a Friday night shift must be busy, that each weekend must be either
free on both days or busy on both, and that a night shift must not be followed by a day shift. A
time sweep task assignment algorithm (say) cannot look ahead and see such cases coming.

Combinatorial grouping implements these ideas. It searches through a space whose
elements are sets of classes. For each set of classes S in the search space, it calculates a cost c(S),
defined below, and selects a set S′ such that c(S′) is zero, or minimal. It then makes one group
by selecting one task from each class and grouping those tasks, and then repeating that until as
many tasks as possible or desired have been grouped.

As formulated here, one application of combinatorial grouping groups one set of classes S′.
In the example above, grouping the Saturday and Sunday night shifts would be one application,
then grouping the Saturday and Sunday day shifts would be another.

Combinatorial grouping is carried out by a combinatorial grouping solver, made like this:

KHE_COMB_SOLVER KheCombSolverMake(KHE_TASKER tr, KHE_FRAME days_frame);

It deals with tr’s tasks, using memory from tr’s arena. Any groups it makes are made using
tr’s grouping operations, and so are reflected in tr’s classes, and in its task set. Parameter
days_frame would always be the common frame. It is used when selecting a suitable resource
to tentatively assign to a group of tasks, to find out what times the resource should be free.

300 Chapter 11. Resource-Structural Solvers

Functions

KHE_TASKER KheCombSolverTasker(KHE_COMB_SOLVER cs);
KHE_FRAME KheCombSolverFrame(KHE_COMB_SOLVER cs);

return cs’s tasker and frame.

A KHE_COMB_SOLVER object can solve any number of combinatorial grouping problems,
one after another. The user loads the solver with one problem’s requirements (these determine
the search space S), then requests a solve, then loads another problem and solves, and so on.

It is usually best to start the process of loading requirements into the solver by calling

void KheCombSolverClearRequirements(KHE_COMB_SOLVER cs);

This clears away any old requirements.

A key requirement for most solves is that the groups it makes should cover a given time
group. Any number of such requirements can be added and removed by calling

void KheCombSolverAddTimeGroupRequirement(KHE_COMB_SOLVER cs,
KHE_TIME_GROUP tg, KHE_COMB_SOLVER_COVER_TYPE cover);

void KheCombSolverDeleteTimeGroupRequirement(KHE_COMB_SOLVER cs,
KHE_TIME_GROUP tg);

any number of times. KheCombSolverAddTimeGroup specifies that the groups must cover tg in
a manner given by the cover parameter, whose type is

typedef enum {
KHE_COMB_SOLVER_COVER_YES,
KHE_COMB_SOLVER_COVER_NO,
KHE_COMB_SOLVER_COVER_PREV,
KHE_COMB_SOLVER_COVER_FREE,

} KHE_COMB_SOLVER_COVER_TYPE;

We’ll explain this in detail later. KheCombSolverDeleteTimeGroup removes the effect of a
previous call to KheCombSolverAddTimeGroup with the same time group. There must have been
such a call, otherwise KheCombSolverDeleteTimeGroup aborts.

Any number of requirements that the groups should cover a given class may be added:

void KheCombSolverAddClassRequirement(KHE_COMB_SOLVER cs,
KHE_TASKER_CLASS c, KHE_COMB_SOLVER_COVER_TYPE cover);

void KheCombSolverDeleteClassRequirement(KHE_COMB_SOLVER cs,
KHE_TASKER_CLASS c);

These work in the same way as for time groups, except that care is needed because c may be
rendered undefined by a solve, if it makes groups which empty c out. The safest option after a
solve whose requirements include a class is to call KheCombSolverClearRequirements.

Three other requirements of quite different kinds may be added:

11.5. Grouping by resource constraints 301

void KheCombSolverAddProfileGroupRequirement(KHE_COMB_SOLVER cs,
KHE_PROFILE_TIME_GROUP ptg, KHE_RESOURCE_GROUP domain);

void KheCombSolverDeleteProfileGroupRequirement(KHE_COMB_SOLVER cs,
KHE_PROFILE_TIME_GROUP ptg);

and

void KheCombSolverAddProfileMaxLenRequirement(KHE_COMB_SOLVER cs);
void KheCombSolverDeleteProfileMaxLenRequirement(KHE_COMB_SOLVER cs);

and

void KheCombSolverAddNoSinglesRequirement(KHE_COMB_SOLVER cs);
void KheCombSolverDeleteNoSinglesRequirement(KHE_COMB_SOLVER cs);

Again, we’ll explain the precise effect later. These last three requirements can only be added
once: a second call replaces the first, it does not add to it.

There is no need to reload requirements between solves. The requirements stay in effect
until they are either deleted individually or cleared out by KheCombSolverClearRequirements.
The only caveat concerns classes that become undefined during grouping, as discussed above.

The search space of combinatorial solving is defined by all these requirements. First, we
need some definitions. A task covers a time if it, or a task assigned to it directly or indirectly,
runs at that time. A task covers a time group if it covers any of the time group’s times. A class
covers a time or time group if its tasks do. A class covers a class if it is that class. A set of classes
covers a time, time group, or class if any of its classes covers that time, time group, or class.

Now a set S of classes lies in the search space for a run of combinatorial grouping if:

1. Each class in S covers at least one of the time groups and classes passed to the solver by the
calls to KheCombSolverAddTimeGroup and KheCombSolverAddClass.

2. For each time group tg or class c passed to the solver by KheCombSolverAddTimeGroup or
KheCombSolverAddClass, if the accompanying cover is KHE_COMB_SOLVER_COVER_YES,
then S covers tg or c; or if cover is KHE_COMB_SOLVER_COVER_NO, then S does not cov-
er tg or c; or if cover is KHE_COMB_SOLVER_COVER_PREV, then S covers tg or c if and
only if it covers the time group or class immediately preceding tg or c; or if cover is
KHE_COMB_SOLVER_COVER_FREE, then S is free to cover tg or c, or not.

If the first time group or class has cover KHE_COMB_SOLVER_COVER_PREV, this is treated like
KHE_COMB_SOLVER_COVER_FREE.

Time groups and classes not mentioned may be covered, or not. The difference between this
and passing a time group or class with cover KHE_GROUP_SOLVER_COVER_FREE is that the
classes that cover a free time group or class are included in the search space.

3. The classes of S may be added to the tasker to form a grouping. There are rare cases where
adding the classes in one order will succeed, while adding them in another order will fail. In
those cases, whether S is included in the search space or not will depend on the (unspecified)
order in which the solver chooses to add S’s classes to the tasker.

302 Chapter 11. Resource-Structural Solvers

4. If KheCombSolverAddProfileRequirement(cs, ptg, domain) is in effect, then S
contains at least one class that covers ptg’s time group, and if domain != NULL, that class
has that domain.

5. If KheCombSolverAddProfileMaxLenRequirement(cs) is in effect, then S contains only
classes that cover at most profile_max_len times from profile time groups.

6. If KheCombSolverAddNoSinglesRequirement(cs) is in effect, then S contains at least two
classes. Otherwise S contains at least one class.

That fixes the search space. We now define the cost c(S) of each set of classes S in that space.

The first step is to identify a suitable resource r. Take the first class of the tasker grouping
made from S; this is the class that leader tasks will come from. If it already has an assigned
resource (as returned by KheTaskerClassAsstResource), use that resource for r. Otherwise
search the class’s domain (as returned by KheTaskerClassDomain) for a resource which is free
at all of the time groups of the current frame which overlap with the time groups added by calls
to KheCombSolverAddTimeGroupRequirement. If no such resource can be found, ignore S.

The second step is to assign r to one task from each class of S, except in classes where r
is already assigned to a task. This is done without informing the tasker, but after the cost is
determined these assignments are undone, so the tasker’s integrity is not compromised in the
end. The cost c(S) of a set of classes S is determined while the assignments are in place. It
is the total cost of all cluster busy times and limit busy times monitors which monitor r
and have times lying entirely within the times covered by the time groups added by calls to
KheCombSolverAddTimeGroupRequirement. This second condition is included because we
don’t want r’s global workload, for example, to influence the outcome.

After all the requirements are added, an actual solve is carried out by calling

int KheCombSolverSolve(KHE_COMB_SOLVER cs, int max_num,
KHE_COMB_SOLVER_COST_TYPE ct, char *debug_str);

KheCombSolverSolve searches the space of all sets of classes S that satisfy the six conditions,
and selects one set S′ of minimal cost c(S′). Using S′, it makes as many groups as it can, up to
max_num, and returns the number it actually made,between 0 and max_num. If S′ contains a single
class, no groups are made and the value returned is 0.

Parameter ct has type

typedef enum {
KHE_COMB_SOLVER_COST_MIN,
KHE_COMB_SOLVER_COST_ZERO,
KHE_COMB_SOLVER_COST_SOLE_ZERO

} KHE_COMB_SOLVER_COST_TYPE;

If ct is KHE_COMB_SOLVER_COST_MIN, then c(S′) must be minimal among all c(S). If ct is
KHE_COMB_SOLVER_COST_ZERO or KHE_COMB_SOLVER_COST_SOLE_ZERO, then c(S′) must also be
0, and in the second case there must be no other S in the search space such that c(S) is 0. If these
conditions are not met, no groups are made.

Parameter debug_str is passed on to KheTaskerGroupingBuild. It might be

11.5. Grouping by resource constraints 303

"combinatorial grouping", for example.

An awkward question raised by combinatorial grouping is what to do about singles: classes
whose tasks already satisfy the requirements, without any grouping. The answer seems to vary
depending on why combinatorial grouping is being called, so the combinatorial solver does not
have a single way of dealing with singles. Instead it offers three features that help with them.

First, as we have seen, if the set of classes S′ with minimum or zero cost contains only one
class, KheCombSolverSolve accepts that it is the best but makes no groups from it, returning 0
for the number of groups made.

Second, as we have also seen, KheCombSolverAddNoSinglesRequirement allows the user
to declare that a set S whose classes consist of a single class which satisfies all the requirements
(a single) should be excluded from the search space. But adding this requirement is not a magical
solution to the problem of singles. For one thing, when we need a unique zero-cost set of classes,
we may well want to include singles in the search space, to show that grouping is better than
doing nothing. For another, there may still be an S containing one single and another class which
covers a time group or class with cover type KHE_COMB_SOLVER_COVER_FREE.

Third, after setting up a problem ready to call KheCombSolverSolve, one can call

int KheCombSolverSingleTasks(KHE_COMB_SOLVER cs);

This searches the same space as KheCombSolverSolve does, but it does no grouping. Instead, it
returns the total number of tasks in sets of classes S in that space such that |S| = 1. It returns 0 if
KheCombSolverAddNoSinglesRequirement is in effect when it is called, quite correctly.

Finally,

void KheCombSolverDebug(KHE_COMB_SOLVER cs, int verbosity,
int indent, FILE *fp);

produces the usual debug print of cs onto fp with the given verbosity and indent.

11.5.5. Applying combinatorial grouping

This section describes one way in which the general idea of combinatorial grouping, as just
presented, may be applied in practice. This way is implemented by function

int KheCombGrouping(KHE_COMB_SOLVER cs, KHE_OPTIONS options);

KheCombGrouping does what this section describes, and returns the number of groups it made.
Before it is called, the common frame should be loaded into cs’s tasker as overlap time groups.

Let m be the value of the rs_group_by_rc_max_days option of options. Iterate over
all pairs (f ,c), where f is a subset of the common frame containing k adjacent time groups, for
all k such that 2 ≤ k ≤ m, and c is a class that covers f ’s first or last time group.

For each pair, set up and run combinatorial grouping with one ‘yes’ class, namely c, and
one ‘free’ time group for each of the k time groups of f . Set max_num to INT_MAX, and set ct to
KHE_COMB_SOLVER_COST_SOLE_ZERO. If there is a unique zero-cost way to group a task of c with
tasks on the following k − 1days, this call will find it and carry out as many groupings as it can.

If f has k time groups, each with n classes, say, there are up to (n + k−11) combinations for

304 Chapter 11. Resource-Structural Solvers

each run, so rs_group_by_rc_max_days must be small, say 3, or 4 at most. In any case, unique
zero-cost groupings typically concern weekends, so larger values are unlikely to yield anything.

If one (f ,c) pair produces some grouping, then KheCombGrouping returns to the first pair
containing f . This handles cases like the one described earlier, where a grouping of Saturday and
Sunday night shifts opens the way to a grouping of Saturday and Sunday day shifts.

The remainder of this section describes combination elimination. This is a refinement that
KheCombGrouping uses to make unique zero-cost combinations more likely in some cases.

Some combinations examined by combinatorial grouping may have zero cost as far as the
monitors used to evaluate it are concerned, but have non-zero cost when evaluated in a different
way, involving the overall supply of and demand for resources. Such combinations can be ruled
out, leaving fewer zero-cost combinations, and potentially more task grouping.

For example, suppose there is a maximum limit on the number of weekends each resource
can work. If this limit is tight enough, it will force every resource to work complete weekends,
even without an explicit constraint, if that is the only way that the available supply of resources
can cover the demand for weekend shifts. This example fits the pattern to be given now, setting
C to the constraint that limits the number of busy weekends, T to the times of all weekends, Ti

to the times of the ith weekend, and f
i
to the number of days in the ith weekend.

Take any any set of times T. Let S(T), the supply during T, be the sum over all resources r
of the maximum number of times that r can be busy during T without incurring a cost. Let D(T),
the demand during T, be the sum over all tasks x for which non-assignment would incur a cost,
of the number of times x is running during T. Then S(T) ≥ D(T) or else a cost is unavoidable.

In particular, take any cluster busy times constraint C which applies to all resources, has
time groups which are all positive, and has a non-trivial maximum limit M. (The analysis also
applies when the time groups are all negative and there is a non-trivial minimum limit, setting M
to the number of time groups minus the minimum limit.) Suppose there are n time groups Ti, for
1 ≤ i ≤ n, and let their union be T.

Let f
i
be the number of time groups from the common frame with a non-empty intersection

with Ti. This is the maximum number of times from Ti during which any one resource can be
busy without incurring a cost, since a resource can be busy for at most one time in each time
group of the common frame.

Let F be the sum of the largest M f
i
values. This is the maximum number of times from T

that any one resource can be busy without incurring a cost: if it is busy for more times than this,
it must either be busy for more than f

i
times in some Ti, or else it must be busy for more than M

time groups, violating the constraint’s maximum limit.

If there are R resources altogether, then the supply during T is bounded by

S(T) ≤ RF

since C is assumed to apply to every resource.

As explained above, to avoid cost the demand must not exceed the supply, so

D(T) ≤ S(T) ≤ RF

Furthermore, if D(T) ≥ RF, then any failure to maximize the use of workload will incur a cost.

11.5. Grouping by resource constraints 305

That is, every resource which is busy during Ti must be busy for the full f
i
times in Ti.

So the effect on grouping is this: if D(T) ≥ RF, a resource that is busy in one time group
of the common frame that overlaps Ti should be busy in every time group of the common frame
that overlaps Ti. KheCombGrouping searches for constraints C that have this effect, and informs
its combinatorial grouping solver about what it found by changing the cover types of some time
groups from ‘free’ to ‘prev’. When searching for groups, the option of covering some of these
time groups but not others is removed. With fewer options, there is more chance that some
combination might be the only one with zero cost, allowing more task grouping.

Instance CQ14-05 has two constraints that limit busy weekends. One applies to 10 resources
and has maximum limit 2; the other applies to the remaining 6 resources and has maximum
limit 3. So combination elimination actually takes sets of constraints with the same time groups
that together cover every resource once. Instead of RF (above), it uses the sum over the set’s
constraints cj of RjFj, where Rj is the number of resources that cj applies to, and Fj is the sum of the
largest Mj of the f

i
values, where Mj is the maximum limit of cj. The f

i
are the same for all cj.

11.5.6. Profile grouping

Suppose 6 nurses are required on the Monday, Tuesday, Wednesday, Thursday, and Friday night
shifts, but only 4 are required on the Saturday and Sunday night shifts. Consider any division
of the night shifts into sequences of one or more shifts on consecutive days. However these
sequences are made, at least two must begin on Monday, and at least two must end on Friday.

Now suppose that the intention is to assign the same resource to each shift of any one
sequence, and that a limit active intervals constraint, applicable to all resources, specifies that
night shifts on consecutive days must occur in sequences of at least 2 and at most 3. Then the
two sequences of night shifts that must begin on Monday must contain a Monday night and a
Tuesday night shift at least, and the two that end on Friday must contain a Thursday night and
a Friday night shift at least. So here are two groupings, of Monday and Tuesday nights and of
Thursday and Friday nights, for each of which we can build two task groups.

Suppose that we already have a task group which contains a sequence of 3 night shifts on
consecutive days. This group cannot be grouped with any night shifts on days adjacent to the
days it currently covers. So for present purposes the tasks of this group can be ignored. This can
change the number of night shifts running on each day, and so change the amount of grouping.
For example, in instance COI-GPost.xml, all the Friday, Saturday, and Sunday night shifts get
grouped into sequences of 3, and 3 is the maximum, so those night shifts can be ignored here,
and so every Monday night shift begins a sequence, and every Thursday night shift ends one.

We now generalize this example, ignoring for the moment a few issues of detail. Let C
be any limit active intervals constraint which applies to all resources, and whose time groups
T1,… ,Tk are all positive. Let C’s limits be Cmax and Cmin, and suppose Cmin is at least 2 (if not,
there can be no grouping based on C). What follows is relative to C, and is repeated for each such
constraint. Constraints with the same time groups are notionally merged, allowing the minimum
limit to come from one constraint and the maximum limit from another.

A maximal task is a task which covers at least Cmax adjacent time groups from C. Maximal
tasks can have no influence on grouping to satisfy C’s minimum limit, so they may be ignored,
that is, profile grouping may run as though they are not there. This applies both to tasks which

306 Chapter 11. Resource-Structural Solvers

are present at the start, and tasks which are constructed along the way.

Let ni be the number of tasks that cover Ti, not including maximal tasks. The ni together
make up the profile of C. The tasker operations from Section 11.5.1 which support profile
grouping make it easy to find the profile.

For each i such that ni−1 < ni, ni − ni−1 groups of length at least Cmin must start at Ti (more
precisely, they must cover Ti but not Ti−1). They may be constructed by combinatorial grouping,
passing in time groups Ti,… ,Ti+Cmin−1with cover type ‘yes’, and Ti−1and Ti+Cmax

with cover type
‘no’, asking for m = ni − ni−1− ci tasks, where ci is the number of existing tasks (not including
maximal ones) that satisfy these conditions already (as returned by KheCombSolverSingles).
The new groups must group at least 2 tasks each. Some of the time groups may not exist; in that
case, omit the non-existent ones but still do the grouping, provided there are at least 2 ‘yes’ time
groups. The case for sequences ending at j is symmetrical.

If C has no history, we may set n0 and nk+1to 0, allowing groups to begin at T1and end at Tk.
If C has history, we do not know how many tasks are running outside C, so we set n0 and nk+1 to
infinity, preventing groups from beginning at T1 and ending at Tk.

Groups made by one round of profile grouping may participate in later rounds. Suppose
Cmin = 2, Cmax = 3, n1 = n5 = 0, and n2 = n3 = n4 = 4. Profile grouping builds 4 groups of length
2 begining at T2, then 4 groups of length 3 ending at T4, incorporating the length 2 groups.

We turn now to four issues of detail.

History. If history is present, the first step is to handle it. For each resource ri with a history
value xi such that xi < Cmin, use combinatorial grouping with one ‘yes’time group for each of the
first Cmin − xi time groups of C (when these all exist), build one group, and assign ri to it. (This
idea is not yet implemented; none of the instances available at the time of writing need it.)

Singles. We need to consider how singles affect profile grouping. Singles of length Cmax

or more are ignored, but there may be singles of length Cmin when Cmin < Cmax.

The ni − ni−1groups that must start at Ti include singles. Singles are already present, which
is similar to saying that they must be made first. So before calling KheCombSolverSolve we call
CombSolverSingleTasks to determine ci, the number of singles that satisfy the requirements,
and then we pass ni − ni−1− ci to KheCombSolverSolve, not ni − ni−1, and exclude singles from
its search space.

Varying task domains. Suppose that one senior nurse is wanted each night, four ordinary
nurses are wanted each week night, and two ordinary nurses are wanted each weekend night.
Then the two groups starting on Monday nights should group demands for ordinary nurses, not
senior nurses. Nevertheless, tasks with different domains are not totally unrelated. A senior
nurse could very well act as an ordinary nurse on some shifts.

We still aim to build M = ni − ni−1− ci groups as before. However, we do this by making
several calls on combinatorial grouping. For each resource group g appearing as a domain in any
class running at time Ti, find ngi, the number of tasks (not including maximal ones) with domain g
running at Ti, and ng(i−1), the number at Ti−1. For each g such that ngi > ng(i−1), call combinatorial
grouping, insisting (by calling KheCombSolverAddProfileRequirement) that Ti be covered by
a class whose domain is g, passing m = min(M,ngi − ng(i−1)), then subtract from M the number of
groups actually made. Stop when M = 0 or the list of domains is exhausted.

Non-uniqueness of zero-cost groupings. The main problem with profile grouping is that

11.5. Grouping by resource constraints 307

there may be several zero-cost groupings in a given situation. For example, a profile might show
that a group covering Monday, Tuesday, and Wednesday may be made, but give no guidance on
which shifts on those days to group.

One reasonable way of dealing with this problem is the following. First, do not insist
on unique zero-cost groupings; instead, accept any zero-cost grouping. This ensures that a
reasonable amount of profile grouping will happen. Second, to reduce the chance of making
poor choices of zero-cost groupings, limit profile grouping to two cases.

The first case is when each time group Ti contains a single time, as at the start of this section,
where each Ti contained the time of a night shift. Although we do not insist on unique zero-cost
groupings, we are likely to get them in this case, so we call this strict profile grouping.

The second case is when Cmin = Cmax. It is very constraining to insist, as this does, that every
sequence of consecutive busy days (say) away from the start and end of the cycle must have a
particular length. Indeed, it changes the problem into a combinatorial one of packing these rigid
sequences into the profile. Local repairs cannot do this well, because to increase or decrease the
length of one sequence, we must decrease or increase the length of a neighbouring sequence,
and so on all the way back to the start or forward to the end of the cycle (unless there are shifts
nearby which can be assigned or not without cost). So we turn to profile grouping to find suitable
groups before assigning any resources. Some of these groups may be less than ideal, but still the
overall effect should be better than no grouping at all. We call this non-strict profile grouping.

When Cmin = Cmax, all singles are off-profile. This is easy to see: by definition, a single
covers Cmin time groups, so it covers Cmax time groups, but profile_max_len is Cmax − 1.

These ideas are implemented by function

int KheProfileGrouping(KHE_COMB_SOLVER cs, bool non_strict);

It carries out some profile grouping, as follows, and returns the number of groups it makes.

Find all limit active intervals constraints C whose time groups are all positive and which
apply to all resources. Notionally merge pairs of these constraints that share the same time
groups when one has a minimum limit and the other has a maximum limit. Let C be one of these
(possibly merged) constraints such that Cmin ≥ 2. Furthermore, if non_strict is false, then C’s
time groups must all be singletons, while if non_strict is true, then Cmin = Cmax must hold.

A constraint may qualify for both strict and non-strict processing. This is true, for example,
of a constraint that imposes equal lower and upper limits on the number of consecutive night
shifts. Such a constraint will be selected in both the strict and non-strict cases, which is fine.

For each of these constraints, proceed as follows. Set the profile time groups in the tasker
to T1,… ,Tk, the time groups of C, and set the profile_max_len attribute to Cmax − 1. The tasker
will then report the values ni needed for C.

Traverse the profile repeatedly, looking for cases where ni > ni−1and nj < nj+1, and use com-
binatorial grouping (aiming to find zero-cost groups, not unique zero-cost groups) to build groups
which cover Cmin time groups starting at Ti (or ending at Tj). This involves loading Ti,… ,Ti+Cmin−1
as ‘yes’ time groups, and Ti−1 and Ti+Cmax

as ‘no’ time groups, as explained above.

The profile is traversed repeatedly until no points which allow grouping can be found. In the
strict grouping case, it is then time to stop, but in the non-strict case it is better to keep grouping,
as follows. From among all time groups Ti where ni > 0, choose one which has been the starting

308 Chapter 11. Resource-Structural Solvers

point for a minimal number of groups (to spread out the starting points as much as possible) and
make a group there if combinatorial grouping allows it. Then return to traversing the profile
repeatedly: there should now be ni > ni−1cases just before the latest group and nj < nj+1cases just
after it. Repeat until there is no Ti where ni > 0 and combinatorial grouping can build a group.

11.6. Grouping by resource

Grouping by resource is another kind of task grouping, obtained by calling

bool KheTaskingGroupByResource(KHE_TASKING tasking,
KHE_OPTIONS options, KHE_TASK_SET ts);

Like grouping by resource constraints, it groups tasks whose resource types are covered by
tasking which lie in adjacent time groups of the common frame, and adds each task which it
makes an assignment to to ts (if ts is non-NULL). However, the tasks are chosen in quite a differ-
ent way: each group consists of a maximal sequence of tasks which lie in adjacent time groups
of the frame and are currently assigned to the same resource. The thinking is that if the solution is
already of good quality, it may be advantageous to keep these runs of tasks together while trying
(by means of any repair algorithm whatsoever) to assign them to different resources.

When a grouping made by KheTaskingGroupByResource and recorded in a task set is no
longer needed, function KheTaskSetUnGroup (Section 5.6) may be used to remove it.

11.7. The task grouper

A task grouper supports a more elaborate form of grouping, one which allows the grouping to
be done, undone, and redone at will.

The first step is to create a task grouper object, by calling

KHE_TASK_GROUPER KheTaskGrouperMake(KHE_RESOURCE_TYPE rt, HA_ARENA a);

This makes a task grouper object for tasks of type rt. It is deleted when a is deleted. Also,

void KheTaskGrouperClear(KHE_TASK_GROUPER tg);

clears tg back to its state immediately after KheTaskGrouperMake, without changing rt or a.

To add tasks to a task grouper, make any number of calls to

bool KheTaskGrouperAddTask(KHE_TASK_GROUPER tg, KHE_TASK t);

Each task passed to tg in this way must be assigned directly to the cycle task for some resource
r of type rt. The tasks passed to tg by KheTaskGrouperAddTask which are assigned r at the
time they are passed are placed in one group. No assignments are made.

If true is returned by KheTaskGrouperAddTask, t is the leader task for its group: it is the
first task assigned r which has been passed to tg. If false is returned, t is not the leader task.

Adding the same task twice is legal but is the same as adding it once. If the task is the leader
task, it is reported to be so only the first time it is passed.

11.7. The task grouper 309

Importantly, although the grouping is determined by which resources the tasks are assigned
to, it is only the grouping that the grouper cares about, not the resources. Once the groups are
made, the resources that determined the grouping become irrelevant to the grouper.

At any time one may call

void KheTaskGrouperGroup(KHE_TASK_GROUPER tg);
void KheTaskGrouperUnGroup(KHE_TASK_GROUPER tg);

KheTaskGrouperGroup ensures that, in each group, the tasks other than the leader task are
assigned directly to the leader task. It does not change the assignment of the leader task.
KheTaskGrouperUnGroup ensures that, for each group, the tasks other than the leader task are
assigned directly to whatever the leader task is assigned to (possibly nothing). As mentioned
above, the resources which defined the groups originally are irrelevant to these operations.

If KheTaskGrouperGroup cannot assign some task to its leader task, it adds the task’s task
bounds to the leader task and tries again. If it cannot add these bounds, or the assignment still
does not succeed, it aborts. In addition to ungrouping, KheTaskGrouperUnGroup removes any
task bounds added by KheTaskGrouperGroup. In detail, KheTaskGrouperGroup records the
number of task bounds present when it is first called, and KheTaskGrouperUnGroup removes
task bounds from the end of the leader task until this number is reached.

A task grouper’s tasks may be grouped and ungrouped at will. This is more general than
using KheTaskSetUnGroup, since after ungrouping that way there is no way to regroup. The extra
power comes from the fact that a task grouper contains, in effect, a task set for each group.

The author has encountered one case where KheTaskGrouperUnGroup fails to remove
the task bounds added by KheTaskGrouperGroup. The immediate problem has probably been
fixed, although it is hard to be sure that it will not recur. So instead of aborting in that case,
KheTaskGrouperUnGroup prints a debug message and stops removing bounds for that task.

11.8. Task finding

Task finding is KHE’s name for some operations, based on task finder objects, that find sets of
tasks which are to be moved all together from one resource to another. Task finding is used by
only a few solvers, because it has been replaced by mtask finding, the subject of Section 11.9.
Only old code uses it now; it may eventually be removed altogether.

Task finding is concerned with which days tasks are running. A day is a time group of the
common frame. The days that a task t is running are the days containing the times that t itself
is running, plus the days containing the times that the tasks assigned to t, directly or indirectly,
are running. The days that a task set is running are the days that its tasks are running.

Task finding represents the days that a task or task set is running by a bounding interval,
a pair of integers: first_index, the index in the common frame of the first day that the task or
task set is running, and last_index, the index of the last day that the task or task set is running.
So task finding is unaware of cases where a task runs twice on the same day, or has a gap (a day
within the bounding interval when it is not running). Neither is likely in practice. Task finding
considers the duration of a task or task set to be the length of its bounding interval.

Task finding operations typically find a set of tasks, often stored in a task set object (Section

310 Chapter 11. Resource-Structural Solvers

5.6). In some cases these tasks form a task run, that is, they satisfy these conditions:

1. The set is non-empty. An empty run would be useless.

2. Every task is a proper root task. The tasks are being found in order to be moved from one
resource to another, and this ensures that the move will not break up any groups.

3. No two tasks run on the same day. This is more or less automatic when the tasks are all
assigned the same resource initially, but it holds whether the tasks are assigned or not. If it
didn’t, then when the tasks are moved to a common resource there would be clashes.

4. The days that the tasks are running are consecutive. In other words, between the first day
and the last there are no gaps: days when none of the tasks is running.

The task finder does not reject tasks which run twice on the same day or which have gaps. As
explained above, it is unaware of these cases. So the last two conditions should really say that
the task finder does not introduce any new clashes or gaps when it groups tasks into runs.

Some runs are unpreassigned runs, meaning that all of their tasks are unpreassigned. Only
unpreassigned runs can be moved from one resource to another. And some runs are maximal
runs: they cannot be extended, either to left or right. We mainly deal with maximal runs, but just
what we mean by ‘maximal’ depends on circumstances. For example, we may want to exclude
preassigned tasks from our runs. So our definition does not take the arguably reasonable extra
step of requiring all runs to be maximal.

Some task finding operations find all tasks assigned a particular resource in a particular
interval. In these cases, only conditions 2 and 3 must hold; the result need not be a task run.

Task finding treats non-assignment like the assignment of a special resource (represented
by NULL). This makes it equally at home finding assigned and unassigned tasks.

A task t needs assignment if KheTaskNeedsAssignment(t) (Section 4.6.1) returns true,
meaning that non-assignment of a resource to t would incur a cost, because of an assign resource
constraint, or a limit resources constraint which is currently at or below its minimum limit, that
applies to t. Task finding never includes tasks that do not need assignment when it searches for
unassigned tasks, because assigning resources to such tasks is not a high priority. It does include
them when searching for assigned tasks.

A resource is effectively free during some set of days if it is NULL, or it is not NULL and the
tasks it is assigned to on those days do not need assignment. The point is that it is always safe to
move some tasks to a resource on days when it is effectively free: if the resource is NULL, they are
simply unassigned, and if it is non-NULL, any tasks running on those days do not need assignment,
and can be unassigned, at no cost, before the move is made. Task finding utilizes the effectively
free concept and offers move operations that work in this way.

11.8.1. Task finder objects

To create a task finder object, call

KHE_TASK_FINDER KheTaskFinderMake(KHE_SOLN soln, KHE_OPTIONS options,
HA_ARENA a);

11.8. Task finding 311

This returns a pointer to a private struct in arena a. Options gs_common_frame (Section 5.10)
and gs_event_timetable_monitor (Section 8.4) are taken from options. If either is NULL,
KheTaskFinderMake returns NULL, since it cannot do its work without them.

Ejection chain repair code can obtain a task finder from the ejector object, by calling

KHE_TASK_FINDER KheEjectorTaskFinder(KHE_EJECTOR ej);

This saves time and memory compared with creating new task finders over and over. Once again
the return value is NULL if the two options are not both present.

The days tasks are running (the time groups of the common frame) are represented in task
finding by their indexes, as explained above. The first legal index is 0; the last is returned by

int KheTaskFinderLastIndex(KHE_TASK_FINDER tf);

This is just KheTimeGroupTimeCount(frame) - 1, where frame is the common frame. Also,

KHE_FRAME KheTaskFinderFrame(KHE_TASK_FINDER tf);

may be called to retrieve the frame itself.

As defined earlier, the bounding interval of a task or task set is the smallest interval
containing all the days that the task or task set is running. It is returned by these functions:

KHE_INTERVAL KheTaskFinderTaskInterval(KHE_TASK_FINDER tf,
KHE_TASK task);

KHE_INTERVAL KheTaskFinderTaskSetInterval(KHE_TASK_FINDER tf,
KHE_TASK_SET ts);

These return an interval (Section 8.12) holding the indexes in the common frame of the first and
last days that task or ts is running. If ts is empty, the interval is empty. There is also

KHE_INTERVAL KheTaskFinderTimeGroupInterval(KHE_TASK_FINDER tf,
KHE_TIME_GROUP tg);

which returns an interval holding the first and last days that tg overlaps with. If tg is empty, the
interval is empty.

These three operations find task sets and runs:

void KheFindTasksInInterval(KHE_TASK_FINDER tf,
KHE_INTERVAL in, KHE_RESOURCE_TYPE rt, KHE_RESOURCE from_r,
bool allow_preassigned, bool allow_partial,
KHE_TASK_SET res_ts, KHE_INTERVAL *res_in);

bool KheFindFirstRunInInterval(KHE_TASK_FINDER tf,
KHE_INTERVAL in, KHE_RESOURCE_TYPE rt, KHE_RESOURCE from_r,
bool allow_preassigned, bool allow_partial, bool sep_need_asst,
KHE_TASK_SET res_ts, KHE_INTERVAL *res_in);

bool KheFindLastRunInInterval(KHE_TASK_FINDER tf,
KHE_INTERVAL in, KHE_RESOURCE_TYPE rt, KHE_RESOURCE from_r,
bool allow_preassigned, bool allow_partial, bool sep_need_asst,
KHE_TASK_SET res_ts, KHE_INTERVAL *res_in);

312 Chapter 11. Resource-Structural Solvers

All three functions clear res_ts, which must have been created previously, then add to it some
tasks which are assigned from_r (or are unassigned if from_r is NULL). They set *res_in to the
bounding interval of the tasks of res_ts.

Call in the target interval. A task t overlaps the target interval when at least one of the days
on which t is running lies in it. Subject to the following conditions, KheFindTasksInInterval
finds all tasks that overlap the target interval; KheFindFirstRunInInterval finds the first
(leftmost) run containing a task that overlaps the target interval, or returns false if there is no
such run; and KheFindLastRunInInterval finds the last (rightmost) run containing a task that
overlaps the target interval, or returns false if there is no such run.

When from_r is NULL, only unassigned tasks that need assignment (as discussed above) are
added. The first could be any unassigned task of type rt (it is this that rt is needed for), but the
others must be compatible with the first, in that we expect these tasks to be assigned some single
resource, and it would not do for them to have widely different domains.

Some tasks are ignored, which means that the operation behaves as though they are simply
not there. Subject to this ignoring feature, the runs found are maximal. A task is ignored in this
way when it is running on any of the days that the tasks that have already been added to res_ts

are running. Preassigned tasks are allowed when allow_preassigned is true. Tasks that are
running partly or wholly outside the target interval are allowed when allow_partial is true.
When allow_partial is true, a run can extend an arbitrary distance beyond the target interval,
and contain some tasks that do not overlap the target interval at all.

If sep_need_asst is true, all tasks t in the run found by KheFindFirstRunInInterval

or KheFindLastRunInInterval have the same value of KheTaskNeedsAssignment(t). This
value could be true or false, but it is the same for all tasks in the run. If sep_need_asst is
false, there is no requirement of this kind.

11.8.2. Daily schedules

Sometimes more detailed information is needed about when a task is running than just the
bounding interval. In those cases, task finding offers daily schedules, which calculate both the
bounding interval and what is going on on each day:

KHE_DAILY_SCHEDULE KheTaskFinderTaskDailySchedule(
KHE_TASK_FINDER tf, KHE_TASK task);

KHE_DAILY_SCHEDULE KheTaskFinderTaskSetDailySchedule(
KHE_TASK_FINDER tf, KHE_TASK_SET ts);

KHE_DAILY_SCHEDULE KheTaskFinderTimeGroupDailySchedule(
KHE_TASK_FINDER tf, KHE_TIME_GROUP tg);

These return a daily schedule: a representation of what task, ts, or tg is doing on each day,
including tasks assigned directly or indirectly to task or ts. Also,

KHE_DAILY_SCHEDULE KheTaskFinderNullDailySchedule(
KHE_TASK_FINDER tf, KHE_INTERVAL in);

returns a daily schedule representing doing nothing during the given interval.

A KHE_DAILY_SCHEDULE is an object which uses memory taken from its task finder’s arena.

11.8. Task finding 313

It can be deleted (which actually means being added to a free list in its task finder) by calling

void KheDailyScheduleDelete(KHE_DAILY_SCHEDULE ds);

It has these attributes:

KHE_TASK_FINDER KheDailyScheduleTaskFinder(KHE_DAILY_SCHEDULE ds);
bool KheDailyScheduleNoOverlap(KHE_DAILY_SCHEDULE ds);
KHE_INTERVAL KheDailyScheduleInterval(KHE_DAILY_SCHEDULE ds);

KheDailyScheduleTaskFinder returns ds’s task finder; KheDailyScheduleNoOverlap returns
true when no two of the schedule’s times occur on the same day, and false otherwise; and
KheDailyScheduleInterval returns the interval of day indexs of the schedule’s days. For each
day between the interval’s first and last inclusive,

KHE_TASK KheDailyScheduleTask(KHE_DAILY_SCHEDULE ds, int day_index);

returns the task running in ds on day day_index. It may be a task assigned directly or indirectly
to task or ts, not necessarily task or a task from ts. NULL is returned if no task is running on
that day. This is certain for schedules created by KheTaskFinderTimeGroupDailySchedule

and KheTaskFinderNullDailySchedule, but it is also possible for schedules created by
KheTaskFinderTaskDailySchedule and KheTaskFinderTaskSetDailySchedule. If there are
two or more tasks running on that day, an arbitrary one of them is returned; this cannot happen
when KheDailyScheduleNoOverlap returns true. Similarly,

KHE_TIME KheDailyScheduleTime(KHE_DAILY_SCHEDULE ds, int day_index);

returns the time in ds that is busy on day day_index. This will be NULL if there is no time in
the schedule on that day, which is always the case when the schedule was created by a call to
KheTaskFinderNullDailySchedule.

11.9. Multi-task finding

The author has made several attempts over the years to define an equivalence relation on tasks
and use it to group equivalent tasks together into classes. The purpose is to avoid symmetrical
assignments, in which a resource is assigned to several tasks in turn which are in fact equivalent,
wasting time. This section describes what he hopes and believes will be his final attempt.

It could be argued that equivalence classes of tasks are only needed because XHSTT, and
following it the KHE platform, allow at most one resource to be assigned to each task at any
given moment during solving. If several could be assigned, equivalence would be guaranteed
because the ‘tasks’ thus grouped would be indistinguishable. This would probably work for
nurse rostering, but in high school timetabling it would not handle tasks that become equivalent
when their meets are assigned the same time—requests for ordinary classrooms, for example.

Still, ‘a task to which several resources can be assigned’ is a valuable abstraction, better
for the user than a set of equivalent tasks. So instead of defining a task group or task class (as
in the author’s previous attempts), we define a multi-task or mtask to be a task to which several
resources can be assigned simultaneously. Behind the scenes, an mtask is a non-empty set of
proper root tasks, but the user does not know or care which tasks lie within an mtask, or which are

314 Chapter 11. Resource-Structural Solvers

assigned which resources: the mtask handles that, in a provably best possible way, as we’ll see.

The idea, then, is to group tasks into mtasks and to write resource assignment algorithms
that assign resources to mtasks rather than to tasks. Assigning resources to mtasks is somewhat
harder to do than assigning them to tasks, because mtasks accept multiple assignments, but it
should run faster because assignment symmetries are avoided.

Three types are defined here. Type KHE_MTASK_SOLVER creates mtasks and holds them.
KHE_MTASK represents one mtask. And KHE_MTASK_SET represents a simple set of mtasks.

The author has removed several older attempts at task equivalencing from the KHE platform
and solvers. However, one type has not been removed: KHE_TASKER_CLASS from Section 11.5.1.
It could be unified with KHE_MTASK, but its implementation, supporting combinatorial and profile
grouping, would add a lot of complexity to KHE_MTASK. For now, anyway, it remains separate.

11.9.1. Multi-task finders

The operation for creating mtasks is

KHE_MTASK_FINDER KheMTaskFinderMake(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_FRAME days_frame, KHE_EVENT_TIMETABLE_MONITOR etm,
bool fixed_times, HA_ARENA a);

Using memory from arena a, this makes a KHE_MTASK_FINDER object containing mtasks such
that every proper root task of soln whose type is rt lies in exactly one mtask. Or rt may be
NULL, and then mtasks are created for every resource type. Parameter days_frame holds the
common frame and influences the operations below that depend on days. Parameter etm holds
the event timetable monitor and is used by two functions (KheMTaskFinderMTasksInTimeGroup
and KheMTaskFinderMTasksInInterval) for finding the mtasks running at particular times.
There is no operation to delete an mtask finder; it is deleted when its arena is deleted, along with
its mtasks and mtask sets.

If fixed_times is true, the finder assumes that any times currently assigned to meets will
remain as they are for its entire lifetime. (This is not checked, so care is needed here.) This allows
it to treat tasks from different meets as equivalent, if they run at the same times and satisfy all
other requirements. If fixed_times is false, the finder does not make this assumption. Instead,
equivalent tasks must come from the same meet, so that they always run at the same times, even
if those times change or are unassigned. For full details, consult Section 11.9.4.

When dealing with mtasks, the days of the common frame that they are running on loom
large. These days are often represented by their indexes in the common frame (parameter
days_frame of KheMTaskFinderMake). The index of the first day is 0, and of the last day is

int KheMTaskFinderLastIndex(KHE_MTASK_FINDER mtf);

This is one less than the number of time groups in days_frame.

To visit the mtasks of a KHE_MTASK_FINDER object, the calls are

int KheMTaskFinderMTaskCount(KHE_MTASK_FINDER mtf);
KHE_MTASK KheMTaskFinderMTask(KHE_MTASK_FINDER mtf, int i);

as usual. The order that the mtasks appear here is arbitrary, unless one chooses to first call

11.9. Multi-task finding 315

void KheMTaskFinderMTaskSort(KHE_MTASK_FINDER mtf,
int (*compar)(const void *, const void *));

to sort the mtasks using function compar. One comparison function is provided:

int KheMTaskDecreasingDurationCmp(const void *, const void *);

KheMTaskFinderMTaskSort(mtf, &KheMTaskDecreasingDurationCmp) sorts the mtasks by
decreasing duration, which might be a good heuristic for ordering them for assignment.

KHE allows the user to create tasks which are not derived from any event resource or meet.
These are intended for use as proper root tasks to which ordinary tasks are assigned. However,
if no ordinary tasks are assigned to them, the result is a task with duration 0 which we call here
a degenerate proper root task, or just a degenerate task. Degenerate tasks are awkward, useless,
and unlikely to occur, but still we have to allow for the possibility that there will be some. So
even degenerate tasks lie in mtasks, which we call degenerate mtasks.

When an mtask is non-degenerate, each of its proper root tasks is, or is assigned (directly or
indirectly), at least one task derived from an event resource and meet. These tasks are called the
atomic tasks of the proper root task. In a non-degenerate mtask, each proper root task contains
at least one atomic task.

When fixed_times is true, one can visit the non-degenerate mtasks whose atomic tasks
all have assigned times, indexed by the chronologically first busy time:

int KheMTaskFinderMTaskAtTimeCount(KHE_MTASK_FINDER mtf, KHE_TIME time);
KHE_MTASK KheMTaskFinderMTaskAtTime(KHE_MTASK_FINDER mtf,
KHE_TIME time, int i);

KheMTaskFinderMTaskAtTimeCount returns the number of non-degenerate mtasks whose first
busy time is time, and KheMTaskFinderMTaskAtTime returns the ith of these mtasks.

When fixed_times is false or there are tasks whose atomic tasks do not all have assigned
times, one can visit these other mtasks, or rather the non-degenerate ones, indexed by the meet
with the lowest index:

int KheMTaskFinderMTaskFromMeetCount(KHE_MTASK_FINDER mtf,
KHE_MEET meet);

KHE_MTASK KheMTaskFinderMTaskFromMeet(KHE_MTASK_FINDER mtf,
KHE_MEET meet, int i);

These return the number of non-degenerate mtasks whose first meet is meet, and the ith of
these mtasks.

When mtasks are in use, it is best to deal only with them and not access tasks directly. When
a task is returned by some function and has to be dealt with, the right course is to call

KHE_MTASK KheMTaskFinderTaskToMTask(KHE_MTASK_FINDER mtf, KHE_TASK t);

to move from task t to its proper root task and from there to the mtask containing that proper
root task. This function will abort if there is no such mtask, something that should never happen,
since even degenerate tasks lie in mtasks.

Assuming that fixed_times is true, functions

316 Chapter 11. Resource-Structural Solvers

KHE_MTASK_SET KheMTaskFinderMTasksInTimeGroup(KHE_MTASK_FINDER mtf,
KHE_RESOURCE_TYPE rt, KHE_TIME_GROUP tg);

KHE_MTASK_SET KheMTaskFinderMTasksInInterval(KHE_MTASK_FINDER mtf,
KHE_RESOURCE_TYPE rt, KHE_INTERVAL in);

return the set of all mtasks of resource type rt that are running during time group tg, or during
any of the time groups of intervalin of mtf’s days frame. Each set is built the first time it is called
for, uniqueified by KheMTaskSetUniqueify, and cached within mtf so that subsequent requests
for the same set run quickly. The caller must not modify these mtask sets.

Finally,

void KheMTaskFinderDebug(KHE_MTASK_FINDER mtf, int verbosity,
int indent, FILE *fp);

produces a debug print of mtf onto fp with the given verbosity and indent.

11.9.2. Multi-tasks

An mtask is a task to which several resources can be assigned simultaneously. Behind the scenes,
it is a non-empty set of proper root tasks which are equivalent to one another in a sense to be
defined in Section 11.9.4. This section presents the operations on mtasks.

There is no operation to create one mtask, because mtasks need to be made together all at
once, which is what KheMTaskFinderMake does. Any subsequent changes to individual tasks
which affect equivalence will render these mtasks out of date. This includes assignments of one
task to another task, changes to task domains, changes to whether a task assignment is fixed or
not, meet splits and merges, and attaching and detaching event resource monitors. Because of
this, it is best to create mtasks at the beginning of a call on some resource solver, after any such
changes have been made, and delete them (by deleting the mtask finder’s arena) at the end of that
call, before later calls on other solvers can change things. KHE’s solvers do this.

Here now are the operations on mtasks. One advantage of the mtask abstraction is that
we can model these operations on the corresponding task operations—although there are some
differences, such as that we cannot assign one mtask to another.

First come some general operations:

char *KheMTaskId(KHE_MTASK mt);

This returns an Id for mtask mt, just the task Id of its first task.

KHE_RESOURCE_TYPE KheMTaskResourceType(KHE_MTASK mt);
bool KheMTaskIsPreassigned(KHE_MTASK mt, KHE_RESOURCE *r);
bool KheMTaskAssignIsFixed(KHE_MTASK mt);
KHE_RESOURCE_GROUP KheMTaskDomain(KHE_MTASK mt);
int KheMTaskTotalDuration(KHE_MTASK mt);
float KheMTaskTotalWorkload(KHE_MTASK mt);

Again, these come from mt’s first task; they must be the same for all mt’s tasks, otherwise those
tasks would not have been placed into the same mtask. A preassigned task is the only member of
its mtask, except in the unlikely case of equivalent tasks preassigned the same resource. A task

11.9. Multi-task finding 317

with a fixed assignment is the only member of its mtask.

The proper root tasks of an mtask can come from the same meet, or from different meets.
When they come from the same meet, function

bool KheMTaskHasSoleMeet(KHE_MTASK mt, KHE_MEET *meet);

sets *meet to that meet and returns true. Otherwise it sets *meet to NULL and returns false.

An mtask is said to have fixed times when it is not degenerate, all of the tasks within it have
assigned times, and the call to KheMTaskSolverMake that created it had fixed_times set to
true. To check this condition, call

bool KheMTaskHasFixedTimes(KHE_MTASK mt);

When it returns true, these functions provide access to the times:

KHE_INTERVAL KheMTaskInterval(KHE_MTASK mt);
KHE_TIME KheMTaskDayTime(KHE_MTASK mt, int day_index,
float *workload_per_time);

KheMTaskInterval returns the smallest interval of days in the days frame of mt’s task finder
that contains mt’s times. In mtask finding generally, a value of type KHE_INTERVAL (defined
in Section 8.12) always denotes an interval of days. For each index day_index in this interval,
KheMTaskDayTime returns the time that mt is busy on the day of days_frame with index
day_index, or NULL if mt does not run that day, as well as mt’s workload per time on that day.

Many mtask operations utilize KheMTaskInterval(mt) as their representation of when mt

is running. This representation is convenient but it does not recognize days within the interval
where an mtask runs twice, or not at all. Two functions help to identify such cases:

bool KheMTaskNoOverlap(KHE_MTASK mt);
bool KheMTaskNoGaps(KHE_MTASK mt);

KheMTaskNoOverlap returns true when no two of mt’s busy times lie on the same day, and
KheMTaskNoGaps returns true when none of the calls to KheMTaskDayTime return NULL.

Returning to functions that do not need fixed times, to visit the tasks of an mtask we have

int KheMTaskTaskCount(KHE_MTASK mt);
KHE_TASK KheMTaskTask(KHE_MTASK mt, int i,
KHE_COST *non_asst_cost, KHE_COST *asst_cost);

KheMTaskTask returns the ith task t, plus a cost *non_asst_cost which will be included in
the solution cost whenever t is unassigned (as reported by assign resource monitors) and a cost

*asst_cost which will be included in the solution cost whenever t is assigned (as reported by
prefer resources monitors with empty sets of preferred resources). Actually, these costs can vary
depending on other task assignments; the costs returned here are lower bounds that do not depend
on other assignments. The tasks are returned so that those most in need of assignment come first,
that is, in order of decreasing *non_asst_cost - *asst_cost. Tasks for which this order is
not certain lie in different mtasks. All this is explained in detail in Section 11.9.4.

Next come operations concerned with resource assignment. Each mtask has a set of

318 Chapter 11. Resource-Structural Solvers

resources currently assigned to it (that is, assigned to some of its tasks). This set is in fact a
multi-set: a resource may be currently assigned to a given mtask more than once. Assigning a
resource more than once to a given mtask inevitably causes clashes, but it is better to let it happen
than to waste time preventing it. The resource assignment operations are

bool KheMTaskResourceReassignCheck(KHE_MTASK mt, KHE_RESOURCE from_r,
KHE_RESOURCE to_r, bool disallow_preassigned);

bool KheMTaskResourceReassign(KHE_MTASK mt, KHE_RESOURCE from_r,
KHE_RESOURCE to_r, bool disallow_preassigned);

KheMTaskResourceReassignCheck returns true when changing one of mt’s assignments from
from_r to to_r would succeed, and false when it would not succeed. Here from_r could
be NULL, in which case the request is to add to_r to the set of resources assigned to mt, that is,
to increase the multiplicity of its assignments to mt by one. We call this an assignment. And
to_r could be NULL, in which case the request is to remove from_r from the set of resources
assigned mt, that is, to reduce the multiplicity of its assignments to mt by one. We call this an
unassignment. KheMTaskResourceReassign actually makes the change, returningtrue if it was
successful, and false if it wasn’t (in that case, nothing is changed).

Parameter disallow_preassigned is concerned with the awkward question of what to
do with preassigned mtasks. The corresponding functions for tasks allow a preassigned task to
be assigned, unassigned, and moved to another task which is preassigned the same resource.
If disallow_preassigned is false, the equivalent behaviour is permitted here, allowing a
preassigned mtask to be assigned and unassigned. However, in practice callers of these functions
are more likely to want all changes to preassigned tasks to be disallowed: such tasks will already
be assigned their preassigned resources, and changes to those assignments are not wanted. This
is what happens when disallow_preassigned is true.

Here is the full list of reasons why a reassignment might not succeed:

• from_r == to_r, so the reassignment would change nothing.

• mt contains only fixed tasks; their assignments cannot change.

• mt contains only preassigned tasks, and either the disallow_preassigned parameter is
true, so that their assignments cannot change, or else it is false, and to_r is neither of the
two permitted values (the preassigned resource and NULL).

• to_r != NULL and the domain of mt (the same for all its tasks) does not contain to_r.

• from_r != NULL and from_r is not one of the resources assigned to mt.

• from_r == NULL (and therefore to_r != NULL) and mt does not contain at least one
unassigned task to assign to_r to.

As usual, returning false when the reassignment changes nothing reflects the practical reality
that no solver wants to waste time on such changes.

This next function may be useful for suggesting a suitable resource for assignment:

bool KheMTaskResourceAssignSuggestion(KHE_MTASK mt, KHE_RESOURCE *to_r);

11.9. Multi-task finding 319

It returns true with *to_r set to a suggestion for an assignment to mt, if one can be found, and
false if no suggestion can be made. The suggestion comes by looking for tasks which share
an event resource with the next unassigned task of mt and are already assigned a resource: if
that resource can be assigned to mt, then it becomes the suggestion. The idea here is to promote
resource constancy (assigning the same resource to all the tasks of a given event resource) even
when it is not required by an avoid split assignments constraint.

For visiting the assignments to mt there is

int KheMTaskAsstResourceCount(KHE_MTASK mt);
KHE_RESOURCE KheMTaskAsstResource(KHE_MTASK mt, int i);

which return the number of non-NULL resources in the multi-set of resources assigned to mt, and
the ith resource, in the usual way. There are also

int KheMTaskUnassignedTaskCount(KHE_MTASK mt);

which returns the number of unassigned tasks in mt, and

bool KheMTaskNeedsAssignment(KHE_MTASK mt);

which returns true when mt contains at least one unassigned task such that the costs returned
by KheMTaskTask satisfy *non_asst_cost - *asst_cost > 0. In other words, the cost of the
solution would be reduced if this task was assigned, as far as the event resource monitors that
determine *non_asst_cost and *asst_cost are concerned. Also,

bool KheMTaskContainsNeedlessAssignment(KHE_MTASK mt);

returns true if mt contains a task which is assigned but does not need to be. This means that
a call to KheMTaskNeedsAssignment(mt) would return false, but furthermore, after any one
resource is unassigned from mt, KheMTaskNeedsAssignment(mt) would still return false.

Any given set of resources is always assigned to the tasks of an mtask in a best possible
(least cost) way. When a resource is unassigned from an mtask, the remaining assignments may
no longer have this property. In that case, they are adjusted to make them best possible again.

A similar issue arises when an mtask is constructed: if the initial resource assignments are
not best possible, they will be moved from one task to another within the mtask until they are. So
there may be calls on task assignment operations while KheMTaskSolverMake is running. These
are guaranteed to not increase the cost of the solution. They might decrease it.

An mtask’s tasks all have the same domain, making the following operations well-defined:

bool KheMTaskAddTaskBoundCheck(KHE_MTASK mt, KHE_TASK_BOUND tb);
bool KheMTaskAddTaskBound(KHE_MTASK mt, KHE_TASK_BOUND tb);
bool KheMTaskDeleteTaskBoundCheck(KHE_MTASK mt, KHE_TASK_BOUND tb);
bool KheMTaskDeleteTaskBound(KHE_MTASK mt, KHE_TASK_BOUND tb);

int KheMTaskTaskBoundCount(KHE_MTASK mt);
KHE_TASK_BOUND KheMTaskTaskBound(KHE_MTASK mt, int i);

KheMTaskAddTaskBound adds its bound to each task. It returns false and changes nothing if

320 Chapter 11. Resource-Structural Solvers

any of the underlying KheTaskAddTaskBound operations would return false.

If the domain of an mtask is changed in this way, its tasks could become equivalent to the
tasks of some other mtask that already have the new domain. However, no attempt is made to
find and merge such mtasks. It does no harm, apart from wasting solve time, to have two mtasks
on hand which could be merged into one.

Mtasks work correctly with marks and paths. Operations on mtasks are not stored in paths,
but the underlying operations on tasks are, and that is enough to make everything work.

Finally,

void KheMTaskDebug(KHE_MTASK mt, int verbosity, int indent, FILE *fp);

produces a debug print of mt onto fp. It calls KheTaskDebug for each task of mt.

11.9.3. Multi-task sets

Just as type KHE_TASK_SET represents a simple set of tasks, so KHE_MTASK_SET represents a
simple set of mtasks. The only wrinkle is that an mtask set remembers the interval that it covers
(the union of the values of KheMTaskInterval(mt) for each of its mtasks mt). This is done to
make function KheMTaskSetInterval, presented below, very efficient.

The operations on mtask sets follow those on task sets, with a few adjustments. To create
and delete an mtask set, call

KHE_MTASK_SET KheMTaskSetMake(KHE_MTASK_FINDER mtf);
void KheMTaskSetDelete(KHE_MTASK_SET mts, KHE_MTASK_FINDER mtf);

Deleted mtask sets are held in a free list in mtf, and freed when mtf’s arena is freed.

Three operations are offered for reducing the size of an mtask set:

void KheMTaskSetClear(KHE_MTASK_SET mts);
void KheMTaskSetClearFromEnd(KHE_MTASK_SET mts, int count);
void KheMTaskSetDropFromEnd(KHE_MTASK_SET mts, int n);

KheMTaskSetClear clears mts back to the empty set. KheMTaskSetClearFromEnd removes
mtasks from the end until count mtasks remain. If count is larger than the number of mtasks in
mts, none are removed. KheMTaskSetDropFromEnd removes the last n mtasks from mts. If n is
larger than the number of mtasks in mts, all are removed.

Two operations are offered for adding mtasks to an mtask set:

void KheMTaskSetAddMTask(KHE_MTASK_SET mts, KHE_MTASK mt);
void KheMTaskSetAddMTaskSet(KHE_MTASK_SET mts, KHE_MTASK_SET mts2);

KheMTaskSetAddMTask adds mt to the end of mts; KheMTaskSetAddMTaskSet appends the
elements of mts2 to the end of mts without disturbing mts2.

Here are two operations for deleting one mtask:

void KheMTaskSetDeleteMTask(KHE_MTASK_SET mts, KHE_MTASK mt);
KHE_MTASK KheMTaskSetLastAndDelete(KHE_MTASK_SET mts);

11.9. Multi-task finding 321

KheMTaskSetDeleteMTask deletes mt from mts (it must be present). Assuming that mts is not
empty, KheMTaskSetLastAndDelete deletes and returns the last mtask of mts.

To find out whether an mtask set contains a given mtask, call

bool KheMTaskSetContainsMTask(KHE_MTASK_SET mts, KHE_MTASK mt, int *pos);

If found, this sets *pos to mt’s index in mts. To visit the mtasks of an mtask set, call

int KheMTaskSetMTaskCount(KHE_MTASK_SET mts);
KHE_MTASK KheMTaskSetMTask(KHE_MTASK_SET mts, int i);

in the usual way. There is also

KHE_MTASK KheMTaskSetFirst(KHE_MTASK_SET mts);
KHE_MTASK KheMTaskSetLast(KHE_MTASK_SET mts);

which return the first and last elements when mts is non-empty.

For sorting an mtask set there is

void KheMTaskSetSort(KHE_MTASK_SET mts,
int(*compar)(const void *, const void *));

where compar compares mtasks. There is also

void KheMTaskSetUniqueify(KHE_MTASK_SET mts);

which uses a call to HaArraySortUnique with a suitable comparison function to uniqueify mts,
that is, to ensure that each mtask in mts appears there at most once. The mtasks are sorted by
increasing order of KheTaskSolnIndex applied to each mtask’s first task. This does what is
wanted, given than every mtask contains at least one task, and no task appears in two mtasks.

When mts’s mtasks all have fixed times, function

KHE_INTERVAL KheMTaskSetInterval(KHE_MTASK_SET mts);

returns the smallest interval containing the indexes in the days frame of the days of all of their
times. As mentioned earlier, this interval is kept up to date as mtasks are added and removed,
ensuring that KheMTaskSetInterval just has to return a field of mts, making it very fast.

Next come operations for changing the assignments of resources to an mtask set:

bool KheMTaskSetResourceReassignCheck(KHE_MTASK_SET mts,
KHE_RESOURCE from_r, KHE_RESOURCE to_r, bool disallow_preassigned);

bool KheMTaskSetResourceReassign(KHE_MTASK_SET mts,
KHE_RESOURCE from_r, KHE_RESOURCE to_r, bool disallow_preassigned);

KheMTaskSetResourceReassign calls KheMTaskResourceReassign for each mtask mt of mts.
KheMTaskSetResourceReassignCheck checks whether these changes would succeed, without
actually making them.

Finally we have

322 Chapter 11. Resource-Structural Solvers

void KheMTaskSetDebug(KHE_MTASK_SET mts, int verbosity, int indent,
FILE *fp);

which produces a debug print of mts onto fp with the given verbosity and indent.

11.9.4. Behind the scenes

It is now time to look behind the scenes, and see how mtasks guarantee that symmetrical
assignments will be avoided, and at the same time that nothing useful will be missed.

Behind the scenes, then, an mtask is a sequence (not a set) of proper root tasks, each
optionally assigned a resource. When m resources are assigned to an mtask, they are assigned
to the first m proper root tasks in the sequence. Each mtask contains the proper root tasks of
one equivalence class of an equivalence relation between proper root tasks that we call task
similarity. To turn this set into a sequence we sort the elements into non-decreasing order of an
attribute of each task called its task cost.

It is easy to see how mtasks avoid many assignments. Suppose we have n unassigned tasks,
and that we decide to assign m resources to these tasks, where m ≤ n. For the first resource there
are n unassigned tasks to choose from, for the second there are n − 1to choose from, and so on,
giving n(n − 1)…(n − m + 1) choices altogether. This could be a very large number. But now
suppose that these n tasks are grouped into an mtask. Then the mtask tries just one of these
choices, the one which assigns the first resource that comes along to the first task, the second to
the second, and so on. So there is a large reduction in the number of choices. The question is
whether anything useful has been missed.

‘Missing something useful’ is really an appeal to a dominance relation between solutions
(Appendix C). We claim that any solution containing assignments of any m resources to the n
tasks is dominated by the solution containing the assignments chosen by the mtask. The proof
will go like this. Limit all consideration to the m resources and n tasks of interest. If a resource
is assigned to a task that appears later in the mtask’s sequence than some other task which is
unassigned, then we can move the resource to that earlier unassigned task, and the move will
not increase the cost of the solution, in fact it might decrease it. And then, exchanging the
assignments of any two resources can be done and will not change solution cost. These two facts,
if we can prove them, will together show that we can transform our solution into the mtask’s
solution with no increase in cost.

We call a task, considered independently of any tasks that may be assigned to it, an atomic
task. We view one proper root task as the set of all the atomic tasks assigned to it, directly or
indirectly, including itself. Apart from domains, preassignments, and fixed assignments, which
relate specifically to the root task, only this set matters, not which tasks are assigned to which.

As mentioned earlier, KHE allows tasks to be created that are not derived from any meet.
These would typically serve as proper root tasks to which tasks derived from meets could be
assigned. Such tasks are consulted to find domains, preassignments, and fixed assignments
when they are proper root tasks, but since they do not run at any times and have no effect on any
monitors they are ignored otherwise: they are not included among the atomic tasks. This means
that the set of atomic tasks could be empty. In that case the proper root task is considered to be
degenerate and the mtask containing it is also said to be degenerate.

Early in the mtask construction process, the atomic tasks of each proper root task are found

11.9. Multi-task finding 323

and sorted. Atomic tasks without assigned times come before atomic tasks with assigned times.
Two atomic tasks without assigned times are sorted by increasing meet index. Two atomic tasks
with assigned times are sorted by increasing time index. Either way, ties are broken arbitrarily.

There is one wrinkle. If fixed_times is false, assigned times cannot be relied upon to
remain constant throughout the lifetime of the mtasks. So in that case we treat all tasks as though
they have no assigned times, using only their meet indexes in the sorting.

Two proper root tasks are similar when they satisfy these conditions:

(1) They have equal domains.

(2) They are either both unpreassigned, or both preassigned the same resource. This second
possibility inevitably causes clashes, which means that in practice a preassigned task will
usually not be similar to any other task, making it the only member of its mtask.

(3) The assignments of both tasks are not fixed. In other words, a task whose assignment is
fixed is always the only member of its mtask.

(4) The number of atomic tasks must be the same for both tasks (it will be 0 when the tasks
are degenerate), and taking them in the sorted order described above, corresponding atomic
tasks must be similar, according to a definition to be given below.

Assuming that the similarity relation for atomic tasks is an equivalence relation, this evidently
defines an equivalence relation on proper root tasks, as required.

Two atomic tasks are similar when they satisfy these conditions:

(1) They have equal durations and workloads.

(2) Either they both have an assigned time, in which case those times are equal, or they both
don’t, in which case their meet indexes are equal. This second case is always followed when
fixed_times is false, consistent with what was said about this above.

(3) They are similar in their effects on monitors. There are many details to cover here; these
are tackled below.

Once again, this is clearly an equivalence relation, provided that (3) is an equivalence relation.

These rules could be improved on. For example, if there are no limit workload monitors,
then task workloads do not matter. Still, what we have is simple and works well in practice.

The rest of this section is concerned with similarity of two atomic tasks in their effect on
monitors. The general idea is that this similarity holds when, for all resources r, assigning r to
one of the tasks has the same effect on monitors as assigning it to the other task. But there are
complications in making this general idea concrete, as we are about to see.

We can safely ignore unattached monitors and monitors with weight 0. A monitor can be
an event monitor, monitoring the times assigned to a specified set of events, or an event resource
monitor, monitoring the resources assigned to a specified set of tasks, or a resource monitor,
monitoring the busy times or workload of a specified resource. We’ll take each kind in turn.

Event monitors are unaffected by the assignments of resources to tasks. They depend only
on the times assigned to meets. So we can ignore them here.

324 Chapter 11. Resource-Structural Solvers

Resource monitors are not directly concerned with which tasks a resource is assigned to,
but rather with those tasks’busy times and workloads. We have already required similar tasks to
be equal in those respects, so that moving a resource from one similar task to another leaves its
resource monitors unaffected. This is true whether or not times are assigned.

Event resource monitors (assign resource, prefer resources, avoid split assignments, and
limit resources monitors) are where things get harder. The tests we have so far included in the
similarity condition do not guarantee that event resource monitors will be unaffected when a
resource is moved from one task to another—far from it.

Before we delve into event resource monitors, there is a special case we need to dispose of.
Consider an avoid split assignments monitor m whose monitored tasks are all assigned to each
other (have the same proper root). At most one distinct resource can be assigned to these tasks, so
m must have cost 0. It can be and is ignored. This case is quite likely to arise in practice, although
m might be detached when it does. It includes the case where m monitors a single task.

The author spent some time considering what happens with other kinds of event resource
monitors when their tasks have the same proper root. These monitors monitor a single task, in
effect, which is helpful for similarity. However these cases seem unlikely to arise in practice, and
some of their details are not obvious, so nothing special has been done about them.

Event resource monitors explicitly name the tasks (always atomic) that they monitor (are
affected by). We divide them into two groups. A separable monitor is one whose cost may be
apportioned to the tasks it monitors, each portion depending only on the assignment of that one
task. A inseparable monitor is one whose cost cannot be apportioned in this way.

A monitor that monitors just one task is separable, because all its cost can be apportioned to
that task. But there are less trivial examples. Consider an assign resource constraint with a linear
cost function. Its cost is its weight times the total duration of its unassigned tasks, and this may
be apportioned to the individual unassigned tasks, making the monitor a separable one. But if
the cost function is not linear, one cannot apportion the cost in this way.

We analyse inseparable monitors first. If task t is monitored by inseparable monitor m, the
cost of assigning a resource to t cannot be apportioned to t. This indeterminacy in cost prevents
us from saying definitely what the effect on m of a resource assignment is. So in this case, t
cannot be considered similar to any other task.

There is however an exception to this rule. Consider two tasks both monitored by m. An
examination of the event resource constraints will show that, provided the two tasks have equal
durations, the effect on m of assigning a given resource r to either task must be the same. So
m does not prevent the two tasks from being declared similar. Altogether, then, for two atomic
tasks to be similar they must have the same inseparable monitors—not monitors with the same
attributes, but the exact same monitors.

We turn now to separable monitors. Each task has its own individually apportionable
cost, dependent only on its own assignment. Again we divide these monitors into two groups:
resource-dependent separable monitors, for which the cost depends on the choice of resource,
and resource-independent separable monitors, for which the cost depends only on whether the
task is assigned or not, not on the choice of resource.

For example, a separable prefer resources monitor will usually be resource-dependent,
because the cost depends on whether the assigned resource is a preferred one or not. But if the set

11.9. Multi-task finding 325

of preferred resources is empty, assigning any resource produces the same cost, and the monitor
is resource-independent.

To analyse the resource-dependent separable monitors, consider the usual kind of separable
prefer resources monitor. The cost depends on which resource is assigned, so the permutations
of resource assignments that mtasks rely on could produce virtually any cost changes. So we
require, for similarity, that the resource-dependent separable monitors of the two tasks can be put
into one-to-one correspondence such that corresponding monitors have the same attributes (type,
hardness, cost function, weight, preferred resources, and limits where present).

We are left with just the resource-independent separable monitors, whose cost depends
only on whether each task is assigned or not, not on which resource is assigned. We could repeat
the previous work and require a one-to-one correspondence between these monitors such that
corresponding monitors have the same attributes. But we can do better.

Consider three tasks, t1, t2, and t3, that are similar according to the rules so far. Suppose t1
is monitored by a separable assign resource monitor with weight 20, t2 is not monitored, and t3
is monitored by a separable prefer resources monitor with an empty set of resources and weight
10. Assuming duration 1, assigning any resource to t1 reduces the cost of the solution by 20;
assigning any resource to t2 does not change the cost; and assigning any resource to t3 increases
the cost by 10. Examples like this are common in nurse rostering, to place limits on the number
of nurses assigned to a shift. Here, at least one nurse is wanted, but three is too many.

Let the task cost of a task t be the sum, over all resource-independent separable monitors
m that monitor t, of the change in cost reported by m when t goes from being unassigned to
being assigned. In the example above, assuming duration 1, the task costs are −20 for t1, 0
for t2, and 10 for t3. These values are independent of all other assignments, and also of which
resource is being assigned, and so they can be calculated in advance of any solving, while
mtasks are being constructed. When adding an assignment to an mtask, it will always be better
to choose a remaining unassigned task with minimum task cost. So the mtask sorts its tasks by
non-decreasing task cost at the start, and assigns them in sorted order.

It remains to state, for each monitor type, the conditions under which it is separable, and if
separable, resource-independent. The examples given earlier cover most of these cases.

An assign resource monitor is separable when it monitors a single task, or its cost function
is linear, or both. It is then always resource-independent. Otherwise it is inseparable.

A prefer resources monitor is ignored when its set of preferred resources includes every
resource of its resource type, since its cost is always 0 then. Otherwise, it is separable when it
monitors a single task, or its cost function is linear, or both. It is then resource-independent when
its set of preferred resources is empty. Otherwise it is inseparable.

An avoid split assignments monitor is ignored when its tasks all have the same proper root
(including when it monitors a single task). Otherwise it is always considered to be inseparable.

It would not be unreasonable to declare all limit resources monitors to be inseparable, since
in practice they apply to multiple tasks and have non-trivial limits. However, they can also be
used to do what assign resource monitors do, by selecting all resources and setting the minimum
limit to the total duration of the tasks monitored. They can also be used to do what prefer
resources monitors do, by selecting those resources that are not selected by the prefer resources
monitor, and setting the maximum limit to 0. In these cases, we want a limit resources monitor

326 Chapter 11. Resource-Structural Solvers

to be classified in the same way that the assign resource or prefer resources monitor would be.

If a limit resources monitor is equivalent to an assign resource or prefer resources monitor
as just described, it is classified as that other monitor would be. Otherwise, it is separable when
its cost function is linear and its maximum limit is 0. It is then resource-independent when its set
of preferred resources contains every resource of its type. It is also separable when it monitors
a single task. In that case it is resource-independent when its set of preferred resources contains
every resource of its type, in which case the assignment cost depends on how the duration of
the task compares with the monitor’s limits. (Curiously, if the task’s duration is less than the
minimum limit, there will be both a non-assignment cost and an assignment cost, because the
minimum limit is not reached whether the task is assigned or not.) Otherwise it is inseparable.

To recapitulate, then, two proper root tasks are similar when they have equal domains and
preassignments, they are both not fixed, and they have similar atomic tasks. Two atomic tasks are
similar when they have equal durations, workloads, and start times (or meets), their inseparable
monitors are the same, and their resource-dependent separable monitors have equal attributes.
Their resource-independent separable monitors (usually assign resource monitors, and prefer
resources monitors with no preferred resources) may differ: instead of influencing similarity,
they determine the task’s position in the sequence of tasks of its mtask.

11.10. Other resource-structural solvers

This section documents some miscellaneous functions that reorganize task trees, represented by
taskings. They assume that only unfixed tasks lie in taskings, and they preserve this condition.

A good way to minimize split assignments is to prohibit them at first but allow them later.
To change a tasking from the first state to the second, call

bool KheTaskingAllowSplitAssignments(KHE_TASKING tasking,
bool unassigned_only);

It unfixes and unassigns all tasks assigned to the tasks of tasking and adds them to tasking,
returning true if it changed anything. If one of the original unfixed tasks is assigned (to a cycle
task), the tasks assigned to it are assigned to that task, so that existing resource assignments are
not forgotten. If unassigned_only is true, only the unassigned tasks of tasking are affected.
(This option is included for completeness, but it is not recommended, since it leaves few choices
open.) KheTaskingAllowSplitAssignments preserves the resource assignment invariant.

If any room or any teacher is better than none, then it will be worth assigning any resource
to tasks that remain unassigned at the end of resource assignment. Function

void KheTaskingEnlargeDomains(KHE_TASKING tasking, bool unassigned_only);

permits this by enlarging the domains of the tasks of tasking and any tasks assigned to them
(and so on recursively) to the full set of resources of their resource types. If unassigned_only is
true, only the unassigned tasks of tasking are affected. The tasks are visited in postorder—that
is, a task’s domain is enlarged only after the domains of the tasks assigned to it have been
enlarged—ensuring that the operation cannot fail. Preassigned tasks are not enlarged.

This operation works, naturally, by deleting all task bounds from the tasks it changes. Any
task bounds that become applicable to no tasks as a result of this are deleted.

Chapter 12. Resource Solvers

A resource solver assigns resources to tasks, or changes existing resource assignments. This
chapter presents the resource solvers packaged with KHE.

12.1. Specification

The recommended interface for resource solvers, defined in khe_solvers.h, is

typedef bool (*KHE_TASKING_SOLVER)(KHE_TASKING tasking,
KHE_OPTIONS options);

It assigns resources to some of the tasks of tasking, influenced by options, returning true if
it changed, or at least usually changes, the solution. Taskings were defined in Section 5.5. The
options parameter is as in Section 8.2; by convention, options consulted by resource solvers
have names beginning with rs_.

A resource solver could focus on the initial construction of a resource assignment, or on the
repair of an existing resource assignment. It is not wise, however, to try to classify solvers rigidly
in this way, because some can be used for both. A construction solver can be converted into a
repair solver by prefixing it with some unassignments, and a repair solver can be converted into a
construction solver by including missing assignments among the defects that it is able to repair.

Except for preassignments, there is no reason to assign resources, at least in large numbers,
before times are assigned. Accordingly, a resource solver may choose to assume that all meets
have been assigned times. It may alter time assignments in its quest for resource assignments.

The usual way to convert preassignments in the instance into assignments in the solution
is to call KheTaskTreeMake (Section 11.3); this is one of several routine jobs that it carries out.
KheTaskTreeMake does not fix these assignments, although it does reduce the domains of the
affected tasks to singletons. So other solvers should not be able to move preassigned tasks to
other resources, but they can unassign them, which will produce errors if any preassigned tasks
are unassigned when the solution is written.

A split assignment is an assignment of two or more distinct resources to the tasks monitored
by an avoid split assignments monitor. A partial assignment is an assignment of resources to
some of these same tasks, but not all. An assignment can be both split and partial.

12.2. The resource assignment invariant

If all tasks have duration 1, then the matching defines an assignment of resources to tasks which
maximizes the number of assignments. Although larger durations are common, and maximizing
the number of assignments is not the only objective, still it is clear from this fact that the matching
deserves a central place in resource assignment.

327

328 Chapter 12. Resource Solvers

Accordingly, the author’s work in resource assignment [9] emphasizes algorithms that
preserve the following condition, called the resource assignment invariant:

The number of unmatchable demand tixels equals its initial value.

Resource assignments are allowed only when the number of unmatchable demand tixels does not
increase. This keeps the algorithms on a path that cannot lead to new violations of required avoid
clashes constraints, avoid unavailable times constraints, limit busy times constraints, and limit
workload constraints. In practice, most tasks can be assigned while preserving this invariant.

The Boolean option rs_invariant is used to tell resource solvers whether they should
preserve the resource assignment invariant or not. In principle, every resource solver should
consult and obey this option; in practice, many do but not all. A reasonable strategy is to preserve
the invariant for most of the solve, but to relax it near the end, to allow as many assignments as
possible to be made. Section 12.12 explains how to do this, or something else, as you prefer.

The invariant is not usually checked after each individual operation. Rather, a sequence
of related operations is carried out, and then the number of unmatchable demand tixels at the
end of the sequence is compared with the number at the start. If it has increased, the sequence
of operations needs to be undone. Such sequences were called atomic sequences in Section 4.8,
where the following code (using a mark object) was recommended for obtaining them:

mark = KheMarkBegin(soln);
success = SomeSequenceOfOperations(...);
KheMarkEnd(mark, !success);

When preserving the resource invariant, this needs to be changed to

mark = KheMarkBegin(soln);
init_count = KheSolnMatchingDefectCount(soln);
success = SomeSequenceOfOperations(...);
if(KheSolnMatchingDefectCount(soln) > init_count)
success = false;

KheMarkEnd(mark, !success);

This works without the matching too, since then KheSolnMatchingDefectCount returns 0.

As a simple but effective aid to getting this right, this code is encapsulated in functions

void KheAtomicOperationBegin(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant);

bool KheAtomicOperationEnd(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant, bool success);

which may be placed before and after a sequence of operations, like this:

KheAtomicOperationBegin(soln, &mark, &init_count, resource_invariant);
success = SomeSequenceOfOperations(...);
KheAtomicOperationEnd(soln, &mark, &init_count, resource_invariant,
success);

12.2. The resource assignment invariant 329

Here mark and init_count are variables of type KHE_MARK and int, not used for anything
else, resource_invariant is true if the operations must preserve the resource invariant to
be considered successful, and success is their diagnosis of their own success, not including
checking the resource invariant. KheAtomicOperationEnd returns true if success is true and
(if resource_invariant is true) the number of unmatchable demand tixels did not increase:

void KheAtomicOperationBegin(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant)

{

*mark = KheMarkBegin(soln);

*init_count = KheSolnMatchingDefectCount(soln);
}

bool KheAtomicOperationEnd(KHE_SOLN soln, KHE_MARK *mark,
int *init_count, bool resource_invariant, bool success)

{
if(resource_invariant &&

KheSolnMatchingDefectCount(soln) > *init_count)
success = false;

KheMarkEnd(*mark, !success);
return success;

}

The code is trivial, but useful because it encapsulates a common but slightly confusing pattern.

If the resource invariant is being enforced, there is no need to include the cost of demand
monitors in the solution cost, since their cost cannot increase. They must continue to monitor
the solution, however, so detaching is not appropriate. Function

void KheDisconnectAllDemandMonitors(KHE_SOLN soln, KHE_RESOURCE_TYPE rt);

disconnects all demand monitors (or all demand monitors which monitor entities of type rt,
if rt is non-NULL) from all their parents, including the solution object if it is a parent. Thus, as
required, they continue to monitor the solution, but the costs they compute are not added to the
cost of any group monitor. KheSolnMatchingDefectCount still works, however, and there is
nothing to prevent them from being made children of other group monitors later.

In general, time solvers cannot be expected to maintain the resource assignment invariant.
There are cases where, whatever time is assigned, the number of unmatchable demand tixels
must increase. Accordingly, the usual way to take the matching into account during time
assignment is to add a hard cost of 1 to the solution cost for each unmatchable demand tixel.

Do-it-yourself solving offers both ways to use the global tixel matching. As documented
in Section 8.4, item gta installs the global tixel matching in such a way that every unassigned
demand node contributes hard cost 1 to the solution cost, as is usual during time assignment;
while item gtb installs it so that it is available but without contributing to solution cost, as is usual
during resource assignment.

330 Chapter 12. Resource Solvers

12.3. Unchecked, checked, ejecting, and Kempe task and task set moves

The operation of assigning a resource to a task is fundamental to resource solving. This section
defines four variants of this operation (unchecked, checked, ejecting, and Kempe), and presents
functions for applying them to individual tasks and to task sets (Section 5.6).

In all cases, the task or tasks to be moved can be assigned or unassigned initially; either way,
they are reassigned to the given resource. If the given resource is NULL, that’s fine too; it means
unassignment, even for the Kempe functions, where it would be more natural, arguably, for the
operation to be undefined. The functions all return false when they either cannot carry out the
requested changes, or they can but that changes nothing. Failed operations leave the solution in
its state at the point of failure, so calls on these functions (except KheTaskMoveResource) should
be enclosed in KheMarkBegin and KheMarkEnd, to undo failed attempts properly.

An unchecked task move is just a call on platform function

bool KheTaskMoveResource(KHE_TASK task, KHE_RESOURCE r);

Although it makes the checks described in Section 4.6, it is called ‘unchecked’ here, because it
does not check whether the move introduces any incompatible tasks (defined below).

An unchecked task set move is a set of unchecked task moves to the same resource, as
implemented by function

bool KheTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r);

defined here. It moves the tasks of ts to r using calls to KheTaskMoveResource. It returns true
when ts is non-empty and the individual moves all succeed.

An ejecting task move is a task move which both moves a resource to a task and ejects (that
is, unassigns) the resource from all incompatible tasks. This is done by function

bool KheEjectingTaskMove(KHE_TASK task, KHE_RESOURCE r, bool allow_eject);

when allow_eject is true. It moves task to r, unassigning r from all incompatible tasks
(defined below), and returning true if it succeeds. Failure can be due to task being fixed,
or r not lying in the domain of task, or r being already assigned to task, or because some
incompatible task cannot be unassigned, or it can be but allow_eject is false, meaning that
ejection is not allowed (this is called an checked task move above).

KheEjectingTaskMove considers two tasks to be incompatible when they overlap in time.
However, in nurse rostering, two tasks are often considered incompatible when they occur on the
same day, so another function is offered which handles such cases using frames (Section 5.10):

bool KheEjectingTaskMoveFrame(KHE_TASK task, KHE_RESOURCE r,
bool allow_eject, KHE_FRAME frame);

This is the same as KheEjectingTaskMove except that two tasks are considered incompatible if
any time that one task is running lies in the same time group of frame as some time that the other
task is running. Here frame may not be a null frame.

Unlike the corresponding function for ejecting meet moves, KheEjectingTaskMove and
KheEjectingTaskMoveFrame do not consult the matching or use a group monitor. Instead,when

12.3. Unchecked, checked, ejecting,and Kempe task and task set moves 331

r is non-NULL, they use r’s timetable monitor to find the tasks assigned r that are incompatible
with task and unassign them, returning false if any cannot be unassigned, because they are
fixed or preassigned. Then they call KheTaskMoveResource and return what it returns.

It is not likely that some incompatible task task2 cannot be unassigned because it is fixed.
This is because KheTaskFirstUnFixed(task2) (Section 4.6.1) is unassigned, not task2.

An ejecting task set move is a set of ejecting task moves to the same resource. This
operation is carried out by functions

bool KheEjectingTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r,
bool allow_eject);

bool KheEjectingTaskSetMoveFrame(KHE_TASK_SET ts, KHE_RESOURCE r,
bool allow_eject, KHE_FRAME frame);

which perform ejecting task moves on the elements of ts, without or with a frame, returning
true when ts is non-empty and all of the individual ejecting task moves succeed.

A Kempe task move is carried out by functions

bool KheKempeTaskMove(KHE_TASK task, KHE_RESOURCE r);
bool KheKempeTaskMoveFrame(KHE_TASK task, KHE_RESOURCE r, KHE_FRAME frame);

If r is NULL, this is just an unassignment as usual. Otherwise, if task is initially unassigned,
or assigned r, false is returned. Otherwise, let r2 be the resource initially assigned to task.
KheKempeTaskMove performs a sequence of ejecting task moves, first of task to r, then of the
tasks ejected by this move to r2, then of the tasks ejected by those moves to r, and so on until
there are no ejected tasks. It fails if any of these ejecting task moves fails, or if tries to move
some task twice. There is no allow_eject parameter because it is inherent in the Kempe idea
to keep going until all tasks are assigned.

A Kempe task set move is approximately a set of Kempe task moves, carried out by

bool KheKempeTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r);
bool KheKempeTaskSetMoveFrame(KHE_TASK_SET ts, KHE_RESOURCE r,
KHE_FRAME frame);

The tasks must initially be assigned the same resource. This is not exactly like moving the tasks
one by one, because the rule about not moving a task twice applies to the operation as a whole.

Finally, there is a way to select the kind of move to make on the fly, defined by type

typedef enum {
KHE_MOVE_UNCHECKED,
KHE_MOVE_CHECKED,
KHE_MOVE_EJECTING,
KHE_MOVE_KEMPE,

} KHE_MOVE_TYPE;

The usual four functions are offered:

332 Chapter 12. Resource Solvers

bool KheTypedTaskMove(KHE_TASK task, KHE_RESOURCE r, KHE_MOVE_TYPE mt);
bool KheTypedTaskMoveFrame(KHE_TASK task, KHE_RESOURCE r,
KHE_MOVE_TYPE mt, KHE_FRAME frame);

bool KheTypedTaskSetMove(KHE_TASK_SET ts, KHE_RESOURCE r,
KHE_MOVE_TYPE mt);

bool KheTypedTaskSetMoveFrame(KHE_TASK_SET ts, KHE_RESOURCE r,
KHE_MOVE_TYPE mt, KHE_FRAME frame);

These switch on mt, then call one of the functions above. There is also

char *KheMoveTypeShow(KHE_MOVE_TYPE mt);

which returns the obvious one-word description of mt: "unchecked" and so on.

12.4. Resource assignment algorithms

This section presents four algorithms for constructing initial assignments of resources to tasks.
The next section documents another.

As explained at the start of this chapter, it is not wise to emphasise the distinction between
construction and repair. Although the author has not found any uses for these algorithms in
repair, there may be some; and later in this chapter there is another algorithm (resource matching)
which is useful for both. Indeed, the time sweep algorithm built on resource matching is the
author’s method of choice for constructing an initial assignment in nurse rostering.

12.4.1. Satisfying requested task assignments

When an event resource must be assigned a particular resource, that should appear in the instance
as a preassignment. Such preassignments in the instance are converted to assignments in the
solution by function KheSolnAssignPreassignedResources (Section 4.3).

When the assignment is merely a preference, it will be included as a request, in the form of
a constraint, not as a preassignment. Function

bool KheSolnAssignRequestedResources(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

may be used to make these requested assignments. It returns true if it changes the solution.

It is quite likely that some of the requested assignments will be incompatible with finding a
good solution. That’s fine: the assignments made by KheSolnAssignRequestedResources are
not fixed in any sense; they are open to change by repair algorithms later.

KheSolnAssignRequestedResources works as follows. First, it finds all limit busy times
and cluster busy times monitors which monitor resources of type rt, have non-zero cost, and
have non-zero minimum limit without allowing zero. For the cluster busy times constraint,a non-
trivial maximum limit can also be used if there are negative time groups, using the transformation
given at the end of Section 3.7.14. We’ll assume a minimum limit and positive time groups here,
but the equivalent case of a maximum limit and negative time groups is also handled.

These monitors all require a resource to be assigned one or more tasks. In some cases,

12.4. Resource assignment algorithms 333

which we call forcing cases, they force the resource to be assigned a task at a particular time. For
limit busy times constraints, this is true for each time in each time group whose cardinality is not
larger than the minimum limit. For cluster busy times constraints, it is true for each time in time
groups of cardinality one, when the number of time groups is not larger than the minimum limit.
In all other cases, which we call non-forcing cases, they force the resource to be assigned a task,
but not at a particular time.

Sort the monitors into decreasing combined weight order. Make two passes over the
monitors, handling forcing cases on the first pass, and non-forcing cases on the second.

To handle forcing cases, find each particular time that the resource has to be busy. Try
assigning the resource to each task of its type running at that time, and keep the assignment which
produces the smallest solution cost.

To handle non-forcing cases, determine a set of times such that one of those times has to
be busy (for cluster busy times monitors this will be the set of all times in all time groups that
are not already busy), try assigning the resource to each task of its type running at any of those
times, and keep the assignment which produces the smallest solution cost.

A monitor may need several repeats of this treatment to reduce its cost to 0. It is important
to, in effect, start again on the monitor after keeping an assignment, since it is possible for one
assignment to affect several times or time groups, especially when tasks have been grouped.

KheSolnAssignRequestedResources consults two options:

rs_requested_off

A Boolean option which, when true, causes KheSolnAssignRequestedResources to
do nothing.

rs_requested_nonforced_on

A Boolean option which, when true, causes KheSolnAssignRequestedResources to
carry out its second pass over the monitors (the pass that handles non-forced requests). By
default this pass is omitted, because it is harder to justify and less obviously useful than the
first (forced) pass.

It also uses the gs_event_timetable_monitor option (Section 8.4), to find the events running
at each time. It aborts if this option is not in options.

There is another function, closely related to KheSolnAssignRequestedResources:

bool KheMonitorRequestsSpecificBusyTimes(KHE_MONITOR m);

It returns true if m requests that a resource be busy at one or more specific times, triggering a
forcing case for KheSolnAssignRequestedResources. Precisely, it returns true when given:

1. A limit busy times monitor with a non-zero minimum limit, with false for allow_zero,
and with one or more time groups whose cardinality is at least the minimum limit.

2. A cluster busy times monitor with a minimum limit equal to or greater than its number of
time groups, with false for allow_zero, whose time groups are all positive, with one or
more of them containing just one time.

3. A cluster busy times monitor such that the transformation documented by the theorem at

334 Chapter 12. Resource Solvers

the end of Section 3.7.14 produces the previous case.

The correspondence with KheSolnAssignRequestedResources is not quite exact, as it turns
out, but the differences are insignificant, practically speaking.

12.4.2. Most-constrained-first assignment

When each unfixed task has no followers, so that each demands a resource for a single interval
of time, as is usual with room assignment, a simple ‘most constrained first’heuristic assignment
algorithm that maintains the resource assignment invariant is usually sufficient to obtain a
virtually optimal assignment (in high school timetabling, not nurse rostering). Function

bool KheMostConstrainedFirstAssignResources(KHE_TASKING tasking,
KHE_OPTIONS options);

does this. It tries to assign each unassigned unfixed task of tasking, leaving assigned ones
untouched. For each such task, it maintains the set of resources that can currently be assigned to
the task without increasing the number of unmatchable demand tixels. It selects a task with the
fewest such resources, assigns it if possible, and repeats until all tasks have been handled.

Each assignment preserves the resource assignment invariant. If no assignment can do
that, the task remains unassigned. Among all resources that preserve it, as a first priority an
assignment that minimizes KheSolnCost is chosen, and as a second priority, resources that have
already been assigned to other tasks of the event resources of the task and the tasks assigned to
it are preferred. So even when an avoid split assignments constraint is not present, the algorithm
favours assigning the same resource to all the tasks of a given event resource, for regularity.

In fact, KheMostConstrainedFirstAssignResources assigns multi-tasks (Section 11.9),
not individual tasks. Each task of a multi-task is assignable by the same resources, so one list of
suitable resources is kept per multi-task. At each step, a multi-task is selected for assignment for
which the number of suitable resources minus the number of unassigned tasks is minimal.

When a resource is assigned to a task, it becomes less available, so its suitability for
assignment to its other multi-tasks is rechecked. If it proves to be no longer assignable to some
of them, their priorities are changed. The multi-tasks are held in a priority queue (Section A.4),
which allows their queue positions to be updated efficiently when their priorities change.

12.4.3. Resource packing

To pack a resource means to find assignments of tasks to the resource that make the solution cost
as small as possible, while preserving the resource assignment invariant, in effect utilizing the
resource as much as possible [9]. Following the recommended interface for resource assignment
functions (Section 12.1), function

bool KheResourcePackAssignResources(KHE_TASKING tasking,
KHE_OPTIONS options);

assigns resources to the unassigned tasks of tasking using resource packing, as follows.

The tasks are grouped into multi-tasks (Section 11.9). Two numbers help to estimate the
difficulty of utilizing a resource effectively: the demand duration and the supply duration. A

12.4. Resource assignment algorithms 335

resource’s demand duration is the total duration of the multi-tasks it is assignable to. Its supply
duration is the number of times it is available for assignment: the cycle length, minus the number
of its workload demand monitors, minus the total duration of any tasks it is already assigned to.

The resources are placed in a priority queue, ordered by increasing demand duration minus
supply duration. That is, the less demand there is for the resource, or the more supply, the more
important it is to pack it sooner rather than later. In practice, part-time teachers come first in this
order, which is good, because they are difficult to utilize effectively.

The main loop of the algorithm removes a resource of minimum priority from the priority
queue and packs it. If this causes any multi-tasks to become completely assigned, they are
unlinked from the resources assignable to them, reducing those resources’demand durations and
thus altering their position in the priority queue. This is repeated until the queue is empty.

Each resource r is packed using a binary tree search: at each tree node, one available
task group is either assigned to r, or not. The multi-tasks are taken in decreasing order of the
maximum, over all tasks t of the multi-task, of KheMeetDemand(m), where m is the first unfixed
meet on the chain of assignments out of the meet containing t. This gives preference to tasks
whose meets are hard to move, reasoning that the leftovers will be given split assignments, and
repairing them may require moving their meets. The search tree has a moderate depth limit. At
the limit, the algorithm switches to a simple heuristic which assigns as many tasks as it can.

12.4.4. Split assignments

After solver functions such as KheMostConstrainedFirstAssignResources (Section 12.4.2)
and KheEjectionChainRepairResources (Section 12.8) have assigned resources to most tasks,
some tasks may remain unassigned. These will have to receive split assignments. Function

bool KheFindSplitResourceAssignments(KHE_TASKING tasking,
KHE_OPTIONS options);

reduces the cost of the solution as much as it can, by making split assignments to the unassigned
tasks of tasking while maintaining the resource assignment invariant. Any tasks which were
unassigned to begin with are replaced in tasking by their child tasks.

At the core of KheFindSplitResourceAssignments is a procedure which takes every pair
of resources capable of constituting a split assignment to some task and tries to assign them
greedily to the task, keeping the assignment that produces the lowest solution cost. However,
before entering on that, KheFindSplitResourceAssignments eliminates resources that cannot
be assigned even to one child task, makes assignments that are forced because there is only one
available resource (not forgetting that one forced assignment might lead to another, or that once
a resource has been assigned to one child task it makes sense to assign it to as many others as
possible), and divides each task into independent components (in the sense that no resource is
assignable to two components). In practice, much of what it does is more or less forced.

12.5. Single resource assignment using dynamic programming

This section presents a polynomial-time dynamic programming algorithm that finds an optimal
timetable for a single resource, assuming that time assignments are fixed, and that the resource’s

336 Chapter 12. Resource Solvers

timetable can be built up step by step in chronological order, as in nurse rostering.

Let the single resource be r. The algorithm finds one timetable for r for each distinct total
number of assigned times. Each timetable minimizes the total cost of the resource constraints
that monitor the timetable of r, among all timetables with that number of assigned times. The
caller is then free to adopt any one of these timetables. The algorithm does not minimize other
costs, such as the cost of assigning or not assigning tasks, or costs that depend on the timetables
of two resources. It chooses unassigned tasks whose assignment minimizes these costs at the
moment they are chosen, but that is not the same as minimizing them overall.

To run the algorithm, the first step is to create a single resource solver, by calling

KHE_SINGLE_RESOURCE_SOLVER KheSingleResourceSolverMake(KHE_SOLN soln,
KHE_OPTIONS options);

Among other things, parameter options is used to access the common frame, defining the days
of the cycle. The solver can be deleted when it is no longer wanted, by calling

void KheSingleResourceSolverDelete(KHE_SINGLE_RESOURCE_SOLVER srs);

To solve for a particular resource r, call

void KheSingleResourceSolverSolve(KHE_SINGLE_RESOURCE_SOLVER srs,
KHE_RESOURCE r, KHE_SRS_DOM_KIND dom_kind, int min_assts,
int max_assts, KHE_COST cost_limit);

This does not change the solution. Instead, it carries out the solve and finds a number of distinct
timetables. The timetables vary in the number of assignments they contain, as explained above.

The type of parameter dom_kind is defined in khe_solvers.h as

typedef enum {
KHE_SRS_DOM_WEAK,
KHE_SRS_DOM_MEDIUM,
KHE_SRS_DOM_SEPARATE,
KHE_SRS_DOM_TRIE

} KHE_SRS_DOM_KIND;

This determines whether the solve uses weak dominance, medium dominance, separate
dominance, or trie dominance. These terms are explained below. Solutions of minimum cost
are found in any case; there may be some difference in running time.

The solve only finds timetables whose number of assignments is at least min_assts and at
most max_assts; if these restrictions are not wanted, simply pass 0 and INT_MAX. The result of
KheResourceMaxBusyTimes (Section 4.7) would be a good starting point for constructing more
interesting values for min_assts and max_assts.

The solve only finds timetables whose cost is no larger than cost_limit. A reasonable
value for this in nurse rostering would be KheCost(0, INT_MAX), since hard constraint
violations are unacceptable. To have no cost limit at all, use KheCost(INT_MAX, INT_MAX).

To find out about the timetables produced by KheSingleResourceSolverSolve, call

12.5. Single resource assignment using dynamic programming 337

int KheSingleResourceSolverTimetableCount(KHE_SINGLE_RESOURCE_SOLVER srs);
void KheSingleResourceSolverTimetable(KHE_SINGLE_RESOURCE_SOLVER srs,

int i, int *asst_count, KHE_COST *r_cost);

afterwards. KheSingleResourceSolverTimetableCount returns the number of timetables that
were found, and KheSingleResourceSolverTimetable reports on the ith timetable, for i in
the range 0 to KheSingleResourceSolverTimetableCount(srs) - 1. It reports the number
of assignments, and the total cost of the resource monitors of r (the quantity that is optimized).
The timetables are returned in increasing order of *asst_count.

It is up to the caller to decide which of these timetables, if any, to take into the solution. To
actually change the original solution, call

void KheSingleResourceSolverAdopt(KHE_SINGLE_RESOURCE_SOLVER srs, int i);

This will change the solution to include the ith timetable.

One way (not the only way) to decide among the different solutions is to assume that not
assigning one time has cost c, and choose a solution that minimizes

*r_cost - *asst_count * c

breaking ties in favour of solutions whose *asst_count is larger. Function

int KheSingleResourceSolverBest(KHE_SINGLE_RESOURCE_SOLVER srs,
KHE_COST cost_reduction);

does this (the cost_reduction parameter is c), and returns the index of the best timetable by this
measure. It may only be called when there is at least one timetable. The result may be passed
to KheSingleResourceSolverTimetable or KheSingleResourceSolverAdopt.

The caller must choose a suitable value of c. The best way to do this, probably, is to create
a balance solver (Section 11.4.4) and use the result of KheBalanceSolverMarginalCost for c.

To move on to another resource, call KheSingleResourceSolverSolve again. It saves
some time (not a huge amount) to use one solver on many resources. All memory is reclaimed
by KheSingleResourceSolverDelete. Finally,

void KheSingleResourceSolverDebug(KHE_SINGLE_RESOURCE_SOLVER srs,
int verbosity, int indent, FILE *fp);

produces a debug print of srs onto fp with the given verbosity and indent; and

void KheSingleResourceSolverTest(KHE_SOLN soln, KHE_OPTIONS options,
KHE_RESOURCE r);

creates a single resource solver and tests it by finding optimal timetables for r. It produces some
debug output, including graphs (Section 8.9.2) in subdirectory stats of the current directory.
The user must create this subdirectory before KheSingleResourceSolverTest is called.

This algorithm is a precursor of the dynamic resource solver from the next section, and
many of that algorithm’s ideas were first tried out here. The main differences here are that we
assign a single resource for the full set of days, that multi-day tasks do not spoil the optimality,

338 Chapter 12. Resource Solvers

and that we find a set of alternative solutions with varying numbers of assignments.

12.6. Optimal resource reassignment using dynamic programming

This section presents a function for finding an optimal reassignment of an arbitrary subset of
the resources of an instance over an arbitrary subset of the days of the instance, assuming
time assignments are fixed. The function uses a straightforward generalization of a dynamic
programming algorithm that has long been used within column generation solvers for nurse
rostering to produce an optimal timetable for a single nurse.

The algorithm is designed to support a very large-scale neighbourhood (VLSN) search
algorithm which repeatedly chooses some resources and some days, unassigns those resources
on those days, and reassigns them optimally. The initial setup creates data structures whose size
is proportional to the size of the entire solution, but each call on the solver after that has running
time which depends only on the number of selected resources and days. This is important for
efficiency: if there are 50 resources and 28 days, but one call on the solver reassigns, say, 5
resources over 7 days, we want the running time to depend on 5 and 7, not on 50 and 28.

As Appendix C.2 shows, the running time of one call on the solver is O(n(a + m1) m cmn),
where n is the number of selected days, m is the number of selected resources, a is a constant,
the number of shift types, and c is another constant, the number of constraints (usually 1 or 2)
per resource whose maximum limits increase with n (such as limits on the total number of shifts).
As n and m increase, this increases rapidly. Precisely which values lead to feasible running
times is a matter for empirical experiment. The fact that the running time is polynomial in n and
exponential in m comes through clearly in experiments: it can be quite feasible to reassign 14
days or more, but not 14 resources.

Optimality is only guaranteed when each task lies within a single day. Multi-day tasks,
whether derived from events of duration greater than 1 or from task grouping, are handled, but
the solver is only a good heuristic, not optimal, when they are present. Another limitation is
that the solver ignores avoid split assignments and limit idle times constraints. These are never
present in the nurse rostering instances that it is mainly intended for.

12.6.1. Invoking optimal resource reassignment

Functions

KHE_DYNAMIC_RESOURCE_SOLVER KheDynamicResourceSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

void KheDynamicResourceSolverDelete(KHE_DYNAMIC_RESOURCE_SOLVER drs);

create and delete a dynamic resource solver for soln which reassigns resources of type rt.

KheDynamicResourceSolverMake places the proper root tasks of type rt into multi-tasks
(Section 11.9) which last for the life of the solver. During that time, any changes to their assigned
times, domains, or groupings will not change the state of the solver, and so may cause errors.
Calls which assign and unassign resources to proper root tasks are also a problem, although
assignments and unassignments made by the solver itself are not.

After creating, but before solving, make any number of calls to

12.6. Optimal resource reassignment using dynamic programming 339

void KheDynamicResourceSolverAddDayRange(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int first_day_index, int last_day_index);

void KheDynamicResourceSolverAddResource(KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_RESOURCE r);

The first adds the days from first_day_index to last_day_index inclusive to the solve. The
values are indexes into the common frame. The union of the ranges is solved; this could be
several disjoint intervals. The second adds resource r (which must have type rt and must not be
already added) to the solve. These calls define the selected days and the selected resources.

After loading the day ranges and resources, to do the actual solve call

bool KheDynamicResourceSolverSolve(KHE_DYNAMIC_RESOURCE_SOLVER drs,
bool priqueue, bool extra_selection, bool expand_by_shifts,
bool shift_pairs, bool correlated_exprs, int daily_expand_limit,
int daily_prune_trigger, int resource_expand_limit, int dom_approx,
KHE_DRS_DOM_KIND main_dom_kind, bool cache,
KHE_DRS_DOM_KIND cache_dom_kind);

This changes drs’s solution for the selected resources on the selected days, to an optimal solution
as explained above. It returns true when the new solution has lower cost than the old one.
After it returns, drs is ready to set up for another solve: it is expecting another set of calls to
KheDynamicResourceSolverAddResource and KheDynamicResourceSolverAddDayRange, or
a call to KheDynamicResourceSolverDelete.

KheDynamicResourceSolverSolve may overrun its time limit, but not by much. It checks
the time limit frequently (by calls to KheOptionsTimeLimitReached), and terminates early,
without finding a new best solution, if it has been reached.

There is also

void KheDynamicResourceSolverTest(KHE_DYNAMIC_RESOURCE_SOLVER drs,
bool priqueue, bool extra_selection, bool expand_by_shifts,
bool shift_pairs, bool correlated_exprs, int daily_expand_limit,
int daily_prune_trigger, int resource_expand_limit, int dom_approx,
KHE_DRS_DOM_KIND main_dom_kind, bool cache,
KHE_DRS_DOM_KIND cache_dom_kind, KHE_COST *cost);

which is the same as KheDynamicResourceSolverSolve except that it never changes the
solution, not even when it finds a new best. This helps when testing. To give some idea of how
things went, it sets *cost to the cost of the solution it finds, either a new best or the original.

For both functions, priqueue says whether to use a priority queue of solutions. If it is
false, the solve proceeds day by day. If it is true, the solve proceeds solution by solution,
always choosing for expansion the solution with the lowest cost, irrespective of the day. This will
expand fewer solutions, since it stops as soon as it chooses a solution lying on the last day. But
whether this will be faster is hard to say, because of the extra overhead of the priority queue.

Parameter extra_selection says whether to use one- and two-extra selection when
expanding each solution into the solutions for the next day. This should reduce the number of
new solutions generated without sacrificing optimality.

340 Chapter 12. Resource Solvers

Parameter expand_by_shifts says whether to expand by shifts; if not, expansion by
resources is used. Expansion by shifts should be best.

Parameter shift_pairs says whether to test pairs of shifts for dominance during expansion
by shifts.

Parameter correlated_exprs says to adjust dominance testing to take account of
correlated expressions, as described in Appendix D.6.5. It should be best to do this.

Parameter daily_expand_limit is an upper limit on the number of undominated solutions
that the call may expand on each day. When the priority queue is not in use, at the end of each day
the undominated solutions for that day are sorted by increasing cost, the most costly are deleted
until at most daily_expand_limit undominated solutions remain, and those are expanded.
When the priority queue is in use, the algorithm keeps track of the number of solutions it has
expanded on each day, and when it reaches daily_expand_limit, any further solutions for that
day are deleted and freed rather than expanded. Setting the value to 0 turns off this feature.

Parameter daily_prune_trigger is also a number of undominated solutions used to limit
the number of solutions on each day, but its method is quite different. When an undominated
solution is added on some day which causes the number of undominated solutions on that day to
be exactly daily_prune_trigger, the cost of the costliest solution on that day at that moment
becomes the value used to prune the search for further solutions on that day, if that causes a
reduction in that value. Any generation path leading to solutions for that day for which it can
be shown that all solutions generated will have at least that cost are abandoned. This applies
whether the priority queue is in use or not. Setting the value to 0 turns off this feature.

Potentially, daily_prune_trigger is better than daily_expand_limit at reducing run
time, because it avoids ever generating the solutions that daily_expand_limit merely deletes.
However, daily_expand_limit deletes solutions that are definitely uncompetitive on their day,
whereas daily_prune_trigger avoids generating solutions that are probably uncompetitive.
Also, daily_prune_trigger only works with the indexed set data structure, because only that
data structure gives efficient access to the costliest undominated solution on a given day.

Parameter resource_expand_limit is the maximum number of alternative assignments
tried for each resource on each day. The lowest cost resource_expand_limit alternatives are
tried, or more if there are ties in cost. Setting the value to 0 turns off this feature.

Parameter dom_approx exploits the fact that dominance testing is conservative: it deletes
only provably uncompetitive solutions. Hand analysis reveals many cases where dominance is
clear, but not provable. When dom_approx > 0, the initial available cost is increased by a factor
of dom_approx/10: by 10% when dom_approx is 1, by 20% when dom_approx is 2, and so on.
This makes the dominance test more likely to succeed, so it reduces the number of undominated
solutions and speeds up the algorithm, although provable optimality is lost. Setting dom_approx

to 0 turns off this feature. Only dominance tests between dk-complete solutions are affected.

Parameter main_dom_kind has type

12.6. Optimal resource reassignment using dynamic programming 341

typedef enum {
KHE_DRS_DOM_LIST_NONE, /* UNUSED */
KHE_DRS_DOM_LIST_SEPARATE, /* SEPARATE */
KHE_DRS_DOM_LIST_TRADEOFF, /* TRADEOFF */
KHE_DRS_DOM_LIST_TABULATED, /* TABULATED */
KHE_DRS_DOM_HASH_EQUALITY, /* UNUSED */
KHE_DRS_DOM_HASH_MEDIUM, /* SEPARATE */
KHE_DRS_DOM_INDEXED_TRADEOFF, /* TRADEOFF */
KHE_DRS_DOM_INDEXED_TABULATED /* TABULATED */

} KHE_DRS_DOM_KIND;

(For the comments, see below.) This determines two things at once: the data structure to hold
sets of solutions in, which may be a list, hash table, or array indexed by cost, and the kind of
dominance testing to use, which may be none (no solution dominates another), separate, tradeoff,
tabulated, equality, or medium. These are mixed together because different data structures
support different kinds of testing. KHE_DRS_DOM_INDEXED_TABULATED is usually best.

Tradeoff and tabulated dominance only work in places along the signature where the value
relates to a root expression. Furthermore, tradeoff dominance only works in places where the
cost of that expression is calculated using a cost function that is not quadratic. At places where
these conditions do not hold, separate dominance is used, regardless of what the user requests. If
correlated expressions are used, they provide a better way to handle most non-root expressions.

The two functions also offer the option of using caching. If cache is true, caching is used
and cache_dom_kind says what kind of data structure and dominance testing to use within the
caches. If cache is false, caching is not used and cache_dom_kind is not used either.

A cache is a set of solutions for a given day which have the same parent solution, making
it likely that there will be dominance relations between them. When caching is used, new
solutions are inserted into the cache for the new day rather than the main table for the day. The
usual dominance testing goes on within the cache, which therefore contains only undominated
solutions. Then after all solutions with the same parent solution are tried, the surviving members
of the cache are inserted into the main table, once again with the usual dominance testing, and the
cache is emptied out. The hope is that dominance testing within the small cache will run much
faster than dominance testing within the large main table, saving time overall.

It has been thought best to not worry the dominance testing code about whether it is going
on within the main table or within the cache. So although the main table and the cache may use
quite different data structures,when both use dominance testing that is more than simple equality
they must use the same kind of dominance testing. This is expressed by the comments above:
when the cache is in use, if both of main_dom_kind and cache_dom_kind have values whose
comments above are not UNUSED, then those comments must be the same.

Behind the scenes, the solver also caches the results of some partial dominance tests, to
speed up the solve when those tests are made repeatedly. This behind-the-scenes caching is
always on, but it is likely to be invoked more often when caching is used. The author thought that
the two together would provide a significant speedup, but that has not eventuated in practice.

342 Chapter 12. Resource Solvers

12.6.2. Statistics and debug

After one call to KheDynamicResourceSolverSolve and before the next, these two functions
may be called to retrieve some statistics about the solve:

int KheDynamicResourceSolverSolveStatsCount(
KHE_DYNAMIC_RESOURCE_SOLVER drs);

void KheDynamicResourceSolverSolveStats(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int i, int *solns_made, int *table_size, float *running_time);

KheDynamicResourceSolverSolveStatsCount is the number of statistics, usually the number
of open days plus one. KheDynamicResourceSolverSolveStats(drs, i) sets *solns_made
to the number of solutions created on open day i, *table_size to the size of the table on open
day i, and *running_time to the running time, to be described next. When i is 0 these numbers
will be 1, 1, and the time to open for solving. For these functions to work correctly, the TESTING
compiler flag (defined near the top of file khe_sr_dynamic_resource.c) must be set to 1.

When the priority queue is not in use, the running time for a given day is the time in seconds
from the start of the solve to the end of the day. When the priority queue is in use, the running
time for a given day is the time from the start of the solve until the first moment that a solution
for the given day is deleted from the priority queue. Either way, on the last day this is the time
that the algorithm stops, not counting closing, which is omitted from the timings.

Function

void KheDynamicResourceSolverDebug(KHE_DYNAMIC_RESOURCE_SOLVER drs,
int verbosity, int indent, FILE *fp);

produces the usual debug print of drs onto fp with the given verbosity and indent.

12.6.3. Precise specification

Here is an exact statement of what the solver does. The following applies only to resources and
tasks of the type passed to KheDynamicResourceSolverMake. Resources and tasks of other
types are irrelevant. The solver uses multi-tasks (Section 11.9), and everything required for a
successful grouping of tasks into multi-tasks is required here too.

For each proper root task t, let the busy times of t be the times that t is running, including
the times that the tasks assigned (directly or indirectly) to t are running. If t has at least one busy
time, then let the first busy day of t be the day holding the chronologically first busy time of t,
let the last busy day of t be the day holding the chronologically last busy time of t, and let the
busy day range of t be the range of days from the first busy day to the last busy day inclusive.

First, KheDynamicResourceSolverMake may return NULL, meaning that the solver could
not be made. This happens when any of the following conditions occurs:

• There is no common frame (option gs_common_frame, needed to define the days), or there
is no event timetable monitor (option gs_event_timetable_monitor).

• Some task (not necessarily a proper root task) lies in a meet whose time is not assigned.
The solver assumes that all tasks run at known times, so it cannot handle such tasks. They

12.6. Optimal resource reassignment using dynamic programming 343

are discovered when the solver calls KheMTaskSolverMake (Section 11.9.1) and finds that
incomplete_times is false. Tasks that do not lie in any meet are allowed.

• Some proper root task with at least one busy time has a busy day range with a gap: a
day in the busy range when the task is not running. Tasks with gaps can occur, so should
really be allowed, but they cause implementation problems that would be hard to solve, so
it has seemed better to avoid them altogether by means of this rule, given that tasks with
gaps are very unlikely to occur in practice. This case is uncovered when the solver calls
KheMTaskNoGaps (Section 11.9.2) and finds that the result is false.

• Some proper root task runs twice on one day, taking into account the tasks assigned to it
(directly or indirectly); or some resource is initially assigned to two tasks on one day. The
solver uses a representation of solutions which assumes that each resource can be assigned
to at most one task on each day, which is why it cannot handle these cases. The first case
is uncovered when the solver calls KheMTaskNoOverlap (Section 11.9.2) and finds that the
result is false; the second is uncovered by the solver as it initializes itself.

Although not required, it is better if, in the initial solution, each preassigned task is assigned. The
solver limits its search to solutions in which each preassigned task is assigned. This can place it
at an unfair disadvantage to the initial solution if that contains an unassigned preassigned task.

Second, if KheDynamicResourceSolverMake returns a non-NULL value, the solver selects
those tasks t that satisfy all of the following conditions:

1. Task t is a proper root task of the given resource type.

2. Task t has at least one busy time. Given the conditions above, this can fail only if t, and all
tasks assigned to t (directly or indirectly), do not lie in any meet. That is not a problem, but
such tasks are not selected.

These first two conditions are consequences of using multi-tasks,and are applied when the solver
is created. The following three conditions are applied when starting one solve:

3. Every day in the busy day range of t is a selected day.

4. KheTaskDomain(t) has a non-empty intersection with the set of selected resources.

5. Initially, t is either unassigned, or else it is assigned one of the selected resources. In the
second case, it must be possible to unassign t (unless t is preassigned).

Finally, the result of a solve is a solution which is identical to the initial solution except that
changes to the assignments of the selected tasks, to either a selected resource or to NULL, are
allowed. This result solution will be optimal when there are no multi-day tasks, no avoid split
assignments constraints, and no limit idle times constraints.

Appendices C and D contain a detailed account of the algorithm and its implementation.

12.6.4. Using optimal resource reassignment in practice

KheDynamicResourceSolverSolve supports very large-scale neighbourhood (VLSN) search:

344 Chapter 12. Resource Solvers

bool KheDynamicResourceVLSNSolve(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

This calls KheDynamicResourceSolverMake, returning immediately if its result is NULL, then
calls KheDynamicResourceSolverSolve repeatedly with various choices of resources and days,
ending by deleting the solver. It returns true and changes soln if it was able to improve the
solution, and returns false with soln unchanged if not. It is influenced by these options:

rs_drs_off

A Boolean option which, when true, makes KheDynamicResourceVLSNSolve do nothing.

rs_drs_time_limit

A soft time limit for the entire call to KheDynamicResourceVLSNSolve, in the format of
KheTimeFromString (Section 8.1): secs, or mins:secs, or hrs:mins:secs, or -,
meaning ‘set no limit’ (the default). Time limits set by the caller also work. If it were not
for this option and the rs_drs_solve_limit and rs_drs_fail_limit options (just
below), KheDynamicResourceVLSNSolve could well run forever, so care is needed. The
limit is checked after each call to KheDynamicResourceSolverSolve, so the end could
come some time after the limit is reached.

rs_drs_solve_limit

An integer upper limit on the number of calls to KheDynamicResourceSolverSolve. The
special value - means ‘set no limit’. The default value is 1000.

rs_drs_fail_limit

An upper limit on the number of consecutive calls to KheDynamicResourceSolverSolve

which produce no improvement; if this limit is reached, KheDynamicResourceVLSNSolve
terminates. The special value - means ‘set no limit’. The default value is 100.

The options so far affect the test as a whole. The following options affect individual solves.
Each has its usual name plus a much briefer name, just a single capital letter, which appears in
parentheses below and will be used later.

rs_drs_resources (R)
A string option defining how the resources are to be selected on each solve. The default
value is "choose(3)". A detailed explanation appears after this list.

rs_drs_days (D)
A string option defining how the days are selected on each solve. The default value is
"choose(28)". A detailed explanation appears after this list.

rs_drs_priqueue (Q)
An Boolean option which becomes the priqueue argument of each call made to
KheDynamicResourceSolverSolve. The default value is false.

rs_drs_extra_selection (E)
A Boolean option which becomes the extra_selection argument of each call to
KheDynamicResourceSolverSolve. The default value is true.

12.6. Optimal resource reassignment using dynamic programming 345

rs_drs_expand_by_shifts (S)
A Boolean option which becomes the expand_by_shifts argument of each call to
KheDynamicResourceSolverSolve. The default value is true.

rs_drs_shift_pairs (P)
A Boolean option which becomes the shift_pairs argument of each call to
KheDynamicResourceSolverSolve. The default value is false.

rs_drs_correlated_exprs (C)
A Boolean option which becomes the correlated_exprs argument of each call to
KheDynamicResourceSolverSolve. The default value is false.

rs_drs_daily_expand_limit (L)
An integer option which becomes the daily_expand_limit argument of each call to
KheDynamicResourceSolverSolve. The default value is 10000. This removes the guaran-
tee of optimality but brings some sanity to running time. To remove the limit and so restore
the guarantee of optimality, use value 0.

rs_drs_daily_prune_trigger (T)
An integer option which becomes the daily_prune_trigger argument of each call to
KheDynamicResourceSolverSolve. The default value is 0, meaning no trigger. Any other
value takes away the guarantee of optimality.

rs_drs_resource_expand_limit (M)
An integer option which becomes the resource_expand_limit argument of each call to
KheDynamicResourceSolverSolve. The default value is 0, meaning no limit. Any other
value takes away the guarantee of optimality.

rs_drs_dom_approx (A)
An integer option which becomes the dom_approx argument of each call to
KheDynamicResourceSolverSolve. The default value is 0, meaning exact dominance, not
approximate. Any other value takes away the guarantee of optimality.

rs_drs_dom_kind (K)
A string option which becomes the main_dom_kind argument of each of the calls to
KheDynamicResourceSolverSolve. The value consists of two parts separated by an
underscore. The first part says which data structure to use when storing a solution set; it
may be "list" (an unsorted list), "hash" (a hash table), or "indexed" (an array, indexed
by cost, of lists). The second part says the kind of dominance testing to use, and may
be "none" (don’t test for dominance), "separate" (separate dominance), "equality"
(equality dominance), "medium" (medium dominance), "tradeoff" (for tradeoff domi-
nance), or "tabulated" (tabulated dominance). The two parts are not independent, be-
cause each data structure only supports some kinds of dominance testing. The legal val-
ues of rs_drs_dom_kind are "list_none", "list_separate", "list_tradeoff",
"list_tabulated", "hash_equality", "hash_medium", "indexed_tradeoff", and
"indexed_tabulated". The default is "indexed_tabulated".

346 Chapter 12. Resource Solvers

rs_drs_cache_dom_kind (J)
A string option defining the dominance testing to use when caching. It takes the same values
as rs_drs_dom_kind just above, plus "nocache" (omit caching) and "same" (use the
value of rs_drs_dom_kind). It sets the cache and cache_dom_kind arguments of each call
to KheDynamicResourceSolverSolve. The default value is "nocache".

Here now are the details of the rs_drs_resources and rs_drs_days options. Unlike the other
options, which define simple Boolean, integer, or enumerated values, these define sequences of
sets of resources or days. KheDynamicResourceVLSNSolve implements this algorithm:

for each set of resources R in rs_drs_resources do
for each set of days D in rs_drs_days do
solve for R and D;

There are options for choosing R and D randomly, giving a traditional VLSN search which ends
when time runs out. Alternatively the user can give specific values for either or both.

We routinely place quotes around the values of the rs_drs_resources and rs_drs_days

options, and also the rs_drs_test option below. We do this because these values often contain
characters that have a special meaning for the operating system’s command interpreter.

The rs_drs_resources option specifies the resources that are to be included in the solve.
There are three ways to do it. The first is by giving resource indexes:

rs_drs_resources="0,2,4;1,3,5"

This defines a sequence of two sets of resources. The first contains those resources whose
indexes in the current resource type (call it rt) are 0, 2, and 4; the second contains those resources
whose indexes in rt are 1, 3, and 5. Any out of range indexes are ignored.

The second way to choose resources is

rs_drs_resources="choose(3)"

This defines a potentially infinite sequence of sets of resources, each set containing three (or
whatever is specified) elements chosen at random from rt. If the request is for more resources
than rt contains, the number is silently reduced to the number of resources that rt contains.

The third way to choose resources is

rs_drs_resources="cluster(str)"

where str is a string of characters not including the right parenthesis character. This selects
resources in the following way.

For each resource r of type rt, scan the monitors m that monitor the timetable of r. For
each cluster busy times monitor whose constraint’s Id or Name contains str, and whose time
groups are all positive (these are r’s selected monitors), decide whether r is overloaded (more
active time groups than the maximum limit), maximal (the same number of active time groups
as the maximum limit), or underloaded (otherwise). Then classify r itself as overloaded if any
of these classifications are overloaded, or else maximal if any are maximal, or else underloaded
(including the case where r has no selected monitors).

12.6. Optimal resource reassignment using dynamic programming 347

The sequence of sets of resources iterated over is then defined as follows. If there are no
overloaded resources or no underloaded resources, the sequence of sets is empty. If there is at
least one maximal resource, then up to three sets of resources is defined for each pair of resources
(r1,r2), where r1is an overloaded resource and r2 is an underloaded resource. Each set has the form
{r1,r2,r3} , where r3 is a maximal resource. Or if there are no maximal resources, sets consisting
of just all pairs {r1,r2} are defined.

Each set offers a distinct opportunity to move load from an overloaded resource to an
underloaded one, which, all else being equal, will reduce cost. If there is a cost reduction, the
algorithm is restarted from the beginning, including a fresh classification of each resource as
overloaded, maximal, or underloaded.

The rs_drs_days option specifies the days that are to be included in the solve. For each
call on the solver, a set of days is needed. Each day is represented by its index in the common
frame: 0 for the first day, 1 for the second, and so on.

Instead of giving each day individually, as is done for resources, sequences of consecutive
days are given, each by means of its interval: the index of its first day plus the index of its last
day. One call on the solver requires one interval set, that is, one set of intervals.

One way to define rs_drs_days is to give an explicit sequence of one or more interval sets
separated by semicolons. Each interval set is a sequence of one or more intervals separated by
commas. Each interval contains two integers separated by a hyphen. For example,

rs_drs_days="0-13;14-27"

requests two interval sets, 0-13 and 14-27, while

rs_drs_days="5-6,12-13,19-20,26-27"

requests one interval set with four intervals. Assuming that the cycle begins on a Monday, this
example requests that the first four weekends be reassigned.

The value all (the default value) is equivalent to a single interval set holding a single
interval which spans the entire cycle. The value all(x) is equivalent to a sequence of interval
sets, following each other through the cycle, each containing one interval of length x. The
last interval will have length less than x if x does not divide evenly into the cycle length. For
example, all(14) is equivalent to 0-13;14-27;... and so on to the end of the cycle. The
value all(x,y) is like all(x) except that each interval begins y days further on: all(14,7)
is equivalent to 0-13;7-20;14-27;... and so on.

Finally, the value choose(x) is equivalent to a single interval set with a single interval
whose length is x and whose first day is chosen randomly. In the algorithm above, when
choose(x) is used, a fresh random choice is made each time the algorithm reaches its second
line. If x exceeds the number of days in the cycle, it is reduced to that number.

Here are two examples of how rs_drs_resources and rs_drs_days work together to
define VLSN searches of various kinds. First,

rs_drs_resources="choose(3)" rs_drs_days="choose(28)"

(the default values of these options) generates a potentially infinite sequence of solves, each for
three resources and an interval of 28 days chosen at random. Second,

348 Chapter 12. Resource Solvers

rs_drs_resources="choose(3)" rs_drs_days="all(14,7)"

generates a potentially infinite sequence of solves, but this time, for each set of resources the
solves work systematically through the cycle. Either way, the solves end when time runs out.

12.6.5. Testing

The module that implements KheDynamicResourceVLSNSolve also offers

void KheDynamicResourceVLSNTest(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

This creates a solver, calls it multiple times, accumulates some statistics, and prints them to one
or more output files in the form of Lout source files for graphs, which the user can convert later
to EPS files using Lout. It only works when the TESTING compiler flag, defined near the top of
source file khe_sr_dynamic_resource.c, is set to 1. It also requires the user to have previously
created a sub-directory of the current directory called stats. This is where the output files go.

To ensure that KheDynamicResourceVLSNTest’s calls on the solver all start from the same
solution, KheDynamicResourceVLSNTest calls KheDynamicResourceSolverTest rather than
KheDynamicResourceSolverSolve. As explained above, this is the same except that it never
changes the solution; so KheDynamicResourceVLSNTest never does either.

The options of KheDynamicResourceVLSNSolve that have capital letters are used by
KheDynamicResourceVLSNTest as default values. However, the double-loop algorithm given
above for KheDynamicResourceVLSNSolve is no part of KheDynamicResourceVLSNTest, so
only the first element of the sequence of sets of resources defined by rs_drs_resources is used
by KheDynamicResourceVLSNTest, and similarly only the first element of the sequence of sets
of days defined by rs_drs_days is used by KheDynamicResourceVLSNTest.

The data generated by one call to KheDynamicResourceVLSNTest has a multi-dimensional
structure, specified by the rs_drs_test option that we will come to shortly. If there are k
dimensions of lengths d1,d2,… ,dk, then d1 × d2 × ⋅ ⋅ ⋅ × dk tests will be carried out, one for each
point in this k-dimensional structure. We’ll see that different choices for the parameters may be
specified at each point along each dimension, allowing these choices to be compared.

Imagine for the moment that each test produces a single number for its result. The value
produced by the test at position (c1,… ,ck) in the multi-dimensional structure, where 1 ≤ ci ≤ di

for 1 ≤ i ≤ k, appears as the ckth point in the ck−1st data set of the graph named (c1,… ,ck−2).
In reality, one test does not produce a single number for its result, for two reasons. First,

function KheDynamicResourceSolverSolveStats (documented above) returns three numbers:
an integer number of solutions made, an integer table size, and a real-valued running time in
seconds. To handle this, KheDynamicResourceVLSNTest produces three entire families of
graphs, one for solutions made, one for table size, and one for running time.

Second, each test produces a sequence of numbers, one for each day. The user has two
options here. By default, what is recorded is the total number of solutions made over all days, the
total table size over all days, and the final running time. The other option is to use the Z notation,
explained below, which adds an extra dimension at the end, along which the numbers for each
day are placed. Running time is cumulative; solutions made and table size are not.

12.6. Optimal resource reassignment using dynamic programming 349

To specify the multi-dimensional structure, the rs_drs_test option is used. Its default
value is none, meaning ‘perform no testing’. Otherwise its general format is

dim "|" dim { "|" dim }

Each dim specifies one dimension. There must be at least two dimensions, as shown. Each dim

consists of a sequence of one or more positions, separated by semicolons:

dim ::= pos { ";" pos }

Each position specifies one position along its dimension, and consists of zero or more options,
separated by colons:

pos ::= [option { ":" option }]

Each option consists of a capital_letter and a value:

option ::= capital_letter value

The capital letter must be one of those given in parentheses earlier, and specifies which option
is being set: Q means priqueue, and so on. The value must be a legal value for that option as
defined above. For example, Qtrue and Qfalse are the only legal values for Q. A test of the
priority queue might look like this:

rs_drs_test="Qfalse;Qtrue|Z"

This has two dimensions, so it produces one graph (actually three, as explained above), showing
one data set for when the queue is not used, and one for when it is used.

The Z dimension is special and indicates that the last dimension is to contain the results for
each day. When Z is used it must be given alone as the last dimension. As explained above, when
Z is not used the graphs contain only a single number for each test.

In general, a value may contain any legal value for its option, as defined earlier for each
option. The exceptions are R and D, where the option’s value may define a sequence of sets of
resources or days, as in

rs_drs_resources="0,1,2;3,4,5"

but R and D may define only a single set of resources or days, as in R0,1,2. We still allow values
of the form choose(x) for R and D, but within KheDynamicResourceVLSNTest the first value
produced by any given choose(x) is used every time a choice is made.

There is not much use for more than two dimensions. One is to include default option values
in rs_drs_test rather than inheriting them from the other options. For example, although

rs_drs_test="Rchoose(3):D0-13|Qfalse;Qtrue|Z"

is three-dimensional, the first dimension has only one position so it still produces only one graph.
The test at point (c1,… ,ck) takes the default values of all options, applies the modifications given
in c1, then the modifications given in c2, and so on, so options given in a singleton first dimension
apply to all tests.

350 Chapter 12. Resource Solvers

A good reason for placing options into rs_drs_test rather than inheriting them from other
options is that only options that appear explicitly within rs_drs_test are printed as labels on
the graphs. So if you want the graph to say how many resources are being reassigned (as you
probably do), then an R option is needed within rs_drs_test.

Some options, currently rs_drs_daily_expand_limit, rs_drs_daily_prune_trigger,
rs_drs_resource_expand_limit, and rs_drs_dom_approx, take away the guarantee of
optimality when they have non-default values. When they all have their default values, all tests
with the same resources and days but differences in other parameters should return solutions with
the same cost. KheDynamicResourceVLSNTest checks that they do, using the *cost parameter
of each call to KheDynamicResourceSolverTest to find out what its result’s cost was.

12.7. Resource matching

Consider the tasks running at some time t. Each task can be assigned at most one resource.
Assuming the resources have hard avoid clashes constraints, each resource can be assigned to at
most one of the tasks. So the assignments to these tasks form a matching in the bipartite graph
with tasks for demand nodes, resources for supply nodes, and feasible assignments for edges.

Consider an initial state in which none of the tasks running at time t is assigned. For each
edge in the bipartite graph, carry out the indicated assignment, label the edge with the cost of the
solution after the assignment is made, and then remove the assignment. The result is a bipartite
graph with edge weights representing the badness of each individual assignment.

Assuming that all tasks have hard assign resource constraints, a maximum matching of
minimum cost in this graph will be a very desirable assignment. Indeed, it will often be optimal.
This can be seen by examining all constraint types: each is either unaffected by the assignment,
or else its effect is independent for each edge, so that the edge weights are valid in combination
as well as individually. Resource matching is KHE’s name for this general idea.

There is one constraint whose effect is not independent for each edge: the limit resources
constraint from employee scheduling. Resource matching handles this constraint specially, as
described in Section 12.7.2. This special arrangement is exact (preserves optimality) in many
common cases, but in general it is merely heuristic. The resource assignment invariant is another
problem: it may hold for each element of a set of assignments individually, but fail on the whole
set. However, this does not seem to be a problem in practice.

Not all tasks have hard assign resource constraints. In nurse rostering, for example, a shift
requiring between 3and 5nurses is modelled by an event with 5 tasks,only 3of which have assign
resource constraints. Fortunately, missing assign resource constraints are easily handled. For
each task, add a supply node, linked only to that task, representing non-assignment of the task.
The edge weight is just the initial solution cost, because choosing that edge changes nothing.

As described, resource matching constructs assignments; it does not repair them. However,
a repair algorithm is easily made from it: choose a time t, unassign all the tasks running at that
time, reassign them using resource matching, and then either keep the new assignments if they
improve the solution, or revert to the original assignments if they do not.

During initial construction it may be that some tasks are already assigned, and what is
wanted is to assign the unassigned ones without disturbing the assigned ones. In that case, simply
omit the demand nodes for assigned tasks.

12.7. Resource matching 351

Instead of selecting all tasks running at a single time t, KHE’s implementation selects all
tasks whose times overlap with an arbitrary set of times T. For |T | ≥ 2, this does not make sense
in general, because one resource could be assigned to two or more of the tasks, and the rationale
for using matching is lost. However, there are at least two cases where it does make sense.

First, when T is a time group from the common frame (Section 5.10), hard limit busy times
constraints prohibit resources from being assigned to two or more tasks that overlap T.

Second, when resource matching is used for repair, KHE’s version of it specifies that tasks
which are assigned the same resource at the start must be assigned the same resource at the end.
Of course, this does not produce an optimal reassignment of the tasks, because it requires some
tasks to be assigned to the same resources. However, minimum cost weighted matchings can be
found in polynomial time, whereas true optimal reassignment is NP-complete.

12.7.1. A solver for resource matching

This section presents a solver for resource matching. It can be used directly via the interface
given in this section, or indirectly via the applications given in the following two sections.

One solver may be used for many solves. To create and delete a solver, call

KHE_RESOURCE_MATCHING_SOLVER KheResourceMatchingSolverMake(
KHE_SOLN soln, KHE_RESOURCE_GROUP rg, HA_ARENA a);

void KheResourceMatchingSolverDelete(KHE_RESOURCE_MATCHING_SOLVER rms);

The deletion really only happens when arena a is deleted or recycled; but before then a call to
KheResourceMatchingSolverDelete is needed to carry out some tidying up (there are group
monitors to remove).

The solves have one supply node for each resource of rg, plus supply nodes representing
non-assignment. Typically, rg would be KheResourceTypeFullResourceGroup(rt) for some
resource type rt, but it can be any resource group. It is fixed for the lifetime of the solver.

To carry out one solve, call

bool KheResourceMatchingSolverSolve(KHE_RESOURCE_MATCHING_SOLVER rms,
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, bool edge_adjust1_off,
bool edge_adjust2_off, bool edge_adjust3_off, bool edge_adjust4_off,
bool ejection_off, KHE_OPTIONS options);

If this can find a way to improve the solution, it does so and returns true. Otherwise it leaves
the solution unchanged and returns false. Parameter rdms is the set of demand nodes to match
against the supply nodes already present in rms; how to construct it is explained below. The other
parameters affect the detailed behaviour of the solver, as follows.

When true, parametersedge_adjust1_off,edge_adjust2_off,edge_adjust3_off, and
edge_adjust4_off turn off the four edge adjustments. These adjust edge costs so that, in cases
which would otherwise be tied, resources with certain properties are preferred, as follows.

Edge adjustment 1 gives preference to resources with a larger number of available times
(Section 4.7) over resources with a smaller number. This seems likely to be the most effective
form of edge adjustment, so it is given twice the weight of the others.

352 Chapter 12. Resource Solvers

Edge adjustment 2 gives preference to resources whose assignment brings a smaller number
of constraints from below their maximum values to their maximum values. Hopefully this will
keep more resources available for assignment for longer.

Edge adjustment 3 tracks the number of consecutive assignments to the resource in recent
solves, and favours resources for which this is smaller. This encourages smaller sequences of
consecutive assignments, which hopefully will give more flexibility when repairing later.

Edge adjustment 4 tracks the time of day of the most recent assignment to the resource, and
favours assignments that repeat that time of day. This encourages sequences of shifts of the same
type. These always seem to be acceptable in nurse rostering, and they are often preferable.

At the end of the call, if limit resources monitors are involved and any of them have
non-zero cost, function KheEjectionChainRepairInitialResourceAssignment is called to
repair them. This call is omitted if parameter ejection_off is true.

Three options from options are consulted. Option rs_invariant determines whether the
resource assignment invariant is in effect, as usual. If it is, only individual edges that preserve the
invariant are included in the graph, and if, when the solution is changed to reflect the minimum
matching, any of the individual assignments fail the invariant, those assignments are omitted.
Option gs_common_frame supplies the common frame, needed even when edge adjustment
is not in effect, for ejecting task moves. Finally, the first time that rmds is solved, option
gs_event_timetable_monitor (Section 8.4), which must be present, is used to obtain efficient
access to the tasks which overlap its times.

A demand set is constructed by a sequence of calls beginning with

KHE_RESOURCE_MATCHING_DEMAND_SET KheResourceMatchingDemandSetMake(
KHE_RESOURCE_MATCHING_SOLVER rms, bool preserve_existing);

(for preserve_existing, see below), and continuing with any number of calls to

void KheResourceMatchingDemandSetAddTime(
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, KHE_TIME t);

void KheResourceMatchingDemandSetAddTimeGroup(
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, KHE_TIME_GROUP tg);

void KheResourceMatchingDemandSetAddFrame(
KHE_RESOURCE_MATCHING_DEMAND_SET rmds, KHE_FRAME frame);

in any order. These define a set of times T: the union of the times t, the time groups tg, and the
time groups of frame. T may not be empty.

A demand set may be saved, and solved multiple times. When it is no longer needed it may
be deleted explicitly, by calling

void KheResourceMatchingDemandSetDelete(KHE_RESOURCE_MATCHING_DEMAND_SET rmds);

Alternatively, deleting its solver’s arena will also delete it, because it is stored in that arena. A
less drastic alternative to deletion is

void KheResourceMatchingDemandSetClear(KHE_RESOURCE_MATCHING_DEMAND_SET rmds);

which clears out rmds ready for a fresh lot of times.

12.7. Resource matching 353

The demand nodes of one demand node set are specified in two steps: first the tasks to
include, called the selected tasks, are specified, then the grouping of those tasks into demand
nodes. A task t is selected (its assignment may be changed) when it satisfies these conditions:

1. It has the same resource type as the solver’s rg attribute;

2. It is either assigned directly to the cycle task of a resource of rg, or else it is unassigned;

3. If preserve_existing is true, it is unassigned;

4. It, or some task assigned directly or indirectly to it, lies in a meet which is assigned a time,
directly or indirectly, so as to cause the task to share at least one time with T;

5. It is not derived from a preassigned event resource;

6. Its assignment is not fixed (by KheTaskAssignFix, or because it is a cycle task);

7. Not assigning it might attract a cost. All tasks subject to assign resource constraints of
non-zero cost are included. Some tasks subject to limit resources constraints with minimum
limits are also included, chosen heuristically, as explained in the depths of Section 12.7.2.

The last item is a compromise. If too few tasks are included, the assignment will be too far from
final to be useful; but if too many are included (including tasks for which assignment is not
needed), then if the resources have minimum workload limits these will favour assigning all
these tasks, over-using the resources early in the cycle and causing workload shortages later.

For each resource r of rg there is one demand node containing all selected tasks which are
initially assigned r. If there are no such tasks (for example, when preserve_existing is true),
there is no such node. There is also one demand node for each of the remaining selected tasks.
(We are speaking of logical demand nodes here; as the next section explains, equivalent logical
demand nodes are grouped into single nodes by the implementation, for efficiency.)

The supply nodes of one solve consist of one for each resource r of rg, representing
assignment of r, and one for each demand node, representing non-assignment of its tasks.
(Again, these are logical supply nodes; in the implementation, all supply nodes representing
non-assignment are grouped into a single supply node.)

When determining which edges are present and their weights, the first step is to unassign
every initially assigned selected task using KheTaskUnAssign. This must succeed, because the
selected tasks are not fixed. Then, for each demand node d, for each supply node s representing
assignment of a resource r, draw an edge between d and s when the tasks of d can be assigned r.
This is tested by calling KheEjectingTaskMoveFrame for each task of d; an edge is added when
all these calls succeed. The edge cost is the solution cost after they are done, optionally with edge
adjustment as described above. There is also an edge from d to the supply node s representing
non-assignment of the tasks of d, whose cost is the (unchanged) solution cost.

12.7.2. Implementing resource matching

This section describes the implementation of resource matching in detail.

As mentioned earlier, limit resources constraints (or rather monitors) are a problem for

354 Chapter 12. Resource Solvers

resource matching, because they take away the independence of the edge weights. Suppose that
on the current day there is a requirement for at least one senior nurse. If no special arrangements
are made, every edge to a non-senior nurse will carry a cost. That is not right, because only one
task needs a senior nurse. This problem strongly influences the implementation.

Resource matching detaches all limit resources monitors that affect the current match and
replaces them by adjustments to the edge weights. This restores the lost independence. These
adjustments are often exact: they have the same effect on cost as the monitors. When they are
not exact, resource matching loses its local optimality, although it is still a good heuristic.

The algorithm has two parts. The first part, preparation, builds the demand nodes and does
a few other things explained below. It has three phases. The second part, solving, adds the edges,
finds the matching, and makes the assignments. A demand set may be solved repeatedly, but it
is prepared only once, just before it is solved for the first time.

Preparation (first phase): find and group selected tasks. A selected task is a task that may
be assigned by the current match. An affected task is a task whose assignment is affected by the
current match: it is either selected, or it is assigned, directly or indirectly, to a selected task (its
selected task). For example, if a Saturday night task is grouped with a Sunday night task, then
when solving either Saturday or Sunday, one of the tasks is affected and selected and the other
is affected but not selected.

Given the demand set’s set of times T, the selected tasks are easily found. For each time
in T, use the event timetable monitor from option gs_event_timetable_monitor to find the
meets running at that time. For each task of the wanted type in each meet, follow its chain of
assignments to its proper root. By the way it was found, the proper root must satisfy conditions
1, 2, and 4; if it also satisfies conditions 3, 5, and 6, then make it a selected task. Condition 7
(concerning the cost of non-assignment) is not checked here; that will be done later.

A selected task might be encountered more than once while doing this. So to finish this
step, the array of selected tasks it builds is sorted and uniqueified.

The next step is to traverse the uniqueified array of selected tasks, doing two things. First,
if several selected tasks are assigned the same resource when resource matching is called, the
specification states that they should be assigned the same resource by resource matching. So a
task grouper (Section 11.7) is used to group these tasks. In each group, the leader task remains
selected but its followers are assigned to it, demoting them to affected but not selected. From now
on, ‘selected’means ‘selected after grouping’. The grouping is removed at the end of the solve:
the follower tasks are then assigned directly to whatever the leader task is assigned to. Second,
each selected task is placed into its own demand node, a node of the bipartite graph.

Preparation (second phase): find task profiles and merge equivalent nodes. One selected
task per node would work. But many tasks are equivalent: for each resource r, assigning r to one
of these tasks has the same effect as assigning r to another. Given that the following calculations
are not cheap and that underlying the weighted bipartite matching algorithm is a flow algorithm,
able to handle multiple equivalent nodes as single nodes with multiplicities represented by edge
capacities, it makes sense to merge nodes containing equivalent tasks into a single node whose
incoming edge has its number of tasks as a capacity limit. This phase does this.

Determining whether selected tasks are equivalent is done by building a task profile for
each, such that two tasks are equivalent if their profiles are equal. A selected task’s profile
depends on the task itself and on the tasks assigned to it, directly or indirectly. It consists of the

12.7. Resource matching 355

set of times occupied by those tasks, their total workload, and a set of preferences. A preference
is a pair (gi,ci), where g

i
is a set of resources, and ci is a cost. Its meaning is that the resources of

g
i
are preferred for this task, and assigning something not in g

i
attracts cost ci.

For convenience of presentation, an artificial resource r0 is defined, such that assigning r0 to
some task means non-assignment of that task. A preference’s g

i
may include r0.

At the start of this phase, each node contains a single task. It also has a task profile
attribute, which is now initialized to the task profile for the node’s sole task, t say. This is done
by traversing t, the tasks assigned to t, the tasks assigned to those tasks, and so on recursively.
While doing this, the set of times occupied by those tasks, and their total workload, are added to
the profile. Also, for each point where an assign resource or prefer resources monitor m monitors
a task t ′ which is either t or assigned directly or indirectly to it, one preference (gi,ci) is added:

• If m is an assign resource monitor, g
i
is the full set of resources of the task’s resource type,

and ci is the duration of t ′ multiplied by the weight of m’s constraint.

• If m is a prefer resources monitor, g
i
is m’s resource group plus r0, and ci is the duration of

t ′ multiplied by the weight of m’s constraint.

These preferences express the effect of these monitors exactly. A prefer resources constraint
does not penalize non-assignment, which is why r0 is included.

Two preferences with the same set of resources may be merged into one, whose cost is the
sum of the two original costs. These merges are done as preferences are added to profiles.

After the traversal of the affected tasks of selected task t ends, the preferences in t’s profile
are sorted, to expedite comparing profiles. After the profiles are done, the nodes are sorted to
bring nodes with equal profiles together, then adjacent nodes with equal profiles are merged.

Preparation (third phase): add preferences representing limit resources monitors. This
phase adds preferences representing limit resources monitors. The representation is often exact,
and when it isn’t, it is usually close.

While preferences representing assign resource and prefer resources monitors were being
added to task profiles in the previous step, a list of all limit resources monitors that monitor
affected tasks was built. This list is now sorted and uniqueified. Each monitor on it is then visited
and preferences are added to represent it.

Before visiting the first limit resources monitor, all affected tasks are visited, and the back
pointer in each is set to its selected task. (All that is actually needed is a boolean mark to indicate
that the task is affected.) After the last limit resources monitor is visited, the affected tasks are
visited again and their back pointers are cleared.

Handling one limit resources monitor mi proceeds in two steps. In the first step, several
quantities are calculated: the total duration N of the affected tasks monitored by mi; lower and
upper limits L and U on the total duration of these tasks which may be assigned resources from its
resource group g

i
without incurring a penalty; and for each selected task t, its monitored duration

td: the total duration of its affected tasks that are monitored by mi. In the second step, preferences
are added based on these quantities.

The first step proceeds as follows. N is initialized to 0, and L and U to mi’s minimum and
maximum limits. If mi has no minimum limit, L is set to 0. If mi has no maximum limit, U is set

356 Chapter 12. Resource Solvers

to a very large number. For each selected task t, td is set to 0.

Now mi may monitor non-affected tasks as well as affected ones. In practice, limit resources
monitors always limit what is happening at a particular moment in time, so non-affected tasks
might seem to be not a live issue. But consider the grouped Saturday and Sunday tasks above.
While matching Saturday, there may well be a limit resources monitor which monitors the
Sunday task and also other, non-affected Sunday tasks.

A complete traversal of the tasks monitored by mi is carried out. For each task, the back
pointer set earlier tells whether the task is affected by the current match or not. If it is affected, its
duration is added to N and also to the monitored duration of its selected task. If it is not affected,
there are two cases. If it is assigned, directly or indirectly, to a resource from g

i
, then its duration

is subtracted from both L and U. If it is not assigned to any resource, directly or indirectly, then
its duration is subtracted from L only. This is analogous to how history is handled by cluster busy
times and limit active intervals monitors.

After this, if L is negative, set it to 0, and if it exceeds N, set it to N. Do the same for U. After
that we must have 0 ≤ L ≤ U ≤ N. Here L ≤ U is an invariant of this whole step, established by
a requirement of the limit resources constraint and preserved as the step proceeds.

That concludes the first step in the handling of limit resources monitor mi, the calculation
of N, L, U, and the dt. The second step adds preferences to demand nodes, as follows.

Selected tasks with total monitored duration at least L should be assigned resources from g
i
,

so find selected tasks t whose total monitored duration is as large as possible not exceeding L, and
add preference (gi,widt) to their nodes, to encourage these assignments. Similarly, selected tasks
of monitored duration at least N − U should not be assigned resources from g

i
, so find selected

tasks t whose total monitored duration is as large as possible not exceeding N − U, and add
preference (G∪{ r0} − g

i,widt) to each of them, to discourage these assignments. Each demand
node receives at most one preference derived from mi, since L + (N − U) ≤ N.

Given that all the tasks in one node share the same preferences, it may be necessary to split
nodes while doing this. Only one of the two resulting nodes receives the new preference.

Which demand nodes should these preferences be added to? It is easy to add preferences
derived from assign resource and prefer resources monitors, because the tasks and hence the
nodes are determined; but here the selected tasks must be chosen, from the selected tasks with
positive monitored duration.

Nodes need to be chosen whose preferences are as similar as possible to the new preference
that will come in. It would be wrong to encourage some resources with one preference and a
completely different set of resources with another. This will be investigated further below. For
now, it is assumed that there is an integer compatibility for each node with respect to mi, such that
when compatibility is high, adding preference (gi,widt) works well, and when it is low, adding
preference (G∪{ r0} − g

i,widt) works well.

The algorithm for adding limit resources preferences, then, is as follows. Calculate the
compatibility of each node, and store it in the node. Sort the nodes into decreasing order of
compatibility. Consider the tasks as forming a single sequence, beginning with the tasks in the
first node, then the second, and so on. Ignoring tasks of zero monitored duration, find the largest
prefix of this sequence whose tasks have total monitored duration at most L, and ensure that
preference (gi,widt) applies to each task t of them and to no other tasks. This may involve some

12.7. Resource matching 357

node splitting, as mentioned earlier. Then find the largest suffix of this sequence whose tasks
have monitored duration at most N − U, and ensure that preference (G∪{ r0} − g

i,widt) applies to
each task t of them and to no other tasks. Again, this may require some node splitting.

The implementation is slightly different. At each node n, it builds a set A of tasks from n.
First it adds to A the first task it can find whose monitored duration is non-zero and would not
cause the target (initially either L or N − U) to be exceeded. Then it adds to A as many more
tasks from n as it can, subject to them all having the same monitored duration as the first, and
collectively not exceeding the target. After this is done, if A is empty it proceeds to the next node.
If A contains every task of n it adds the new preference to n, updates the target, and proceeds to
the next node. Otherwise it makes a new node holding copies of n’s preferences plus the new
preference, moves the tasks of A to it, updates the target, then restarts on n. It does the N − U
preferences before the L ones, because this is slightly simpler to implement, given that new nodes
go on the end of the sorted sequence of nodes.

A formula is needed for the compatibility of a preference (gi,widt) with a node nj. Let the
intersection of the resource groups of the preferences already present in nj be Gj. If there are no
preferences, Gj = G∪{ r0} , where G is the full set of resources. Finding a suitable formula is a
rather puzzling problem; the author’s current choice is

|Gj∩g
i|

|Gj|

or 0 if |Gj| = 0(unlikely). This reaches its maximum value, 1, when Gj ⊆ g
i
, which is reasonable

since adding (gi,widt) to nj does not reduce Gj, and its minimum value, 0, when Gj ∩g
i
is empty.

Although the result will in general be heuristic, not exact, the difficulty should not be
overstated. A typical example might be (a) 5 or 6 nurses, with (b) at least one senior nurse and
(c) at most two trainee nurses. For cases like this, a simple heuristic should do very well.

Let S be the senior nurses and T be the trainee nurses. Constraint (a) adds preferences
of the form (G,wi), where G is the full set of resources, to 5 tasks, leaves one task untouched,
and adds preferences of the form ({r0}, wi) to the remaining tasks; (b) adds one preference of
the form (S,wi); and (c) adds preferences of the form (G∪{ r0} − T,wi) to all but two of the
tasks. It is easy to verify that (b) will prefer nodes containing (G,wi), while (c) will prefer nodes
containing ({r0}, wi), and also nodes containing (S,wi), since S∩(G∪{ r0} − T) = S, because S and
T are disjoint.

Set operations are slow, so four optimizations are used. First, in preferences derived from
assign resource constraints, g

i
is in fact NULL. This is because it has no effect on intersections

(except by omitting r0, but r0 is handled separately). Only non-NULL sets of resources need to be
intersected. Second, an intersection is only performed when it is actually needed: when a task
profile already contains at least two preferences with non-NULL sets of resources, and a third is
being considered for adding to it. That makes three non-NULL sets—quite unlikely in practice.
Third, only the size of the intersection in the formula is calculated, not the actual set. And fourth,
intersections are stored as resource sets (Section 5.9), which are cheaper than resource groups.

Consider any demand node d. Suppose that every preference in its profile contains r0. This
means that, after careful consideration, preparation has concluded that not assigning d’s tasks
would not incur a cost. As explained earlier, it is better not to include such tasks at all, because

358 Chapter 12. Resource Solvers

they could over-use resources early in the cycle. Accordingly, such nodes d are now deleted.

Finally, preparation ends with the deletion of preferences derived from assign resource
and prefer resources monitors (they are not needed by solving, as explained below). The results
of preparation are stored in the demand set object: the demand nodes with their tasks, profiles,
and preferences; the uniqueified list of relevant limit resources monitors; and the task grouper
recording which tasks have to be assigned the same resource.

Solving. Solving is much easier to describe than preparation. Group tasks as indicated by
the task grouper. Detach the limit resources monitors. From each demand node, add an edge of
capacity 1 to each supply node representing a resource, and an edge of unlimited capacity to the
supply node representing non-assignment. Find a maximum matching of minimum cost and
make the assignments indicated by it. Reattach the limit resources monitors. Ungroup the task
grouper. If parameter ejection_off is false and limit resources monitors were involved and
any of them have non-zero cost, call KheEjectionChainRepairInitialResourceAssignment
to repair them. After that, using a mark, if the solution is not improved, undo the assignments.

The cost of the edge from demand node d to the supply node for resource r (possibly r0)
is the cost of the solution after that one assignment is made. In addition, to compensate for the
detached limit resources monitors, for each preference (gi,ci) in d derived from a limit resources
constraint such that g

i
does not contain r, ci is added to the edge cost. Edge costs are not affected

by preferences derived from assign resource and prefer resources monitors, because those mon-
itors are not detached. Their preferences are needed for task equivalence and to guide the place-
ment of preferences derived from limit resources monitors, but they are not used when solving,
so they can be and are deleted at the end of preparation. There are also the separate adjustments
described earlier, the ones controlled by parameters edge_adjust1_off, edge_adjust2_off,
edge_adjust3_off, and edge_adjust4_off.

When there are no limit resources monitors, the algorithm does not waste time on work
inspired by them: grouping equivalent tasks using task profiles is a valuable optimization in
any case, and the third phase of preparation does nothing. Whether the preparation time spent
on limit resources monitors is significant is a question that can only be answered definitely by
testing, but the running time is probably dominated by solving, in which case the answer is no.

This section sheds light on how event resource constraints should be modelled. It is best in
principle to use assign resource and prefer resources constraints, because they affect each task
independently. But if they are replaced by equivalent limit resources constraints, this algorithm
will produce the same matching graph. This opens a path to a useful generalization—the
expression of all event resource constraints by limit resources constraints—by showing that the
efficiency advantage of assign resource and prefer resources constraints need not be lost.

12.7.3. Time sweep resource assignment

In a planning timetable whose columns represent times and whose rows represent resources,
resource packing proceeds vertically: it assigns one row after another. Time sweep proceeds
horizontally,assigning one time (that is, the tasks running at that time) after another. This is likely
to be useful in nurse rostering, where many constraints link nearby times.

KHE offers this function for time sweep resource assignment:

12.7. Resource matching 359

bool KheTimeSweepAssignResources(KHE_SOLN soln, KHE_RESOURCE_GROUP rg,
KHE_OPTIONS options);

Using resource matching, it assigns resources to those tasks of soln whose resource type is that
of rg, and which are initially unassigned. It does not disturb any existing assignments. For how
it handles fixed and preassigned tasks, and other such details, see Section 12.7.1.

KheTimeSweepAssignResources obtains a frame from KheFrameOption (Section 5.10).
It visits each time group of the frame in chronological order, and uses one resource matching
to assign or reassign the tasks which overlap this time group. It is influenced indirectly by the
resource matching options, and directly by these options:

rs_time_sweep_daily_time_limit

A string option defining a soft time limit for each day. The format is the one accepted by
KheTimeFromString (Section 8.1): secs, or mins:secs, or hrs:mins:secs. There is
also the special value -, meaning ‘set no limit’. The default value is 3, that is, three seconds
per day.

rs_time_sweep_edge_adjust1_off

A Boolean option which, when true, causes edge adjustment 1 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust1_off.

rs_time_sweep_edge_adjust2_off

A Boolean option which, when true, causes edge adjustment 2 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust2_off.

rs_time_sweep_edge_adjust3_off

A Boolean option which, when true, causes edge adjustment 3 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust3_off.

rs_time_sweep_edge_adjust4_off

A Boolean option which, when true, causes edge adjustment 4 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust4_off.

rs_time_sweep_ejection_off

A Boolean option which, when true, causes ejection chain repair to be turned off, by
passing true to KheResourceMatchingSolverSolve for ejection_off.

rs_time_sweep_lookahead

An integer option which, when it has a positive value k, causes time sweep to look ahead k
time groups when calculating edge costs. A full description appears below (Section 12.7.4).
The default value, 0, produces no lookahead.

rs_time_sweep_preserve_existing_off

A Boolean option which, when true, causes existing assignments to not be preserved, by
passing false to KheResourceMatchingSolverSolve for preserve_existing.

rs_time_sweep_cutoff_off

A Boolean option which, when true, causes cutoff times to be omitted. When false,
cutoff times are installed in all cluster busy times and limit active intervals monitors for the

360 Chapter 12. Resource Solvers

resources of rg, making them ignore all time groups after the largest time of the current time
group. Cluster busy times monitors that request their resources to be busy at specific times,
as reported by KheMonitorRequestsSpecificBusyTimes (Section 12.4.1), are excepted:
they are not cut off. Cutoff times are removed after the last time group.

rs_time_sweep_redo_off

A Boolean option which, when true, causes redoing to be omitted. When false, after
the last time group is assigned, the algorithm returns to the first time group and reassigns
it using resource matching with the same options. The result may be different, because the
following time groups are assigned now, and there are no cutoffs. It sweeps through all the
time groups in this way. At the end, it checks whether the cost improved, and if so it does
another redo sweep, continuing until a complete redo sweep has no effect on cost.

rs_time_sweep_rematch_off

A Boolean option which, when true, causes rematching to be omitted. When false, after
each time group is assigned during the initial sweep, the most recently assigned 2, 3, and
so on up to rs_time_sweep_rematch_max_groups time groups are reassigned, using
resource matching with the same options. This rematching is omitted during redoing.

rs_time_sweep_rematch_max_groups

The maximum number of time groups rematched (see just above). The default value is 7.

rs_time_sweep_two_phase

A Boolean option which, when true, causes time sweep to run twice. The
first run assigns the resources of rg with the largest workload limits according to
KheClassifyResourcesByWorkload (Section 11.4.1). The second run assigns the rest.

On one instance, cutoff times and redoing had a very significant effect. Without redoing, cutoff
times reduced final cost from 185 to 149. With redoing, they reduced final cost from 95 to 72.
Edge adjustment produced mixed results. Rematching during time sweep also produced mixed
results, reducing one solution cost by 40 (from 107 to 67), but increasing another by 20.

12.7.4. Time sweep with lookahead

If option rs_time_sweep_lookahead has value k > 0, KheTimeSweepAssignResources

looks ahead k time groups when calculating edge costs, as follows.

Lookahead is similar to combinatorial grouping (Section 11.5.4). Suppose that while we are
matching time group i we need to determine the cost of the edge that connects task t to resource
r. Set the cutoffs of resource monitors so that they monitor everything up to and including time
group i + k. Detach all assign resource and limit resources monitors that monitor tasks running
during time groups after time group i. Then try all combinations of assignments which include
assigning t to resource r during time group i, and assigning any task (in fact, the first task in each
demand node, since the others are equivalent)or nothing during time groups i + 1 ,… , i + k. Take
the minimum of these values and use it as the cost of e, plus edge adjustments as usual.

The point of including resource monitors up to time group i + k is to include the cost of
the minimum-cost combination for the resource in the edge cost. The point of excluding assign
resource and limit resources monitors after time group i is that if some combination leaves some

12.7. Resource matching 361

event resource unassigned, that does not matter because some other resource might eventually
be assigned to it. For limit resources monitors it would be ideal to ‘detach’ any minimum limit
but leave any maximum limit ‘attached’; but we don’t do that. In any case a maximum limit will
be at least 1 in practice, and we are only assigning one resource.

To support lookahead, a variant of KheResourceMatchingSolverSolve is offered:

bool KheResourceMatchingSolverSolveWithLookahead(
KHE_RESOURCE_MATCHING_SOLVER rms,
ARRAY_KHE_RESOURCE_MATCHING_DEMAND_SET *rmds_array,
int first_index, int last_index, bool edge_adjust1_off,
bool edge_adjust2_off, bool edge_adjust3_off,
bool edge_adjust4_off, bool ejection_off, KHE_OPTIONS options);

The matched demand set is in *rmds_array at first_index. The lookahead demand sets
follow, ending at last_index. So last_index == first_index means no lookahead,
last_index == first_index + 1 means one day’s worth, and so on. The other parameters are
as for KheResourceMatchingSolverSolve. ARRAY_KHE_RESOURCE_MATCHING_DEMAND_SET is
defined alongside KHE_RESOURCE_MATCHING_DEMAND_SET in khe_solvers.h.

12.7.5. Resource rematching repair

Resource rematching repairs a solution using resource matching. KHE’s function for this is

bool KheResourceRematch(KHE_SOLN soln, KHE_RESOURCE_GROUP rg,
KHE_OPTIONS options, int variant);

It creates a resource matching solver for soln and rg and calls it on many sets of times.

Parameter variant may be any integer and causes some change in behaviour when it
changes. At present, depending on whether it is odd or even, the time sets rematched are tra-
versed in forward or reverse order. This can be significant, especially when a time limit prevents
all of them from being visited.

KheResourceRematch is influenced indirectly by the resource matching solver options, and
directly by these options:

rs_rematch_off

A Boolean option which, when true, causes KheResourceRematch to do nothing.

rs_rematch_select

This determines how KheResourceRematch selects sets of times for solving. Its values are
"none", "defective_tasks", "frame", "intervals", and "auto", for which see below.

rs_rematch_max_groups

An integer option which instructs KheResourceRematch to try sequences of adjacent time
groups of length 1, 2, and so on up to its value. Its default value is 7. It is only consulted
when rs_rematch_select is "frame" or "intervals".

rs_rematch_edge_adjust1_off

A Boolean option which, when true, causes edge adjustment 1 to be turned off, by passing

362 Chapter 12. Resource Solvers

true to KheResourceMatchingSolverSolve for edge_adjust1_off.

rs_rematch_edge_adjust2_off

A Boolean option which, when true, causes edge adjustment 2 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust2_off.

rs_rematch_edge_adjust3_off

A Boolean option which, when true, causes edge adjustment 3 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust3_off.

rs_rematch_edge_adjust4_off

A Boolean option which, when true, causes edge adjustment 4 to be turned off, by passing
true to KheResourceMatchingSolverSolve for edge_adjust4_off.

rs_rematch_ejection_off

A Boolean option which, when true, causes ejection chain repair to be turned off, by
passing true to KheResourceMatchingSolverSolve for ejection_off.

The choices for rs_rematch_select are as follows. In each case, a set of times may be
selected several times over, but each distinct set is solved only once. As explained above at the
end of the introduction to resource matching, when the selected tasks are initially assigned (as is
assumed here), tasks which share a resource initially will share one finally.

If rs_rematch_select is "none", rematching is turned off, like rs_rematch_off.

If rs_rematch_select is "defective_tasks", sets of times suited to repairing high
school timetables are selected. Find the first tasking of soln whose resource type is the resource
type of rg. For each task t of that tasking which is unassigned or assigned a resource from rg,
and which is defective (unassigned, assigned an unpreferred resource, part of a split assignment,
or involved in a clash), make one set of times equal to the set of times that t is running, including
the times of all tasks connected with t by assignments not involving a cycle task.

If rs_rematch_select is "frame", sets of times suitable for repairing nurse rostering
timetables are selected. For each index in the common frame (Section 5.10), the time group at
that index, plus m − 1 immediately following time groups, are united to form one of the sets of
times. There is one set for each value of m between 1 and rs_rematch_max_groups inclusive.

If rs_rematch_select is "intervals", then for each limit active intervals constraint in
the instance, for each index into the sequence of time groups of that constraint, the time group
at that index, plus m − 1immediately following time groups, are united to form one of the sets of
times. There is one set for each value of m between 1 and rs_rematch_max_groups inclusive.
To these are added the sets of times solved when rs_rematch_select is "frame".

Finally, if rs_rematch_select is "auto" (the default value), then "defective_tasks"

is chosen when the model is high school timetabling, otherwise "frame" is chosen. The author
had high hopes for "intervals", but his tests showed an improvement in only one instance, from
107 to 105, which did not justify the increased running time, averaging one or two seconds.

12.8. Ejection chain repair 363

12.8. Ejection chain repair

Function

bool KheEjectionChainRepairResources(KHE_TASKING tasking,
KHE_OPTIONS options);

uses ejection chains (Chapter 13) to improve the solution by changing the assignments of the
tasks of tasking. It is influenced by many options, including

rs_eject_off

A Boolean option which, when true, causes this function to do nothing.

For full details, consult Section 13.6.

12.9. Resource pair repair

One idea for repairing resource assignments is to unassign all tasks assigned to two resources,
then try to reassign those tasks to the same two resources in a better way—an example of
very large-scale neighbourhood (VLSN) search [1, 12]. The search space, although formally
exponential in size, is often small enough to search completely, giving an optimal result.

This section is devoted to function KheResourcePairReassign, which carries out this
idea while trying to save time by detecting symmetries. Section 12.10 offers another way of
reassigning resources. It does not detect symmetries, but it is more general in several respects.

12.9.1. The basic function

The basic function for carrying out this kind of repair is

bool KheResourcePairReassign(KHE_SOLN soln, KHE_RESOURCE r1,
KHE_RESOURCE r2, bool resource_invariant, bool fix_splits);

It knows that when one task is assigned to another, the two tasks must be assigned the same re-
source; and it believes that tasks that overlap in time must be assigned different resources. It does
not change task domains, fixed assignments, or assignments of tasks to non-cycle tasks. If it can
find a reassignment to r1 and r2 of the tasks currently assigned to r1 and r2 which satisfies these
conditions and gives soln a lower cost, it makes it and returns true; otherwise it changes nothing
and returns false. If resource_invariant is true, only changes that preserve the resource
assignment invariant are allowed. KheResourcePairReassign accepts any resources, but it is
most likely to succeed on resources with similar capabilities that are involved in defects.

If fix_splits is true, the algorithm focuses on repairing split assignments, by forcing
tasks unassigned by the algorithm which are linked by avoid split assignments constraints of
non-zero cost to be assigned the same resource in the reassignment. This runs faster, because it
has fewer choices to try, but it may overlook other kinds of improvements.

Within the set of tasks assigned to r1 and r2 originally, there may be subsets which are not
assignable to two resources without introducing clashes. Clashes in the original assignments
can cause this, as can split assignments when fix_splits is set. Such subsets are ignored by
KheResourcePairReassign; their original assignments are left unchanged.

364 Chapter 12. Resource Solvers

12.9.2. A resource pair solver

Resource solver

bool KheResourcePairRepair(KHE_TASKING tasking, KHE_OPTIONS options);

calls KheResourcePairReassign for many pairs of resources. The resource_invariant

arguments of all these calls are set to the rs_invariant option of options. Two other options
control the behaviour of KheResourcePairRepair:

rs_pair_off

A Boolean option which, when true, turns resource pair repair off.

rs_pair_select

This option determines which pairs of resources are tried. If it is "none", no pairs are tried,
giving another way to turn this repair off. If it is "splits" (the default), then for all pairs
of resources involved in all split assignments of tasking, KheResourcePairRepair calls
KheResourcePairReassign for those two resources, with the fix_splits parameter set
to true. This focuses the solver on repairing split assignments. If it is "partitions", then
KheResourcePairReassign calls KheResourcePairRepair for each pair of resources
in each partition of the resource type of tasking, or in all resource types if tasking has
no resource type, with fix_splits set to false. Each resource type with no partitions
is treated as though all resources lie in a single shared partitition. This focuses the solver
on improving resources’ assignments generally. However the search space is often larger,
increasing the chance that the search will be cut short, losing optimality. Value "all"

is the same as "partitions" except that partitions are ignored, so that there is a call on
KheResourcePairReassign for every pair of distinct resources of the types involved.

KheResourcePairRepair collects statistics about its calls to KheResourcePairReassign,
held in the rs_pair_calls, rs_pair_successes, and rs_pair_truncs options. Each time
KheResourcePairReassign is called, rs_pair_calls is incremented. Each time it returns
true, rs_pair_successes is incremented. And each time it truncates an overlong search (at
most once per call), rs_pair_truncs is incremented. The caller must initialize and retrieve
these options at the right moments, using the usual options functions (Section 8.2).

12.9.3. Partition graphs

Resource pair repair is essentially about two-colouring a clash graph whose nodes are tasks and
whose edges join pairs of tasks that overlap in time. Although the basic idea is simple enough,
the details become quite complicated, especially when optimizing by removing symmetries in
the search. It has proved convenient to build on a separate partition graph module, which is the
subject of this section. It finds the connected components of a graph (called components here),
and, if requested, partitions components into two parts by two-colouring them.

The module stores a graph whose nodes are represented by values of type void *. There are
operations for creating a graph in a given arena, adding nodes to it, and visiting those nodes:

12.9. Resource pair repair 365

KHE_PART_GRAPH KhePartGraphMake(KHE_PART_GRAPH_REL_FN rel_fn,
HA_ARENA a);

void KhePartGraphAddNode(KHE_PART_GRAPH graph, void *node);
int KhePartGraphNodeCount(KHE_PART_GRAPH graph);
void *KhePartGraphNode(KHE_PART_GRAPH graph, int i);

Deleting the arena deletes the graph, including its components and parts, but not its nodes. These
functions and the others in this section are declared in include file khe_part_graph.h.

To define the edges, the user passes in a relation function of type KHE_PART_GRAPH_REL_FN
which the module calls back whenever it needs to know whether two nodes are connected by an
edge. As the user would define it, this function looks like this:

KHE_PART_GRAPH_REL RelationFn(void *node1, void *node2)
{
...

}

where type KHE_PART_GRAPH_REL is

typedef enum {
KHE_PART_GRAPH_UNRELATED,
KHE_PART_GRAPH_DIFFERENT,
KHE_PART_GRAPH_SAME

} KHE_PART_GRAPH_REL;

Values KHE_PART_GRAPH_UNRELATED and KHE_PART_GRAPH_DIFFERENT are the usual options
for clash graphs, the first saying that there is no edge between the two nodes, the second that there
is an edge which requires the two nodes to be coloured with different colours. The third value,
KHE_PART_GRAPH_SAME, says that the two nodes must be coloured the same colour. It is used,
for example, when the two nodes represent tasks which are linked by an avoid split assignments
constraint, and the fix_splits option is in force.

After all nodes have been added, the user may call

void KhePartGraphFindConnectedComponents(KHE_PART_GRAPH graph);

to find the connected components, which may then be visited by

int KhePartGraphComponentCount(KHE_PART_GRAPH graph);
KHE_PART_GRAPH_COMPONENT KhePartGraphComponent(KHE_PART_GRAPH graph, int i);

The graph that a component is a component of may be found by

KHE_PART_GRAPH KhePartGraphComponentGraph(KHE_PART_GRAPH_COMPONENT comp);

and the nodes of a component may be visited by

int KhePartGraphComponentNodeCount(KHE_PART_GRAPH_COMPONENT comp);
void *KhePartGraphComponentNode(KHE_PART_GRAPH_COMPONENT comp, int i);

KhePartGraphFindConnectedComponents considers two nodes to be connected when rel_fn

366 Chapter 12. Resource Solvers

returns KHE_PART_GRAPH_SAME or KHE_PART_GRAPH_DIFFERENT when passed those nodes.

If requested, the module will partition the nodes of a component into two sets, such that
two-colouring the component will give the nodes in one set one colour, and the nodes in the other
set the other colour. This gives exactly two ways to two-colour the component, which is all there
are, since once a colour is assigned to one node, its neighbours must be assigned the other colour,
their neighbours must be assigned the first colour, and so on. To carry out this partitioning, call

void KhePartGraphComponentFindParts(KHE_PART_GRAPH_COMPONENT comp);

After that, to retrieve the two parts, call

bool KhePartGraphComponentParts(KHE_PART_GRAPH_COMPONENT comp,
KHE_PART_GRAPH_PART *part1, KHE_PART_GRAPH_PART *part2);

If KhePartGraphComponentFindParts was able to partition the component into two parts,
KhePartGraphComponentParts returns true and sets *part1 and *part2 to non-NULL values;
otherwise it returns false and sets them to NULL. To find a part’s enclosing component, call

KHE_PART_GRAPH_COMPONENT KhePartGraphPartComponent(
KHE_PART_GRAPH_PART part);

The nodes of a part may be visited by

int KhePartGraphPartNodeCount(KHE_PART_GRAPH_PART part);
void *KhePartGraphPartNode(KHE_PART_GRAPH_PART part, int i);

as usual.

12.9.4. The implementation of resource pair reassignment

This section describes the implementation of KheResourcePairReassign. It builds two
partition graphs altogether, a first graph which does the basic analysis, and a second graph which
is used to find and remove symmetries in the first graph.

The same node type is used in both graphs. A node holds a set of tasks. A resource is
assignable to a node when it is assignable to each task of the node. A resource is assignable to
a fixed task when it is assigned to that task (fixed tasks are never unassigned). A resource is
assignable to an unfixed task when it lies in the domain of that task. It is possible for neither, one,
or both resources to be assignable to a node. If neither is assignable, the node is unassignable,
otherwise it is assignable.

When a resource is assignable to a node, there are operations for assigning and unassigning
it. To assign it, assign it to each unfixed task of the node. To unassign it, unassign it from each
unfixed task of the node.

The first graph contains one node for each task initially assigned r1 or r2, containing just
that task. Thus, in the first graph there are no unassignable nodes. Given two nodes, the first
graph’s relation function first checks which resources are assignable to each. If there is no way
to assign the same resource to both nodes, it returns KHE_PART_GRAPH_DIFFERENT. Otherwise,
if there is no way to assign different resources to the nodes, it returns KHE_PART_GRAPH_SAME.
Otherwise, if fix_splits is true and the two nodes share an avoid split assignments monitor

12.9. Resource pair repair 367

of non-zero cost, it returns KHE_PART_GRAPH_SAME. Otherwise, if the two nodes overlap in time,
it returns KHE_PART_GRAPH_DIFFERENT. Otherwise it returns KHE_PART_GRAPH_UNRELATED.

Next, the graph’s connected components are found and partitioned. It is easy to see,
referring to the relation function, that if a component was successfully partitioned there must be
at least one way (and possibly two ways) to assign r1 to the nodes of one part and r2 to the nodes
of the other part. So a component of the first graph is called assignable if it was successfully
partitioned, and unassignable otherwise.

For each assignable component, the nodes of one part are merged into one node, and the
nodes of the other are merged into a second node. These two nodes are assignable to different
resources in one or two ways. For each unassignable component, all the nodes are merged into
a single node. It does not matter whether this node is assignable or not; it is never assigned.

Next, the assignable components are sorted into increasing order of number of possible
assignments. Each of the C assignable components has 1 or 2 possible assignments. A tree
search is carried out which tries each of these on each component in turn. The total search
space size is at most C2 . This is often small enough to search completely. For safety, the search
only explores both assignments until 512 tree nodes have been visited; after that it tries only one
assignment for each component. In the usual way, each time the tree search reaches a leaf it
compares its solution cost with the best so far, and if it is better (and if the resource assignment
invariant is preserved, if required) it takes a copy of its decisions. At the end, the cost of the best
solution found is compared with the initial solution cost, and if the best solution is better it is
installed; otherwise the initial solution is restored.

The search space often has symmetries which would waste time and cause the node limit
to be reached often enough to compromise optimality in practice if they were not removed. The
rest of this section describes them and how KheResourcePairReassign removes them.

Suppose r1 and r2 are Mathematics teachers assigned to two Mathematics courses from
the same form, each split into 4 meets of the same durations, running simultaneously. This gives
4 components and a search space of size 42 , yet clearly this could be reduced safely to 1. If two
of the simultaneous meets are made not simultaneous, the search space size can still be reduced
safely, to 2. If fix_splits is true, each set of 4 meets is related, making 1 component and a
search space of size 2—still unnecessarily large when the meets are simultaneous.

A component is symmetrical if it makes no difference which of its two assignments is
chosen. In that case, its assignment choices can be reduced from 2 to 1 by arbitrarily removing
one, halving the search space size. But note the complicating factor in the Mathematics example:
one cannot arbitrarily remove one choice from each component, because some combinations of
choices lead to split assignments and others do not. Instead, a way must be found to first merge
the four components into one, which can then be assigned arbitrarily.

Symmetry arises when the two assignment choices of a component affect monitors in the
same way. They need to have the same effect on the state of monitors, so that no difference arises
when the monitors change state again later in response to changes outside the component.

The two choices always have the same effect on the state of event monitors (no effect at
all), and on the state of assign resources monitors, which care only whether tasks are assigned
resources, not which resources. As far as these kinds of monitors are concerned, all components
are symmetrical. Classify the remaining monitors into three groups: resource monitors, prefer
resources monitors, and avoid split assignments monitors. (This description was written before

368 Chapter 12. Resource Solvers

the advent of limit resources monitors, and does not take them into account.)

A component is r-symmetrical, p-symmetrical, or s-symmetrical when it is assignable both
ways and they affect in the same way all resource, prefer resources, or avoid split assignments
monitors that monitor tasks of the component. (In particular, if there are no monitors of some
type, the component is vacuously symmetrical in that type.) Combinations of prefixes denote
conjunctions of these conditions. For example, symmetrical is shorthand for rps-symmetrical.

Although these definitions are clear in principle, they are rather abstract. An algorithm
needs concrete, easily computable conditions that imply the abstract ones and are likely to hold
in practice. Here are the concrete conditions used by KheResourcePairReassign, assuming that
the component is assignable both ways.

Suppose that some component’s two parts run at the same times and have the same total
workload. Then the component is r-symmetrical, because only these things affect resource mon-
itors, except clashes—but component assignments have no clashes in themselves, and since the
two parts run at the same times, they have the same clashes with tasks outside the component.

Suppose that, for every prefer resources monitor of non-zero cost which monitors any task
of some component, either r1 and r2 are both preferred by the monitor’s constraint, or they are
both not preferred. Then the component is p-symmetrical.

Suppose that, for each task in some component c which is monitored by an avoid split
assignments monitor of non-zero cost, every task monitored by that monitor either was not
assigned r1 or r2 originally, or else it lies in c. Then the component is s-symmetrical.

To prove this, take one avoid split assignments monitor, and partition the set of tasks mon-
itored by it into those that were not assigned r1 or r2 originally, and so are beyond the scope of
the reassignment (call them S1), and those that were (call them S2). If the tasks of S2 lie within
two or more components, then which way those components are assigned does matter. But if they
lie within one component, then the cost of the monitor will be the same whichever assignment is
chosen. This is because r1 and r2 do not appear among the resources assigned to the tasks of S1
(if they did, those tasks would be in S2), so the assignments to S2 introduce fresh resources to the
monitor. If all the tasks of S2 lie in one part of the component, one fresh resource is introduced
by both assignments; if some lie in one part and the others in the other, two fresh resources are
introduced by both assignments. Either way, the effect on the monitor is the same.

When fix_splits is true, all tasks which share an avoid split assignments monitor lie in
the same part, so in the same component. So every component is s-symmetrical in that case.

It is easy to check whether a component is rp-symmetrical. This is done as each component
is partitioned. Merely checking for s-symmetry is not enough: as illustrated by the Mathematics
example, several components may need to be merged (by merging their parts) to produce one
s-symmetrical component. This is done using the second partitioning graph, as follows.

The second-graph nodes are the merged nodes from the first-graph components. When two
nodes come from the same first-graph component, KHE_PART_GRAPH_DIFFERENT is returned by
the relation function. Otherwise, if they share an avoid split assignments monitor of non-zero
cost, it returns KHE_PART_GRAPH_SAME. Otherwise it returns KHE_PART_GRAPH_UNRELATED.

Two nodes representing the two parts of a first-graph component must lie in the same
second-graph component, because there is an edge between them. So each second-graph
component is a set of first-graph components linked by avoid split assignments constraints.

12.9. Resource pair repair 369

For each second-graph component, its first-graph components may be merged if it does
not contain an unassignable first-graph component, at most one of its first-graph components is
not rp-symmetrical, and it is partitionable. The two nodes of the merged component are built by
merging the nodes of each part of the second-graph component. If all the first-graph components
being merged are rp-symmetrical, the resulting component is rps-symmetrical, so either one of its
assignments may be removed. But component merges are valuable even without rps-symmetry.

12.10. Resource reassignment

This section describes an operation called resource reassignment which in principle can
optimally reassign the tasks assigned to an arbitrary number of resources. We say ‘in principle’
because as the number of resources increases the running time increases dramatically, so that in
practice it can only handle 3 resources, or 4 at most; or alternatively it can handle all resources,
but only when the tasks are running at a very limited range of times.

The first step in resource reassignment is to create a reassign solver, by calling

KHE_REASSIGN_SOLVER KheReassignSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options);

The solver uses gs_common_frame and rs_invariant from options. These values, along with
soln and rt, are fixed for the lifetime of the solver.

A solver object may be deleted by calling

void KheReassignSolverDelete(KHE_REASSIGN_SOLVER rs);

This should be done after solving is completed, and also if any changes to the solution are made
other than those carried out by rs. This is because rs keeps information between solves, so it
will go wrong if the solution changes in ways that it does not know about.

To say which resources are to be involved in the next solve, call

bool KheReassignSolverAddResource(KHE_REASSIGN_SOLVER rs, KHE_RESOURCE r);
bool KheReassignSolverDeleteResource(KHE_REASSIGN_SOLVER rs, KHE_RESOURCE r);
void KheReassignSolverClearResources(KHE_REASSIGN_SOLVER rs);

KheReassignSolverAddResource adds r to the solver, returning false and changing nothing
when r is already present. KheReassignSolverDeleteResource deletes r, returning false and
changing nothing when r is not present. Both abort if r does not have the resource type rt passed
to KheReassignSolverMake. KheReassignSolverClearResources deletes all resources.

One of the resources may be NULL. This causes the solver to select as many non-overlapping
unassigned tasks of type rt as it can easily find, and try assigning them, and also unassigning oth-
er tasks, as though unassigned tasks were assigned a resource called NULL. Only unassigned tasks
in need of assignment according to KheTaskNeedsAssignment (Section 4.6.1) are included.

To carry out an actual solve, call

bool KheReassignSolverSolve(KHE_REASSIGN_SOLVER rs, int first_index,
int last_index, KHE_REASSIGN_GROUPING grouping, bool ignore_partial,
KHE_REASSIGN_METHOD method, int max_assignments);

370 Chapter 12. Resource Solvers

This optimally reassigns the solver’s resources to the tasks assigned those resources in the target
interval (first_index to last_index inclusive), returning true if it improves the solution.

When deciding whether a task t lies in the target interval, t’s own interval, as returned by
KheTaskFinderTaskInterval (Section 11.8.1), is used to determine which days it is running.
These include days when tasks assigned directly or indirectly to t are running.

Tasks are organized into groups during the solve, and parameter grouping determines how
these groups are made. Two tasks are only eligible to be in the same group if they are assigned the
same resource (possibly NULL) initially. The tasks of each group are assigned the same resource
throughout the solve. The type of grouping is

typedef enum {
KHE_REASSIGN_MINIMAL,
KHE_REASSIGN_RUNS,
KHE_REASSIGN_MAXIMAL

} KHE_REASSIGN_GROUPING;

KHE_REASSIGN_MINIMAL produces no grouping beyond the initial grouping of the tasks (which
is not disturbed);KHE_REASSIGN_RUNS groups sequences of tasks assigned the same resource on
adjacent days (runs); and KHE_REASSIGN_MAXIMAL groups all tasks initially assigned the same
resource which participate in the solve. The meaning of ‘optimal reassignment’ is relative to
these groupings; only KHE_REASSIGN_MINIMAL produces true optimal reassignment.

When ignore_partial is true, tasks that lie partly inside and partly outside the target
interval are ignored, just as though they were not there. When grouping is KHE_REASSIGN_RUNS,
this causes some runs to be shorter than they otherwise would be.

When ignore_partial is false, tasks that lie partly inside and partly outside the target
interval are included in the solve. Furthermore, when grouping is KHE_REASSIGN_RUNS, tasks
that lie entirely outside the target interval are included when they are part of a run that lies partly
within the target interval.

We say that a group needs assignment when at least one of its tasks needs assignment,
according to KheTaskNeedsAssignment (Section 4.6.1). If a group does not need assignment,
then, in addition to trying to assign it to the resources of the solve, KheReassignSolverSolve
will also try unassigning it. When grouping is KHE_REASSIGN_RUNS, runs are built so as to
ensure that all tasks in any given run have the same value for KheTaskNeedsAssignment. As
previously stated, for the NULL resource this value must be true; but for non-NULL resources it
may be true or false.

The type of method is

typedef enum {
KHE_REASSIGN_EXHAUSTIVE,
KHE_REASSIGN_MATCHING

} KHE_REASSIGN_METHOD;

It determines the algorithm used for solving: exhaustive search or weighted bipartite matching.
The latter is reasonable only when there is one group of tasks per resource: when grouping is
KHE_REASSIGN_MAXIMAL, or the target interval is narrow. Parameter max_assignments limits
the number of alternatives tried on each call to KheReassignSolverSolve when method is

12.10. Resource reassignment 371

KHE_REASSIGN_EXHAUSTIVE. It is not consulted when method is KHE_REASSIGN_MATCHING.

If there are k resources and initially those resources are assigned R groups of tasks, then

each group could be assigned any one of the k resources, making a search space of size
R

k when
method is KHE_REASSIGN_EXHAUSTIVE. However there is some pruning. Before starting the
search, the solver checks the (k − 1)R possible new assignments to see which succeed, and does
not try failed ones again. Any group that cannot move at all is omitted from the search, and
groups that overlap with that group have its resource removed from their list of resources to try.
And any assignment which would give a resource two tasks on the same day is not tried. The
test for this is carried out efficiently using intervals.

Unavailable times are taken into account when solution costs are reported, but they are not
taken as a reason to exclude a resource from being assigned to a group. It is not unusual for an
optimal solution to contain a few assignments of resources to tasks at unavailable times.

Function

void KheReassignSolverDebug(KHE_REASSIGN_SOLVER rs,
int verbosity, int indent, FILE *fp);

produces a debug print of rs onto fp with the given verbosity and indent. Between solves there
is not much to display, mainly the resources.

A convenient way to call KheReassignSolverSolve repeatedly is

bool KheReassignRepair(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

This creates a reassign solver, tries a variety of sets of resources of type rt and target intervals,
and ends by deleting the solver and returning true if any of the solves improved the solution.
KheResourceReassignRepair consults these options:

rs_reassign_resources

This integer option says how many non-NULL resources from rt to select for each solve. The
default value is 2. The special value all selectsall resourcesof type rt. This is only feasible
when method is KHE_REASSIGN_MATCHING. When method is KHE_REASSIGN_EXHAUSTIVE,
larger values (sometimes even 3) can produce long run times.

rs_reassign_select

All sets of resources tried contain rs_reassign_resources non-NULL resources. All have
type rt. This option determines which of these sets are tried. Its value may be "none" (the
default), meaning that no sets are tried, turning KheReassignRepair off; "all", meaning
that all sets are tried; "adjacent", meaning that each set of resources which are adjacent
to each other in rt are tried; or "defective", meaning that all sets in which at least one of
the resources has a defective resource monitor are tried.

For experimental use there is also constraint:xxx where xxx stands for any non-empty
string. The cluster busy times constraints of the instance whose names contain xxx are
found, and then all sets of resources are selected such that one resource violates one of these
constraints, and the rest are slack (strictly below the maximum) for all of them. The hope is
that optimal reassignment might move tasks from the violating resource to the slack ones.

372 Chapter 12. Resource Solvers

rs_reassign_null

When true, this Boolean option says to include NULL in the set of resources passed to
the solver on each call. This is in addition to the rs_reassign_resources non-NULL
resources selected by rs_reassign_select. The default value is false as usual.

rs_reassign_parts

The value of first_index - last_index + 1 on each call. For example, setting this
value to 14 (the default) reassigns two weeks. If rs_reassign_parts is larger than the
total number of days, it is silently reduced to the total number of days.

For experimental use there is also constraint:xxx where xxx stands for any non-empty
string. The cluster busy times constraints of the instance whose names contain xxx are
found, and for each time group of each of them, the smallest target interval covering that
time group is one of the target intervals tried. A target interval may be found several times
over in this way, but it is only tried once. For this value of rs_reassign_parts, options
rs_reassign_start and rs_reassign_increment (just below) are not consulted.

rs_reassign_start, rs_reassign_increment
The value of first_index on the first call for a given set of resources, and how much it is
incremented by on each subsequent call for that set of resources. The default values are 0
and rs_reassign_parts. Only intervals lying entirely within the legal range are tried.

rs_reassign_grouping

Determines the grouping argument of each call (see above). It may be "minimal" (the
default), "runs", or "maximal".

rs_reassign_ignore_partial

A Boolean option which determines the ignore_partial argument of each call (see
above). The default value is false.

rs_reassign_method

Determines the method argument of each call (see above). Its value may be either
"exhaustive" (the default) or "matching".

rs_reassign_max_assignments

An integer option which determines the max_assignments argument of each call (see
above). Its default value is 1000000.

To allow for up to three calls to KheReassignRepair with separate options, there are also

bool KheReassign2Repair(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

bool KheReassign3Repair(KHE_SOLN soln, KHE_RESOURCE_TYPE rt,
KHE_OPTIONS options);

KheReassign2Repair is the same except that it consults options rs_reassign2_resources,
rs_reassign2_select, and so on; KheReassign3Repair is the same except that it consults
options rs_reassign3_resources, rs_reassign3_select, and so on.

12.11. Trying unassignments 373

12.11. Trying unassignments

KHE’s solvers assume that it is always a good thing to assign a resource to a task. However,
occasionally there are cases where cost can be reduced by unassigning a task, because the
cost of the resulting assign resource defect is less than the cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSolnTryTaskUnAssignments(KHE_SOLN soln, KHE_OPTIONS options);

for use at the end. It triesunassigning each proper root task of soln. If any unassignment reduces
the cost of soln, it is not reassigned. The result is true if any unassignments were kept.

Restricting KheSolnTryTaskUnAssignments to proper root tasks ensures that it does no
task ungrouping. By the end there will probably be no groups anyway, but it seems best to keep
the ideas of ungrouping and unassigning distinct.

It might pay to unassign two or more adjacent tasks. KheSolnTryTaskUnAssignments

consults an option for this:

rs_max_unassign

This integer option determines the maximum number of adjacent tasks to try unassigning.
The default value is 1.

For example, setting rs_max_unassign to 2 will try unassigning entire weekends (among other
things), which might pay off if the resource is working on too many weekends.

12.12. Putting it all together

There is an rs option which allows you to define a do-it-yourself resource solver (Section 8.3)
built from the pieces presented in this and the preceding chapter. The default value of this option
defines a reasonable solver which we will come to later.

The value of rs must be a <solver> as defined in Section 8.3. Here is the current list of
valid items and their meanings:

374 Chapter 12. Resource Solvers

<item> Meaning

rt(<solver>) For each resource type, run <solver> for that resource type. Most
of the following identifiers need to be inside rt, since the solvers
they invoke apply to a particular resource type (or tasking, which will
always hold the set of all tasks of the current resource type).

rem(<solver>) Make an event monitor that monitors all events, add it to options with
name gs_event_timetable_monitor, run <solver>, then delete it.
It is used by several resource solvers for finding out which events are
running at each time. It is not efficient while time assignments are
changing, so it is best to make it only after times are finalized.

rsm(<solver>) Call KheSetMonitorMultipliers (Section 8.6.2), run <solver>,
then call KheSetMonitorMultipliers again to reset the changed
monitors’multipliers back to 1. The monitors to change and the multi-
plier are stored in the rs_multiplier option, which must be present.

rcm Install cluster minimum limits (Section 8.6.4). These then remain in
place until the end of the run, when KheSolnEnsureOfficialCost is
called. It resets the minimum limits to their initial values.

rgc(<solver>) Group tasks usingKheGroupByResourceConstraints (Section 11.5),
run <solver>, then undo the grouping.

rgr(<solver>) Group tasks using KheTaskingGroupByResource (Section 11.6), run
<solver>, then undo the grouping.

red Call KheTaskingEnlargeDomains (Section 11.10).

rin(<solver>) Set the rs_invariant option (Section 12.2) to true, run <solver>,
and then set the rs_invariant option to false.

rrq Call KheSolnAssignRequestedResources (Section 12.4.1).

rmc Call KheMostConstrainedFirstAssignResources (Section
12.4.2).

rpk Call KheResourcePackAssignResources (Section 12.4.3).

rts Call KheTimeSweepAssignResources (Section 12.7.3).

rcx Call KheTimeSweepAssignResources when solving employee
scheduling instances. When solving high school timetabling in-
stances, call either KheMostConstrainedFirstAssignResources or
KheResourcePackAssignResources, chosen depending on whether
the current resource type has avoid split assignments constraints.

rfs If KheResourceTypeAvoidSplitAssignmentsCount is 0, do nothing,
otherwise call KheFindSplitResourceAssignments (Section 12.4.4)
followed by KheTaskingAllowSplitAssignments (Section 11.10).

rdv Call KheDynamicResourceVLSNSolve (Section 12.6).

rdt Call KheDynamicResourceVLSNTest (Section 12.6).

rrm Call KheResourceRematch (Section 12.7.5).

rec Call KheEjectionChainRepairResources (Section 12.8).

rrs Call KheResourcePairRepair (Section 12.9.2).

rrp Call KheReassignRepair (Section 12.10).

12.12. Putting it all together 375

KheSolnTryTaskUnAssignments has been omitted because the general solver calls it.

What each solver does in detail depends on its own options;rs only specifies when (if at all)
it gets called, and how much time it has to run, not what it does when it is called. For example,
a solver may have an option that turns it off. If that is set, the solver does nothing.

The remarks about time limits in Section 8.3 apply to resource solving. There is an
rs_time_limit option for placing a time limit on resource assignment. For example,

rs_time_limit="10:0"

sets an overall time limit for resource assignment (including repair) of 10 minutes. Time weights
may be used to apportion the available time among the various solvers as usual.

The rt(<solver>) item calls<solver> once for each resource type, raising the question
of how the available time is apportioned among the resource types. It is apportioned using the
number of resources of each type as the time weight. During setup, each rt item is converted
into an rdo, with one item for each resource type, whose time weight is the number of resources
in the resource type and whose <solver> is rt’s <solver>.

All of this is carried out by function

bool KheCombinedResourceAssign(KHE_SOLN soln, KHE_OPTIONS options);

This sets the rs_time_limit time limit if that option is present, then assigns resources using the
value of option rs as its guide, and finally deletes the time limit if it sets it. The easiest way to
call it is to include rs in the gs option (Section 8.4, causing the general solver to call it for you.

The rs option has default value

gtb(rem(
1: rt(rin(rcm, rgc(rcx))),
2: rt(rin(rgc(rrm, rfs, rec, rdv))),
1: rt(red, rrm, rec, rdv)

))

It is spread over several lines for readability. Enclosing everything are solvers for installing the
global tixel matching (but not counting its cost in the cost of the final solution) and creating an
event timetable monitor. Of the three inner lines, the first callsrcx to construct an initial solution.
It will usually return early. The second line is the first repair phase; it calls resource rematching,
ejection chains, and VLSN search using optimal reassignment by dynamic programming. The
third line is the second repair phase. It runs for half as long as the first and omits the resource
assignment invariant and grouping by constraints. All this represents the author’s current idea of
how best to use the various resource solvers. It will change as his ideas change.

Chapter 13. Ejection Chains

Ejection chains are sequences of repairs that generalize the augmenting paths from bipartite
matching. They are credited to Glover [3], who named them and applied them to the travelling
salesman problem. Similar ideas, often not clearly expressed, appear in a few earlier papers.

In this chapter, the first of two devoted to ejection chains, we introduce ejection chains
and present ejectors, which are KHE objects that supply a general framework for ejection chain
solving. This material reflects the content of file khe_se_ejector.c, which is unlikely to change
much in the future. In the next chapter, we introduce the more volatile code that KHE offers to
make ejectors handle specific kinds of defects.

13.1. Introduction

This section introduces ejection chains. Some of its statements will need to be qualified later,
but they are close enough to the truth to serve for purposes of introduction.

A defect is a specific point in a solution where something is not perfect and incurs a
non-zero cost. Concretely, it is a monitor (possibly a group monitor) with non-zero cost.

An ejection chain algorithm iterates over the defects of a solution. For each defect it tries
a set of alternative repairs. A repair could be a simple move or swap, or something arbitrarily
complex. It is targeted specifically at the defect, and usually removes it, but it may introduce new
defects. If no new defects of significant cost appear, that is success. If just one significant new
defect appears, the algorithm calls itself recursively to try to remove it, building up a chain of
coordinated repairs. If several significant new defects appear, or the recursive call fails to remove
the new defect, it undoes the repair and continues with alternative repairs.

Corresponding to the well-known function for finding an augmenting path in a bipartite
graph, starting from a given unassigned node, is this function, formulated by the author, for
‘augmenting’ (improving) a solution, starting from a given defect:

bool Augment(Solution s, Cost c, Defect d);

(KHE’s interface is somewhat different to this.) Augment has precondition

cost(s) >= c && cost(s) - cost(d) < c

If Augment can change s to reduce its cost to less than c, it does so and returns true; if not, it
leaves s unchanged and returns false. Importantly, the precondition implies that removing d

without adding new defects would succeed. Here is an abstract implementation of Augment:

376

13.1. Introduction 377

bool Augment(Solution s, Cost c, Defect d)
{
repair_set = RepairsOf(d);
for(each repair r in repair_set)
{
new_defect_set = Apply(s, r);
if(cost(s) < c)
return true;

for(each e in new_defect_set)
if(cost(s) - cost(e) < c && Augment(s, c, e))
return true;

UnApply(s, r);
}
return false;

}

It begins by finding a set of alternative ways that d could be repaired. For example, an unassigned
task could be repaired by assigning any suitable resource to it; an overloaded resource could be
repaired by reassigning or unassigning any task that contributes to the overload; and so on. In
practice, these repairs don’t have to be placed into a set—they just need to be iterated over. For
each repair r, Augment applies r and receives the set of new defects introduced by r, looks for
success in two ways, then if neither of those works out it unapplies the repair and continues by
trying the next repair, returning false when all repairs have been tried without success.

Success could come in two ways. Either a repair reduces cost(s) to below c, or some new
defect e has cost large enough to ensure that removing it alone would constitute success, and a
recursive call targeted at e succeeds. Notice that cost(s) may grow without limit as the chain
deepens, while there is a defect e whose removal would reduce the solution’s cost to below c.

The key observation that justifies the whole approach is this: the new defects targeted by the
recursive calls are not known to have resisted attack before. It might be possible to repair one of
them without introducing any new defects of significant cost.

The algorithm stops at the first successful chain. An option for finding the best successful
chain rather than the first has been withdrawn, because of problems in combining it with ejection
beams (Section 13.4.5). It is no loss: it produced nothing remarkable, and ran slowly. Another
option, for limiting the disruption caused by the repairs, has also been withdrawn. It too was not
very useful. It can be approximated by limiting the maximum chain length, as described next.

The tree searched by Augment as presented may easily grow to exponential size, which is
not the intention. KHE offers two methods of limiting its size, both of which seem useful. They
may be used separately or together.

The first method is to limit the maximum chain length to a fixed constant, perhaps 3 or 4.
The maximum length is passed as an extra parameter to Augment, and reduced on each recursive
call, with value 0 preventing further recursion. Not only is this attractive in itself, it also supports
iterative deepening, in which Augment is called several times on the same defect, with the length
parameter increased each time. Another idea is to use a small length on the first iteration of the
main loop (see below), and increase it on later iterations.

The second method is used by augmenting paths in bipartite matching. Just before each
call on Augment from the main loop, the entire solution is marked unvisited (by incrementing a

378 Chapter 13. Ejection Chains

global visit number, not by traversing the entire solution). When a repair changes some part of
the solution, that part is marked visited. Repairs that change parts of the solution that are already
marked visited are tabu. This limits the size of the tree to the size of the solution.

Given a solution and a list of its defects, the main loop cycles through the list repeatedly,
calling Augment on each defect in turn, with c set to cost(s). When the main loop exits, every
defect has been tried at least once without success since the most recent success, so no further
successful augments are possible, unless there is a random element within Augment. Under
reasonable assumptions, this very clear-cut stopping criterion ensures that the whole algorithm
runs in polynomial time, for the same reason that hill-climbing does.

Defects come in a variety of types, basically one for each monitor type. For example, a
missing task assignment (an assign resource monitor defect) is different from a resource overload
(a limit busy times or cluster busy times monitor defect). Each type of defect needs its own
specialized set of repairs. This idea seems to have been first clearly articulated by the present
author, who named the result polymorphic ejection chains: the first step in each augment is a
dynamic dispatch on the defect type (not shown above).

Careful work is needed to maximize the effectiveness of ejection chains. Grouping together
monitors that measure the same thing is important, because it reduces the number of defects
and increases their cost, increasing the chance that a chain will be continued. Individual repair
operations should actually remove the defects that they are called to repair (the framework does
not check this), and should do whatever seems most likely to avoid introducing new defects.
We’ll consider these points in detail in Section 13.6.

13.2. Ejector construction

KHE offers ejector objects which provide a framework for ejection chain algorithms, reducing
the implementation burden to writing just the augment functions. An ejector object, stored in a
given arena a, is constructed by a sequence of calls beginning with

KHE_EJECTOR KheEjectorMakeBegin(char *schedules, HA_ARENA a);

followed by calls which load augment functions, as explained below, and ending with

void KheEjectorMakeEnd(KHE_EJECTOR ej);

The ejector is then ready to do some solving (Section 13.3). The two attributes are returned by

char *KheEjectorSchedules(KHE_EJECTOR ej);
HA_ARENA KheEjectorArena(KHE_EJECTOR ej);

There is no function to delete an ejector; it is deleted when its arena is deleted.

The schedules string consists of one or more major schedules separated by semicolons:

<major_schedule>;<major_schedule>; ... ;<major_schedule>

Each major schedule consists of one or more minor schedules separated by commas:

<minor_schedule>,<minor_schedule>, ... ,<minor_schedule>

13.2. Ejector construction 379

Each minor schedule consists of a positive integer called its maximum length, followed by either
"+" or "-", representing a Boolean value called its may revisit attribute. The maximum length
may have the special value "u", meaning unlimited. For example, schedule string

"1+;u-"

contains two major schedules. The first, "1+", has one minor schedule, with 1 for maximum
length and true for may revisit; the second, "u-", also has one minor schedule, this time with
unlimited for maximum length and false for may revisit.

The entire main loop of the algorithm, which repeatedly tries to augment out of each defect
of the solution until no further improvements can be found, is repeated once for each major
schedule in order. Within each iteration of the main loop, the augment for one defect is tried once
for each minor schedule of the current major schedule, until an augment succeeds in reducing
the cost of the solution or all minor schedules have been tried.

The maximum length determines the maximum number of repairs allowed on one chain.
Value 0 allows no repairs at all and is forbidden. Value 1 allows augment calls from the main
loop, but prevents them from making recursive calls, producing a kind of hill climbing. Value 2
allows the calls made from the main loop to make recursive calls, but prevents those calls from
recursing. And so on.

When the may revisit attribute is false, each part of the solution may be changed by at
most one of the recursive calls made while repairing a defect; when it is true, each part may be
changed by any number of them, although only once along any one chain.

It is not good to set the maximum length to a large value and may revisit to true in the
same minor schedule, because the algorithm will then usually take exponential time. But setting
the maximum length to a small constant, or setting may revisit to false, or both, guarantees
polynomial time. Another interesting idea is iterative deepening, in which several maximum
lengths are tried. For example,

"1+;2+;3+;u-"

tries maximum length 1, then 2, then 3, and finishes with unlimited length.

A mentioned earlier, in between calling KheEjectorMakeBegin and KheEjectorMakeEnd,
the augment functions need to be loaded. They are written by the user, as described in Section
13.6, and passed to the ejector by calls to

void KheEjectorAddAugment(KHE_EJECTOR ej, KHE_MONITOR_TAG tag,
KHE_EJECTOR_AUGMENT_FN augment_fn, int augment_type);

void KheEjectorAddGroupAugment(KHE_EJECTOR ej, int sub_tag,
KHE_EJECTOR_AUGMENT_FN augment_fn, int augment_type);

The first says that defects which are non-group monitors with tag tag should be handled by
augment_fn; the second says that defects which are group monitors with sub-tag sub_tag should
be handled by augment_fn. Here sub_tag must be between 0 and 29 inclusive. Any values not
set are handled by doing nothing, as though an unsuccessful attempt was made to repair them.
Ejectors handle the polymorphic dispatch by defect type. The augment_type parameter is used
by statistics gathering (Section 13.5), and may be 0 if statistics are not wanted.

380 Chapter 13. Ejection Chains

13.3. Ejector solving

Once an ejector has been set up, the ejection chain algorithm may be run by calling

bool KheEjectorSolve(KHE_EJECTOR ej, KHE_GROUP_MONITOR start_gm,
KHE_GROUP_MONITOR continue_gm, KHE_AUGMENT_OPTIONS ao,
KHE_OPTIONS options);

This runs the main loop of the ejection chain algorithm once for each major schedule, returning
true if it reduces the cost of the solution monitored by start_gm and continue_gm.

The main loop repairs only the defective child monitors of start_gm, and the recursive
calls repair only the defective child monitors of continue_gm. These two group monitors could
be equal, and either or both could be an upcast solution. Although it is not required, in practice
every child monitor of start_gm would also be a child monitor of continue_gm.

Parameter ao contains options for the detailed control of augment functions. The ejector
object does not know what these are; it just passes ao back to the user’s augment functions, which
use it to control their detailed behaviour (Section 13.6.4).

Just as an ejector is constructed by a sequence of calls enclosed in KheEjectorMakeBegin

and KheEjectorMakeEnd, so a solve is carried out by a sequence of calls beginning with

void KheEjectorSolveBegin(KHE_EJECTOR ej, KHE_GROUP_MONITOR start_gm,
KHE_GROUP_MONITOR continue_gm, KHE_AUGMENT_OPTIONS ao,
KHE_OPTIONS options);

and ending with

bool KheEjectorSolveEnd(KHE_EJECTOR ej);

KheEjectorSolveEnd does the actual solving. Function KheEjectorSolve above just calls
KheEjectorSolveBegin and KheEjectorSolveEnd with nothing in between.

The only functions callable between KheEjectorSolveBegin and KheEjectorSolveEnd

(at least, the only ones that change anything) are

void KheEjectorAddMonitorCostLimit(KHE_EJECTOR ej,
KHE_MONITOR m, KHE_COST cost_limit);

void KheEjectorAddMonitorCostLimitReducing(KHE_EJECTOR ej,
KHE_MONITOR m);

The call KheEjectorAddMonitorCostLimit(ej, m, cost_limit) says that for a chain to end
successfully, not only must the solution cost be less than the initial cost, but KheMonitorCost(m)
must be no larger than cost_limit. KheEjectorAddMonitorCostLimitReducing(ej, m) is
the same except that the cost limit is initialized to KheMonitorCost(m), and if a successful chain
is found and applied which reduces KheMonitorCost(m) to below its current limit, that limit is
reduced to the new KheMonitorCost(m) for subsequent chains.

To visit these limit monitors, call

13.3. Ejector solving 381

int KheEjectorMonitorCostLimitCount(KHE_EJECTOR ej);
void KheEjectorMonitorCostLimit(KHE_EJECTOR ej, int i,
KHE_MONITOR *m, KHE_COST *cost_limit, bool *reducing);

The returned values are the monitor, its current cost limit, and whether that limit may be reduced.
Any number of limit monitors may be added, but large numbers will not be efficient.

Each time the ejector enters the main loop, it makes a copy of start_gm’s list of defects
and sorts the copy by decreasing cost. Ties are broken differently depending on the value
of the solution’s diversifier. If the es_limit_defects option is set to some integer (not to
"unlimited"), defects are dropped from the end of the sorted list to ensure that there are no more
than es_limit_defects of them.

Consider a defect d that the main loop of the ejection chain solver is just about to attempt
to repair. Suppose that the most recent change either to the solution or to the major schedule
occurred before the most recent previous attempt to repair d. Then, if the repair is deterministic,
the current attempt to repair d is certain to fail like the previous attempt did. Accordingly, it is
skipped. The implementation of this optimization uses visit numbers stored in monitors.

In practice, repairs are not deterministic, since, for diversity, KHE’s augment functions vary
the starting points of their traversals of lists of repairs between calls. However, the author carried
out an experiment on a large instance (NL-KP-03), in which this optimization was turned off but
a check was made to see whether there were any cases where repairs which it would have caused
to be skipped were successful. Over 8 diversified solves there were 15 cases.

The following functions may be called while KheEjectorSolve is running (that is, from
within augment functions):

KHE_GROUP_MONITOR KheEjectorStartGroupMonitor(KHE_EJECTOR ej);
KHE_GROUP_MONITOR KheEjectorContinueGroupMonitor(KHE_EJECTOR ej);
KHE_OPTIONS KheEjectorOptions(KHE_EJECTOR ej);
KHE_SOLN KheEjectorSoln(KHE_EJECTOR ej);
KHE_COST KheEjectorTargetCost(KHE_EJECTOR ej);
bool KheEjectorCurrMayRevisit(KHE_EJECTOR ej);
int KheEjectorCurrLength(KHE_EJECTOR ej);
int KheEjectorCurrAugmentCount(KHE_EJECTOR ej);
bool KheEjectorCurrDebug(KHE_EJECTOR ej);
int KheEjectorCurrDebugIndent(KHE_EJECTOR ej);

KheEjectorStartGroupMonitor, KheEjectorContinueGroupMonitor, and KheEjectorOptions

are start_gm, continue_gm, and options from KheEjectorSolve.

KheEjectorSoln is start_gm’s and continue_gm’s solution. KheEjectorTargetCost is
the cost that the chain needs to improve on (c in the abstract code above): the cost of the solution
when Augment was most recently called from the main loop. KheEjectorCurrMayRevisit is
the may_revisit attribute of the current minor schedule.

KheEjectorCurrLength is 1 when the augment function was called from the main loop, 2
when it was called from an augment function called from the main loop, etc.

KheEjectorCurrAugmentCount is the number of augments since this solve began.
KheEjectorCurrDebug returns true when ej is currently debugging, because it is trying to

382 Chapter 13. Ejection Chains

repair a main loop defect in the monitor stored in the es_debug_monitor option of options.
It seems to work well for each repair to generate a one-line description of itself when
KheEjectorCurrDebug is true. KheEjectorCurrDebugIndent is the current amount by which
debug prints should be indented; this is twice the current length.

For completeness we just mention two other functions:

void KheEjectorRepairBegin(KHE_EJECTOR ej);
bool KheEjectorRepairEnd(KHE_EJECTOR ej, int repair_type, bool success);

Each repair must be bracketed in calls to these. They will be discussed in Section 13.6.4.

KheEjectorSolveBegin is affected by options. It extracts the following options from its
options argument and uses them to control the ejector during solving:

es_max_augments

An integer upper limit on the number of augments (including recursive calls) tried on each
attempt to repair one main loop defect. The default value is 120, which may be better than
a larger number: when there is a time limit, it reduces time wasted on lost causes.

es_max_repairs

An integer upper limit on the number of repairs tried on each attempt to repair a main loop
defect. The default value is INT_MAX.

es_limit_defects

An option whose value is either "unlimited" or an integer. This integer is a limit on the
number of defects handled by the main loop of the ejector. Each time the main list of defects
is copied and sorted, if its size exceeds this limit, defects are dropped from the end until it
doesn’t. When the option is not set, or its value is "unlimited", no limit is applied.

es_fresh_visits

A Boolean option which, when true, instructs an ejector to make fresh visits (Sec-
tion 13.4.2).

es_max_beam

An integer option which gives the maximum number of monitors that may appear in a beam
(Section 13.4.5). The default value is 1, producing ejection chains rather than beams.

gs_debug_monitor_id

A string option, also used by other solvers, which instructs the ejector object to generate
debug output when repairing the monitor with this Id.

es_whynot_monitor_id

A string option which instructs the ejector object to end its run with an augment of the
monitor with this Id with debugging on (unless its cost is 0). This will show why this
monitor was not able to be repaired. (Just occasionally, this attempt will succeed, and then
the improvement is incorporated into the solution returned.)

KheEjectorMakeBegin and KheEjectorMakeEnd are not affected by options.

13.4. Variants of the ejection chains idea 383

13.4. Variants of the ejection chains idea

This section presents some variants of the basic ejection chains idea.

13.4.1. Defect promotion

This feature has been withdrawn to streamline the implementation. It has had some successes
but not enough, in the author’s judgment, to justify a place in the ejector framework.

Successful chains begin by repairing a defect which is one of start_gm’s children, and
they continue by repairing defects which are children of continue_gm. The intention is that
start_gm should monitor some region of the solution that has only just been assigned, so that
there has been no chance yet to repair its defects, while continue_gm monitors the entire solution
so far, or the part of it that is relevant to repairing the defects of start_gm. These two regions
may be the same, which is why start_gm and continue_gm may be the same group monitor; but
when they are different, the difference is important, as the following argument shows.

Suppose only start_gm is used. Then the ejector sets out to repair the right defects, but is
unable to follow chains of repairs into parts of the solution that have been assigned previously.
Or suppose only continue_gm is used. If the children of continue_gm are a superset of the
children of start_gm, as is always the case in practice, this does allow a full search, but at the
cost of trying again to repair many defects for which a previous repair attempt failed (those in
continue_gm which are not also in start_gm). This can waste a lot of running time.

At this point, however, an unexpected issue enters. Suppose a successful chain is found
which causes some child d of continue_gm to become defective, but which nevertheless
terminates without repairingd because it improves the overall solution cost. Here is a new defect,
a child of continue_gm not known to have been repaired previously, and thus worthy of being
targeted for repair; but if it is not also a child of start_gm, it won’t be.

Defect promotion addresses this issue. When an ejection chain is declared successful, the
ejector examines the defects created by that chain’s last repair that are children of continue_gm.
It makes any of these that are not children of start_gm into children of start_gm: they get
dynamically added to the set of defects targeted by the current solve. Of course, when start_gm

and continue_gm are the same, it does nothing.

Defect promotion is optional, controlled by option es_no_promote_defects, whose
default value is false. On one run it reduced the final solution cost from 0.04571 to 0.03743,
while increasing running time from 286.84 seconds to 490.21 seconds—a substantial amount,
but nothing like what would have occurred if start_gm had been replaced by continue_gm.

13.4.2. Fresh visit numbers for sub-defects

It is common for a monitor to monitor several points in the solution. For example, a prefer
times monitor monitors several meets, all those derived from one point of application of the
corresponding prefer times constraint (one event). Arguably, having one monitor for each meet
would make more sense; but there is a problem with this, at least when the cost function is not
Linear, because then there is no well-defined value of the cost of such a monitor. A cost is only
defined after all the deviations of the sub-defects at all the monitored points are added up.

The usual way to repair a defective monitor which monitors several points is to visit each

384 Chapter 13. Ejection Chains

point, determine whether that point is a sub-defect, and try some repairs if so. When the repair
is of a main loop defect (when the current length is 1), it makes sense for the augment function to
give a fresh visit number to each sub-defect, so that the repair at each sub-defect is free to search
the whole solution, as in this template:

for(i = 0; i < KheMonitorPointCount(m); i++)
{
p = KheMonitorPoint(m, i);
if(KheMonitorPointIsDefective(p))
{
if(KheEjectorCurrLength(ej) == 1)
KheSolnNewGlobalVisit(soln);

if(KheMonitorPointTryRepairs(p))
return;

}
}

Calling KheSolnNewGlobalVisit opens up the whole solution for visiting. This is what would
happen if the monitor was broken into smaller monitors, one for each point. It is important,
however, not to call KheSolnNewGlobalVisit at deeper levels, since that amounts to allowing
revisiting, so it leads to exponential time searches.

Fresh visit numbers are not assigned in this way within the augment functions supplied with
KHE. Instead, a more radical version of the idea is offered by the es_fresh_visits option.
When set to true, it causes

if(KheEjectorCurrLength(ej) == 1)
KheSolnNewGlobalVisit(soln);

to be executed within each call to KheEjectorRepairBegin, opening up the entire solution, not
just to each sub-defect at length 1, but to each repair of each sub-defect at length 1.

13.4.3. Ejection trees

The variant described here has been withdrawn. Ejection beams (Section 13.4.5) perform a
similar function more simply.

An ejection tree is like an ejection chain except that at each level below the first, instead of
repairing one newly introduced defect, it tries to repair several (or all) of the newly introduced
defects, producing a tree of repairs rather than a chain.

Ejection trees are not likely to be useful often. It is true that the run time of an ejection
tree is limited as usual by the size of the solution, but its chance of success is lower than usual,
because it must repair several defects at the lower level to succeed at the higher level. If repairing
the first defect produces two new defects, repairing each of those produces two more, and so on,
then the result is a huge number of defects that must all be repaired successfully. And to make
a repair which introduces a defect and then repair that defect using an ejection tree is to spend a
lot of time on a defect that can be removed much more easily by undoing the initial repair.

However, when the original solution has a very awkward defect, the best option may be a

13.4. Variants of the ejection chains idea 385

complex repair which usually introduces several new defects. For example, the best way to repair
a cluster busy times overload defect may be to unassign every meet on one of the problem days.
In that case, it makes sense to use an ejection tree at that level alone: that is, to try a repair that
introduces several defects, then try to repair them by finding an ejection chain for each.

The max_sub_chains parameter of KheEjectorRepairEndLong (withdrawn) allows for
ejection trees, by specifying the maximum number of defects introduced by that repair that are
to be repaired. Different repairs may have different values of max_sub_chains. For example,
the complex cluster busy times repair could be tried only when KheEjectorCurrLength(ej)

is 1, with max_sub_chains set to INT_MAX. All other repairs could be given value 1 for
max_sub_chains, producing ordinary chains elsewhere.

A set of defects now has to be repaired, not necessarily just one. One option would have
been to change the interface of Augment to pass this set to the user. This was not done, because
it would be a major change from the targeted repairs used by ejection chains. Instead, just as the
framework handles the dynamic dispatch by defect type, so it also accepts a whole set of defects
for repair and passes them one by one to conventional Augment calls.

The remainder of this section explains the implementation of ejection trees (and indeed
ejection chains) by presenting a more detailed description of the Augment function than the one
given at the start of this chapter.

To begin with, it was stated earlier that the main loop tries an augment for every defective
child of start_gm. In fact, main loop augments are tried only for defects d such that

Potential(d) = KheMonitorCost(d) - KheMonitorLowerBound(d)

is positive. Clearly, when Potential(d) == 0 there is no chance of improvement.

We also need to consider monitor cost limits, which require that the solution not change
so as to cause the cost of some given monitors to exceed given limits (Section 13.3). To handle
them, the interface of Augment is changed to

bool Augment(Solution s, Cost c, Limits x, Defect d);

where x is a set of monitor cost limits. Augment returns true if the value of s afterwards is such
that s’s cost is less than c and the limits x are all satisfied. This condition is evaluated by

bool Success(Solution s, Cost c, Limits x)
{
return cost(s) < c && LimitsAllSatisfied(s, x);

}

The precondition of Augment(s, c, x, d) is changed to

!Success(s, c, x) && cost(s) - GPotential(d) < c

That is, the solution must not have already reached the target cost and limits, and the generalized
potential of d, GPotential(d), is large enough to suggest that repairing d might get it there. Its
postcondition is Success(s, c, x) if true is returned, and ‘s is unchanged’ otherwise.

For a main loop defect, cost(s) is c, GPotential(d) is Potential(d), and Augment

may be called exactly when it is called—when Potential(d) > 0. For defects at lower

386 Chapter 13. Ejection Chains

levels, GPotential(d) is the amount that the cost of d increased when the repair that produced
d occurred, as returned by KheTraceMonitorCostIncrease (Section 6.9.3). Often, the cost
beforehand will be KheMonitorLowerBound(d), so that this increase will just be Potential(d)
as before; but if d was already defective beforehand it will be smaller, making d less likely to be
augmented. The point is that we can only realistically hope to remove the new cost added when
the previous repair was made, not the pre-existing cost. (KHE used Potential(d) here for many
years; the switch to GPotential(d) produced better cost on average, and better running time; a
few individual instances had marginally worse cost.)

The new defects chosen for repair must be open defects: defects whose generalized
potential is positive, according to KheTraceMonitorCostIncrease. The max_sub_chains open
defects of largest generalized potential, or all open defects if fewer than max_sub_chains open
defects are reported by the trace, are selected. In the code below, this selection is made by line

{d1, ..., dn} = SelectOpenDefects(new_defect_set, MaxSubChains(r));

This is implemented by a call to KheTraceReduceByCostIncrease (Section 6.9.3).

Here is the more detailed implementation of Augment:

bool Augment(Solution s, Cost c, Limits x, Defect d)
{
repair_set = RepairsOf(d);
for(each repair r in repair_set)
{

new_defect_set = Apply(s, r);
if(Success(s, c, x))
return true;

if(NotAtLengthLimit())
{
{d1, ..., dn} = SelectOpenDefects(new_defect_set, MaxSubChains(r));
for(i = 1; i <= n; i++)
{
sub_c = c + GPotential(d(i+1)) + ... + GPotential(dn);
sub_x = (i < n ? {} : x); /* empty limit set except at end */
if(Success(s, sub_c, sub_x))

continue;
if(cost(s) - GPotential(di) >= sub_c)

break;
if(!Augment(s, sub_c, sub_x, di))

break;
if(Success(s, c, x))

return true;
}

}
reset s to its state just before Apply(s, r);

}
return false;

}

As before, all of this except the loop that iterates over and applies repairs is hidden in calls to

13.4. Variants of the ejection chains idea 387

KheEjectorRepairBegin and KheEjectorRepairEnd. It is easy to verify that this satisfies the
revised postcondition. The reset near the end is carried out by a call to KheMarkUndo.

After the usual test for success immediately after the repair, if the length limit has not been
reached the new code selects n open defects for repair, then calls Augment recursively on each
in turn. The complicating factor is the choice of a target cost and set of limits for each recursive
call, denoted sub_c and sub_x above. Using the original c and x, as is done with ejection chains,
would wrongly place the entire burden of improving the solution onto the first recursive call.

When repairing d1, the right cost target to shoot for is

sub_c = c + GPotential(d2) + ... + GPotential(dn);

The best that can be hoped for from repairing d2 is GPotential(d2), the best that can be hoped
for from repairing d3 is GPotential(d3), etc. So if the first recursive Augment cannot reduce
cost(s) below the given value of sub_c, there is little hope that after all the recursive augments
it will be reduced below c. The same idea is applied for each of the di.

When a recursive call to Augment changes the solution, some GPotential(di) values may
change. So this code re-evaluates sub_c from scratch on each iteration of the inner loop, rather
than attempting to save time by adjusting the previous value of sub_c.

The choice of sub_x causes limits to be ignored except when carrying out the last augment.
This is in accord with the intention of monitor cost limits, which is to only check them at the end.
It would be a mistake to check them earlier. For example, the repair of the cluster busy times
defects described above is likely to violate a monitor cost limit when it deassigns meets. These
do need to be reassigned by the end, but they will not all be reassigned earlier.

After defining sub_c and sub_x but before the call to Augment, the code executes

if(Success(s, sub_c, sub_x))
continue;

if(cost(s) - GPotential(di) >= sub_c)
break;

These lines ensure that the precondition of the recursive Augment call holds at the time it is made.
If Success(s, sub_c, sub_x) holds, then the aim of that call has already been achieved, so
the algorithm moves on to the next one. It does not matter that it skips the Success(s, c, x)

test further on, because there has been such a test since the last time the solution changed. If
cost(s) - GPotential(di) >= sub_c holds, then the algorithm has no real hope of beating
sub_c by repairing di, and so no real hope of success at all, so it abandons the current repair.

Success(s, c, x) implies Success(s, sub_c, sub_x) throughout Augment, because
sub_c >= c and sub_x is a subset of x. This cannot be used to simplify Augment, but it does
have one or two interesting consequences. For example, it applies transitively down through all
active calls to Augment, so while Success(s, sub_c, sub_x) is false at any level of recursion,
the original aim of the ejection tree cannot be satisfied.

When repairing dn, sub_c == c and sub_x == x. This gives confidence that Augment
could succeed, and shows that it reduces to the original Augment when MaxSubChains(r) == 1,
except for the different expression of how one open defect is selected.

The method described here finds the first chain that repairs d1, fixes it, and moves on to d2.

388 Chapter 13. Ejection Chains

Representing the higher path by a solid arrow, the chains (successful or not) that repair d1 by
dashed arrows, and the chains (successful or not) that repair d2 by dotted arrows, the picture is

Another possibility is to find the first chain that repairs d1, then try to find chains for d2, but if
that fails, to continue searching for other chains for d1:

This approach is implementable within the current framework, but it has not been tried. Ejection
beams (Section 13.4.5) do something of this kind.

13.4.4. Sorting repairs

The variant described here never performed very well, and it has now been withdrawn.

Each repair is usually followed immediately by recursive calls which extend the chain,
where applicable. Setting the save_and_sort parameter of KheEjectorRepairEndLong

(withdrawn) to true invokes a different arrangement. Paths representing the repairs are saved
in the ejector without recursion. After the last repair they are sorted into increasing order of the
cost of the solutions they produce, and each is tried in turn, just as though they had occurred in
that sorted order [5].

In practice, save_and_sort would be given the same value for every repair of a given
defect. However, it is legal to use a mixture of values. Those given value true will be saved,
those given value false will be recursed on immediately in the usual way. If any of those lead
to success, that chain is accepted and any saved repairs are forgotten.

Only repairs with some hope of success are saved: those for which

Success(s, c, x) || (NotAtLengthLimit() &&
cost(s) - (GPotential(d1) + ... + GPotential(dn)) < c)

holds after the repair, in the terminology of Section 13.4.3.

The author’s experience with save_and_sort has been disappointing. Chains can end
successfully anywhere in the search tree, and low solution cost at an intermediate point is not
a good predictor of a successful end. Every saved repair is executed once before sorting to
establish the solution cost after it, then undone. If the repair is tried later, it is executed again (by a
path redo). The significant benefit needed to justify this extra work does not seem to be there.

13.4. Variants of the ejection chains idea 389

13.4.5. Ejection beams

Ejection beams are yet another variant of the basic ejection chains idea. They are similar to the
now-withdrawn ejection trees in that they aim to allow the algorithm to carry on when more than
one defect is introduced by a repair.

An ejection beam, or just beam, is a non-empty set of monitors m, each with its cost, denoted
cost(m), and its target, denoted targ(m). The value of cost(m) is the cost of m in the current
solution, as usual. The value of targ(m) will be specified shortly; it is a value that the algorithm
aspires to reduce cost(m) to.

A beam is a true set: no monitor may appear in it twice. Its cardinality (its number of
monitors) is at least 1 and at most some small integer K (a parameter of the algorithm) whose
value must be at least 1. K might be 2 or 3, for example.

Instead of passing a single defective monitor, the basic call passes an entire beam B:

bool Augment(Solution s, Cost c, Beam B)

As usual, if Augment can find a way to reduce the cost of s to less than c, it does so and returns
true, otherwise it changes nothing and returns false. But now it has a set of monitors, all those
in B, to repair. When Augment is called, each of these monitors m is unvisited and satisfies

cost(m) > targ(m) >= 0

Furthermore, along with the usual cost(s) >= c, the condition

Open(s, c, B) = cost(s) - sum[m in B](cost(m) - targ(m)) < c

holds initially. So one way for Augment to succeed would be to reduce the cost of every monitor
in B down to its target without introducing any new defects.

Like the ejection chain algorithm, the ejection beam algorithm has a main loop that tries to
repair each top-level defect m whose cost exceeds its lower bound. To do this it first marks all
monitors unvisited, then it calls Augment, setting s to the current solution, c to the cost of the
current solution, and B to a beam consisting of a single element, m, setting targ(m) to m’s lower
bound. This clearly satisfies the initial conditions of Augment.

Here is the implementation of Augment. We’ve added a Limits parameter which handles
the limits imposed by KheEjectorAddMonitorCostLimit (Section 13.3):

390 Chapter 13. Ejection Chains

bool Augment(Solution s, Cost c, Limits x, Beam B)
{
choose an arbitrary element d of B;
MonitorSetVisited(d);
repair_set = RepairsOf(d);
for(each repair r in repair_set)
{

new_defect_set = Apply(s, r);
if(Success(s, c, x))
return true;

if(LimitsNotReached() && BeamMerge(s, c, B, new_defect_set, K, &B2))
{
if(Augment(s, c, x, B2))
return true;

}
reset s to its state just before Apply(s, r);

}
return false;

}

Here Success compares the solution cost with c and checks the limits:

bool Success(Solution s, Cost c, Limits x)
{
return cost(s) < c && LimitsAllSatisfied(s, x);

}

while LimitsNotReached returns true if the various limits, on number of augments and so on,
have not yet been reached.

Apart from a few minor details, this version of Augment is clearly the original one with a set
of monitors B instead of a single defect d. It demands nothing additional from the user except a
single value for K at the start.

The key new step is BeamMerge. It returns a new non-empty beam B2 which is the set
union of B and new_defect_set, sorted into decreasing cost(m) - targ(m) order. Monitors
are omitted when they are visited, and they are dropped from the end of the sorted list until
just before dropping another would make Open(s, c, B2) false. If the number of monitors
remaining is less than 1 or more than K, MakeBeam returns false. So if the recursive call to
Augment is made, B2 is a beam of legal size which satisfies the precondition of Augment.

The author was surprised to discover that beams of size 0 could emerge from BeamMerge.
They occur when the cost has been reduced to a new best but limit monitors prevent the current
solution from being declared a success.

A new monitor m entering B2 has its targ(m) value set to its cost before r was applied.
Clearly, cost(m) > targ(m) >= 0, because targ(m) is cost(m) before r was applied, and
it was r that caused m to appear in new_defect_set, meaning that m’s cost increased. The
algorithm aspires to remove the new defects introduced by r, which in the case of m means
returning its cost to what it was before r, so this is a suitable value for targ(m).

A monitor m could lie in both B and new_defect_set, if it was a defect before applying r,

13.4. Variants of the ejection chains idea 391

and r made it worse. That is fine; it will appear only once in B2, with its original targ(m).

Ejectors always run the ejection beam code, but the default value of K is 1, producing
ejection chains. K is determined by the es_max_beam option (Section 13.3), so setting this to a
value larger than 1 is the way to get ejection beams.

13.5. Gathering statistics

Ejectors gather statistics about their performance. This takes a negligible amount of time, as the
author has verified by comparing run times with preprocessor flag KHE_EJECTOR_WITH_STATS

in the ejector source file set to 0 (no statistics) and 1 (all statistics). On two typical instances, the
increase in overall run time caused by gathering statistics was less than 0.1 seconds.

13.5.1. Options for choosing ejectors and schedules

Each ejector holds its own statistics, independently of other ejectors. Some statistics accumulate
across the entire lifetime of an ejector; they are never reset. This makes it possible, for example,
to measure the performance of time repair ejection chains and resource repair ejection chains
over an entire set of instances, by carrying out all time repairs in all instances using one ejector
and all resource repairs in all instances using another.

To facilitate this, options objects usually contain two ejectors, under names "es_ejector1"
and "es_ejector2", as explained in Section 13.6.1; they could contain more.

The next question is what schedules to give to these ejectors. A set of schedules is an option,
so the options object has option es_schedules for it, whose value is a string. Its default value
is "1+,u-", for the meaning of which see Section 13.2.

Setting the schedule string does not set any ejector schedules, it merely sets one option of
options, to a fresh copy of the string it is given. User code must set the actual schedules, by
passing a schedule string to function KheEjectorMakeBegin (Section 13.2).

13.5.2. Statistics for analysing Kempe meet moves

The ejector itself does not maintain statistics for analysing Kempe meet moves. These are stored
in kempe_stats objects, one of which is conveniently available from option ts_kempe_stats

(Section 10.2.2). This object is passed to the calls to KempeMeetMove made by the augment
functions described in this chapter. Only Kempe meet moves which are complete repairs on their
own are passed this object, not Kempe meet moves combined with other operations (meet splits
and merges, for example). So by the end of an ejction chain run, statistics about these Kempe
meet moves will have been accumulated in the ts_kempe_stats option of the options object
passed to the ejection chain repairs.

13.5.3. Statistics describing a single solve

The statistics presented in this section make sense only for one call to KheEjectorSolveEnd. So
they are available only until the next call to KheEjectorSolveEnd, when they are reset.

An improvement is an ejection chain or tree, rooted in a defect examined by the main loop,
which is applied to the solution and reduces its cost. Each time an improvement is applied, four

392 Chapter 13. Ejection Chains

facts about it are recorded. The number of improvements applied is returned by

int KheEjectorImprovementCount(KHE_EJECTOR ej);

and the four facts about the ith improvement (counting from 0 as usual) are returned by

int KheEjectorImprovementNumberOfRepairs(KHE_EJECTOR ej, int i);
float KheEjectorImprovementTime(KHE_EJECTOR ej, int i);
KHE_COST KheEjectorImprovementCost(KHE_EJECTOR ej, int i);
int KheEjectorImprovementDefects(KHE_EJECTOR ej, int i);

These return the number of repairs in the ith improvement (this tends to increase with i), the time
from the moment when KheEjectorSolveEnd was called to the moment after the improvement
was applied, the solution cost afterwards, and the number of defects of start_gm afterwards.
Times are measured in seconds, to a precision much better than one second. There are also

KHE_COST KheEjectorInitCost(KHE_EJECTOR ej);
int KheEjectorInitDefects(KHE_EJECTOR ej);

which return the cost and number of defects when KheEjectorSolve began.

13.5.4. Statistics describing multiple solves

The statistics presented in this section make sense across multiple calls to KheEjectorSolveEnd.
They are initialized when the ejector is created and never reset.

It is interesting to see how many repairs make up one improvement. Each time an
improvement occurs on any solve during the lifetime of the ejector, one entry in a histogram of
numbers of repairs is incremented. This histogram can be accessed at any time by calling

int KheEjectorImprovementRepairHistoMax(KHE_EJECTOR ej);
int KheEjectorImprovementRepairHistoFrequency(KHE_EJECTOR ej,
int repair_count);

KheEjectorImprovementRepairHistoMax returns the maximum, over all improvements
x, of the number of repairs that make up x, or 0 if there have been no improvements.
KheEjectorImprovementRepairHistoFrequency returns the number of improvements with
the given number of repairs. Also, functions

int KheEjectorImprovementRepairHistoTotal(KHE_EJECTOR ej);
float KheEjectorImprovementRepairHistoAverage(KHE_EJECTOR ej);

use this same basic information to find the total number of improvements, and the average
number of repairs per improvement when there is at least one improvement.

Another histogram, again with one element for each improvement, records the number of
calls to Augment since the most recent one in the main loop:

13.5. Gathering statistics 393

int KheEjectorImprovementAugmentHistoMax(KHE_EJECTOR ej);
int KheEjectorImprovementAugmentHistoFrequency(KHE_EJECTOR ej,
int augment_count);

int KheEjectorImprovementAugmentHistoTotal(KHE_EJECTOR ej);
float KheEjectorImprovementAugmentHistoAverage(KHE_EJECTOR ej);

This is helpful, for example, in deciding whether it would be useful to terminate a search after
some number of augments has failed to find an improvement. A method of doing this is built
into ejectors, but not offered as an official option at the moment.

Another interesting question is how successful the various augment functions and repairs
are. There are methodological issues here, however. For example, if one kind of repair is tried
before another, it has more opportunities to both succeed and fail than the other. If there are
several alternatives to choose from, the best test would be to compare the results of several
complete runs, one for each alternative. No statistical support is needed for that. But even after
the best alternatives are chosen, there remains the question of whether each component is pulling
its weight. The statistics to be described now attempt to answer this question.

An augment type is a small integer representing one kind of augment function. A repair
type is a small integer representing one kind of repair. Functions KheEjectorAddAugment and
KheEjectorAddGroupAugment assign an augment type to each augment function, and thus to
each call on an augment function. Each repair is followed by a call to KheEjectorRepairEnd

(Section 13.6.4), and its repair_type parameter assigns a repair type to that repair. Based on
this information, the ejector records the following statistics:

1. For each distinct augment_type, the number of repairs made by calls on augment functions
with that augment type;

2. For each distinct (augment_type, repair_type) pair, the number of repairs of that repair
type made by calls on augment functions with that augment type;

3. For each distinct augment_type, the number of successful repairs made by calls on
augment functions with that augment type;

4. For each distinct (augment_type, repair_type) pair, the number of successful repairs
of that repair type made by calls on augment functions with that augment type.

Only repairs with a true value for the success parameter of KheEjectorRepairEndLong are
counted. For the purposes of statistics gathering, a repair is considered successful if it causes its
enclosing Augment function to return true, whether this happens immediately,or after recursion,
or after saving and sorting. The statistics may be retrieved at any time by calling

int KheEjectorTotalRepairs(KHE_EJECTOR ej, int augment_type);
int KheEjectorTotalRepairsByType(KHE_EJECTOR ej, int augment_type,
int repair_type);

int KheEjectorSuccessfulRepairs(KHE_EJECTOR ej, int augment_type);
int KheEjectorSuccessfulRepairsByType(KHE_EJECTOR ej, int augment_type,
int repair_type);

where augment_type and repair_type are arbitrary non-negative integers. Based on these

394 Chapter 13. Ejection Chains

numbers, a reasonable analysis of the effectivenessof the augment functions and their repairs can
be made. For example, the effectiveness of an augment function can be measured by the ratio
of the third number to the first. Adding up the result of KheEjectorTotalRepairsByType over
all values of repair_type produces the result of KheEjectorTotalRepairs, and adding up the
result of KheEjectorSuccessfulRepairsByType over all values of repair_type produces the
result of KheEjectorSuccessfulRepairs.

13.5.5. Organizing augment and repair types

KheEjectorAddAugment and KheEjectorAddGroupAugment accept any augment_type values.
The user should define these values using an enumerated type. The following function may be
called any number of times during the ejector’s setup phase, to tell it what values to expect:

void KheEjectorAddAugmentType(KHE_EJECTOR ej, int augment_type,
char *augment_label);

This tells ej to expect calls to KheEjectorAddAugment and KheEjectorAddGroupAugment

with the given value of augment_type, and associates a label with that augment type. Labels
must be non-NULL; copies are stored, not originals. No checks are made that the values passed
via KheEjectorAddAugment and KheEjectorAddGroupAugment match those declared by
KheEjectorAddAugmentType. But if they do, then making tables of statistics is simplified by
calling the following functions afterwards.

To visit all the augment types declared by calls to KheEjectorAddAugmentType, call

int KheEjectorAugmentTypeCount(KHE_EJECTOR ej);
int KheEjectorAugmentType(KHE_EJECTOR ej, int i);

To retrieve the label corresponding to an augment type, call

char *KheEjectorAugmentTypeLabel(KHE_EJECTOR ej, int augment_type);

In this way, suitable values for passing to KheEjectorTotalRepairs and the other statistics
functions above can be generated, along with labels to identify the statistics.

The same functionality is offered for repair types. KheEjectorRepairBegin may be passed
any values for repair_type, but the user knows which values will be passed, and the following
function may be called any number of times during the ejector’s setup phase to tell it this:

void KheEjectorAddRepairType(KHE_EJECTOR ej, int repair_type,
char *repair_label);

KheEjectorAddRepairType declares that ej can expect calls to KheEjectorRepairBegin

with the given value of repair_type, and associates a label with that repair type. Labels must
be non-NULL; copies are stored, not originals. No checks are made that the values passed via
KheEjectorRepairBegin match those declared by KheEjectorAddRepairType. But if they do,
then making tables of statistics is simplified by calling the following functions afterwards.

To visit all the repair types declared by calls to KheEjectorAddRepairType, call

13.5. Gathering statistics 395

int KheEjectorRepairTypeCount(KHE_EJECTOR ej);
int KheEjectorRepairType(KHE_EJECTOR ej, int i);

To retrieve the label corresponding to a repair type, call

char *KheEjectorRepairTypeLabel(KHE_EJECTOR ej, int repair_type);

There is no way to declare which combinations of augment type and repair type to expect. The
author handles this by ignoring cases where KheEjectorTotalRepairsByType returns 0.

13.6. Using ejection chains in practice

In the remaining sections of this chapter, we focus on the practical side of getting ejectors to
repair solutions. The code presented in these sections, and found in files khe_se_focus.c

and khe_se_solvers.c, is more volatile than the code in khe_se_ejector.c defining ejector
objects—more subject to change as new ideas come along.

13.6.1. Top-level ejection chains functions

KHE offers several top-level functions for repairing solutions using ejection chains:

bool KheEjectionChainNodeRepairTimes(KHE_NODE parent_node,
KHE_OPTIONS options);

bool KheEjectionChainLayerRepairTimes(KHE_LAYER layer,
KHE_OPTIONS options);

bool KheEjectionChainRepairResources(KHE_TASKING tasking,
KHE_OPTIONS options);

These are all packaged up ready for the end user to call. KheEjectionChainNodeRepairTimes
repairs the assignments of the meets of the descendants of the child nodes of parent_node, and
KheEjectionChainLayerRepairTimes repairs the assignments of the meets of the descendants
of the child nodes of layer. This is for repairing the time assignments of a layer immediately
after they are made, without wasting time on earlier layers where repairs have already been tried
and are very unlikely to succeed. KheEjectionChainRepairResources repairs the assignments
of the tasks of tasking.

These top-level functions are all much the same. They use the same augment functions, for
example. They differ in how some options are set, and in how start_gm is defined.

All three functions make assignments as well as change them, so may be used to construct
solutions as well as repair them. However, there are better ways to construct solutions.

Here is function KheEjectionChainRepairResources:

396 Chapter 13. Ejection Chains

bool KheEjectionChainRepairResources(KHE_TASKING tasking,
KHE_OPTIONS options)

{
KHE_EJECTOR ej; KHE_GROUP_MONITOR kempe_gm, start_gm, limit_gm;
KHE_SOLN soln; bool res; KHE_AUGMENT_OPTIONS ao;

/* get an ejector */
ej = KheEjectionChainEjectorOption(options, "es_ejector2");

/* set the control options */
KheOptionsSetBool(options, "es_repair_times", false);
KheOptionsSetObject(options, "es_limit_node", NULL);
KheOptionsSetBool(options, "es_repair_resources", true);

/* build the required group monitors and solve */
soln = KheTaskingSoln(tasking);
KheGroupCorrelatedMonitors(soln, options);
kempe_gm = KheKempeDemandGroupMonitorMake(soln);
start_gm = KheTaskingStartGroupMonitorMake(tasking);
ao = KheAugmentOptionsMake(soln, options, KheEjectorArena(ej));
KheEjectorSolveBegin(ej, start_gm, (KHE_GROUP_MONITOR) soln, ao,
options);

res = KheEjectorSolveEnd(ej);

/* clean up and return */
KheGroupMonitorDelete(kempe_gm);
KheGroupMonitorDelete(start_gm);
KheUnGroupCorrelatedMonitors(soln);
return res;

}

We’ve simplified it slightly to emphasize the main points. We’ll go through it now line by line.

KheEjectionChainEjectorOption retrieves an ejector object from options, as described
just below. This avoids wasting time by creating ejector objects over and over again, but its
main purpose is to allow statistics over the whole run to be accumulated in just a few ejector
objects—currently "es_ejector1" for time repair, and "es_ejector2" for resource repair.

Here is KheEjectionChainEjectorOption and another function that it may call:

KHE_EJECTOR KheEjectionChainEjectorMake(KHE_OPTIONS options,
HA_ARENA a);

KHE_EJECTOR KheEjectionChainEjectorOption(KHE_OPTIONS options,
char *key);

KheEjectionChainEjectorMake makes an ejector object. It starts with a call to
KheEjectorMakeBegin, ends with a call to KheEjectorMakeEnd, and between them
calls KheEjectorAddAugmentType, KheEjectorAddRepairType, KheEjectorAddAugment, and
KheEjectorAddGroupAugment many times over, to load the augment functions described in

13.6. Using ejection chains in practice 397

Sections 13.7 and 13.8, together with augment types and repair types that allow detailed statistics
to be gathered.

KheEjectionChainEjectorOption retrieves an ejector object from options,
stored under the given key. If there is no such object, it creates one by calling
KheEjectionChainEjectorMake, stores it under key, and returns it.

Next, options "es_repair_times", "es_limit_node", and "es_repair_resources" are
set to values appropriate to resource repair. These values will be consulted later by augment
functions and will cause them to limit their repairs to resource repairs.

As discussed in Section 8.7.3, it is important for the effective use of ejection chains to group
correlated monitors. This is done by the call to KheGroupCorrelatedMonitors, and undone at
the end by KheUnGroupCorrelatedMonitors (Section 8.7.4). There is no need here to group
monitors concerned with time assignment, but it is simpler to just group everything.

Two other group monitors, of the kind described as focus groupings in Section 8.7.2, are
needed by KheEjectionChainRepairResources. The first is kempe_gm, needed to support
repairs that include Kempe moves; the second is start_gm, needed to limit the main loop of the
ejector to repairs of event resource and resource defects whose resource type is that of tasking.
We’ll have more to say about limiting the scope of repairs later on.

It is reasonable to worry about the time it takes to group monitors, so the author ran just the
group monitor setup and removal parts of KheEjectionChainNodeRepairTimes 10000 times
on a typical instance (BGHS98) and measured the time taken. This was 31.35 seconds, or about
0.003 seconds per setup/remove. This is not significant if it is done infrequently.

KheAugmentOptionsMake constructs an object of type KHE_AUGMENT_OPTIONS by filling
in its fields based on values it retrieves from options. It is basically an optimization: it allows
augment functions to access the options they need much more quickly that via a cumbersome
retrieval from an options object. We’ll look at this more closely in Section 13.6.3.

We are nearly done. The calls to KheEjectorSolveBegin and KheEjectorSolveEnd do
the actual solve. We’ve omitted some code here which optionally installs a limit monitor in
between these two calls. Then, in accordance with our general policy concerning group monitors
(Section 8.7.1), the group monitors created by this function are deleted. Finally, the earlier call to
KheGroupCorrelatedMonitors is undone, and true is returned if the solution was improved.

13.6.2. Focus groupings for ejection chains

Top-level ejection chain functions need focus groupings for their start group monitors (but not
their continue group monitors, since they use the solution object for that), and for their limit
monitors. This section describes the public functions, defined in khe_se_focus.c, which return
these group monitors.

KheEjectionChainNodeRepairTimes uses the group monitor returned by

KHE_GROUP_MONITOR KheNodeTimeRepairStartGroupMonitorMake(KHE_NODE node);

as its start group monitor. The result has sub-tag KHE_SUBTAG_NODE_TIME_REPAIR. Its children
are monitors, or correlation groupings of monitors where these are already present, of two kinds.
First are all assign time, prefer times, spread events, order events, and ordinary demand monitors
that monitor the meets of node and its descendants, plus any meets whose assignments are fixed,

398 Chapter 13. Ejection Chains

directly or indirectly, to them. Second are all resource monitors. Only preassigned resources are
assigned during time repair, but those assignments may cause resource defects which can only
be repaired by changing time assignments, just because the resources involved are preassigned.

KheEjectionChainLayerRepairTimes chooses one of the group monitors returned by

KHE_GROUP_MONITOR KheLayerTimeRepairStartGroupMonitorMake(
KHE_LAYER layer);

KHE_GROUP_MONITOR KheLayerTimeRepairLongStartGroupMonitorMake(
KHE_LAYER layer);

as its start group monitor, depending on option es_layer_repair_long. The result has sub-tag
KHE_SUBTAG_LAYER_TIME_REPAIR, with the same children as before, only limited to those that
monitor the meets and resources of layer, or (if es_layer_repair_long is true) of layers
whose index number is less than or equal to layer’s.

KheEjectionChainRepairResources uses the group monitor returned by

KHE_GROUP_MONITOR KheTaskingStartGroupMonitorMake(KHE_TASKING tasking);

for its start group monitor. The result has sub-tag KHE_SUBTAG_TASKING, and its children are
the following monitors (or correlation groupings of those monitors, where those already exist):
the assign resource, prefer resources, and avoid split assignments monitors, and the resource
monitors that monitor the tasks and resources of tasking. If the tasking is for a particular
resource type, only monitors of entities of that type are included.

To allow an ejection chain to unassign meets temporarily but prevent it from leaving meets
unassigned in the end, a limit monitor is imposed which rejects chains that allow the total cost of
assign time defects to increase. This monitor is created by calling

KHE_GROUP_MONITOR KheGroupEventMonitors(KHE_SOLN soln,
KHE_MONITOR_TAG tag, KHE_SUBTAG_STANDARD_TYPE sub_tag);

passing KHE_ASSIGN_TIME_MONITOR_TAG and KHE_SUBTAG_ASSIGN_TIME as tag parameters.

To prevent the number of unmatched demand tixels from increasing, when that is requested
by the resource_invariant option, the group monitor returned by function

KHE_GROUP_MONITOR KheAllDemandGroupMonitorMake(KHE_SOLN soln);

is used as a limit monitor. Its sub-tag is KHE_SUBTAG_ALL_DEMAND, and its children are all
ordinary and workload demand monitors. Correlation groupings are irrelevant to limit monitors,
so these last two functions take no account of them.

13.6.3. Augment options

Ejection chain code consults many options. Rather than clumsy retrievals of these options from
an options object each time they are needed, the ejection chain code retrieves each option just
once, and stores its value in an object of type KHE_AUGMENT_OPTIONS. This object is passed to
the ejector as an argument of function KheEjectorSolveBegin, which passes it back to each
augment function, making the options immediately available to them.

13.6. Using ejection chains in practice 399

Type KHE_AUGMENT_OPTIONS is defined in khe_solvers.h by

typedef struct khe_augment_options_rec *KHE_AUGMENT_OPTIONS;

and made concrete at the start of khe_se_solvers.c:

struct khe_augment_options_rec {

/* time repair options */
bool vizier_node;
bool layer_repair_long;
bool nodes_before_meets;
KHE_OPTIONS_KEMPE use_kempe_moves;
bool use_fuzzy_moves;
bool no_ejecting_moves;

/* resource repair options */
bool widening_off;
bool reversing_off;
bool balancing_off;
int swap_widening_max;
int move_widening_max;
int balancing_max;
bool full_widening_on;
bool optimal_on;
int optimal_width;

/* options that are set by functions, not by the user */
bool repair_times;
bool use_split_moves;
KHE_KEMPE_STATS kempe_stats;
KHE_NODE limit_node;
bool repair_resources;
KHE_SOLN soln;
KHE_FRAME frame;
KHE_EVENT_TIMETABLE_MONITOR etm;
KHE_MTASK_FINDER mtask_finder;

};

The reader can see now why we describe khe_se_solvers.c as volatile: these options control
various promising ideas that may come and go. The options will come and go with the ideas.

A few of these options are more permanent than the others and deserve special notice.
Option repair_times is true when augment functions are permitted to change the assignments
of meets, and repair_resources is true when they are permitted to change the assignments
of tasks. At least one of these must be true, since otherwise the augment functions can change
nothing. It is also acceptable for both to be true, although that can lead to slow runs.

Option soln is the solution under repair; frame is the common frame; etm is an event

400 Chapter 13. Ejection Chains

timetable monitor, from which an augment function can retrieve the tasks running at a given time;
and mtask_finder is an mtask finder object, as in Section 11.9.

A KHE_AUGMENT_OPTIONS object is created by a call to KheAugmentOptionsMake. We
won’t present its implementation; it simply creates an object and fills its fields with values
retrieved from the options object.

Here now is the full list of options that control the top-level ejection chain functions. These
options are quite separate from the options used to control ejector objects, which are listed
elsewhere (Section 13.3).

First come options that do not need to be stored in the KHE_AUGMENT_OPTIONS object,
because they affect only the main functions, not the augment functions:

rs_ejector_off

A Boolean option which, when true, causes KheEjectionChainRepairResources to
do nothing.

es_ejector1, es_ejector2
These two options hold ejector objects. KheEjectionChainNodeRepairTimes and
KheEjectionChainLayerRepairTimes use the ejector object stored under key
es_ejector1, while KheEjectionChainRepairResources uses the ejector object stored
under key es_ejector2. There is no need for the user to set these options, since they will
be set the first time they are needed; but retrieving them at the end of the solve can be useful,
since they will then contain statistics on the performance of the ejection chain algorithm.

es_schedules

The value here is a string describing the schedules to apply to an ejector. The default value
is "1+,u-". For the meaning of this, consult Section 13.2.

Next come those options retrieved from options by KheAugmentOptionsMake and stored in the
KHE_AUGMENT_OPTIONS object. First, those concerned with time assignment:

es_vizier_node

A Boolean option which, when true, instructs KheEjectionChainNodeRepairTimes and
KheEjectionChainLayerRepairTimes to insert a vizier node (Section 9.5.4) temporarily
while they run.

es_layer_repair_long

A Boolean option which, when true, instructs KheEjectionChainLayerRepairTimes

to target every layer up to and including the current layer when repairing the current layer.
Otherwise only the current layer is targeted.

es_nodes_before_meets

A Boolean option which, when true, instructs augment functions that try both node swaps
and meet moves to try the node swaps first.

es_kempe_moves

This option determines whether augment functions that move meets use Kempe moves in
addition to ejecting and basic ones (Section 10.2.2). Its possible values are true, meaning
to use them,false, meaning to not use them, and large_layers (the default), meaning to

13.6. Using ejection chains in practice 401

use them when moving the meets of nodes that lie in layers of large duration relative to the
cycle duration, reasoning that swaps are usually needed when such meets are moved.

es_fuzzy_moves

A Boolean option which, when true, instructs augment functions that move meets to try
fuzzy meet moves (Section 10.7.4) in addition to the other kinds of meet moves. If they
do, to conserve running time they only do so when repairing a defect of the current best
solution, not when repairing a defect introduced by a previous repair. At present the width,
depth, and max_meets arguments passed to KheFuzzyMeetMove are fixed constants.

es_no_ejecting_moves

A Boolean option which, when true, instructs augment functions that assign and move
meets to not use ejecting moves, only basic ones (Section 10.2.2).

Next come options concerned with resource assignment:

es_widening_off, es_reversing_off, es_balancing_off
Boolean options which, when true, cause widening, reversing, and balancing to be omitted
from task move repairs.

Note: Task move repairs treat tasks t for which KheTaskNeedsAssignmentHasCost(t) is
false as free time. Inserting this note in the right place is still to do.

es_move_widening_max

When widening is in effect (when es_widening_off is false), this integer option
determines the maximum number of frame time groups that widening covers when moves
are being tried, in addition to whatever frame time groups the mtask or mtask set being
moved already covers. The default value is 4. Value 0 turns move widening off.

es_swap_widening_max

When widening is in effect (when es_widening_off is false), this integer option
determines the maximum number of frame time groups that widening covers when swaps
are being tried, in addition to whatever frame time groups the mtask or mtask set being
swapped already covers. The default value is 16. Value 0 turns swap widening off.

es_balancing_max

When balancing is in effect (when es_balancing_off is false), this integer option
determines the maximum number of repairs that move a task set in the other direction to
the main move. The default value is 12.

es_full_widening_on

A boolean option which, when true, includes full widening in task move repairs. This
swaps timetables from the task being moved back to the start or forward to the end of the
cycle. It is effective, but its slowness typically increases cost on solves limited by time.

es_optimal_on

A boolean option which, when true, causes optimal widened task set moves to be used. In
that case, es_optimal_width just below is consulted, as is es_balancing_off above,
but the other options from es_widening_off down to here are ignored.

402 Chapter 13. Ejection Chains

es_optimal_width

When es_optimal_on is true, this integer option determines how many extra days to
include in the optimal move. The default value, 6, adds 6 extra days. When these are added
to the one day typically involved in the original move, this covers a full week.

The following options are set within KheEjectionChainRepairResources and similar
functions, making it futile for the user to set them:

es_repair_times

A Boolean option which, when true, lets augment functions change meet assignments.
KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes set it
to true, while KheEjectionChainRepairResources sets it to false.

es_split_moves

A Boolean option which, when true, instructs augment functions that move meets to try
split meet moves in addition to other kinds of meet moves. KheGeneralSolve2024 sets
this option to true when the instance contains soft split events or distribute split events
constraints, reasoning that they may not have been satisfied by structural solvers.

es_limit_node

This option holds a node object. When it is non-NULL, it causes augment functions that
assign and move meets to limit their repairs to the descendants of that node. This option is
set by all three functions.

es_repair_resources

A Boolean option which, when true, lets augment functions change task assignments.
KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes set it
to false, while KheEjectionChainRepairResources sets it to true.

As mentioned earlier, one can expect this list to change as good ideas come and go.

13.6.4. How to write an augment function

An augment function has type

bool (*KHE_EJECTOR_AUGMENT_FN)(KHE_EJECTOR ej,
KHE_AUGMENT_OPTIONS ao, KHE_MONITOR d);

The parameters are the ejector ej passed to KheEjectorSolve, a set of options ao which may
be consulted to influence the detailed behaviour of the augment function, and one defect d that
the augment function is supposed to repair. When ejection beams are in use the ejector still only
expects the user’s augment functions to repair a single defect. Thus one can switch from chains
to beams and back again without changing any augment functions.

It is a precondition that d’s cost exceeds its lower bound, and that reducing its cost to its
lower bound would be a step towards a successful augment. The return value says whether
the augment successfully reduced the solution cost or not, and must be true if some call to
KheEjectorRepairEnd (see below) returns true, or false otherwise. The ejector relies on this
value and it must be right.

13.6. Using ejection chains in practice 403

Augment functions often look like this, although not necessarily exactly:

bool ExampleAugment(KHE_EJECTOR ej, KHE_AUGMENT_OPTIONS ao, KHE_MONITOR d)
{

KHE_ENTITY e; bool success; REPAIR r;
e = SomeSolnEntityRelatedTo(d);
if(!KheEntityVisited(e))
{

KheEntityVisit(e);
for(each r in RepairsOf(e))
{

KheEjectorRepairBegin(ej);
success = Apply(r);
if(KheEjectorRepairEnd(ej, 0, success))

return true;
}
if(KheEjectorCurrMayRevisit(ej))

KheEntityUnVisit(e);
}
return false;

}

Function SomeSolnEntityRelatedTo uses d to identify some entity (node, meet, task, etc.)
that will be changed by the repairs, but that should only be changed if it has not already been
visited (tested by calling KheMeetVisited etc. from Section 4.2.5). After the visit, the boiler-
plate code

if(KheEjectorCurrMayRevisit(ej))
KheEntityUnVisit(e);

marks the entity unvisited if revisiting is allowed.

Each application of one repair must be bracketed by calls to KheEjectorRepairBegin and
KheEjectorRepairEnd, as shown. We’ll return to these two functions shortly.

Since writing the above, it has occurred to the author that the visited entity related to d could
be d itself. The code above that relates to visiting e is now applied to d behind the scenes in the
ejector object. This has the usual effect of prohibiting exponential searches, and it means that
the writer of an augment function can safely drop all visiting code, producing this:

404 Chapter 13. Ejection Chains

bool ExampleAugment(KHE_EJECTOR ej, KHE_AUGMENT_OPTIONS ao, KHE_MONITOR d)
{

bool success; REPAIR r;
for(each r in RepairsOf(d))
{

KheEjectorRepairBegin(ej);
success = Apply(r);
if(KheEjectorRepairEnd(ej, 0, success))

return true;
}
return false;

}

The augment function is also conceptually simpler this way: it searches a graph whose nodes
are defects and whose edges are repairs, without revisiting any node. Of course, the search is
different, and the question of whether it is better or worse must be decided empirically. The
author has successfully removed all visiting code from his nurse rostering augment functions:
running times are often larger, but cost is nearly always lower, often significantly lower.

Function RepairsOf builds a set of alternative repairs r of e or d, and Apply(r) stands for
the code that applies repair r. In practice, repairs just need to be iterated over and applied; an
explicit set is not needed. Nor is there any need for the augment function to follow any particular
structure; anything that generates a sequence of pairs of calls to KheEjectorRepairBegin and
KheEjectorRepairEnd is acceptable.

For example, some expensive repairs are only worth trying when repairing a defect that is
really present in the solution, not introduced by a previous repair. This can be effected by

if(KheEjectorCurrLength(ej) == 1)
{
KheEjectorRepairBegin(ej);
... apply expensive repair ...
if(KheEjectorRepairEnd(ej, 0, success))
return true;

}

This works because, as mentioned earlier, KheEjectorCurrLength(ej) returns 1 when the
augment function was called from the main loop, 2 when the augment function was called by an
augment function called from the main loop, and so on.

Functions KheEjectorRepairBegin and KheEjectorRepairEnd are supplied by KHE:

void KheEjectorRepairBegin(KHE_EJECTOR ej);
bool KheEjectorRepairEnd(KHE_EJECTOR ej, int repair_type, bool success);

Calls to them must occur in unnested matching pairs. A call to KheEjectorRepairBegin

informs ej that a repair is about to begin, and the matching call to KheEjectorRepairEnd

informs it that that repair has just ended. The repair is undone and redone as required behind the
scenes by KheEjectorRepairEnd, using marks and paths, so undoing is not the user’s concern.

The repair_type parameter of KheEjectorRepairEnd is used to gather statistics about

13.6. Using ejection chains in practice 405

the solve (Section 13.5). It may be 0 if statistics are not wanted.

The success parameter tells the ejector whether the caller thinks the current repair was
successful (that is, ran to completion). If it is false, the ejector undoes the partially completed
repair and forgets that it ever happened. If it is true, the ejector checks whether the repair
reduced the cost of the solution, whether there is a single new defect worth recursing on, and so
on. The writer of an augment function can forget that all this is happening behind the scenes.

If KheEjectorRepairEnd returns true, the ejector has found a successful chain. When this
happens, the rule is that the augment function should return true immediately. It does not matter
whether any entity is marked unvisited or not before exit.

However, there is an exception to this rule. We illustrate this by the following example.

Suppose that, in order to encourage ejection chains to remove a cluster busy times defect,
some days when the resource will be busy are chosen, all meets assigned the resource outside
those days are unassigned, and repairs are tried which move those meets to the chosen days.

While the repairs are underway, it is desired to limit the domains of the resource’s meets
to the chosen days, to keep the repairs on track. So the repair altogether consists of unassigning
some of the resource’s meets and adding a meet bound to each of the resource’s meets.

Whether the repair is successful or not, after it and the chains below it are finished, the meet
bound must be removed from the resource’s meets, since the domains of the meets should not be
restricted permanently. If the repair is unsuccessful, the meet bound is removed by the ejector as
part of undoing the repair. But if the repair is successful there is a problem, because the repair
is not undone. So in this case, in between receiving the true result from KheEjectorRepairEnd

and returning true itself, the augment function should remove the meet bounds that it added.

In general, this kind of cleanup should not change the cost of the solution. It might remove
meet or task bounds, unfix meets or tasks, and so on. Because it is done after a successful chain,
it cannot be assumed that the solution is in the same state as when the repair began, although the
user may be able to prove that certain aspects of it cannot have changed, based on his knowledge
of what the augment functions do. In the example, if no repairs remove meet bounds other than
those they add themselves, then the meet bound will still be present and it is safe to delete it.

Repairs, multi-repairs, and augment functions. The author has made several attempts to
organize the code that makes up augment functions hierarchically. At present the hierarchy has
three levels: repairs, multi-repairs, and augment functions.

A repair is a code fragment that makes one or more changes to the solution, aiming to
repair some defect. The changes work together; they are not alternatives. In concrete terms, a
repair is the code lying between one call to KheEjectorRepairBegin and the matching call to
KheEjectorRepairEnd. Often we include those two calls in the repair, but sometimes we speak
of the repair as just the code between them. A repair is often packaged into a function, which is
then called a repair function. It may be defined elsewhere (KheMeetMove, KheTaskAssign, etc.).
We also refer to the changes made to the solution by this code as one repair.

A multi-repair is a code fragment that tries a sequence of zero or more alternative repairs,
each enclosed as usual in KheEjectorRepairBegin and KheEjectorRepairEnd. A multi-repair
function is a function whose body is a multi-repair.

An augment function is a multi-repair function of type KHE_EJECTOR_AUGMENT_FN which
is passed to an ejector. It typically calls repair functions and other multi-repair functions.

406 Chapter 13. Ejection Chains

13.6.5. Limiting the scope of changes

Ejection chains work best when they are free to follow chains into any part of a solution, and
make any repairs that help. This freedom can conflict with the caller’s desire to limit the scope
of the changes they make, typically because initial assignments have not yet been made to some
parts of the solution, and an ejection chain repair should not anticipate them.

For example, suppose resource r is preassigned to some tasks, and there are others it could
be assigned to. The preassigned tasks go into r’s timetable when their meets are assigned times,
and could then create resource defects that an ejection chain time repair algorithm knows about.
Suppose a limit busy times underload defect is created (quite likely when the workload on some
day first becomes non-zero), and its augment function tries (among other things) to assign more
tasks to r to increase its workload on that day. This is not done at present, but it is plausible. Then
there will be an unexpected burst of resource assignment during time assignment.

One romantic possibility is to ‘let a thousand flowers bloom’ and just accept such repairs.
The problem with this is that a carefully organized initial assignment can be much better than
the result of a set of uncoordinated individual repairs.

Another possibility is to fix the assignments of all variables beyond the scope of the current
phase of the solve to their current values, often null values. This is a very reliable approach, and
arguably the most truthful, because it says to the ejection chain algorithm, in effect, ‘for reasons
beyond your comprehension,you are not permitted to change these variables.’ But it suffers from
a potentially severe efficiency problem: a large amount of time could be spent in discovering a
large number of repairs, which all fail through trying to change fixed variables.

Yet another possibility is to have one ejector object for each kind of call (one for repairing
time assignments, another for repairing resource assignments, and so on), with different augment
functions. The augment functions for time repair would never assign a task, for example. This
was the author’s original approach, but as the code grew it became very hard to maintain.

At present the author is using the following somewhat ad-hoc ideas to limit the scope of
changes. They do the job well at very little cost in code and run time.

The start group monitor is one obvious aid to restricting the scope of a call. For example,
time repair calls do not include event resource monitors in their start group monitors.

Many repairs move meets and tasks, but do not assign them. It seems that once a meet or
task has been assigned, it is always reasonable to move it during repair. So the danger areas are
augment functions that assign meets and tasks, not augment functions that merely move them.

Augment functions for assign time and assign resource defects must contain ‘dangerous’
assignments. But suppose that the assign time or assign resource monitor for some meet or task
is not in the start group monitor. Then a repair of that monitor cannot occur first on any chain;
and if the meet or task is unassigned to begin with, it cannot occur later either, since the monitor
starts off with maximum cost, so its cost cannot increase, and only monitors whose cost has in-
creased are repaired after the first repair on a chain. So assign time and assign resource augment
functions can be included without risk of the resulting time and resource assignments being out
of scope. This is just as well, since they are needed after ejecting meet and task moves.

If it can be shown, as was just done, that certain events will remain unassigned, then they
can have no other event defects, since those require the events involved to be assigned. Similarly,
unassigned event resources will never give rise to other event resource defects.

13.6. Using ejection chains in practice 407

Another idea is to add options to the options object that control which repairs are tried. This
is as general as different ejector objects with different augment functions are, but, if the options
are few and clearly defined, it avoids the maintenance problems. If many calls on augment
functions achieve nothing because options prevent them from trying things, that would be an
efficiency problem, but there is no problem of that kind in practice.

We’ve already seen that the KHE_AUGMENT_OPTIONS object contains a repair_times field,
which when true allows repairs that assign and move meets, and a repair_resources field,
which when true allows repairs that assign and move tasks. It takes virtually no code or time to
consult these options; often, just one test at the start of an augment function is enough.

When moving a meet, its chain of assignments is followed upwards, trying moves at each
level. But if the aim is to repair only a small area (one runaround, say), then even if a repair starts
within scope, it can leave it as it moves up the chain. This has happened and caused problems.
So the KHE_AUGMENT_OPTIONS object contains a limit_node field, whose value is a node. If it
is non-NULL, meet assignments and moves are not permitted outside its proper descendants.

KheEjectionChainNodeRepairTimes and KheEjectionChainLayerRepairTimes set option
es_repair_times to true, es_repair_resources to false, and es_limit_node to the parent
node, or to NULL if it is the cycle node. The false value for es_repair_resources solves the
hypothetical problem, given as an example at the start of this section, of limit busy times repairs
assigning resources during time assignment.

KheEjectionChainRepairResources sets option es_repair_times to false, option
es_repair_resources to true, and option es_limit_node to NULL. Setting es_repair_times
to true here would also be reasonable, although slow; it would allow the repairs to try meet
moves while repairing task assignments.

13.7. Repairing time assignments

This section is concerned with the augment functions supplied by KHE for repairing defects in
the assignments of times to meets. We’ll start by presenting the full list of repairs used by the
KHE augment functions that do this.

Meet bound repairs reduce the domains of all meets assigned a given resource r to a subset
of a given time group tg, by adding tg as a meet bound to all those meets. Any meets assigned
times outside tg are unassigned first. This is used to fix resource overload problems by moving
meets away from over-used times; but it gets very little use in practice, because both resource
repair and time repair have to be enabled if it is to be called.

Node meet swaps call repair function KheNodeMeetSwap (Section 10.2.1) to swap over the
assignments of the meets of two nodes. If the nodes_before_meets option is true, then if node
swaps are tried at all, they are tried before (rather than after) meet moves.

Meet moves call repair function KheTypedMeetMove (Section 10.2.2) to move the assign-
ments of meets, performing either a basic move, an ejecting move, or a Kempe move as request-
ed. Where it is stated below that a Kempe meet move is tried, it is in fact tried only when the
kempe_moves option istrue. Where it is stated below that an ejecting meet assignment or move
is tried, a basic meet assignment or move is tried instead when no_ejecting_moves is true.

Kempe/ejecting meet moves are multi-repairs consisting of one or two alternative repairs,

408 Chapter 13. Ejection Chains

first a Kempe meet move, then an ejecting meet move with the same parameters. The ejecting
meet move is omitted when the Kempe meet move reports that it did only what a basic meet
move would have done, since in that case the ejecting move is identical to the Kempe move. This
sequence is similar to making an ejecting move and then, on the next repair, favouring a particular
reassignment of the ejected meet(s) which is likely to work well.

Fuzzy meet moves move meets by calling repair function KheFuzzyMeetMove (Section
10.7.4). Fuzzy meet moves are not mentioned below, but they are tried after Kempe and ejecting
meet moves, although only when the fuzzy_moves option is true and the current length is 1.

Split moves split a meet into two and Kempe-move one of the fragments. Conversely,merge
moves Kempe-move one meet to adjacent to another and merge the two fragments. Split and
merge moves are used similarly to fuzzy meet moves: although not mentioned below, they are
tried after Kempe and ejecting meet moves, but only when the split_moves option is true and
the current length is 1. These Kempe moves are not influenced by the kempe_moves option.

Meet-and-task moves Kempe-move a meet at the same time as moving one of its tasks,
succeeding only if both moves succeed.

Most of these repairs are packaged into function KheMeetMultiRepair, which tries, using
whatever means the options settings allow, to move the assignment of a given meet.

Following is a description of what each augment function does when given a non-group
monitor with non-zero cost. When given a group monitor (which must come from a correlation
grouping) with non-zero cost, since the elements of the group all monitor the same thing, the
augment function takes any individual defect from the group and repairs that defect.

Wherever possible, augment functions change the starting points of the sequences of
alternative repairs that they try. For example, when trying alternative times, the code might be

for(i = 0; i < KheTimeGroupTimeCount(tg); i++)
{

index = (KheEjectorCurrAugmentCount(ej) + i) % KheTimeGroupTimeCount(tg);
t = KheTimeGroupTime(tg, index);
... try a repair using t ...

}

The first time tried depends on the number of augments so far, an essentially random number.
This simple idea significantly decreases final cost and run time.

Split events and distribute split events defects. Most events are split into meets of suitable
durations during layer tree construction, but sometimes the layer tree does not remove all these
defects, or a split move introduces one. In those cases, the split analyser (Section 9.7.1) from the
options object is used to analyse the defects and suggest splits and merges which correct them.
For each split suggestion, for each meet conforming to the suggestion, a repair is tried which
splits the meet as suggested. For each merge suggestion, for each pair of meets conforming to the
suggestion, four combined repairs are tried, each consisting of, first, a Kempe meet move which
brings the two meets together, and second, the merge of the two meets. The four Kempe moves
move the first meet to immediately before and after the second, and the second to immediately
before and after the first, where possible.

Assign time defects. For each monitored unassigned meet, all ejecting meet moves to a

13.7. Repairing time assignments 409

parent meet and offset that would assign the meet to a time within its domain are tried.

Prefer times defects. For each monitored meet assigned an unpreferred time, all
Kempe/ejecting meet moves to a parent meet and offset giving a preferred time are tried.

Spread events defects. For each monitored meet in an over-populated time group, all
Kempe/ejecting moves of the meet to a time group that it would not over-populate are tried; and
for each under-populated time group, for each meet whose removal would not under-populate its
time group, all Kempe/ejecting moves of it to the under-populated time group are tried.

Link events defects. These are not repaired; they are expected to be handled structurally.

Order events defects. These are currently ignored, because, as far as the author is aware,
there are no instances containing order events constraints. It will not be difficult to find suitable
meet moves when such instances appear.

13.8. Repairing resource assignments

Solutions have two kinds of assignments: assignments of times to meets, and of resources to
tasks. Repairs that change assignments of times to meets were treated in Section 13.7. Repairs
that do both are possible in high school timetabling, but in this section we consider only repairs
that change assignments of resources to tasks, in high school timetabling and nurse rostering.

13.8.1. High school timetabling and nurse rostering

In high school timetabling, the main issue that arises in resource assignment is avoiding split
assignments (also called creating resource constancy). If split assignments are allowed, then
resource assignment is essentially room assignment, which is well known to be easy in practice.
Idle times may become an issue if there are many part-time teachers.

In nurse rostering, each resource is assigned to at most one task per day, and there are many
constraints that relate what a resource does on one day to what it does on adjacent days. So
it makes sense to use repairs that move sets of tasks from adjacent days from one resource to
another. Many authors of nurse rostering solvers have come to this conclusion.

Accordingly, we distinguish between the basic repair, which does the minimum needed
to remove some defect, and the widened repair, which is a basic repair enlarged by changes on
adjacent days. For example, if resource r is overloaded, reassigning any of r’s tasks from r to any
other resource will remove (or reduce) the defect, making one basic repair for each task assigned
r. Widened versions of these repairs reassign several tasks assigned r on adjacent days.

The same code is used for repairing resource assignments in both high school timetabling
and nurse rostering. But there are two differences in setup between the two:

1. All repairs assume that each resource can be assigned to at most one task per day. The days
are represented by the time groups of the common frame. For nurse rostering, these time
groups come from the hard constraints that specify that each nurse can take at most one shift
per day. For high school timetabling, when the solver realizes that there are none of these
constraints, it sets the common frame in the only way consistent with the assumption, which
is to make each individual time into one day. So in this case the solver distinguishes nurse
rostering from high school timetabling without any intervention by the user.

410 Chapter 13. Ejection Chains

2. High school timetabling uses basic repairs, and nurse rostering uses widened repairs. The
KHE_AUGMENT_OPTIONS object has options for controlling widened repairs. By setting
option widening_off to true, or by setting option widening_max to 0, one can restrict
the solver to basic repairs. In this case the user is expected to set these options appropriately
for nurse rostering or high school timetabling. There is nothing to prevent widened repairs
being applied in high school timetabling, but they are not likely to be useful there.

Our focus will be on nurse rostering’s widened repairs. High school timetabling repairs are the
same, only (as just explained) with a different definition of one day, and with widening off.

In the following subsections, we’ll work bottom-up, from individual repairs to multi-repairs
(Section 13.6.4) to augment functions.

13.8.2. Repairs

This section presents the individual repairs used when repairing resource assignments.

But first, there is a question we must answer. All resource repairs use mtasks (Section
11.9.1). When we repair a defect d by reassigning some task t, we will be reassigning t’s enclos-
ing mtask, not t itself. The question is: will d will be repaired by this mtask reassignment?

It may not matter if d is not repaired. The specification of the ejection chains Augment

function does not say that d must be repaired, merely that a certain cost target must be reached.
The augment function uses d as a hint, nothing more.

It might seem that there is a problem arising from the decision to make monitors the sole
entities that are marked visited. If d is unrepaired, then a recursive call might attempt to repair
d again, which will fail because d will have been marked visited on the first attempt to repair it.

But in fact this is not a problem. What happens is that some task t2 from mt receives the
reassignment intended for t. An examination of cases will show that t2 must have needed the
repair at least as much as t did, so other defects are repaired even if d is not. The repair causes
further defects to appear, and these are used to continue the chain. The fact that d cannot now be
visited does not matter, any more than it matters if d is repaired. This answers our question.

A repair is said to fail if it cannot be carried out for any reason; otherwise it succeeds.
(Success is not the same as finding a successful ejection chain; for that, we need a whole sequence
of successful repairs, ending in an improved solution. Nor is failing the same as aborting; an
abort should never happen.) When we say here that some condition must hold, we mean that the
repair will fail if it doesn’t hold. When a repair discovers that it must fail, it abandons the rest
of the repair, passes false for the success argument of KheEjectorEnd, and returns false.

An interval is a sequence of consecutive days (time groups of the common frame). It is
represented by type KHE_INTERVAL (Section 8.12), which is a pair of integers. These are used
here to represent the index in the common frame of the first day and of the last day. An interval
can be empty (when the first index is one larger than the second), although that is uncommon.

Like many solvers, resource repair has two fundamental repair functions: move and swap.
It would be better to call the move operation an ejecting reassignment, for reasons that will
become clear; but that name is too long for daily use. Both functions implement one repair: each
calls KheEjectorRepairBegin once, on entry, and KheEjectorRepairEnd once, on exit. Both
guarantee that if no resource attends two tasks on the same day beforehand, then no resource

13.8. Repairing resource assignments 411

attends two tasks on the same day afterwards. We’ll see shortly how this comes about.

The move repair function has header

static bool KheMoveRepair(KHE_EJECTOR ej, KHE_AUGMENT_OPTIONS ao,
KHE_INTERVAL in, KHE_RESOURCE from_r, KHE_RESOURCE to_r,
KHE_MTASK from_mt);

KheMoveRepair finds a maximal set of mtasks lying in interval in which are assigned from_r,
and changes all those assignments to to_r, which must be different from from_r. It returns
true when all this succeeds. The mtasks it reassigns must lie entirely within in and must be
reassignable from from_r to to_r. They must run during the first and last times of in at least.
This last rule is included so that repairs which could and should have been tried in a smaller
interval are not reattempted in a larger interval. Assuming that in is non-empty, this rule also
implies that the move cannot succeed by doing nothing.

If from_r != NULL, then when KheMoveRepair succeeds it guarantees that from_r is
completely free on the days of in. It does this by failing if it finds an mtask assigned from_r

which lies partly inside and partly outside in (it could include such an mtask in the reassignment,
but that could cause problems for to_r), and by failing if any mtask assigned from_r lying
entirely within in cannot be reassigned to to_r for any reason.

If from_r == NULL, then to_r != NULL, and the move is an assignment. The days of in
are searched for mtasks that can be assigned to_r. A maximal set of these mtasks which do not
overlap on any days is chosen and assigned to_r. This is the only case where from_mt is used:
it must be non-NULL, and it is included in the set. Preference is given to mtasks which start at the
same time of day as from_mt (all morning shifts, all night shifts, etc.).

If to_r == NULL, then from_r != NULL, and the move is an unassignment. The guarantee
that from_r will be completely free after a successful repair still applies, but the chosen mtasks
will be unassigned rather than assigned another resource.

When from_r is non-NULL, it is clear that it can only lose assignments, not gain them, and
so if it does not attend two tasks on the same day beforehand, it will not attend two tasks on
the same day afterwards. But as things stand, there is no such guarantee for to_r. This brings
us to our final wrinkle, the one that makes this operation an ejecting reassignment: if to_r is
non-NULL, then before the main reassignment of from_r to to_r, KheMoveRepair carries out
another reassignment, of to_r to NULL. If this is successful (and if it isn’t, the whole operation
fails), it guarantees to clear out to_r’s timetable throughout in. Since the main reassignment
only moves mtasks that lie entirely within in to to_r, if to_r does not attend two tasks on the
same day beforehand, it will not attend two tasks on the same day afterwards.

The move from to_r to NULL differs from the main move in two ways. It unassigns mtasks
that lie partly within in as well as mtasks that like wholly within in. And it does not care whether
the mtasks it unassigns cover in completely, indeed it is happy to unassign no mtasks at all.

The implementation searches for mtasks to assign to to_r before carrying out the initial
ejecting step. The order of these two steps does not matter when from_r != NULL, because
the choice of mtasks to move is determined by from_r, but it matters when from_r == NULL,
because unassigning to_r from an mtask may make that mtask available for assignment.
Whatever the value of from_r, it is quite possible for the ejecting step to unassign to_r from
some mtask, and then for the main step to assign to_r back to that same mtask again.

412 Chapter 13. Ejection Chains

The swap repair function has header

static bool KheSwapRepair(KHE_EJECTOR ej, KHE_AUGMENT_OPTIONS ao,
KHE_INTERVAL in, KHE_RESOURCE from_r, KHE_RESOURCE to_r,
KHE_MTASK from_mt, KHE_TIME_GROUP blocking_tg);

KheSwapRepair reassigns the mtasks initially assigned from_r in in to to_r, and reassigns the
mtasks initially assigned to_r in in to from_r. For this to succeed, every mtask assigned from_r
or to_r lying wholly or partially within in must lie wholly within in and must be reassignable to
the other resource. So each resource gains a fresh timetable within in, but there are no changes
outside in. The interval covered by the mtasks that move must equal in, for the usual reason that
we do not want to retry repairs that could and should have been tried in smaller intervals.

A swap can be interpreted as two moves, one in each direction, provided the mtasks to be
reassigned are identified before any assignments are changed—which they are. (The ejecting
aspect is irrelevant, because the ejected tasks are assigned the other resource.) We can use this
interpretation to work out what a swap would mean when one of the resources, from_r say,
is NULL. The move from to_r to NULL unassigns the mtasks initially assigned to_r, and the
move from NULL to to_r finds a set of suitable unassigned mtasks from in (including from_mt

as usual) and assigns to_r to them. Apart from a slight difference at the edges of in, this is
just what a move from NULL to to_r would do. For regularity, the author has decided to allow
KheSwapRepair to accept one NULL resource parameter, but his own solvers do not use this
feature, since that would just duplicate a move which will be tried separately.

KheSwapRepair(in, from_r, to_r) and KheSwapRepair(in, to_r, from_r) (we
are abbreviating the argument lists) should have identical effect. And so they do, except that
from_mt is used only when from_r is NULL, not when to_r is NULL, and the last parameter,
blocking_tg, applies only to the move from to_r to from_r. Its purpose is to prevent fruitless
operations. For example, if we are trying to make from_r free on a certain day, there is no point
swapping with to_r if to_r is busy on that day. We omit the details, but cases like this are
blocked by blocking_tg.

During a swap, an mtask mt may be a part of the move from from_r to to_r, and at the same
time it may be part of the move from to_r to from_r. This may happen if mt is initially assigned
both from_r and to_r. The effect should be to not change mt. This is indeed what the two moves
accomplish: the first reassigns a task of mt initially assigned from_r to to_r, and the second
reassigns a task assigned to_r (possibly the same task) to from_r. Altogether, nothing changes
except possibly the order in which the resources appear within the mtask, which does not matter.
This argument works even if one of the resources is NULL, provided there is an unassigned task
in mt, which there will be, because mt would not have been selected otherwise.

It seems like good policy to try swaps only between non-NULL resources, because swaps
involving NULL are very similar to moves, as we have seen. And it seems like good policy to
try moves only when one of the resources is NULL, because a move from one non-NULL resource
to another will often eject several tasks, leaving them unassigned, when a swap would have
reassigned them. The author’s solvers adopt both policies.

The reader might wonder whether moves and swaps that follow these policies could be
unified into a single operation. Indeed they could, simply by delegating calls with one NULL

argument to KheMoveRepair. But those who want to interpret this as more than mere relabelling

13.8. Repairing resource assignments 413

face a serious obstacle. The literature contains good evidence that moves are only worth trying
over small intervals, while swaps are worth trying over much larger intervals. Accordingly, two
separate options, es_move_widening_max and es_swap_widening_max, are supplied for the
maximum width of a move and of a swap. Their default values are 2 and 12 respectively. Any
deep unification of moves with swaps is doomed to shipwreck on this important difference.

13.8.3. Avoiding repeated repairs

Before considering multi-repairs, we need to tackle the issue of avoiding repeated repairs.

A defect d invokes a set of alternative repairs. When repairing resource assignments, these
are calls to KheMoveRepair(in, from_r, to_r) and KheSwapRepair(in, to_r, from_r)

for various values of in, from_r, and to_r. Regardless of how each repair comes to be included,
we want to avoid trying the same repair twice when repairing d, because that wastes time.

The perfect solution is to cache, for each defect d, the argument lists of the repairs of d that
have been tried so far, and to check the cache before each repair. But that is very clumsy. We
need something simpler that produces the same effect, although it does not have to be perfect.

We start with a few miscellaneous points. KheSwapRepair(in, to_r, from_r) repeats
KheSwapRepair(in, from_r, to_r), so we’ll need to be careful not to try every swap twice.
The author uses moves only to and from NULL, and swaps only between non-NULL resources, so
no swap repeats any move. Two moves with the same in,from_r, and to_r can be different when
from_r == NULL, since from_mt is used then. We’ve arranged for moves and swaps to fail when
they don’t use all of in, ensuring that repairs over different intervals are genuinely different.

Some iterations are based on calls on functions KheMTaskFinderMTasksInTimeGroup and
KheMTaskFinderMTasksInInterval (Section 11.9.1). They use sorting to uniqueify the mtask
sets they return, and so avoid all revisiting.

The main cause of repeated repairs is repeated intervals. For example, suppose resource r
is overloaded within time groups tg1 and tg2. We will try repairs that move tasks assigned r in
several intervals based on tg1, and in several intervals based on tg2. The set of repairs based on
tg1 can easily be organized to avoid repeats, as can the set based on tg2. But if tg1 and tg2 are
chronologically close, these two sets are likely to include repairs with the same interval.

We use caching to prevent repeats in this cases, but we don’t cache complete argument
lists; instead, the cache holds a set of first days. When generating intervals, we skip intervals
whose first day is already in the cache. What one first day represents, in effect, is a large set of
argument lists, all those whose interval’s first day is that day, and whose last day, from_r, to_r,
and from_mt could be anything at all.

We represent the set of cached first days by an interval of day indexes. This can lead to
problems when the time groups (or whatever) iterated over are not in chronological order. We
handle this by caching only the most recent set of first days. So each set of repairs which is
known to not generate repeats within itself avoids repeating repairs generated by the previous
such set of repairs. This is enough to avoid all repeated repairs, except in unlikely cases.

These ideas are implemented using type

414 Chapter 13. Ejection Chains

typedef struct khe_exclude_days_rec {
KHE_INTERVAL unassign_in;
KHE_INTERVAL swap_in;

} *KHE_EXCLUDE_DAYS;

The intervals tried by moves are different from those tried by swaps, so two intervals are kept,
one representing the first days of the previous set of moves (in fact, unassignments), the other the
first days of the previous set of swaps. One of these intervals is passed to each interval iterator,
which uses it to avoid repeats. A typical call on an interval iterator looks like this:

KheIntervalIteratorInit(&swap_ii_rec, ao, kernel_in,
ao->swap_widening_max, &ed->swap_in);

KheForEachInterval(&swap_ii_rec, in)
{
... try swaps in interval in ...

}

The iterator object, swap_ii_rec, generates all intervals that enclose kernel_in, cover up to
ao->swap_widening_max extra days, and do not begin on any of the days of ed->swap_in. It
updates ed->swap_in with its own first days, but uses the original value itself.

13.8.4. Multi-repairs

We now move up a level to some multi-repair functions (Section 13.6.4). Here is the first of two
that underlie all augment functions for resource monitors:

static bool KheDecreaseLoadMultiRepair(KHE_EJECTOR ej,
KHE_AUGMENT_OPTIONS ao, KHE_RESOURCE r, KHE_TIME_GROUP tg,
bool require_zero, KHE_EXCLUDE_DAYS ed);

Here r is any non-NULL resource, and tg is any non-empty set of times.

KheDecreaseLoadMultiRepair is called when r is too busy during tg; it looks for repairs
that reduce the number of tasks assigned r during tg. If require_zero is true, only repairs that
make r completely free during tg are of any use;otherwise,any reduction is useful. As explained
in Section 13.8.3, when iterating over intervals, intervals whose first day appears in ed are to be
skipped over, because they have already been tried.

KheDecreaseLoadMultiRepair has to convert this specification into a set of moves and
swaps, passing each an interval and two resources. It does this as follows.

Step 1. If require_zero is false, each mtask assigned r in tg needs a separate repair. So
the code iterates over those mtasks, and for each it determines the interval of days it occupies and
the set of resources it could be reassigned to (including NULL, meaning unassignment). These
we call the kernel interval and the domain. For each mtask it then applies Step 2.

If require_zero is true, the mtasks assigned r in tg need to be moved as a block. The
interval containing all of them becomes the sole kernel interval, and the set of resources that any
one of them could be moved to becomes the sole domain. Then Step 2 is applied just once.

Step 2. Here we have a kernel interval and domain, and the aim is to swap or move the
tasks assigned r in the kernel interval away from r. The swapping code, including initializing an

13.8. Repairing resource assignments 415

interval iterator swap_ii_rec and a resource iterator other_ri_rec, is

/* try widened swaps */
KheIntervalIteratorInit(&swap_ii_rec, ao, kernel_in,
ao->swap_widening_max, &ed->swap_in);

KheResourceIteratorInit(&other_ri_rec, ao, domain, NULL, r, false);
KheForEachInterval(&swap_ii_rec, in)
KheForEachResource(&other_ri_rec, other_r)
if(KheSwapRepair(ej, ao, in, r, other_r, NULL, tg))
return true;

The moving (actually just unassigning) code, including initializing an interval iterator, is

/* try widened unassignments */
KheIntervalIteratorInit(&unassign_ii_rec, ao, kernel_in,
ao->move_widening_max, &ed->unassign_in);

KheForEachInterval(&unassign_ii_rec, in)
if(KheMoveRepair(ej, ao, r, NULL, NULL))
return true;

This completes KheDecreaseLoadMultiRepair, except for the concluding return false.

Our second multi-repair function is a kind of inverse of our first:

static bool KheIncreaseLoadMultiRepair(KHE_EJECTOR ej,
KHE_AUGMENT_OPTIONS ao, KHE_RESOURCE r, KHE_TIME_GROUP tg,
bool allow_zero, KHE_EXCLUDE_DAYS ed);

Once again, r is any non-NULL resource, and tg is any non-empty set of times.

KheIncreaseLoadMultiRepair is called when r is not busy enough during tg; it looks for
repairs that increase the number of tasks assigned r during tg. If allow_zero is true, reducing
the number of tasks assigned r during tg to zero is an odd but acceptable alternative. As usual,
when iterating over intervals, intervals whose first day appears in ed are to be skipped over,
because they have already been tried.

Once again, KheIncreaseLoadMultiRepair has to convert this specification into a set of
moves and swaps, passing each an interval and two resources. It does this as follows.

First, if allow_zero is true, KheIncreaseLoadMultiRepair calls

KheDecreaseLoadMultiRepair(ej, ao, r, tg, true, ed)

to try to clear out r completely during tg.

Next, it tries swaps that might increase the load:

416 Chapter 13. Ejection Chains

/* try widened swaps */
day_in = KheTimeGroupInterval(tg, ao);
for(i = KheIntervalFirst(day_in); i <= KheIntervalLast(day_in); i++)
{
KheIntervalIteratorInit(&swap_ii_rec, ao, KheIntervalMake(i, i),
ao->swap_widening_max, &ed->swap_in);

KheResourceIteratorInit(&other_ri_rec, ao,
KheResourceTypeFullResourceGroup(rt), NULL, r, false);

KheForEachInterval(&swap_ii_rec, in)
KheForEachResource(&other_ri_rec, other_r)
if(KheSwapRepair(ej, ao, in, r, other_r, NULL, tg))
return true;

}

KheTimeGroupInterval returns the smallest interval of days whose first and last elements
intersect with tg. For each of these days, this code iterates over all intervals in with this one day
as kernel, and for each resource other_r of r’s type except for r, it tries a swap with other_r

in in. Repeated intervals are almost certain here, but ed->swap_in avoids them as usual.

Finally, KheIncreaseLoadMultiRepair tries to assign unassigned mtasks:

/* try widened assignments */
KheAllMTaskIteratorTimeGroupInit(&ami_rec, ao, rt, tg);
KheAllMTaskForEach(&ami_rec, mt)
if(KheMTaskNeedsAssignment(mt))
{
KheIntervalIteratorInit(&assign_ii_rec, ao, KheMTaskInterval(mt),
ao->swap_widening_max, NULL);

KheForEachInterval(&assign_ii_rec, in)
if(KheMoveRepair(ej, ao, in, NULL, r, mt))
return true;

}

This iterates over all mtasks of the right type lying wholly or partly in tg, and tries moving each
of those, plus other mtasks that come from the widening, to r. There is no reference here to ed,
because each mtask mt is distinct and makes for a different repair. (Some mt might intersect with
two time groups tg, and then repairs with mt as kernel will be repeated. This cannot be prevented
by using ed, since several mtasks may run on the same day or days.)

It was remarked earlier that there was some danger of trying each swap twice, because
KheSwapRepair(in, to_r, from_r) repeats KheSwapRepair(in, from_r, to_r). We can
see, however, that there is no danger of that here, because each swap has r for its first resource
and something else for its second resource. Indeed, entire sequences of arbitrarily intermixed
calls to KheDecreaseLoadMultiRepair and KheIncreaseLoadMultiRepair with the same r

parameter are safe from this kind of repetition for this reason.

The key multi-repair function for repairing event resource defects is

13.8. Repairing resource assignments 417

static bool KheEventResourceMultiRepair(KHE_EJECTOR ej,
KHE_AUGMENT_OPTIONS ao, KHE_EVENT_RESOURCE er,
KHE_RESOURCE_ITERATOR to_ri, KHE_EXCLUDE_DAYS ed,
KHE_MTASK *prev_mt, KHE_RESOURCE *prev_r)

Parameter to_ri is a resource iterator, a set of resources with some fancy features: one can
specify a resource group of resources to include, and optionally a resource group and resource
to exclude. One can also specify whether to include NULL, meaning not assigned.

For each task t derived from er which is not already assigned a resource from to_ri,
KheEventResourceMultiRepair tries to reassign t to a resource from to_ri. If t lies in mtask
from_mt and is assigned resource from_r, it tries similar widened swaps and unassignments to
those tried by KheDecreaseLoadMultiRepair:

/* try widened swaps */
KheIntervalIteratorInit(&swap_ii_rec, ao, KheMTaskInterval(from_mt),
ao->swap_widening_max, &ed->swap_in);

KheForEachInterval(&swap_ii_rec, in)
KheForEachNonNullResource(to_ri, other_r)
if(KheSwapRepair(ej, ao, in, from_r, other_r, NULL, NULL))
return true;

/* try widened unassignments, if allowed by to_ri */
if(KheResourceIteratorContainsResource(to_ri, NULL))
{
KheIntervalIteratorInit(&unassign_ii_rec, ao,
KheMTaskInterval(from_mt), ao->move_widening_max, &ed->unassign_in);

KheForEachInterval(&unassign_ii_rec, in)
if(KheMoveRepair(ej, ao, in, from_r, NULL, NULL))
return true;

}

If t is unassigned (but still lying in mtask from_mt), it tries widened assignments:

/* try widened assignments */
KheIntervalIteratorInit(&assign_ii_rec, ao, KheMTaskInterval(from_mt),
ao->move_widening_max, NULL);

KheForEachInterval(&assign_ii_rec, in)
KheForEachNonNullResource(to_ri, other_r)
if(KheMoveRepair(ej, ao, in, NULL, other_r, from_mt))
return true;

Repeated attempts to reassign the same resource from the same mtask are avoided; this is what

*prev_mt and *prev_r are used for. Intervals forbidden by ed are skipped as usual, except that
when assigning, the distinct values of from_mt make this unnecessary and indeed unwanted.

Again, we want to avoid trying swaps twice because KheSwapRepair(in, to_r, from_r)

repeats KheSwapRepair(in, from_r, to_r). There seems to be no easy proof that repetitions
of this kind cannot happen here. However, it is hard to construct cases where they do happen.

418 Chapter 13. Ejection Chains

13.8.5. Augment functions

We are now ready to implement the augment functions for event resource and resource monitors
m, by calling functions KheDecreaseLoadMultiRepair, KheIncreaseLoadMultiRepair, and
KheEventResourceMultiRepair from Section 13.8.4, as follows.

Assign resource monitor. This monitors one event resource er, and it is repaired by one call
to KheEventResourceMultiRepair. The set of resources to try is just the domain of er.

Prefer resources monitor. This also monitors one event resource er, and is repaired by
one call to KheEventResourceMultiRepair. The set of resources to try is the monitor’s set of
preferred resources, plus unassignment, which also removes a prefer resources defect.

Avoid split assignments monitor. This has a different character from the other event
resource monitors, and it is handled in a different way. Documenting it is still to do.

Limit resources monitor. This monitors a set of event resources. For each of them it
makes one call to KheEventResourceMultiRepair. If there are not enough tasks assigned
resources from rg, the monitor’s set of resources of interest, then the set of resources passed to
KheEventResourceMultiRepair is just rg. If there are too many tasks assigned resources from
rg, then the set of resources passed to KheEventResourceMultiRepair is the set of resources
acceptable to each event resource plus unassignment but excluding rg.

Avoid unavailable times monitor. This is handled by a single call to

KheDecreaseLoadMultiRepair(ej, ao, r, tg, false, ed)

where tg is the set of times that m requires r to be free.

This call to KheDecreaseLoadMultiRepair does not convert tg into an interval. This is
just as well, because here the times of tg may be scattered at random through the cycle, and
repairing the interval covering them all would be mad. Instead, each interval containing a task
running when r should be free becomes one kernel interval.

Cluster busy times monitor. If m’s defect is too many active time groups, then the repair
visits each active time group tg of m and tries to make it inactive, by calling

KheDecreaseLoadMultiRepair(ej, ao, r, tg, true, ed)

when tg is positive, and

KheIncreaseLoadMultiRepair(ej, ao, r, tg, false, ed)

when it is negative. Here require_zero is true because to make a positive tg inactive one must
reduce the number of tasks running during tg to zero. If m’s defect is too few active time groups,
then the repair visits each inactive time group tg of m and tries to make it active, by calling

KheIncreaseLoadMultiRepair(ej, ao, r, tg, false, ed)

when tg is positive, and

KheDecreaseLoadMultiRepair(ej, ao, r, tg, true, ed)

when it is negative. Once again require_zero must be true. The usual method of avoiding
repeated intervals, by keeping track of first days in variable ed, is used.

13.8. Repairing resource assignments 419

If the monitor’s allow_zero flag is set, then another way to handle too few active time
groups is to reduce the number of active time groups to zero. The repair tries this too, using calls
to KheDecreaseLoadMultiRepair and KheIncreaseLoadMultiRepair similar to those just
given, but only when there is exactly one active time group. Making several active time groups
inactive is awkward to implement under current arrangements, and unlikely to succeed.

Limit busy times monitor. Limit busy times constraints can be converted into cluster busy
times constraints. The repair does what would be done if this conversion were carried out.

Limit workload monitor. These are like limit busy times monitors, except that they monitor
total workload rather than busyness. Accordingly, the same repairs are used for them.

Limit active intervals monitor. Suppose limit active intervals monitor m for resource r has
a sequence of consecutive busy time groups s which is too long. The multi-repairs for this are a
call to KheDecreaseLoadMultiRepair which make s’s first time group free for r, and a call to
KheDecreaseLoadMultiRepair which does the same for s’s last time group. These are widened
in the same way as for a cluster busy times monitor, including remembering first days.

If m monitors sequences of free time groups rather than busy ones, we switch to calls to
KheIncreaseLoadMultiRepair, to make these time groups busy rather than free. Again this is
what cluster busy times repairs do. If we have a sequence of busy time groups which is too short,
we treat that as though the adjacent sequences of free time groups are too long, leading to repairs
to the first free time group to the left, and the first free time group to the right.

When a sequence is too short, another option is to remove it altogether by trying repairs
which clear out its time groups (or make them busy for sequences of free time). We try this when
the sequence length is 1 or 2.

13.8.6. Enumeration of basic repairs

In this section we investigate whether moves and swaps are the only possible repairs. Of course,
if we allow any number of mtask sets and resources to be affected by a repair, then the number
of repairs is unlimited. But if we limit repairs to neighbourhoods similar to the ones we have
already decided to use, the choices become correspondingly more limited.

Accordingly, we define a simple repair operation to be one satisfying these conditions:

• The operation has one or two mtask set parameters, called mts1 and (optionally) mts2.
These will usually contain all the mtasks lying in a given interval, but we are not concerned
here with where these mtask sets come from. When there are two mtask sets, we assume
here that their values are disjoint.

• The operation has one or two resource parameters, called r1 and (optionally) r2. Their
values may be NULL. When there are two, their values must be different.

• When there is one mtask set parameter, the operation is expressed by

KheMTaskSetResourceReassign(mts1, ?, ?)

When there are two mtask set parameters, it is expressed by

420 Chapter 13. Ejection Chains

KheMTaskSetResourceReassign(mts1, ?, ?) &&
KheMTaskSetResourceReassign(mts2, ?, ?)

Here ? stands for r1, or r2 (when available), or NULL.

KheMoveRepair and KheSwapRepair are simple repair operations, for example. We ask what
operations satisfying these conditions there can be.

Suppose first that the operation has one mtask set parameter. There are three choices for the
first ? and three for the second, making nine altogether. Dropping three whose first and second
? are the same, which causes KheMTaskSetResourceReassign to fail, we get six possibilities:

KheMTaskSetResourceReassign(mts1, r1, r2)

KheMTaskSetResourceReassign(mts1, r1, NULL)

KheMTaskSetResourceReassign(mts1, r2, r1)

KheMTaskSetResourceReassign(mts1, r2, NULL)

KheMTaskSetResourceReassign(mts1, NULL, r1)

KheMTaskSetResourceReassign(mts1, NULL, r2)

However, expressions that do not mention r1 can be dropped, because there is always an r1

parameter and not using it is not reasonable. This brings us back to four possibilities:

KheMTaskSetResourceReassign(mts1, r1, r2)

KheMTaskSetResourceReassign(mts1, r1, NULL)

KheMTaskSetResourceReassign(mts1, r2, r1)

KheMTaskSetResourceReassign(mts1, NULL, r1)

The third is symmetrical with the first: it can be obtained from the first by reordering arguments.
Dropping it leaves three cases, all offered by KheMoveRepair if we ignore its ejecting aspect.

The same method will work for repair functions with two mtask set parameters. There are
6 legal combinations for the first two parameters, and 6 legal combinations for the second two
parameters, making 36 cases in all.

Here are the cases starting with KheMTaskSetResourceReassign(mts1, r1, r2):

1. KheMTaskSetResourceReassign(mts1, r1, r2) && /* union case */
KheMTaskSetResourceReassign(mts2, r1, r2)

2. KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, r1, NULL)

3. KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, r2, r1)

4. KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, r2, NULL)

13.8. Repairing resource assignments 421

5. KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, NULL, r1)

6. KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, NULL, r2)

We can rule out the first of these because it is what we will call a union case: it is equivalent to
a move on the union of mts1 and mts2. The other five seem to be genuinely distinct.

Here are the cases starting with KheMTaskSetResourceReassign(mts1, r1, NULL):

7. KheMTaskSetResourceReassign(mts1, r1, NULL) && /* symm. with (2) */
KheMTaskSetResourceReassign(mts2, r1, r2)

8. KheMTaskSetResourceReassign(mts1, r1, NULL) && /* union case */
KheMTaskSetResourceReassign(mts2, r1, NULL)

9. KheMTaskSetResourceReassign(mts1, r1, NULL) && /* symm. with (4) */
KheMTaskSetResourceReassign(mts2, r2, r1)

10. KheMTaskSetResourceReassign(mts1, r1, NULL) &&
KheMTaskSetResourceReassign(mts2, r2, NULL)

11. KheMTaskSetResourceReassign(mts1, r1, NULL) &&
KheMTaskSetResourceReassign(mts2, NULL, r1)

12. KheMTaskSetResourceReassign(mts1, r1, NULL) &&
KheMTaskSetResourceReassign(mts2, NULL, r2)

The cases with adjacent comments can be ruled out for the reasons given.

Cases starting with KheMTaskSetResourceReassign(mts1, r2, r1) are symmetrical
with cases starting with KheMTaskSetResourceReassign(mts1, r1, r2), so we skip them.

Cases starting with KheMTaskSetResourceReassign(mts1, r2, NULL) are symmetrical
with cases starting with KheMTaskSetResourceReassign(mts1, r1, NULL), so we skip them.

Here are the cases starting with KheMTaskSetResourceReassign(mts1, NULL, r1):

25. KheMTaskSetResourceReassign(mts1, NULL, r1) && /* symm. with (5) */
KheMTaskSetResourceReassign(mts2, r1, r2)

26. KheMTaskSetResourceReassign(mts1, NULL, r1) && /* symm. with (11) */
KheMTaskSetResourceReassign(mts2, r1, NULL)

27. KheMTaskSetResourceReassign(mts1, NULL, r1) && /* symm. with (6) */
KheMTaskSetResourceReassign(mts2, r2, r1)

28. KheMTaskSetResourceReassign(mts1, NULL, r1) && /* symm. with (12) */
KheMTaskSetResourceReassign(mts2, r2, NULL)

29. KheMTaskSetResourceReassign(mts1, NULL, r1) && /* union case */
KheMTaskSetResourceReassign(mts2, NULL, r1)

422 Chapter 13. Ejection Chains

30. KheMTaskSetResourceReassign(mts1, NULL, r1) &&
KheMTaskSetResourceReassign(mts2, NULL, r2)

There is only one genuinely new operation here.

Cases starting with KheMTaskSetResourceReassign(mts1, NULL, r2) are symmetrical
with cases starting with KheMTaskSetResourceReassign(mts1, NULL, r1), so we skip them.

That ends the enumeration. Altogether we have found nine distinct simple repairs with two
mtask set parameters:

KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, r1, NULL)

KheMTaskSetResourceReassign(mts1, r1, r2) && /* KheSwapRepair */
KheMTaskSetResourceReassign(mts2, r2, r1)

KheMTaskSetResourceReassign(mts1, r1, r2) && /* KheMoveRepair */
KheMTaskSetResourceReassign(mts2, r2, NULL)

KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, NULL, r1)

KheMTaskSetResourceReassign(mts1, r1, r2) &&
KheMTaskSetResourceReassign(mts2, NULL, r2)

KheMTaskSetResourceReassign(mts1, r1, NULL) &&
KheMTaskSetResourceReassign(mts2, r2, NULL)

KheMTaskSetResourceReassign(mts1, r1, NULL) &&
KheMTaskSetResourceReassign(mts2, NULL, r1)

KheMTaskSetResourceReassign(mts1, r1, NULL) &&
KheMTaskSetResourceReassign(mts2, NULL, r2)

KheMTaskSetResourceReassign(mts1, NULL, r1) &&
KheMTaskSetResourceReassign(mts2, NULL, r2)

KheSwapRepair and KheMoveRepair are here, although the latter is actually

KheMTaskSetResourceReassign(mts2, r2, NULL) &&
KheMTaskSetResourceReassign(mts1, r1, r2)

Note the change of order of the two calls: order may be important when mts1 and mts2 are not
disjoint, a detail that we have not tried to capture here. It is an interesting exercise to look through
the other seven operations and ponder what they do and whether that might be useful in practice.
To this author, none of them stand out.

It may seem that we have also omitted to consider the various kinds of mtask sets. The main
ones are sets whose mtasks are assigned a particular resource r, and sets whose mtasks contain
at least one task that needs assignment. But these kinds are implicit in the calls above: moving
mts1 from r1 to r2 implies that the mtasks of mts1 are initially assigned r1, and so on.

Appendix A. Modules Packaged with KHE

This chapter documents several modules packaged with KHE and used by it behind the scenes.
By including their header files the user may also use these modules.

A.1. Arenas, arena sets, and arrays

This section describes the Ha module, which implements arenas, arena sets, and extensible
arrays. It is used throughout KHE in place of malloc to obtain heap memory. Its header file is
howard_a.h. This module was originally flown in from another project of the author’s, called
Howard. For a general overview of arenas and arena sets, see Section 1.3.

A.1.1. Arenas

An arena is an object (a pointer to a private struct) of type HA_ARENA. It represents an unlimited
amount of arena memory: heap memory held in an arena so that it can be freed all at once later.
All heap memory allocated by KHE is arena memory.

Every arena belongs to exactly one arena set, an object of type HA_ARENA_SET representing
a set of arenas, from which the arena obtains its memory and to which it returns its memory when
it is no longer needed. Function

HA_ARENA HaArenaMake(HA_ARENA_SET as)

creates an arena belong to arena set as. And

void HaArenaDelete(HA_ARENA a);

deletes a, returning all its arena memory to a’s arena set, where it becomes available for use by
the other arenas of as.

In practice, functions KheSolnArenaBegin and KheSolnArenaEnd (Section 4.2.2) are the
best way to create and delete arenas. They call HaArenaMake and HaArenaDelete.

Operations

void *HaAlloc(HA_ARENA a, size_t size);
void HaMake(X res, HA_ARENA a);

allocate memory. HaAlloc returns a pointer to at least size_t bytes of arena memory from a,
aligned suitably for any data. Macro HaMake sets res (which may have any pointer type X) to
point to at least sizeof(*res) bytes of memory obtained from HaAlloc. These objects may not
be resized. For resizable objects, see Section A.1.4.

An arena obtains its memory from its arena set, which obtains it from malloc. As long as
malloc can supply memory, an arena will supply memory to the user. If a request for memory
from malloc fails, then the arena set will make a long jump using a jump environment passed to
it by KheArenaJmpEnvBegin (Section A.1.2) if that is available, otherwise it will abort.

423

424 Appendix A. Modules Packaged with KHE

The memory pointed to by a variable a of type HA_ARENA is arena memory from a private
arena held by a’s arena set. A deleted arena has its memory reclaimed, but the arena object itself
is saved in a free list in its arena set, where it is available to later calls to HaArenaMake. This
makes the cost of calling HaArenaMake and HaArenaDelete small enough to allow many small
arenas to come and go. Section A.1.4 has more detail on this.

For maximum efficiency, arena memory is not initialized to zero. This can cause two
problems. First, an uninitialized object field can cause a program to behave differently each
time it runs, which is a nightmare to debug. The user must be very disciplined about initializing
objects, which basically means enclosing every call to HaMake in a function something like this:

THING ThingMake(FIELD1 f1, FIELD2 f2, HA_ARENA a)
{
THING res;
HaMake(res, a);
res->field1 = f1;
res->field2 = f2;
return res;

}

where every field of THING is initialized within ThingMake. The second problem is that
HaArrayContains (Section A.1.3) compares array elements using memcmp. In the unlikely case
where the elements are structs with gaps in them, the user needs to call memset to zero out the
struct before its fields are initialized and it is copied into the array.

Finally,

void HaArenaDebug(HA_ARENA a, int verbosity, int indent, FILE *fp);

produces a debug print of a onto fp with the given verbosity and indent.

A.1.2. Arena sets

An arena set is a set of arenas. It is also where the memory allocated by deleted arenas is stored
and made available to other arenas, and where a stack of longjmp environments is kept, allowing
the arena set to perform a long jump when memory runs out.

To create a new, empty arena set, call

HA_ARENA_SET HaArenaSetMake(void);

Memory for the arena set object is taken from a private arena kept by the arena set for its own
purposes. If this call cannot obtain memory from malloc for this private arena, it aborts; but that
will never happen if all arena sets are created near the start of the run, as happens in practice.

To create and delete an arena belonging to arena set as, the calls are HaArenaMake(as) and
HaArenaDelete(a), as we saw previously. Each arena belongs to exactly one arena set and it
knows which arena set it belongs to.

There should be one arena set per thread. When a thread terminates, its memory needs to
be passed on to the arena set of the parent thread. To do this, the parent thread should call

A.1. Arenas, arena sets, and arrays 425

void HaArenaSetMerge(HA_ARENA_SET dest_as, HA_ARENA_SET src_as);

It moves the memory used by src_as to dest_as, destroying src_as. Also,

void HaArenaSetDelete(HA_ARENA_SET as);

deletes as and all its arenas, returning all their memory to the operating system via calls to free.
In practice there is no need to do this.

When an arena is asked for memory but has none to give, it asks its arena set for more.
When the arena set cannot give any more (when memory runs out), by default the arena set will
cause an abort. But there is a more graceful alternative, which is to pass a longjmp environment
to the arena set; it will then execute a long jump instead of aborting. The calls for this are

void HaArenaSetJmpEnvBegin(HA_ARENA_SET as, jmp_buf *env);
void HaArenaSetJmpEnvEnd(HA_ARENA_SET as);

These must occur in matching pairs; the second is made when the jump environment becomes
unavailable. These pairs of calls may be nested; the arena set holds a stack of jump environments
and makes its long jump using the environment on top of the stack.

In the unlikely case where there is no memory to store env within as, the action taken
depends on what is on the jump environment stack before the call to HaArenaSetJmpEnvBegin.
That is, the new jump environment takes effect only after HaArenaSetJmpEnvBegin returns.

An important problem with exception handling is giving up resources—closing files and so
on. Ha does not pretend to offer a complete solution to this problem, but it does handle one major
part of it: just before the long jump is taken, it deletes each arena created in as since the most
recent call to HaArenaSetJmpEnvBegin in as but not yet deleted. This does not mean that all
memory consumed since the most recent call to HaArenaSetJmpEnvBegin is freed, only memory
in arenas created in as since that call. At times the user may have a choice of creating an arena
before or after a call to HaArenaSetJmpEnvBegin; the choice will be determined by whether that
arena should continue in use after an exception.

Here is an example using these functions. Suppose we have a solver MySolve which might
use a lot of memory, and we want to abandon it gracefully when memory runs out. We do this:

426 Appendix A. Modules Packaged with KHE

#include <setjmp.h>
...
bool MySolve(KHE_SOLN soln, ...)
{
jmp_buf env; bool success;
...
if(setjmp(env) == 0)
{
/* get here on direct call; do the solve */
KheSolnJmpEnvBegin(soln, &env);
success = DoMySolve(soln);
KheSolnJmpEnvEnd(soln);

}
else
{
/* get here by calling longjmp; abandon the solve */
fprintf(stderr, "MySolve abandoned (out of memory)\n");
success = false;
KheSolnJmpEnvEnd(soln);

}
return success;

}

The call to KheSolnJmpEnvBegin just calls HaArenaSetJmpEnvBegin on soln’s arena set, and
KheSolnJmpEnvEnd just calls HaArenaSetJmpEnvEnd.

A thread which takes a long jump will have previously consumed all available memory,
leaving none for the other threads. To avoid this problem, one can call

void KheArenaSetLimitMemory(HA_ARENA_SET as, size_t limit);

This limits the total amount of memory consumed by as to limit bytes. If satisfying some
request for memory would exceed this limit, the long jump or abort is taken, as though memory
had run out completely. If limit is set to the amount of available memory divided by the number
of threads, calling this function ensures that each thread gets its fair share of available memory.
KheArchiveParallelSolve (Section 8.5) has a ps_avail_mem option which does this.

Finally, function

void HaArenaSetDebug(HA_ARENA_SET as, int verbosity, int indent,
FILE *fp);

produces a debug print of as onto fp with the given verbosity and indent.

A.1.3. Arrays

Like C’s native arrays, Ha’s arrays are generic: they may have elements of any one type, of any
width, and the C compiler will report an error if there is a type mismatch. But, unlike C’s arrays,
Ha’s arrays are extensible: they may grow to any length during use.

A.1. Arenas, arena sets, and arrays 427

The type of an extensible generic array must be declared using a typedef invoking macro
HA_ARRAY. For example, the following declarations already appear within howard_a.h:

typedef HA_ARRAY(bool) HA_ARRAY_BOOL;
typedef HA_ARRAY(char) HA_ARRAY_NCHAR;
typedef HA_ARRAY(wchar_t) HA_ARRAY_CHAR;
typedef HA_ARRAY(short) HA_ARRAY_SHORT;
typedef HA_ARRAY(int) HA_ARRAY_INT;
typedef HA_ARRAY(int64_t) HA_ARRAY_INT64;
typedef HA_ARRAY(void *) HA_ARRAY_VOIDP;
typedef HA_ARRAY(char *) HA_ARRAY_NSTRING;
typedef HA_ARRAY(wchar_t *) HA_ARRAY_STRING;
typedef HA_ARRAY(float) HA_ARRAY_FLOAT;
typedef HA_ARRAY(double) HA_ARRAY_DOUBLE;

Create your own array type by placing any type at all between the parentheses.

To gain access to wchar_t and int64_t, howard_a.h includes header files <wchar.h> and
<stdint.h>. Use of long just leads to trouble, in the author’s experience, since its width varies
across platforms, so int64_t, a standard 64-bit signed integral type, is used instead.

A variable of any of these types is a struct (not a pointer to a struct) with three fields: a
typed pointer to arena memory holding the elements, the number of elements that that memory
can hold, and the number of elements that it currently does hold. Structs are used rather than
pointers to structs because extensible arrays are mainly used as aids to the implementation of
other abstractions, and are thus usually private to one class or function, not shared. So there is
no problem in having their structs lie directly in class objects or on the call stack, rather than in
arena memory at the end of a pointer; and it is more efficient this way.

An array may be a field of an object that lies in one arena, while the array’s arena memory
lies in a different arena. But that would be unusual, since the array would normally have the same
lifetime as the object, and thus would naturally belong in the same arena.

When an array is initialized, it contains no elements and no arena memory is allocated for it.
Its pointer to arena memory points to a shared empty array in its arena. As the array grows, arena
memory for it is allocated and reallocated, but always from the same arena. Each reallocation
approximately doubles the number of elements that the array can hold, ensuring that another
reallocation will not be needed soon, while wasting at most as much space as is used. Memory
freed by a reallocation becomes available to hold other resizable objects in the same arena.

If one array is assigned to another using the C = operator or parameter passing, the arrays
will have separate copies of their three fields, yet share their elements. This is only safe when
the original array is not used afterwards, or the array’s length remains constant thereafter.

Ha’s array operations are macros, necessarily so since they are generic. They take structs as
parameters, not pointers to structs. This encourages the user to think of arrays as opaque objects,
like file pointers and so on. A disadvantage of macros is that their parameters may be evaluated
more than once during a call. Unless explicitly stated otherwise, the user should assume that all
parameters of all array operations are evaluated more than once. In many cases they are.

The first operation on any array must be to initialize it by a call to

428 Appendix A. Modules Packaged with KHE

void HaArrayInit(ARRAY_X a, HA_ARENA arena);

This sets a to empty and specifies the arena which will supply its memory when elements are
added later. Here and throughout this section, array operations are presented as though they are
functions, even though they are really macros, and ARRAY_X stands for the type created by

typedef HA_ARRAY(X) ARRAY_X;

for any type X. To find the arena that an initialized array a lies in, call

HA_ARENA HaArrayArena(ARRAY_X a);

In general, memory allocated by Howard’s functions can only be reclaimed by deleting the arena.
However, resizable objects such as arrays are an exception, and function

void HaArrayFree(ARRAY_X a);

frees the arena memory used by a, if any. This does not free a itself;a is not a pointer. It frees the
memory holding the elements of a, making it available to other resizable objects in a’s arena.

To find the number of elements currently stored in an array, call

int HaArrayCount(ARRAY_X a);

The elements have indexes from 0 to HaArrayCount(a) - 1 inclusive, as usual in C. For
efficiency, array bounds are not checked by any Ha operation. To access the element with index
i, or the first element, or the last element, call

X HaArray(ARRAY_X a, int i);
X HaArrayFirst(ARRAY_X a);
X HaArrayLast(ARRAY_X a);

HaArray and HaArrayFirst evaluate their parameters only once, and all three operations can be
used as variables as well as values. So one can write, for example,

HaArray(frequencies, i)++;

to increment the element of frequencies whose index is i, or

do_something(&HaArrayFirst(a))

to pass a pointer to an element.

To add one element to an array, the operations are

X HaArrayAdd(ARRAY_X a, int i, X x);
X HaArrayAddFirst(ARRAY_X a, X x);
X HaArrayAddLast(ARRAY_X a, X x);

HaArrayAdd adds x to a at index i, which may range from 0 to HaArrayCount(a) inclusive. It
makes room for x by shifting elements up one place, including reallocating arena memory if
necessary. It returns x. HaArrayAddFirst(a, x) is equivalent to HaArrayAdd(a, 0, x), and
HaArrayAddLast(a, x) is a faster version of HaArrayAdd(a, HaArrayCount(a), x).

A.1. Arenas, arena sets, and arrays 429

void HaArrayFill(ARRAY_X a, int len, X x);

adds x 0 or more times to the end of a, stopping when HaArrayCount(a) is at least len.

X HaArrayPut(ARRAY_X a, int i, X x);

replaces the value at index i with x and returns x. It evaluates its parameters only once. And

void HaArrayMove(ARRAY_X a, int dest_i, int src_i, int len);

uses the C memmove function to move (that is, copy with overlapping allowed) the len elements
starting at index src_i to index dest_i. It assumes without checking that len >= 0 and that
src_i and dest_i are at least 0 and at most HaArrayCount(a) - len. It is used by HaArrayAdd
above and HaArrayShiftRight, HaArrayShiftLeft, and HaArrayDeleteAndShift below to
do their shifting.

For searching an array there is

bool HaArrayContains(ARRAY_X a, X x, int *pos);

It returns true if a containsx, setting *pos to the index of its first occurrence;otherwise it returns
false, leaving *pos unchanged. The individual comparisons are made by memcmp.

Two operations shift the entire contents of an array to the right or left:

void HaArrayShiftRight(ARRAY_X a, int n, X x);
void HaArrayShiftLeft(ARRAY_X a, int n);

HaArrayShiftRight shifts the elements of a to the right by n places. Afterwards, the array has
n more elements than it did before. The first n places, opened up by the shift, are each initialized
to x. It is up to the caller to ensure that 0 <= n. HaArrayShiftLeft shifts the elements of a to
the left by n places. Afterwards, the array has n fewer elements than it did before. It is up to the
caller to ensure that 0 <= n and n <= HaArrayCount(a).

Two operations delete the ith element, offering two ways to fill the gap it leaves behind:

void HaArrayDeleteAndShift(ARRAY_X a, int i);
void HaArrayDeleteAndPlug(ARRAY_X a, int i);

HaArrayDeleteAndShift shifts the elements after i down one place; HaArrayDeleteAndPlug
assigns the last element to position i, then deletes the last element. Operations

bool HaArrayFindDeleteAndShift(ARRAY_X a, X x, int *pos);
bool HaArrayFindDeleteAndPlug(ARRAY_X a, X x, int *pos);

call HaArrayContains, returning what it returns but also using HaArrayDeleteAndShift or
HaArrayDeleteAndPlug to delete the element it found, if any. There are also

void HaArrayDeleteLast(ARRAY_X a);
void HaArrayDeleteLastSlice(ARRAY_X a, int n);
void HaArrayClear(ARRAY_X a);

for deleting the last element, deleting the last n elements (which can be done very efficiently),

430 Appendix A. Modules Packaged with KHE

and deleting the last HaArrayCount(a) elements, leaving the array empty. And

X HaArrayLastAndDelete(ARRAY_X a);

returns the last element of a and also deletes it from a. Deleting elements does not free any
memory. The vacated memory remains available to the array, should it decide to grow again.

Here are some more complex operations that change the contents of arrays.

void HaArraySwap(ARRAY_X a, int i, int j, X tmp);

Swap the elements of a at positions i and j. Parameter tmp is a variable used to hold an element
temporarily while swapping.

void HaArrayWholeSwap(ARRAY_X a, ARRAY_X b, ARRAY_X tmp);

Swap two whole arrays, that is, swap the contents of their structs, using tmp as a temporary.

void HaArrayAppend(ARRAY_X dest, ARRAY_X source, int i);

Append the elements of source to the end of dest, leaving source unchanged. Parameter i is
a variable used as an external cursor when scanning source.

void HaArraySort(ARRAY_X a, int(*compar)(const void *, const void *));

Sort a by means of a call to qsort, using compar as the comparison function.

void HaArraySortUnique(ARRAY_X a,
int(*compar)(const void *, const void *));

Like HaArraySort, except that after sorting, elements are deleted until no two adjacent elements
return 0 when compared using compar. If this is done purely for uniqueifying, it is common to
implement compar as a mere subtraction of two pointers. However, on a 64-bit architecture this
yields a 64-bit integer, and merely returning this cast to int, the return type of compar, does not
work. Use a conditional expression returning -1, 0, or 1 instead.

Finally, Ha offers iterator macros for traversing arrays:

HaArrayForEach(ARRAY_X a, X x, int i)
HaArrayForEachReverse(ARRAY_X a, X x, int i)

These iterate over the elements of a, in forward or reverse order. Within each iteration, x is one
element of a and i is the index of x in a. For example,

HaArrayForEach(strings, str, i)
fprintf(stdout, "string %d: %s\n", i, str);

prints the elements of array strings. Like all Howard’s iterators, both macros expand to

for(... ; ... ; ...)

and may be used syntactically in any way that this construct may be.

A.1. Arenas, arena sets, and arrays 431

A.1.4. Howard’s memory allocator

This section contains more information about Howard’s memory allocator than the user is likely
to need. It explains how memory is aligned, presents the operations for allocating resizable arena
memory, and describes how the allocator works. What it does not do is explain the rationale
behind the various features. They are all concerned with trying to avoid problems that memory
allocators are prone to, as indeed is the basic design of arena sets containing arenas.

Howard’s memory allocator promises to return memory aligned correctly for any kind
of data. However, there seems to be no standard way to find out what that alignment is. So
file howard_a.h includes a typedef of a type HA_ALIGN_TYPE, and the allocator assumes that
memory aligned with this type aligns with all types. By default this typedef is

typedef void *HA_ALIGN_TYPE;

but it may be changed to any type whose size is at least the size of a pointer. HaArenaSetMake

checks this condition and aborts if it does not hold, since the implementation depends on it.

Resizable arena memory is arena memory that can be resized. It is usually accessed via
resizable arrays and symbol tables, but it can also be accessed directly, using these functions:

void *HaResizableAlloc(HA_ARENA a);
void *HaResizableReAlloc(void *resizable, size_t size);
void HaResizableFree(void *resizable);

HaResizableAlloc returns a pointer to 0 bytes of resizable arena memory from arena a. This
may seem useless, but experience shows that it produces the most convenient initial value. All
pointers to 0 bytes from a are shared, so there is no memory cost. HaResizableReAlloc assumes
that resizable points to resizable arena memory, and begins by finding its arena and size. If
size is no larger than this old size, resizable is returned. If size is larger, a pointer to size

or more bytes of resizable arena memory from the same arena is returned. Its first old size bytes
are copied from resizable using memcpy, and resizable is reclaimed for re-use by other calls
for resizable memory from the same arena (unless its size is 0). HaResizableFree reclaims
resizable just as HaResizableReAlloc does, but without allocating new memory.

The user can find the arena and size in bytes of a block of resizable arena memory:

HA_ARENA HaResizableArena(void *resizable);
size_t HaResizableSize(void *resizable);

HaResizableSize may be larger than the size requested when resizable was allocated. Like
ordinary arena memory, resizable arena memory is aligned suitably for any kind of data.

The remainder of this section describes the implementation of the arena memory allocator.

An arena obtains its memory from its arena set, which obtains it from malloc. A piece of
memory given to an arena set by malloc and passed on to an arena will be called a chunk; a piece
of memory given to the user by an arena will be called a block.

Let A be sizeof(HA_ALIGN_TYPE). Since the memory returned has to align, every block
might as well contain (and does contain) a number of bytes which is a multiple of A. If the
number requested is not a multiple of A, it is increased to the next multiple of A. The resulting
wasted memory is called the alignment overhead. It will be negligible in practice, and often zero.

432 Appendix A. Modules Packaged with KHE

One block of memory of size A, suitably aligned, will be called one word.

An arena cannot satisfy all the block requests it receives out of one chunk. So it calls on its
arena set more than once, and maintains a linked list of the chunks it receives. The arena object
contains a pointer to the most recently obtained chunk; this chunk begins with a pointer to the
next most recently obtained chunk, and so on. The chunk also records the initial number of words
available for allocation to end users in the chunk, the current number of words still available
for allocation, and another integer, called k below, which is roughly the base 2 logarithm of the
number of words in the chunk. Most chunks are large, so this chunk overhead is negligible.

The linked list serves two purposes. First, when the arena is deleted, its memory is freed
by traversing the list and returning the chunks to the arena set. The arena object itself lies in a
separate arena (the arena set’s private arena), but the block list header objects described below
lie within chunks like user blocks do, and so are freed when the chunks are freed. Second, when
the end user requests a new block, the first step is to try to obtain it from the first chunk on the
list. Later chunks may not be entirely used up, but they are never tried.

When one chunk holds many blocks, arena allocation is much better than general allocation.
Blocks are allocated contiguously within chunks, with no memory overhead other than the align-
ment overhead. Unless a new chunk is needed, allocating a block is very fast: just round up the
requested size, test whether memory is available in the first chunk, and make two assignments.

All chunks cannot be the same size. If they were, for memory efficiency one would want
that size to be large; but a large chunk would be wasteful if the arena remains small. Also, a
request for a block whose size is larger than the chunk size could not be satisfied.

Accordingly, the chunks obtained from malloc vary in size, as follows. Each has size k2 −c
for some k and c. A value for c is chosen which is Ha’s memory overhead per chunk plus the
amount of malloc’s overhead, which seems to usually be 16 bytes. When a chunk of this size
is requested, hopefully this will cause malloc to request a block of size k2 from the operating
system, which should work well.

Whenever an arena needs a new chunk, it requests one from the arena set of size k+12 −c

words, given that its previous chunk has size k2 −c words. Or if this is not enough memory to
cover the current request from the user, it keeps doubling until the request is large enough. The
arena set uses k + 1to index an array of free chunks to find a list of free chunks of size k+12 −c
words. If this list is empty it calls malloc.

When an arena is deleted, its chunks are moved into the free chunk lists of its arena set. Each
chunk contains k so this is a simple array indexing operation for each chunk. When an arena set
is deleted, all its arenas except its private arena should already have been deleted. So it simply
passes its free chunks, and the chunks of its private arena, to free.

It remains to describe how resizable blocks are handled. The size of each resizable block
is Rn A for some n ≥ 0, where R0 = 0 and Rn = 3 ⋅ n2 − 1for n ≥ 1. These numbers (0, 5, 11, 23,
47, …) make good hash table sizes. From 5 onwards, each is obtained from its predecessor by
doubling and adding one.

Growing out of each arena object is a linked list of block list header objects. The first
block list header contains R0 and a pointer to a singly linked list of all free blocks of size R0A
(this particular pointer is always NULL); the second contains R1 and a pointer to a singly linked
list of all free blocks of size R1A; and so on. Each block list header also contains a pointer to its

A.1. Arenas, arena sets, and arrays 433

arena and a pointer to the block list header for the next larger size. Initially, only the first block
list header is present.

In addition to the RnA bytes passed to the user, a resizable block has A bytes, just in front of
the pointer returned to the user, holding a pointer to the block list header holding Rn. If the block
is free, its second A bytes holds a pointer to the next free resizable block of that size.

Given a user’s pointer to a resizable block, one can find its block list header by going back A
bytes and following the pointer. The block list header gives access to the block’s arena and size,
and to the free block list of blocks of that size.

A resizable block of at least a given size can be obtained by searching the block list header
list for the first block list header whose block size is sufficiently large. New block list headers
are added if required as the search proceeds. Once the appropriate block list header is reached,
its first free block is returned to the user; or if it has no free blocks, a fresh block is obtained from
HaAlloc, a pointer to the block list header is placed in its first A bytes, and a pointer to its (A + 1)th
byte is returned to the user. HaResizableReAlloc begins its search for a block list header from
resizable’s block list header. Most calls to HaResizableReAlloc request blocks about double
the old size, so most traversals of the list of block list headers visit only one block list header,
ensuring that the time taken to find a new resizable block is usually a small constant.

The memory overhead is A bytes per allocated block (holding the pointer to the block list
header), plus the space occupied by the block list headers (negligible once the blocks grow to
even moderate size), plus the free blocks, plus any unused space within allocated blocks.

The worst case is elicited by an arena containing a single extensible array that grows one
element at a time. (This case can be duplicated by growing two arrays in parallel.) Now, resizable
blocks are needed just because the application cannot predict how much memory will be needed.
Thus, the application might as well ask for sizes of the form Rn A, and the extensible array
module does this. As the array grows, it leaves a trail of freed blocks behind it of sizes (5 + 1)A,
(11+ 1)A, (23 + 1)A, and so on. Their total size is less than half the current block size. The current
block may itself be only half full, so at worst, three times as much memory is allocated as is used.
But none of this memory is completely lost: half of it is available for further growth of the array,
the other half is available for other arrays, and all of it is freed when the arena is deleted.

A.2. Strings and symbol tables

Note – the Hn library has been flown in from another project of the author’s, called Howard.
Three libraries,Hw,Hn,and Ho,are documented here,but only the Hn library is included in KHE.
Its header file is howard_n.h.

This section describes Howard’s Hw library, which provides operations on wide strings
(type wchar_t *), and symbol tables whose keys are wide strings. It also documents Howard’s
Hn library, which is the same except that its strings are narrow (char * instead of wchar_t *).

A.2.1. Strings

One handy use for extensible arrays is to build up strings piece by piece in arena memory,
similarly to open_memstream from POSIX-2008:

434 Appendix A. Modules Packaged with KHE

void HwStringBegin(HA_ARRAY_CHAR ac, HA_ARENA a);
void HwStringAdd(HA_ARRAY_CHAR *ac, wchar_t *format, ...);
wchar_t *HwStringEnd(HA_ARRAY_CHAR ac);

HwStringBegin and HwStringEnd are in fact macros. HwStringAdd is a function; note that a
reference to the array is passed, not the array itself. HA_ARRAY_CHAR is defined by Ha and holds
an extensible array of wide characters. HwStringBegin initializes this array to empty (like
HaArrayInit);HwStringAdd appends a formatted string to the growing array; and HwStringEnd

adds the final L’\0’ and returns the string. The string returned by HwStringEnd (call it str) may
be freed by calling either HaArrayFree(ac) or HaResizableFree(str). There is also

void HwStringVAdd(HA_ARRAY_CHAR *ac, wchar_t *format, va_list args);

which is to HwStringAdd what vwprintf is to wprintf.

Thanks to a robust implementation, there is no limit on the size of any one of the formatted
strings added to *ac by these functions. There is an unchecked limit of INT_MAX - 1 on the total
length of the string, because type HA_ARRAY_CHAR stores an array length in an int field.

In between the calls to HwStringBegin and HwStringEnd, ordinary array operations may
be applied to ac as usual. For example,

HaArrayFill(ac, 80, L’ ’);

pads out ac to length 80 with blanks.

For the convenience of applications which sometimes need to build a string and sometimes
need to write to a file, functions

void HwStringAddOrPrint(HA_ARRAY_CHAR *ac, FILE *fp,
const wchar_t *format, ...);

void HwStringVAddOrPrint(HA_ARRAY_CHAR *ac, FILE *fp,
const wchar_t *format, va_list args);

are defined. These are like HwStringAdd and HwStringVAdd when ac != NULL, and like
fwprintf and vfwprintf when ac == NULL (so fp had better be non-NULL in that case).

Hw offers three other functions that create strings in arena memory:

wchar_t *HwStringCopy(wchar_t *s, HA_ARENA a);
wchar_t *HwStringSubstring(wchar_t *s, int start, int len, HA_ARENA a);
wchar_t *HwStringMake(HA_ARENA a, const wchar_t *format, ...);

These are functions, not macros. The arena memory remains allocated until the arena is freed.
HwStringCopy returns a copy of s, like the Linux wcsdup. HwStringSubstring returns the
substring of s which begins at position start, counting from 0, and has length len, or less if s
ends before then. HwStringMake returns a formatted string:

name = HwStringMake(a, L"%ls/%ls_%d", dir_name, file_name, version);

Thanks to a robust implementation, HwStringMake imposes no length limits. There is also

wchar_t *HwStringVMake(HA_ARENA a, const wchar_t *format, va_list args);

A.2. Strings and symbol tables 435

which is to HwStringMake what vwprintf is to wprintf.

Howard is written on the assumption that strings stored in memory will generally be wide
strings. Even so, some conversion is needed when interfacing with the operating system, so Hw
offers two functions that convert from and to narrow strings:

wchar_t *HwStringFromNarrow(char *s, HA_ARENA a);
char *HwStringToNarrow(wchar_t *s, HA_ARENA a);

For example, HwStringFromNarrow is useful for converting a command-line argument, which
is a narrow string, to a string, and HwStringToNarrow is useful for converting a file name to the
narrow string format required by fopen. These strings may be freed immediately by passing
them to HaResizableFree, or kept until the arena is deleted later.

The standard C library offers several functions which query strings (wcscmp, wcsstr, etc.).
These may be used on Hw’s strings. Hw supplements these functions with a few others:

int HwStringCount(wchar_t *s);
bool HwStringIsEmpty(wchar_t *s);

Return the length of s, like wcslen; return true if s has count 0.

bool HwStringEqual(wchar_t *s1, wchar_t *s2);

Return true if s1 and s2 are equal.

bool HwStringContains(wchar_t *s, wchar_t *substr, int *pos);

If substr occurs within s, return true with *pos set to the starting position of the first
occurrence of substr within s. Otherwise return false with *pos not set.

bool HwStringBeginsWith(wchar_t *s, wchar_t *prefix);
bool HwStringEndsWith(wchar_t *s, wchar_t *suffix);

Return true if prefix occurs within s at the start, or if suffix occurs within s at the end.

A.2.2. Abort and assert

Hw offers two functions for checking assertions:

void HwAbort(wchar_t *fmt, ...);
void HwAssert(bool cond, wchar_t *fmt, ...);

HwAbort’s parameters are the same as wprintf’s, but it prints onto stderr and then calls abort.
HwAssert does nothing if cond is true, and it does what HwAbort does if cond is false. It is a
function, not a macro, so its parameters must be well-defined whether cond is true or not.

A.2.3. Symbol tables

A symbol table is a set of entries, each consisting of a key, which is a string, and a value, whose
type is the same for all entries but is otherwise arbitrary. One table may contain any number of
entries. Entries may be added, deleted, and retrieved by key.

436 Appendix A. Modules Packaged with KHE

As for Ha’s arrays, and for the same reasons, Hw’s symbol tables are structs, not pointers to
structs, and the operations are macros. The implementation is a linear probing hash table, which
is essentially just an array (actually two arrays, one for keys, one for values). At any moment, not
all of the array’s elements contain entries. The table doubles in size when it becomes 80% full.

To define a symbol table type whose keys are strings of type wchar_t * and whose values
have type X, where X is any type, write this:

typedef HW_TABLE(X) TABLE_X;

From now on, TABLE_X stands for any type defined by a typedef like this one, and X stands for
the type between the parentheses in that typedef. To initialize a symbol table, call

void HwTableInit(TABLE_X table, HA_ARENA a);

To find the arena containing a given table, call

HA_ARENA HwTableArena(TABLE_X table);

When the symbol table is no longer needed, its memory may be reclaimed by

void HwTableFree(TABLE_X table);

This does not free table itself (table is not a pointer). It frees the memory used to hold the
arrays of keys and values, although not the keys and values themselves.

To add an entry to a symbol table, call

void HwTableAdd(TABLE_X table, wchar_t *key, X value);
bool HwTableAddUnique(TABLE_X table, wchar_t *key, X value, X other);

HwTableAdd adds a new entry with the given key and value to the table, even if that causes the
table to contain two or more entries with the same key. HwTableAddUnique, on the other hand,
first checks whether there is already an entry with the given key. If so, it sets other to the value
of an existing entry with the given key and returns false without changing the table. If not, it
adds the new entry and returns true without setting other.

Two variants of HwTableAdd and HwTableAddUnique are offered:

void HwTableAddHashed(TABLE_X table, int hash_code, wchar_t *key,
X value);

bool HwTableAddUniqueHashed(TABLE_X table, int hash_code, wchar_t *key,
X value, X other);

These are the same as the originals, except for parameter hash_code, which is assumed to be the
hash code of key (before reduction modulo the table size), as returned by HwTableHash:

int HwTableHash(wchar_t *key);

Passing the hash code explicitly saves time when inserting the same entry into several tables.

Retrieval has three forms. The first is the ‘contains’form, which merely reports whether an
entry with the given key is present:

A.2. Strings and symbol tables 437

bool HwTableContains(TABLE_X table, wchar_t *key, int pos);
bool HwTableContainsHashed(TABLE_X table, int hash_code, wchar_t *key,
int pos);

bool HwTableContainsNext(TABLE_X table, int pos);

HwTableContains returns true if table contains an entry with the given key, setting pos to its
position in the table, or false if there is no such entry, in which case pos is an empty position.
HwTableContainsHashed is the same, except that it assumes that hash_code is the hash code of
key (before reduction modulo the table size). HwTableContainsNext assumes that pos is a non-
empty position of table; it searches the table beyond that point (wrapping around to the front
if necessary) for an entry with the same key as the one at that point. Like HwTableContains,
it returns true or false depending on whether it finds such an entry, and it changes pos to its
position, or to an empty position.

The second form of retrieval is the ‘contains value’ form, which reports whether an entry
with the given key and value is present:

void HwTableContainsValue(TABLE_X table, wchar_t *key, X value,
int pos);

void HwTableContainsValueHashed(TABLE_X table, int hash_code,
X value, int pos);

HwTableContainsValue hashes the key and then compares values along the table using the
C ‘==’ operation, instead of comparing keys. It runs very quickly since it executes no string
comparisons. Owing to problems behind the scenes it does not return a Boolean result. Instead,
it is syntactically a for statement which sets pos to the position of the entry if present. Function
HwTableOccupied, defined below, may be used to determine the outcome, like this:

HwTableContainsValue(table, "fred", fred, pos);
if(HwTableOccupied(table, pos))
{
/* fred is present at position pos */

}

HwTableContainsValueHashed is the same, except that it avoids hashing the key as usual. In
fact it does not need to know the key, so the usual key parameter is omitted.

The third form of retrieval is the ‘retrieve’ form, which sets a value parameter to the value
associated with the given key if found, and leaves value untouched if not:

bool HwTableRetrieve(TABLE_X table, wchar_t *key, X value, int pos);
bool HwTableRetrieveHashed(TABLE_X table, int hash_code, wchar_t *key,
X value, int pos);

bool HwTableRetrieveNext(TABLE_X table, X value, int pos);

Apart from setting value, these are the same as the corresponding ‘contains’versions.

The pos parameters of retrieval functions have several uses. They are needed to ensure that
concurrent retrievals do not interfere with each other. They can be passed to

438 Appendix A. Modules Packaged with KHE

bool HwTableOccupied(TABLE_X table, int pos);
wchar_t *HwTableKey(TABLE_X table, int pos);
X HwTableValue(TABLE_X table, int pos);

which return true if position pos is occupied (has an entry), and if so, the key and value of the
entry at position pos. And they are used by the operations to be defined next.

Assuming that there is an entry at position pos,

void HwTableReplace(MTABLE_X table, int pos, X value);

replaces the entry’s value, and

void HwTableDelete(TABLE_X table, int pos);

deletes the entry. For example,

if(HwTableContains(table, L"fred", pos))
HwTableDelete(table, pos);

deletes an entry with key L"fred", if there is one. Function

void HwTableClear(TABLE_X table);

deletes every entry in the table, leaving it empty.

For traversal there are iterator macros in the usual style:

void HwTableForEachWithKey(TABLE_X table, wchar_t *key, X value, int pos)
void HwTableForEachWithKeyHashed(TABLE_X table, int hash_code,

wchar_t *key, X value, int pos)

These visit each entry with a given key. HwTableForEachWithKeyHashed is the same as
HwTableForEachWithKey except that the user supplies the hash code as well as the key, as for
HwTableRetrieveHashed. For example, to visit every person called L"fred" in table people:

HwTableForEachWithKey(people, L"fred", person, pos)
{

... visit person ...
}

On each iteration, this code sets person to a person with name L"fred", and pos to the position
of that person in the table. A similar iterator macro visits every entry of the table:

void HwTableForEach(TABLE_X table, wchar_t *key, X value, int pos)

The entries will be visited in an essentially random order, as usual with hash tables. For example,
the following code counts the number of entries in table:

count = 0;
HwTableForEach(table, key, value, pos)
count++;

A.2. Strings and symbol tables 439

This number is not maintained automatically. Another fairly useless number is

int HwTableSize(TABLE_X table);

which is the current array size. It will be somewhat larger than the current number of entries.

A.2.4. Narrow strings and symbol tables

This section describes Howard’s Hn library. It is the same as Hw except that its strings are narrow
(have type char * instead of wchar_t *), so the description is brief.

For creating narrow strings in arena memory there are functions

void HnStringBegin(HA_ARRAY_NCHAR anc, HA_ARENA a);
void HnStringAdd(HA_ARRAY_NCHAR *anc, char *format, ...);
char *HnStringEnd(HA_ARRAY_NCHAR anc);
void HnStringVAdd(HA_ARRAY_NCHAR *anc, const char *format, va_list args)

(HnStringBegin and HnStringEnd are macros). For either adding to a string in memory or
adding to a file, use functions

void HnStringAddOrPrint(HA_ARRAY_NCHAR *anc, FILE *fp,
const char *format, ...);

void HnStringVAddOrPrint(HA_ARRAY_NCHAR *anc, FILE *fp,
const char *format, va_list args);

Other functions which create strings in arena memory are

char *HnStringCopy(char *s, HA_ARENA a);
char *HnStringSubstring(char *s, int start, int len, HA_ARENA a);
char *HnStringMake(HA_ARENA a, const char *format, ...);
char *HnStringVMake(HA_ARENA a, const char *format, va_list args);
char *HnStringFromWide(wchar_t *s, HA_ARENA a);
wchar_t *HnStringToWide(char *s, HA_ARENA a);

For querying strings there are

int HnStringCount(char *s);
bool HnStringIsEmpty(char *s);
bool HnStringEqual(char *s1, char *s2);
bool HnStringContains(char *s, char *substr, int *pos);
bool HnStringBeginsWith(char *s, char *prefix);
bool HnStringEndsWith(char *s, char *suffix);

For handling white space there are

bool HnStringIsWhiteSpaceOnly(char *s);
char *HnStringCopyStripped(char *s, HA_ARENA a);

HnStringIsWhiteSpaceOnly returnstrue if s is NULL or consists of white space characters only
(including when s is empty), and HnStringCopyStripped returns a copy of s with any white

440 Appendix A. Modules Packaged with KHE

space characters at the beginning or end removed; if s is NULL or there are no non-white space
characters it returns the empty string.

For abort and assert there are

void HnAbort(char *fmt, ...);
void HnAssert(bool cond, char *fmt, ...);

A symbol table is defined by

typedef HN_TABLE(X) TABLE_X;

and initialized, its arena returned, and freed by

void HnTableInit(TABLE_X table, HA_ARENA a);
HA_ARENA HnTableArena(TABLE_X table);
void HnTableFree(TABLE_X table);

Entries are added with

void HnTableAdd(TABLE_X table, char *key, X value);
bool HnTableAddUnique(TABLE_X table, char *key, X value, X other);

plus the two variants

void HnTableAddHashed(TABLE_X table, int hash_code, char *key,
X value);

bool HnTableAddUniqueHashed(TABLE_X table, int hash_code, char *key,
X value, X other);

Hash codes are calculated with

int HnTableHash(char *key);

Retrievals are carried out with

bool HnTableContains(TABLE_X table, char *key, int pos);
bool HnTableContainsHashed(TABLE_X table, int hash_code, char *key,
int pos);

bool HnTableContainsNext(TABLE_X table, int pos);

void HnTableContainsValue(TABLE_X table, char *key, X value,
int pos);

void HnTableContainsValueHashed(TABLE_X table, int hash_code,
X value, int pos);

bool HnTableRetrieve(TABLE_X table, char *key, X value, int pos);
bool HnTableRetrieveHashed(TABLE_X table, int hash_code, char *key,
X value, int pos);

bool HnTableRetrieveNext(TABLE_X table, X value, int pos);

The positions returned by the retrieve operations may be used in

A.2. Strings and symbol tables 441

bool HnTableOccupied(TABLE_X table, int pos);
char *HnTableKey(TABLE_X table, int pos);
X HnTableValue(TABLE_X table, int pos);

To replace a value, delete an entry, or clear the table, call

void HnTableReplace(TABLE_X table, int pos, X value);
void HnTableDelete(TABLE_X table, int pos);
void HnTableClear(TABLE_X table);

To iterate over all entries with a given key, use iterator macros

void HnTableForEachWithKey(TABLE_X table, char *key, X value, int pos)
void HnTableForEachWithKeyHashed(TABLE_X table, int hash_code,

char *key, X value, int pos)

To iterate over all entries, use

void HnTableForEach(TABLE_X table, char *key, X value, int pos)

Finally,

int HnTableSize(TABLE_X table);

returns the size of the hash table.

A.2.5. Pointer tables and groups

A pointer table is like an object table in that it is a hash table indexed by non-NULL void pointers
rather than strings. However, the value of what the pointer points to is used to index the table.
To make this work, the table needs to be given two functions, one to hash what the pointer points
to, and one to compare two of those things to decide whether they are equal. So the user must
supply two functions with these signatures:

int KeyHash(void *p);
bool KeyEqual(void *p1, void *p2);

Then Howard does the rest.

Two equal keys must have the same hash value. In other words, if KeyEqual(p1, p2)

returns true, then KeyHash(p1) and KeyHash(p2) must be equal. Without this the pointer table
will not work as expected.

There is an optional third user-defined function,

void KeyDebug(void *p, FILE *fp);

When present, it is used by HpTableDebug below to produce a debug print of key p onto file fp.

This section describes Howard’s Hp library, which implements pointer tables, offering
operations analogous to the symbol table operations from Hw and Hn.

A pointer table whose keys are what is pointed to by void pointers and whose values have
type X, for any X, is defined by

442 Appendix A. Modules Packaged with KHE

typedef HP_TABLE(X) TABLE_X;

It is initialized, its attributes are returned, and it is freed by

void HpTableInit(TABLE_X table, HP_HASH_FN key_hash_fn,
HP_EQUAL_FN key_equal_fn, HP_DEBUG_FN key_debug_fn, HA_ARENA a);

HP_HASH_FN HpTableKeyHashFn(TABLE_X table);
HP_EQUAL_FN HpTableKeyEqualFn(TABLE_X table);
HP_DEBUG_FN HpTableKeyDebugFn(TABLE_X table);
HA_ARENA HpTableArena(TABLE_X table);
void HpTableFree(TABLE_X table);

where HP_HASH_FN, HP_EQUAL_FN, and HP_DEBUG_FN are the types of the three user-supplied
functions described above. The value of key_debug_fn may be NULL, but the other two have to
really hash a key and compare two keys for equality.

Entries are added with

void HpTableAdd(TABLE_X table, void *key, X value);
bool HpTableAddUnique(TABLE_X table, void *key, X value, X other);

plus the two variants

void HpTableAddHashed(TABLE_X table, int hash_code, void *key,
X value);

bool HpTableAddUniqueHashed(TABLE_X table, int hash_code, void *key,
X value, X other);

Retrievals are carried out with

bool HpTableContains(TABLE_X table, void *key, int pos);
bool HpTableContainsHashed(TABLE_X table, int hash_code, void *key,
int pos);

bool HpTableContainsNext(TABLE_X table, int pos);

void HpTableContainsValue(TABLE_X table, void *key, X value,
int pos);

void HpTableContainsValueHashed(TABLE_X table, int hash_code,
X value, int pos);

bool HpTableRetrieve(TABLE_X table, void *key, X value, int pos);
bool HpTableRetrieveHashed(TABLE_X table, int hash_code, void *key,
X value, int pos);

bool HpTableRetrieveNext(TABLE_X table, X value, int pos);

The positions returned by the retrieve operations may be used in

bool HpTableOccupied(TABLE_X table, int pos);
void *HpTableKey(TABLE_X table, int pos);
X HpTableValue(TABLE_X table, int pos);

A.2. Strings and symbol tables 443

To replace a value, delete an entry, or clear the table, call

void HpTableReplace(TABLE_X table, int pos, X value);
void HpTableDelete(TABLE_X table, int pos);
void HpTableClear(TABLE_X table);

To iterate over all entries with a given key, use iterator macros

void HpTableForEachWithKey(TABLE_X table, void *key, X value, int pos)
void HpTableForEachWithKeyHashed(TABLE_X table, int hash_code,

void *key, X value, int pos)

To iterate over all entries, use

void HpTableForEach(TABLE_X table, void *key, X value, int pos)

or

void HpTableForEachValue(TABLE_X table, X value, int pos)

to omit retrieving each key (which can produce unwanted error messages about unused
variables). Function

int HpTableSize(TABLE_X table);

returns the size of the table. Function

float HpTableProbeLength(TABLE_X table);

returns the average, taken over all calls to HpTableAddUnique, HpTableAddUniqueHashed,
HpTableContains, HpTableContainsHashed, HpTableRetrieve, HpTableRetrieveHashed,
and HpTableContainsNext, of the number of probes of non-empty table entries made by those
calls. The result should be less than about 3; higher values are a sign that the hash function is not
working effectively. HpTableProbeLength requires macro HP_DEBUG_PROBE_LENGTH, defined
at the top of file howard_p.h, to have value 1; when it has value 0, HpTableProbeLength returns
-1.0. This is also the value returned when no calls to the functions have been made.

Finally, function

void HpTableDebug(TABLE_X table, int indent, FILE *fp);

produces a debug print of table onto file fp with the given indent. This can be long. It uses
parameter key_debug_fn to produce a debug print of each key, unless key_debug_fn is NULL,
in which case it prints the address of each key

Hp also offers a version of the pointer table idea in which the keys have no corresponding
values. This is useful when the need is merely to build a set of objects and find out whether a
given object is present in the set or not. Hp calls this data structure a pointer group.

A pointer group is not generic; its unique type is HP_GROUP. It is initialized, its arena
returned, and freed by

444 Appendix A. Modules Packaged with KHE

void HpGroupInit(HP_GROUP group, HP_HASH_FN key_hash_fn,
HP_EQUAL_FN key_equal_fn, HP_DEBUG_FN key_debug_fn, HA_ARENA a);

HP_HASH_FN HpGroupKeyHashFn(HP_GROUP group);
HP_EQUAL_FN HpGroupKeyEqualFn(HP_GROUP group);
HP_DEBUG_FN HpGroupKeyDebugFn(HP_GROUP group);
HA_ARENA HpGroupArena(HP_GROUP group);
void HpGroupFree(HP_GROUP group);

Entries are added with

void HpGroupAdd(HP_GROUP group, void *key);
bool HpGroupAddUnique(HP_GROUP group, void *key);

plus the two variants

void HpGroupAddHashed(HP_GROUP group, int hash_code, void *key);
bool HpGroupAddUniqueHashed(HP_GROUP group, int hash_code, void *key);

Note the absence of values.

Retrievals are carried out with

bool HpGroupContains(HP_GROUP group, void *key, int pos);
bool HpGroupContainsHashed(HP_GROUP group, int hash_code, void *key,

int pos);
bool HpGroupContainsNext(HP_GROUP group, int pos);

There are no ContainsValue or Retrieve operations. The positions returned by the contains
operations may be used in

bool HpGroupOccupied(HP_GROUP group, int pos);
void *HpGroupKey(HP_GROUP group, int pos);

To delete an entry or clear the group, call

void HpGroupDelete(HP_GROUP group, int pos);
void HpGroupClear(HP_GROUP group);

To iterate over all entries with a given key, use iterator macros

void HpGroupForEachWithKey(HP_GROUP group, void *key, int pos)
void HpGroupForEachWithKeyHashed(HP_GROUP group, int hash_code,

void *key, int pos)

To iterate over all entries, use

void HpGroupForEach(HP_GROUP group, void *key, int pos)

Finally,

int HpGroupSize(HP_GROUP group);

returns the size of the group.

A.3. Sets of integers 445

A.3. Sets of integers

A.3.1. Variable-length bitsets

KHE comes with a C module called LSet for managing variable-length sets of smallish unsigned
integers implemented as bit vectors. The module consists of header file khe_lset.h and im-
plementation file khe_lset.c. These are stored and compiled with KHE, but they can also be
used separately. KHE formerly used LSet extensively behind the scenes (all its time groups,
resource groups, and event groups were represented both as arrays of elements and LSets of ele-
ment index numbers), although now SSets (Appendix A.3.3) are used instead. LSet may be use-
ful when writing helper functions and solvers. To use it, simply include khe_lset.h. Including
khe_solvers.h does not automatically include khe_lset.h as well.

File khe_lset.h begins with these two type definitions:

typedef struct lset_rec *LSET;
typedef HA_ARRAY(LSET) ARRAY_LSET;

The first defines the type of an LSet, and the second defines an array of LSets, as usual.

Internally, an LSet is represented by a pointer to a struct containing a length followed
by the bit vector itself. When an element needs to be added that would overflow the currently
allocated memory, the whole LSet is freed and a new one is returned. This is not particularly
convenient for the user of LSet but it is the most efficient way.

Functions

LSET LSetNew(void);
void LSetFree(LSET s);

create a new, empty LSet and free an LSet;

LSET LSetCopy(LSET s);

creates a fresh new LSet with the same value as s. Function

void LSetShift(LSET s, LSET *res, unsigned int k,
unsigned int max_nonzero);

takes two existing LSets, s and *res, and replaces the current value of *res by s with k added
to each of its elements, except that elements which would thereby have value greater than
max_nonzero are omitted. The old *res will be freed and a new one allocated if necessary. This
arcane function is used behind the scenes to calculate shifted time domains. Function

void LSetClear(LSET s);

clears s back to the empty set, and

void LSetInsert(LSET *s, unsigned int i);
void LSetDelete(LSET s, unsigned int i);

insert element i (changing nothing if i is already present) and delete it (changing nothing if i is
already absent). The value of i is arbitrary but very large values are obviously undesirable, since

446 Appendix A. Modules Packaged with KHE

the bit vectors then become very large.

void LSetAssign(LSET *target, LSET source);

replaces the current value of *target with the value of source, reallocating *target if
necessary. The value is a copy, there is no sharing anywhere in the LSet module.

The next three functions implement the set operations of union, intersection, and difference,
replacing their first parameter’s value with the result of the operation:

void LSetUnion(LSET *target, LSET source);
void LSetIntersection(LSET target, LSET source);
void LSetDifference(LSET target, LSET source);

The usual Boolean operations are available on LSets:

bool LSetEmpty(LSET s);
bool LSetEqual(LSET s1, LSET s2);
bool LSetSubset(LSET s1, LSET s2);
bool LSetDisjoint(LSET s1, LSET s2);
bool LSetContains(LSET s, unsigned int i);

These return true when s is empty, when s1 and s2 are equal, when s1 is a subset of s2, when
s1 and s2 are disjoint, and when s contains i. Functions

unsigned int LSetMin(LSET s);
unsigned int LSetMax(LSET s);

return the smallest and largest elements of s respectively, using an efficient table lookup on the
first or last non-zero byte. Both functions abort if s is empty. Function

int LSetLexicalCmp(LSET s1, LSET s2);

returns a negative, zero, or positive result depending on whether s1 is lexicographically less than,
equal to, or greater than s2. Function

void LSetExpand(LSET s, ARRAY_SHORT *add_to)

assumes that *add_to is an initialized array, and adds the elements of s to the array in increasing
order by repeated calls to HaArrayAddLast. Function

char *LSetShow(LSET s);

returns a display of s in static memory (so it is not thread-safe, but it does keep four separate
buffers, allowing it to be called several times in one line of debug output). Finally,

void LSetTest(FILE *fp);

tests the module and prints its results onto file fp.

A.3. Sets of integers 447

A.3.2. Sorted sets

Many of KHE’s object collections are represented by a set of sorted integers, which are indexes
into arrays of objects. Sets of times are represented using shiftable sets (Appendix A.3.3), for
efficient calculation of time group neighbourhoods. Other collections are represented by an
extensible array of integers, sorted into increasing order. These KHE sets are described here.

The KHE set module consists of header file khe_set.h and implementation file khe_set.c.
These are stored and compiled with the KHE platform, but they can also be used separately. To
use KHE sets, simply include khe_set.h. Including khe_platform.h or khe_solvers.h does
not automatically include khe_set.h.

File khe_set.h contains this definition of type KHE_SET, representing one KHE set:

typedef struct khe_set_rec { ... } KHE_SET;

We’ve omitted the contents, but that is just an extensible array of integer indexes, stored in
increasing order. KHE sets are sets, not multisets—there are no duplicates among the items.

Type KHE_SET is a struct, not a pointer to a struct, because KHE_SET is intended as an aid
to implementing other modules, and values of type KHE_SET are expected to be private fields of
these other modules’ structs. Structs are better than pointers to structs in these cases, because
they save memory and avoid one level of indirection.

To pass a KHE_SET as a parameter it is always best to pass its address, not the struct itself.
The following functions appear to violate this rule, but they are in fact macros which insert the
address-of operators for you. For example, the function given as

void KheSetUnion(KHE_SET to_s, KHE_SET from_s);

below is really macro

#define KheSetUnion(to_s, from_s) KheSetImplUnion(&(to_s), &(from_s))

and thus passes its KHE_SET parameters by reference.

To initialize KHE set s to an empty set, using memory from arena a, call

void KheSetInit(KHE_SET s, HA_ARENA a);

To make a new KHE set to_s in arena a by copying another set from_s, call

void KheSetCopy(KHE_SET to_s, KHE_SET from_s, HA_ARENA a);

To copy the elements of from_s to an existing set to_s, first clearing to_s, call

void KheSetCopyElements(KHE_SET to_s, KHE_SET from_s);

To clear s, call

void KheSetClear(KHE_SET s);

To insert item into s, call

void KheSetInsert(KHE_SET s, int item);

448 Appendix A. Modules Packaged with KHE

This does nothing if item is already present. To delete item from s, call

void KheSetDelete(KHE_SET s, int item);

This does nothing if item is not present. To delete the last (largest) element, assuming there is
one, call

void KheSetDeleteLast(KHE_SET s);

There are operations to replace to_s by its union, intersection, and difference from from_s:

void KheSetUnion(KHE_SET to_s, KHE_SET from_s);
void KheSetIntersect(KHE_SET to_s, KHE_SET from_s);
void KheSetDifference(KHE_SET to_s, KHE_SET from_s);

and operations to return the cardinality of the union, intersection, difference, and symmetric
difference, without changing to_s:

int KheSetUnionCount(KHE_SET to_s, KHE_SET from_s);
int KheSetIntersectCount(KHE_SET to_s, KHE_SET from_s);
int KheSetDifferenceCount(KHE_SET to_s, KHE_SET from_s);
int KheSetSymmetricDifferenceCount(KHE_SET to_s, KHE_SET from_s);

For finding the number of elements, the ith element, and the last element, there are

int KheSetCount(KHE_SET s);
int KheSetGet(KHE_SET s, int i);
int KheSetGetLast(KHE_SET s);

Then there are the Boolean queries

bool KheSetEmpty(KHE_SET s);
bool KheSetEqual(KHE_SET s1, KHE_SET s2);
bool KheSetSubset(KHE_SET s1, KHE_SET s2);
bool KheSetDisjoint(KHE_SET s1, KHE_SET s2);
bool KheSetContains(KHE_SET s, int item);

which return true when s is empty, when s1 is equal to, a subset of, and disjoint from s2, and
when s contains item. For sorting an array of sets to bring equal sets together there is

int KheSetTypedCmp(KHE_SET s1, KHE_SET s2);

Also offered are

int KheSetMin(KHE_SET s);
int KheSetMax(KHE_SET s);

which return the minimum (first) and maximum (last) elements of s.

For iterating over sets there are the iterator macros

KheSetForEach(KHE_SET s, int t, int i)
KheSetForEachReverse(KHE_SET s, int t, int i)

A.3. Sets of integers 449

These work like HaArrayForEach and HaArrayForEachReverse, repeatedly setting t to the ith
item of s, as i increases or decreases. Finally,

char *KheSetShow(KHE_SET s);

returns a string representation of s. The result lies in static memory and will be overwritten by
the next call to KheSetShow. More precisely,KheSetShow holds four static memory buffers, each
200 characters long. Any result which should be longer than 200 characters is safely truncated
to 200 characters (including the final ’\0’). The fifth call to KheSetShow re-uses the buffer used
by the first call, the sixth call re-uses the buffer used by the second call, and so on.

There are tables whose entries have sets for keys and generic pointers for values. These are
implemented by tries, so the integer elements of the sets should not be very large.1 To create a
new table using memory from a given arena, and to insert and retrieve in it, call

KHE_SET_TABLE KheSetTableMake(HA_ARENA a);
void KheSetTableInsert(KHE_SET_TABLE st, KHE_SET s, void *val);
bool KheSetTableRetrieve(KHE_SET_TABLE st, KHE_SET s, void *val);

One can obtain a debug print of a table from

void KheSetTableDebug(KHE_SET_TABLE st, int indent, FILE *fp);

At present these are the only table operations offered.

A.3.3. Shiftable sets

KHE has a C module called SSet for managing shiftable sets of integers. These are sets which
hold an integer shift which is added to each value, allowing shifted copies to be created very
efficiently, as needed when implementing time group neighbourhoods. A shifted copy may also
be sliced, that is, trimmed at each end to produce a subset of the original set.

The module consists of header file sset.h and implementation file sset.c. These are
stored and compiled with KHE, but they can also be used separately. To use SSet, simply include
sset.h. Including khe_solvers.h does not automatically include sset.h as well.

File sset.h contains this definition of type SSET, representing one shiftable set:

typedef struct sset_rec { ... } SSET;

We’ve omitted the contents, but they include an array of items, the shift, and a few other
things. The items are stored as themselves (as integers) in increasing order. SSets are sets, not
multisets—there are no duplicates among the items.

Type SSET is a struct, not a pointer to a struct, because SSET is intended as an aid to
implementing other modules, and values of type SSET are expected to be private fields of these
other modules’structs. Structs are better than pointers to structs in these cases, because they save
memory and avoid one level of indirection.

1The first level of the trie is indexed by the first element, the second level is indexed by the second element minus the first
element, the third level by the third element minus the second, and so on. This helps to keep the trie arrays short. KHE
sets may contain arbitrary integers, but KHE sets used as table indexes may only contain non-negative integers.

450 Appendix A. Modules Packaged with KHE

To pass an SSET as a parameter it is always best to pass its address, not the struct itself.
The following functions appear to violate this rule, but they are in fact macros which insert the
address-of operators for you. For example, the function given as

void SSetUnion(SSET to_ss, SSET from_ss);

below is really macro

#define SSetUnion(to_ss, from_ss) SSetImplUnion(&(to_ss), &(from_ss))

and thus passes its SSet parameters by reference.

Each SSet object contains a finalized flag which, when set, prohibits further changes to
the value of the set (although the set can be re-initialized). This has been included to prevent the
user from changing a set after slicing it, since that could change and indeed invalidate its slices.

Each SSet object also contains a slice flag which istrue when the SSet is a shifted version,
and perhaps a slice, of another set. This is used only when freeing an SSet: when an SSet is
freed, the memory used to hold its items is freed only when the slice flag is false, avoiding
freeing that memory multiple times. Of course, freeing an SSet invalidates all its shifted and
sliced versions. In the KHE application they are held nearby and freed at the same time.

To initialize (or re-initialize) an SSet to an unfinalized empty set with shift 0, call

void SSetInit(SSET ss, HA_ARENA a);

Memory for the SSet will be taken from arena a. As usual with arenas, there is no operation to
free this memory; instead, it will be freed when the arena is deleted. To change the value of an
unfinalized SSet, use these functions:

void SSetClear(SSET ss);
void SSetInsert(SSET ss, int item);
void SSetDelete(SSET ss, int item);
void SSetUnion(SSET to_ss, SSET from_ss);
void SSetIntersect(SSET to_ss, SSET from_ss);
void SSetDifference(SSET to_ss, SSET from_ss);

These clear ss back to the empty set, insert item (or do nothing if item is already present),
delete item (or do nothing if item is not present), and change the value of to_ss to its union,
intersection, or difference with from_ss. When to_ss and from_ss are the exact same object,
SSetUnion and SSetIntersect do nothing, which is the mathematically correct thing to do, but
SSetDifference aborts, as a sanity measure.

Once these changes are complete, a call to

void SSetFinalize(SSET ss);

finalizes ss. This causes later attempts to change it to abort with an error message. Function

bool SSetIsFinalized(SSET ss);

returns true when ss has been finalized.

Function

A.3. Sets of integers 451

void SSetInitShifted(SSET to_ss, SSET from_ss, int shift);

initializes (or re-initializes) to_ss to a finalized SSet holding the items of from_ss with shift

added to each item. The shift is stored separately, allowing to_ss to share from_ss’s item
memory. Here from_ss must be finalized. Function

void SSetInitShiftedAndSliced(SSET to_ss, SSET from_ss, int shift,
int lower_lim, int upper_lim);

first carries out the same shift, but then it trims to_ss at each end, removing all items with value
less than lower_lim, and all items with value larger than upper_lim. Again, from_ss must be
finalized and the item memory is shared with from_ss.

The following functions perform queries on SSets without changing their values:

int SSetCount(SSET ss);
int SSetGet(SSET ss, int i);
int SSetMin(SSET ss);
int SSetMax(SSET ss);

They return the cardinality of ss; its ith element, counting from 0 as usual, with the items stored
and thus returned in increasing order; its first (smallest) element; and its last (largest) element.
The last three functions are tiny macros and do not check that the calls are valid.

The following more complex queries are also offered:

bool SSetEmpty(SSET ss);
bool SSetEqual(SSET ss1, SSET ss2);
bool SSetSubset(SSET ss1, SSET ss2);
bool SSetDisjoint(SSET ss1, SSET ss2);
bool SSetContains(SSET ss, int item);

These return true when ss is empty, when ss1 is equal to, a subset of, or disjoint from ss2, and
when ss contains item.

The current shift is returned by

int SSetShift(SSET ss);

However, calling this is unlikely to be a good idea, because it goes behind the abstraction.

For convenience, iterator macros are defined which expand to for loops:

SSetForEach(SSET ss, int *item, int *i)
SSetForEachReverse(SSET ss, int *item, int *i)

These iterate over the items of ss, setting *item and *i to each item and its index in turn. For
example, to sum the elements one would write

int total, item, i;
total = 0;
SSetForEach(ss, &item, &i)
total += item;

452 Appendix A. Modules Packaged with KHE

SSetForEachReverse is like SSetForEach except that it iterates in reverse order.

Function

char *SSetShow(SSET ss);

returns a string stored in static memory showing the value of ss, for example "{0, 3-5}". When
the set is finalized an asterisk is appended to the string. A long result is neatly elided to fit into
the 200-character buffer set aside to hold it. Actually there are four such buffers, and SSetShow

may be called up to four times before one of its previous results is overwritten.

Function

void SSetTest(FILE *fp);

carries out a fixed set of tests on this module, writing its results to fp.

The SSet module also offers tables indexed by SSets, as follows:

SSET_TABLE SSetTableMake(HA_ARENA a);
void SSetTableInsert(SSET_TABLE st, SSET ss, void *val);
bool SSetTableRetrieve(SSET_TABLE st, SSET ss, void **val);
void SSetTableDebug(SSET_TABLE st, int indent, FILE *fp);
void SSetTableTest(FILE *fp);

SSetTableMake returns a new, empty table. SSetTableFree frees the memory used by st.
SSetTableInsert inserts an entry with key ss (actually &ss, and there is no copying of the
SSet) and value val into st. It aborts with an error message if an entry with an equal key is
already present. It would be disastrous to change ss after it has been inserted into a table, but
SSetTableInsert does not actually require ss to be finalized. SSetTableRetrieve retrieves
the entry with key ss from st, setting *val to its value and returning true on success, and setting

*val to NULL and returning false on failure. Finally, SSetTableDebug produces a debug print
of st onto fp with the given indent, and SSetTableTest tests the table code, with output to fp.

The table is implemented by a trie structure; each item is used to index an extensible array.
Actually, for items after the first, the difference between the item and the previous item (always
non-negative because items are held in increasing order) is used. Sets whose items are large
integers should not be stored in these tables, because they will lead to excessively long arrays.

A.4. Priority queues

When a solver needs to visit things in priority order, it is easiest to just put them in an array and
sort them. Occasionally, however, their priorities change as solving proceeds, and then, since
resorting after every change is not efficient, a priority queue is needed.

KHE comes with a C priority queue module called PriQueue, consisting of header file
khe_priqueue.h and implementation file khe_priqueue.c. These are stored and compiled
with KHE, but can also be used separately. To use PriQueue, simply include khe_priqueue.h.
Including khe.h does not automatically include khe_priqueue.h as well. The implementation
uses a Floyd-Williams heap with back indexes. Each operation takes O(log(n)) time at most.

File khe_priqueue.h begins with these type definitions:

A.4. Priority queues 453

typedef struct khe_priqueue_rec *KHE_PRIQUEUE;

typedef int64_t (*KHE_PRIQUEUE_KEY_FN)(void *entry);
typedef int (*KHE_PRIQUEUE_INDEX_GET_FN)(void *entry);
typedef void (*KHE_PRIQUEUE_INDEX_SET_FN)(void *entry, int index);

The first defines the type of a PriQueue as a pointer to a private record in the usual way. The
others define the types of callback functions stored within the PriQueue and called by it.

An entry is one element of a priority queue. PriQueue is generic: its entries are represented
by void pointers and may have any type consistent with that. Each entry has a key, which is its
priority in the priority queue, and an index, which is used internally by PriQueue to point to its
position in the priority queue. A typical entry type would look like this:

typedef struct my_entry_rec {
int64_t key; /* PriQueue key */
int index; /* PriQueue index */
...

} *MY_ENTRY;

where ... stands for other fields. PriQueue needs to retrieve the key, and to retrieve and set the
index, which is what the three callback functions are for. Here they are for type MY_ENTRY:

int64_t MyEntryKey(void *entry)
{
return ((MY_ENTRY) entry)->key;

}

int MyEntryIndex(void *entry)
{
return ((MY_ENTRY) entry)->index;

}

void MyEntrySetIndex(void *entry, int index)
{
((MY_ENTRY) entry)->index = index;

}

PriQueue sets the value of an entry’s index field to a positive integer during an insertion, and to
zero during a deletion. Accordingly, the user should initialize it to zero, and then it can be used
to determine whether the entry is currently in a priority queue or not.

To create a new PriQueue, call

KHE_PRIQUEUE KhePriQueueMake(KHE_PRIQUEUE_KEY_FN key,
KHE_PRIQUEUE_INDEX_GET_FN index_get,
KHE_PRIQUEUE_INDEX_SET_FN index_set, HA_ARENA a);

For the example above, the call would be

KhePriQueueMake(&MyEntryKey, &MyEntryIndex, &MyEntrySetIndex, a);

454 Appendix A. Modules Packaged with KHE

Initially the queue is empty. There is no operation to delete a priority queue; instead, it is deleted
when arena a is deleted. To test whether a priority queue is empty or not, call

bool KhePriQueueEmpty(KHE_PRIQUEUE p);

To insert an entry, call

void KhePriQueueInsert(KHE_PRIQUEUE p, void *entry);

making sure that the entry’s key is defined beforehand; the index need not be, since it will be set
by PriQueue. Functions

void *KhePriQueueFindMin(KHE_PRIQUEUE p);
void *KhePriQueueDeleteMin(KHE_PRIQUEUE p);

return an entry with minimum key, assuming that p is not empty, and KhePriQueueDeleteMin

removes the entry from the queue at the same time. Function

void KhePriQueueDeleteEntry(KHE_PRIQUEUE p, void *entry);

deletes entry from p; it must lie in p. There is also

void KhePriQueueClear(KHE_PRIQUEUE p);

which calls KhePriQueueDeleteEntry repeatedly until p is empty, choosing at each step the
entry that is easiest to delete (the last one in the Floyd-Williams heap).

To update the priority of an entry, first change its key and then call

void KhePriQueueNotifyKeyChange(KHE_PRIQUEUE p, void *entry);

to inform p that it has changed. This will change entry’s order in the queue, moving it forwards
or backwards as required. Finally,

void KhePriQueueTest(FILE *fp);

tests the module and prints its results onto file fp.

A.5. XML handling with KML

KML is a C module for reading and writing XML. It consists of a header file called kml.h, and
implementation files called kml.c and kml_read.c. These are stored and compiled with the
KHE platform, and khe_platform.h includes kml.h. They can also be abstracted from it and
used separately, although they do use the Ha memory module (Appendix A.1).

KHE uses KML to read and write XML. The KHE user encounters KML in exactly one
place: when reading an archive, an object of type KML_ERROR is returned if there is a problem.

A.5.1. Representing XML in memory

Type KML_ELT represents one node in an XML tree structure, including its label, attributes, and
children. The operations for querying a KML_ELT object are

A.5. XML handling with KML 455

int KmlLineNum(KML_ELT elt);
int KmlColNum(KML_ELT elt);
char *KmlLabel(KML_ELT elt);
KML_ELT KmlParent(KML_ELT elt);
char *KmlText(KML_ELT elt);

KmlLineNum and KmlColNum return a line number and column number stored in the element,
presumably recording its position in some input file somewhere. KmlLabel returns the label
of the element, and KmlParent returns its parent element in the tree structure, or NULL if none.
KmlText returns the text content of elt, or NULL if none.

For querying the attributes of elt the operations are

int KmlAttributeCount(KML_ELT elt);
char *KmlAttributeName(KML_ELT elt, int index);
char *KmlAttributeValue(KML_ELT elt, int index);
bool KmlContainsAttributePos(KML_ELT elt, char *name, int *index);
bool KmlContainsAttribute(KML_ELT elt, char *name, char **value);

KmlAttributeCount returns the number of elt’s attributes, and KmlAttributeName and
KmlAttributeValue return its index’th attribute’s name and value. The first attribute has
index 0. Negative indexes are allowed: -1 means the last attribute, -2 the second last, and
so on. KmlContainsAttributePos returns true if elt contains an attribute with the giv-
en name, setting *index to its index if so; otherwise it returns false and sets *index to -1.
KmlContainsAttribute has the same return value, but it sets *value to the attribute’s value if
found, and to NULL otherwise.

For querying the children of elt the operations are

int KmlChildCount(KML_ELT elt);
KML_ELT KmlChild(KML_ELT elt, int index);
bool KmlContainsChildPos(KML_ELT elt, char *label, int *index);
bool KmlContainsChild(KML_ELT elt, char *label, KML_ELT *child_elt);

KmlChildCount returns the number of children, and KmlChild returns the index’th child, again
counting from 0 with negative indices allowed. KmlContainsChildPos returns true if elt

contains a child with the given label, setting *index to the index of the first such child if so;
otherwise it returns false and sets *index to -1. KmlContainsChild has the same return value,
but it sets *child_elt to the first such child if found, and to NULL otherwise.

There are operations for constructing KML_ELT objects directly:

KML_ELT KmlMakeElt(int line_num, int col_num, char *label, HA_ARENA a);
void KmlAddAttribute(KML_ELT elt, char *name, char *value);
void KmlAddChild(KML_ELT elt, KML_ELT child);
void KmlDeleteChild(KML_ELT elt, KML_ELT child);
void KmlAddText(KML_ELT elt, char *text);
void KmlAddFmtText(KML_ELT elt, char *fmt, ...);

KmlMakeElt creates a new element with the given line number, column number, and label,
using memory from arena a; KmlAddAttribute adds an attribute; KmlAddChild adds a child;

456 Appendix A. Modules Packaged with KHE

KmlDeleteChild deletes a child; and KmlAddText and KmlAddFmtText add text, either as given
or formatted using sprintf (with no risk of overflow). They may be called repeatedly on one
elt, in which case the successive texts are concatenated. All these functions store copies, kept
in arena a, of the strings they are passed, not the original strings.

As usual throughout KHE, there is no operation for freeing the memory used by an element.
Instead, it is freed when arena a is deleted. Typically, a whole tree is built in one arena, so that
it can be freed very efficiently by deleting the arena.

It is not safe to retrieve a string from an element,delete the enclosing arena, and then attempt
to use the string. Such strings must be copied into a longer-lived arena. KHE’s operations all do
this, so there is no danger when KHE converts elements into archives, instances, etc.

A.5.2. Error handling and format checking

KML does not print any error messages; instead it reports an error by returning an object of type
KML_ERROR, containing the line number and column number of the point of error, plus a message
explaining what the problem was:

int KmlErrorLineNum(KML_ERROR ke);
int KmlErrorColNum(KML_ERROR ke);
char *KmlErrorString(KML_ERROR ke);

These objects can form the basis of error messages printed by the user.

KML’s operations for reading a file check only for well-formedness, not for conformance to
a legal document type definition, nor for high-level semantic constraints. During the conversion
from KML_ELT to the user’s own data structure, other errors may be uncovered, and it is conve-
nient to be able to report those as objects of type KML_ERROR also. Accordingly, operation

KML_ERROR KmlErrorMake(HA_ARENA a, int line_num, int col_num,
char *fmt, ...);

is provided. It creates a new object of type KML_ERROR in arena a, initializes it with the given line
number, column number, and formatted text (as for printf), and returns it. There is also

KML_ERROR KmlVErrorMake(HA_ARENA a, int line_num, int col_num,
char *fmt, va_list ap);

which is to KmlErrorMake what vprintf is to printf, and

bool KmlError(KML_ERROR *ke, HA_ARENA a, int line_num, int col_num,
char *fmt, ...);

which is like KmlErrorMake except that it sets *ke to the object it makes, and always returns
false. This is convenient for uses such as

if(bad_thing_discovered)
return KmlError(ke, a, line_num, col_num, "bad %s thing", str);

which bails out of a function that returns a boolean indicating whether all is well. There is also

A.5. XML handling with KML 457

KML_ERROR KmlErrorCopy(KML_ERROR ke, HA_ARENA a);

which returns a fresh copy of ke in arena a.

To check whether a KML_ELT object conforms to a document type definition, call:

bool KmlCheck(KML_ELT elt, char *fmt, KML_ERROR *ke);

If elt conforms to the definition expressed by fmt, then true is returned; otherwise, false is
returned and *ke is set to an object recording the nature of the error, including a line and column
number taken from either elt itself or one of its children, as appropriate.

Parameter fmt describes the attributes and children of elt—not the label of elt, which will
have already been checked by the time elt is examined, nor the children’s children, which may
be checked by the user during a recursive traversal of elt’s children. For example,

"+Reference : #Value"

says that elt has an optional attribute whose name is Reference, and exactly one child whose
label is Value and whose body must contain text denoting an integer (no children). The part
before the colon specifies attributes, and the part after it (if there is a colon at all) specifies chil-
dren. An initial+means optional, and an initial*means zero or more; neither means exactly one.
After that, an initial$means text (no children), and an initial#means text representing an integer
(again, no children); neither means that there may be children. Here is a longer example:

"Reference : +#Duration +Time +Resources"

The element must have exactly one attribute,Reference. It has up to three children, an optional
integer Duration, followed by an optional Time, and finally an optional Resources. As
mentioned, the structure of the children may be checked by subsequent calls to KmlCheck.

A.5.3. Reading XML files

The simple way to read an XML file is to call

bool KmlReadFile(FILE *fp, FILE *echo_fp, KML_ELT *res, KML_ERROR *ke,
HA_ARENA a);

KmlReadFile reads fp, which must be open for reading UTF-8. If echo_fp != NULL, it writes
everything it reads to echo_fp, as a debugging aid. If there were no problems with the read,*res
is set to a new KML_ELT object representing the XML that was found, and true is returned. The
operations of Appendix A.5.1 may be used to traverse *res. Otherwise, *ke is set to an error
object (Appendix A.5.2) describing the first error (reading stops there), and false is returned.

KmlReadFile skips over any prolog, then reads exactly one element (including its descen-
dants) from fp, from the first tag in fp to the matching end tag, then skips over any epilog (trailing
comments, etc.) which involves skipping white space as well to see if epilog elements are there.
After KmlReadFile ends,fp remains open, leaving it to the caller to either close it or keep reading
from it. At that point, either end of file will have been reached, or else the next character read
will be the first character that could not be part of the epilog, pushed back using ungetc.

All memory consumed by KmlReadFile, including memory for *res and its descendants,

458 Appendix A. Modules Packaged with KHE

and for *ke if needed, comes from arena a. After everything useful has been extracted from *res

and its descendants, a may be deleted or recycled as usual.

XML files can be large, and it may be better to read and process them one piece, or segment,
at a time. A segment is defined by an element called its root. It consists of its root plus its root’s
descendants, excluding elements which are the roots of other segments, and their descendants.

There is a root segment whose root element is the overall root. So every element lies in one
segment, the one defined by its nearest ancestor (possibly itself) that is the root of a segment.

Reading in segments requries several steps. The first step is to call

KML_READER KmlReaderMake(void *impl, HA_ARENA_SET as, HA_ARENA a);

This creates a KML_READER object in arena a. The impl parameter is a pointer back to the user’s
data structures, and as is an arena set which is the source of any arenas, additional to a, that may
be needed, of which more later. Functions

void *KmlReaderImpl(KML_READER kr);
HA_ARENA_SET KmlReaderArenaSet(KML_READER kr);
HA_ARENA KmlReaderArena(KML_READER kr);

return the three attributes of kr.

While the file is being read (while function KmlReaderReadFileSegmented below is
running), callbacks are made to user code, which might detect a semantic error which should
abort the whole read. For this there is

void KmlReaderFail(KML_READER kr, KML_ERROR ke);

which uses a C long jump to return early from KmlReaderReadFileSegmented with error ke.

There is no operation to reclaim the memory consumed by a KML_READER object. As usual,
it is freed when its arena is deleted.

The second step is to make matching pairs of calls to these functions:

void KmlReaderDeclareSegmentBegin(KML_READER kr, char *path_name,
KML_SEGMENT_FN segment_begin_fn);

void KmlReaderDeclareSegmentEnd(KML_READER kr,
KML_SEGMENT_FN segment_end_fn);

These give the path names of the elements which are to be the roots of segments. For example,
suppose that the file structure is

HighSchoolTimetableArchive
+Instances

*Instance
+SolutionGroups

*SolutionGroup
*Solution

where + means optional,* means zero or more, and indenting indicates nesting, and suppose that
each Instance, SolutionGroup, and Solution is to be one segment. Then the calls are

A.5. XML handling with KML 459

KmlReaderDeclareSegmentBegin(kr, "HighSchoolTimetableArchive", &fn1);
KmlReaderDeclareSegmentBegin(kr, "Instances/Instance", &fn2);
KmlReaderDeclareSegmentEnd(kr, &fn3);
KmlReaderDeclareSegmentBegin(kr, "SolutionGroups/SolutionGroup", &fn4);

KmlReaderDeclareSegmentBegin(kr, "Solution", &fn5);
KmlReaderDeclareSegmentEnd(kr, &fn6);

KmlReaderDeclareSegmentEnd(kr, &fn7);
KmlReaderDeclareSegmentEnd(kr, &fn8);

using indenting to show the structure. They mimic the structure of the file. Each path name is
a sequence of one or more element names separated by slashes, and is relative to the enclosing
segment, except at the root. As a special case, an element name may be "*", and then it will
match with any name.

In cases like those for Instance and Solution above, where there are no inner segments,
segment_begin_fn is called immediately before segment_end_fn, as will be explained below.
In that case two callbacks are not needed, and so KML offers

void KmlReaderDeclareSegment(KML_READER kr, char *path_name,
KML_SEGMENT_FN segment_fn);

to replace KmlReaderDeclareSegmentBegin and KmlReaderDeclareSegmentEnd:

KmlReaderDeclareSegmentBegin(kr, "HighSchoolTimetableArchive", &fn1);
KmlReaderDeclareSegment(kr, "Instances/Instance", &fn2);
KmlReaderDeclareSegmentBegin(kr, "SolutionGroups/SolutionGroup", &fn3);

KmlReaderDeclareSegment(kr, "Solution", &fn4);
KmlReaderDeclareSegmentEnd(kr, &fn5);

KmlReaderDeclareSegmentEnd(kr, &fn6);

There is no substantial difference.

A path name can also be a sequence of path names separated by colons, like this:

"HighSchoolTimetableArchive:EmployeeScheduleArchive"

Then elements indicated by all paths are the roots of segments, with the same inner segments.

The third step is to actually read the file, by calling

bool KmlReaderReadFileSegmented(KML_READER kr, FILE *fp, FILE *echo_fp,
KML_ERROR *ke);

KmlReaderReadFileSegmented is similar to KmlReadFile, except that no KML_ELT is returned.
It can be called multiple times on one KML_READER, although not in parallel.

As KmlReaderReadFileSegmented reads the file, it calls callback functions
segment_begin_fn and segment_end_fn at the beginning and end of each segment. In the
syntax that the user would use to declare these functions, they are

460 Appendix A. Modules Packaged with KHE

void segment_begin_fn(KML_SEGMENT ks)
{

... process ks ...
}

This allows the user access to each segment, at the start of the segment and again at the end.

The call on segment_begin_fn does not occur at the moment its element begins in the
input file. That would not be useful, because none of the element’s content is available then.
Instead, the callback is delayed until the first inner segment is about to begin, or if there are no
inner segments, until the segment is about to end. At that point, the segment’s root contains data
that can be processed into an initial value for the corresponding object on the user side.

The call on segment_end_fn occurs as the segment’s root element is ending, and can be
used to finalize the corresponding user data structure. Either or both of segment_begin_fn and
segment_end_fn may be NULL, and then the corresponding callback is omitted.

The final step is to write the callback functions. Within each function, the user has access
to segment ks, to which the following functions may be applied:

KML_ELT KmlSegmentRoot(KML_SEGMENT ks);
KML_READER KmlSegmentReader(KML_SEGMENT ks);
HA_ARENA KmlSegmentArena(KML_SEGMENT ks);

KmlSegmentRoot returns the root of the segment. From there one can explore the children, their
children, and so on, insofar as they exist at the moment that the callback occurs. One can never
reach the elements of any inner segments in this way, not even from the callback at the end of
the segment, because such elements are not made children of their (logical) parent elements in
the usual way. The same fact looked at from the other side means that the root element has no
parent, so there is no way to reach elements in the enclosing segment.

KmlSegmentReader returns the KML_READER object passed to the enclosing call to
KmlReaderReadFileSegmented. This is useful for reaching user data structures via
KmlReaderImpl, ending the read early with failure via KmlReaderFail, and so on.

KmlSegmentArena returns the segment’s arena. This holds the segment object itself, its root
element, and the root element’s decendants. Care is needed not to create objects, for example
error objects, in a segment’s arena that are intended to outlast the segment. An alternative arena
that will outlast the segment is KmlReaderArena(KmlSegmentReader(ks)).

The use of arenas in segmented file reading is somewhat complex, in that the root segment is
a special case. Its arena is the arena passed to KmlReaderMake. That arena holds both the reader
object and the root segment, and is not deleted by KML. The user should delete or recycle it after
the whole read is over. Each of the other segments has its own arena, taken from the arena set as
passed to KmlReaderMake (or created, as usual, if as is empty). This arena is deleted, or rather
recycled through as, immediately after the segment’ssegment_end_fn returns. So the user must
ensure that everything needed on the user side is extracted from the segment by that time. It is
almost certainly a disastrous error to store the segment passed in the callback function, or any of
its elements, in user-side data structures.

A.5. XML handling with KML 461

A.5.4. Writing XML files

Writing an XML file begins with the creation of a KML_FILE object, by calling

KML_FILE KmlMakeFile(FILE *fp, int initial_indent, int indent_step);

Pointer type KML_FILE, defined in kml.h, represents an XML file open for writing (never
reading). It holds a file pointer and a few attributes describing the state of the write, including a
current indent, used to produce neatly indented XML. File fp must be open for writing UTF-8
characters; initial_indent is the initial indent, typically 0, and indent_step is the number of
spaces to indent at each level, typically 2 or 4.

When reading an XML file using KML it is necessary to first read the file into a KML_ELT

object, and then build the user data structure that is really wanted, while traversing the KML_ELT
object. The reverse procedure may be used for writing, by calling

void KmlWrite(KML_ELT elt, KML_FILE kf);

KmlWrite writes elt and its attributes and children recursively to kf. But it is also possible to
write directly to a file while traversing the user’s data structure, without using KML_ELT objects.
To do this, the operations are

void KmlBegin(KML_FILE kf, char *label);
void KmlAttribute(KML_FILE kf, char *name, char *value);
void KmlPlainText(KML_FILE kf, char *text);
void KmlFmtText(KML_FILE kf, char *fmt, ...);
void KmlEnd(KML_FILE kf, char *label);

KmlBegin begins an object with the given label, and KmlEnd ends it. KML does not check that
the labels match, even though they must. Immediately after calling KmlBegin, any number of
calls to KmlAttribute are allowed; each adds one attribute, with the given name and value, to
the object just begun. After that, KmlPlainText may be called to add some text as the body of
the object, or KmlFmtText to add some formatted text as the body (where fmt and the following
parameters are suitable for passing on to fprintf). KmlPlainText prints the characters &<>’"
in their escape sequence forms (& and so on); KmlFmtText does not, so it is best limited to
tasks that cannot generate such characters (printing numbers, etc.). Alternatively, any number of
nested calls to KmlBegin …KmlEnd may precede the matching KmlEnd, to add children.

For convenience, three operations are offered which write an entire element in one call:

void KmlEltAttribute(KML_FILE kf, char *label, char *name, char *value);
void KmlEltPlainText(KML_FILE kf, char *label, char *text);
void KmlEltFmtText(KML_FILE kf, char *label, char *fmt, ...);

These are simple combinations of the functions above, only writing on one line (except newlines
in text). KmlEltAttribute writes an object with the given label and attribute, but no body.
KmlEltPlainText and KmlEltFmtText write an object with the given label, no attributes, and a
plain or formatted text body. A few other such functions are available, for which see kml.h.

Appendix B. Implementation Notes

This chapter documents aspects of the implementation of KHE. It is included mainly for the
author’s own reference; it is not needed for using KHE.

B.1. Source file organization

The KHE platform is organized in object-oriented style, with one C source file for each major
type. A type’s internals are visible only within its file; all access to them is via functions. Headers
for some of these functions appear in khe_platform.h, making them available to the end user.
Headers for others appear in khe_interns.h, making them available only to the platform.

Although this section applies to all source files, it is motivated by the problems of organizing
the source files of types defining parts of solutions. Some of these are quite large. For example,
file khe_meet.c, which holds the internals of type KHE_MEET, is about 5000 lines long.

There is a canonical order for the types representing parts of solutions: KHE_SOLN,
KHE_MEET, KHE_MEET_BOUND, KHE_TASK, KHE_TASK_BOUND, KHE_MARK, KHE_PATH, KHE_NODE,
KHE_LAYER, KHE_ZONE, KHE_TASKING. The intention of defining this order is that these types
should be handled in this order whenever appropriate—in this Guide for example.

Source files are organized internally by dividing them into submodules, which are segments
of the files separated by comments. Each submodule handles one aspect of the type. Here is a
generic list of the submodules appearing in any one file, in their order of appearance:

Type declaration
Simple attributes (back pointers, visit numbers, etc.)
Creation and deletion
Relations with objects of the same type (copy, split, etc.)
Relations with objects of different types
File reading and writing
Debug

Simple attributes are easily handled attributes that are not closely related to any following
categories. They may appear in separate submodules, or be grouped into one submodule. Each
relation is one submodule (counting opposite operations, such as split and merge, as part of one
relation), except that a large relation may be broken into several submodules. Relations with
different types appear in the canonical order defined above.

An attempt has been made to keep the submodules in the same order as their functions
are presented in this Guide, except for debugging. Some submodules have no defined position
according to this rule, because they are present only to support other submodules, and offer no
functions to the end user. Those are placed where they seem to fit best.

462

B.2. Relations between objects 463

B.2. Relations between objects

This section explains how KHE maintains relations between objects. Not every relation is
maintained as explained here, but it is the author’s aim to achieve that in time.

The most common relation,by far, is the one-to-many relation, in which one object is related
to any number of objects of the same or another type: one node contains any number of meets,
one meet contains any number of tasks, one meet is assigned any number of meets, and so on.

Let KHE_A be the type of the entity that there is one of, and KHE_B be the type of the
entity that there are many of. KHE implements the relation by placing one attribute, of type
ARRAY_KHE_B, in KHE_A, holding the many KHE_B objects related to KHE_A, and two in KHE_B:

KHE_A a;
int a_index;

holding the one KHE_A object related to this object, and this object’s index in that object’s array.
Any attributes of the relation, such as the offset attribute of the meet assignment relation, appear
alongside these two. In the KHE_A class file, functions

void KheAAddB(KHE_A a, KHE_B b);
void KheADeleteB(KHE_A a, KHE_B b);

are defined which add and delete elements of the relation, as well as the usual KheABCount and
KheAB functions which iterate over the array. In the KHE_B class file, functions

KHE_A KheBA(KHE_B b);
void KheBSetA(KHE_B b, KHE_A a);
int KheBAIndex(KHE_B b);
void KheBSetAIndex(KHE_B b, int a_index);

get and set the a and a_index attributes of b, supporting constant time deletions. Instead of
searching for b in a’s array,a_index is used to find it directly. It is overwritten by the entity at the
end of the array, whose index is then changed. This assumes that the order of the array’s elements
may be arbitrary, as is usually the case. The setter functions are private to the platform.

This plan allows a KHE_B object to be unrelated to any KHE_A object (just set its a attribute to
NULL), but does not support many-to-many relations, where a KHE_B object may be related to any
number of KHE_A objects. On the rare occasions when KHE needs this kind of relation, it adapts
the familiar edge lists implementation of graphs: it defines a type KHE_A_REL_B representing
one element of the many-to-many relation, and installs one one-to-many relation from KHE_A to
KHE_A_REL_B, and another from KHE_B to KHE_A_REL_B. This gives KHE_A_REL_B attributes

KHE_A a;
int a_index;
KHE_B b;
int b_index;

and places it in arrays in both entity_a and entity_b. Now the operations for adding and
deleting an element of the relation must add or delete two one-to-many relations, as well as
creating or deleting one KHE_A_REL_B object, which is done using a free list to save time.

464 Appendix B. Implementation Notes

B.3. Kernel operations

The promises made in connection with marks and paths, that all operations that change a solution
can be undone (except changes to visit numbers), and that undoing a deletion recreates the object
at its original address, have significant implications for the implementation.

The KHE platform has an inner layer called the solution kernel, or just the kernel, consisting
of a set of private operations, called kernel operations, which change a solution. Each kernel
operation has a name of the form KheEntityKernelOp, where Entity is the data type and
Op is the operation. It is the kernel operations that are stored in paths. All operations (except
operations on visit numbers) change the solution only by calling kernel operations, so if those are
correctly done, undone, and redone, all operations will be correctly done, undone, and redone.

For the record, here is the complete list of kernel operations:

KheMeetKernelSetBack
KheMeetKernelAdd
KheMeetKernelDelete
KheMeetKernelSplit
KheMeetKernelMerge
KheMeetKernelMove
KheMeetKernelAssignFix
KheMeetKernelAssignUnFix
KheMeetKernelAddMeetBound
KheMeetKernelDeleteMeetBound
KheMeetKernelSetAutoDomain

KheMeetBoundKernelAdd
KheMeetBoundKernelDelete
KheMeetBoundKernelAddTimeGroup
KheMeetBoundKernelDeleteTimeGroup

KheLayerKernelSetBack
KheLayerKernelAdd
KheLayerKernelDelete
KheLayerKernelAddChildNode
KheLayerKernelDeleteChildNode
KheLayerKernelAddResource
KheLayerKernelDeleteResource

KheTaskKernelSetBack
KheTaskKernelAdd
KheTaskKernelDelete
KheTaskKernelSplit
KheTaskKernelMerge
KheTaskKernelMove
KheTaskKernelAssignFix
KheTaskKernelAssignUnFix
KheTaskKernelAddTaskBound
KheTaskKernelDeleteTaskBound

KheTaskBoundKernelAdd
KheTaskBoundKernelDelete

KheNodeKernelSetBack
KheNodeKernelAdd
KheNodeKernelDelete
KheNodeKernelAddParent
KheNodeKernelDeleteParent
KheNodeKernelSwapChildNodesAndLayers
KheNodeKernelAddMeet
KheNodeKernelDeleteMeet

KheZoneKernelSetBack
KheZoneKernelAdd
KheZoneKernelDelete
KheZoneKernelAddMeetOffset
KheZoneKernelDeleteMeetOffset

Each KheEntityKernelOp function has a companion KheEntityKernelOpUndo function.
KheEntityKernelOp carries out its operation and adds itself to the solution’s path, if present.
KheEntityKernelOpUndo undoes what KheEntityKernelOp did, only without removing itself
from the solution’s path, since it is called by a function that has already done that.

B.3. Kernel operations 465

A redo must be identical to the original operation, because both can be inverted by calling
KheEntityKernelOpUndo and removing one record from the solution path. So there are no
KheEntityKernelOpRedo functions; KheEntityKernelOp functions are called instead.

Some operations come in opposing pairs (split and merge, fix and unfix, and so on), such
that doing one is the same as undoing the other, except that a do or redo adds a record to the
solution’s path, whereas an undo does not. In these cases the implementation contains one
private function called KheEntityDoOp1 and another called KheEntityDoOp2, where Op1 and
Op2 are opposing pairs. These functions carry out the two operations without touching the so-
lution’s path. Then KheEntityKernelOp1, KheEntityKernelOp2, KheEntityKernelOp1Undo,
and KheEntityKernelOp2Undo are each implemented by one call on KheEntityDoOp1 or
KheEntityDoOp2, plus an addition to the solution’s path if the operation is not Undo.

Operations that create and delete objects are awkward, as it turns out, so the rest of this
section is devoted to them. The meet split and merge operations are particularly awkward, so we
will start with the regular creation and deletion operations, generically named KheEntityMake

and KheEntityDelete, and treat meet splitting and merging afterwards.

Solution objects are recycled through free lists held in the enclosing solution. When a new
object is needed, it is taken from the free list, or from the solution’s arena if the free list is empty.
When an object is no longer needed, it is added to the free list. When the solution is deleted, and
only then, the objects on the free list are deleted as part of the deletion of the arena. Free lists
not only save time in handling the objects, they also save time in handling any extensible arrays
within those objects: those arrays remain initialized while the object is on the free list.

An operation which obtains a new object from a memory allocator or free list cannot be
a kernel operation, because then a redo would not re-create the object at its previous memory
location. An operation which returns an object to a memory allocator or free list cannot be a
kernel operation, because an undo would not re-create the object at its previous memory location.
So only the part of KheEntityMake which initializes the object and links it into the solution is
the kernel operation, and only the part of KheEntityDelete which unlinks the object from the
solution is the kernel operation. This leads to this picture of the life cycle of a kernel object:

nonexist freelist unlinked linked

KheEntityDoMake

KheEntityDoMake

KheEntityDoGet

KheEntityDoGet

KheEntityUnGet KheEntityUnGetKheEntityDoAdd

KheEntityDoAdd

KheEntityUnAdd KheEntityUnAdd

State nonexist means that the object does not exist; freelist means that it exists on a free list;
unlinked means that it exists, not on a free list, not linked to the solution, but referenced from
somewhere on some path; and linked means that it exists and is linked to the solution.

KheEntityDoMake obtains a fresh object from the memory allocator and initializes its
private arrays. There is no corresponding KheEntityUnMake operation, because memory is freed
only by deleting arenas, not directly.

KheEntityDoGet obtains a fresh object from the free list, or from KheEntityDoMake if the
free list is empty. Either way, the object’s arrays are initialized, although not necessarily empty.
Objects returned by KheEntityDoMake do not actually enter the free list. KheEntityUnGet does
the opposite, adding the object it is given to the free list.

KheEntityDoAdd initializes the unlinked object it is given, assuming that its private arrays

466 Appendix B. Implementation Notes

are initialized, although not necessarily empty (it clears them), and links it into the solution.
KheEntityUnAdd does the opposite, unlinking the object it is given from the solution.

The kernel operations KheEntityKernelAdd and KheEntityKernelDelete and their
Undo companions are each implemented by one call to KheEntityDoAdd or KheEntityUnAdd,
plus an addition to the solution path if the function is not an undo. KheEntityKernelAdd

and KheEntityKernelDelete form an opposing pair, as defined above, except that
KheEntityKernelDelete may include a call to KheEntityUnGet as explained below.

The public function that creates a kernel object, KheEntityMake, is KheEntityDoGet

followed by KheEntityKernelAdd. The public function that deletes one, KheEntityDelete,
begins with kernel operations that help to unlink the object (unassignments and so on), then ends
with KheEntityKernelDelete.

An object can be referenced from the solution and from paths, and there is no simple rule
saying when to call KheEntityUnGet to add it to the free list. To solve this problem, an integer
reference count field is placed in each kernel object, counting the number of references to the
object. Not all references are counted. References from paths at points where the object is added
or deleted are counted. For example, in a path’s record of a meet split or merge, the reference
to the second meet is counted, but not the first. So reference counts increase when paths grow or
are copied, and decrease when paths shrink or are deleted. Also, KheEntityDoAdd adds 1 to the
count, and KheEntityUnAdd subtracts 1. This summarizes references from the solution generally
in one unit of the count.

When the reference count falls to zero, KheEntityUnGet is called to return the object to the
free list. This could happen during a call to KheEntityUnAdd, or when a path shrinks: during a
call to KhePathDelete, or while undoing, which shrinks the solution’s main path.

An unlinked object could have come from the free list, and so could contain no useful
information. It would be a mistake for KheEntityDoAdd to assume that the object it is given has
passed through KheEntityUnAdd and retains useful information from when it was previously
linked. Instead, KheEntityDoAdd must initialize every field of the object it is given, assuming
that its arrays are initialized, but not that they contain useful information.

An example of getting this wrong would be to try to preserve the list of tasks of a meet in
its tasks array when it is unlinked, in a mistaken attempt to ensure that they remain available for
when the meet is recreated. What really happens is that before deleting the meet,KheMeetDelete
deletes its tasks, so records of those task deletions appear on the solution path just before the meet
deletion. When an undo recreates the meet, it immediately goes on to recreate the tasks, without
any need for their preservation in the dormant meet.

A meet split is similar to a creation of the second meet, and a meet merge is similar to a
deletion of the second meet. The main new problem is that tasks need to be split and merged
too. So separate kernel operations are defined for splitting the meet itself and for splitting one
of its tasks, and conversely for merging two meets and for merging two of their tasks. The user
operation for meet splitting does a kernel meet split followed by a sequence of kernel task splits,
and the user operation for meet merging does the opposite.

The key advantage of doing it this way is that tasks are stored explicitly in paths, and their
reference counters take account of this. So the usual method of handling the allocation and
deallocation of entities generally, described above, applies without change to the tasks created
and deleted by meet splitting and merging.

B.3. Kernel operations 467

Meet bounds are related to meets in much the same way as tasks are. Once again, the kernel
meet split operation does not make meet bounds for the split-off meet; instead, they are made
by separate kernel meet bound creation operations, and thus will be undone before a meet split
is undone. Task bounds are handled similarly.

Paths have negligible time cost compared with the operations they record; and their space
cost is moderate, provided they are not used to record wandering methods like tabu search.
Reference counting as implemented here also costs very little: in time, a few simple steps, only
carried out when creating or deleting a kernel object, not each time the object is referenced; and
in space, one integer per kernel object.

B.4. Monitor updating

When the user executes an operation that changes the state of a solution, KHE works out the
revised cost. For efficiency, this must be done incrementally. This section explains how it is
done—but just for information: the functions defined here cannot be called by the user.

The monitors are linked into a network that allows state changing operations to flow
naturally to where they need to go. Only attached monitors are linked in; detached ones are
removed, so that no time is wasted on them. The full list of basic operations that affect cost is

KheMeetMake
KheMeetDelete
KheMeetSplit

KheMeetMerge
KheMeetAssign
KheMeetUnAssign

KheTaskMake
KheTaskDelete
KheTaskAssign
KheTaskUnAssign

Six originate in KHE_MEET objects, four in KHE_TASK objects. From there their impulses flow to
objects of three private types:

KHE_MEET KHE_EVENT_IN_SOLN

KHE_TASK KHE_EVENT_RESOURCE_IN_SOLN

KHE_RESOURCE_IN_SOLN
KheMeetMake

KheMeetMake
KheMeetDelete
KheMeetSplit
KheMeetMerge
KheMeetAssign
KheMeetUnAssign

Split

Split
Merge
AssignTime
UnAssignTime

Add

Add
Delete
Split
Merge
AssignTime
UnAssignTime

Add

Add
Delete
Split
Merge
AssignResource
UnAssignResource

Split

Split
Merge
AssignTime
UnAssignTime
AssignResource
UnAssignResource

KheTaskMake

KheTaskMake
KheTaskDelete
KheTaskAssign
KheTaskUnAssign

468 Appendix B. Implementation Notes

KHE_EVENT_IN_SOLN holds information about one event in a solution: the meets derived from
it (where KheEventMeet gets its values from), a list of ‘event resource in solution’ objects, one
for each of its event resources, and a list of monitors, possibly including a timetable (timetables
are monitors). KHE_EVENT_RESOURCE_IN_SOLN holds information about one event resource in
a solution: the tasks derived from it, and a list of monitors. KHE_RESOURCE_IN_SOLN holds
information about one resource in a solution: the tasks it is currently assigned to, and a list of
monitors, usually including a timetable.

The connections are fairly self-evident. For example, if KheMeetMake is called to make a
meet derived from a given instance event, then that event’s event in solution object needs to know
this, and the Add operation (full name KheEventInSolnAddMeet) informs it. KheMeetAssign

only generates an AssignTime call when the assignment links the meet, directly or indirectly, to
a cycle meet, assigning a time to it. Event resource in solution objects are not told about time
assignments and unassignments. Calls only pass from a task object task to a resource in solution
object when task is assigned a resource.

The connections leading out of KHE_EVENT_IN_SOLN are as follows:

KHE_EVENT_IN_SOLN

KHE_SPLIT_EVENTS_MONITOR

KHE_DISTRIBUTE_SPLIT_EVENTS_MONITOR

KHE_ASSIGN_TIME_MONITOR

KHE_PREFER_TIMES_MONITOR

KHE_EVENT_TIMETABLE_MONITOR

KHE_SPREAD_EVENTS_MONITOR

KHE_ORDER_EVENTS_MONITOR
Add

Add
Delete
Split
Merge

Add

Add
Delete
Split
Merge
AssignTime
UnAssignTime

Split events and distribute split events monitors do not need to know about time assignment and
unassignment. Based on the calls they receive, they keep track of meet durations and report cost
accordingly. Assign time and prefer times monitors are even simpler; they report cost depending
on whether the meets reported to them are assigned times or not.

Event timetables are used by link events constraints, which need to know the times when
the event’s meets are running, ignoring clashes, which is just what timetables offer.

A spread events monitor is connected to the event in solution objects corresponding to each
of the events it is interested in. It keeps track of how many meets from those events collectively
have starting times in each of its time groups, and calculates deviations accordingly. Spread
events monitors are not attached to timetables because, although their monitoring is similar,

B.4. Monitor updating 469

there are significant differences: spread events monitor time groups come with upper and lower
limits, making them not sharable in general, and the quantity of interest is the number of distinct
meets that intersect each time group, not the number of busy times calculated by the time group
monitors attached to timetables.

An order events monitor is connected to the two event in solution objects corresponding to
the two events it is interested in. These keep track of the events’ meets, including their number,
and the monitor itself keeps track of the number of unassigned meets. So determining whether
both events have at least one meet, and whether there are no unassigned meets, take constant
time. If both conditions are satisfied, the monitor traverses both sets of meets to calculate the
deviation and cost when a meet is added, deleted, or assigned a time. (In practice, events subject
to order events constraints do not split, so this too takes constant time.) The other operations are
faster: unassigning a time produces cost 0, and splitting and merging do not change the cost.

The connections leading out of KHE_EVENT_RESOURCE_IN_SOLN are

KHE_EVENT_RESOURCE_IN_SOLN

KHE_ASSIGN_RESOURCE_MONITOR

KHE_PREFER_RESOURCES_MONITOR

KHE_AVOID_SPLIT_ASSIGNMENTS_MONITOR

KHE_LIMIT_RESOURCES_MONITOR
Add

Add
Delete
Split
Merge
AssignResource
UnAssignResource

None of these monitors cares about time assignments and unassignments. Assign resource
monitors and prefer resources monitors are very simple, reporting cost depending on whether the
tasks passed to them are assigned or not.

An avoid split assignments monitor is connected to one event resource in solution object
for each event resource in its point of application. It keeps track of a multiset of resources, one
element for each assignment to each task it is monitoring, and its cost depends on the number of
distinct resources in that multiset.

A limit resources monitor is connected to one event resource in solution object for each
event resource it monitors. It keeps count of the number of assignments of resources from its
resource group.

The connections leading out of KHE_RESOURCE_IN_SOLN are

470 Appendix B. Implementation Notes

KHE_RESOURCE_IN_SOLN

KHE_LIMIT_WORKLOAD_MONITOR

KHE_RESOURCE_TIMETABLE_MONITOR
AssignResource

AssignResource
UnAssignResource

Split

Split
Merge
AssignTime
UnAssignTime
AssignResource
UnAssignResource

Limit workload constraints do not need to know about time assignments, evidently, but they also
do not need to know about splits and merges, since these do not change the total workload.

Calculating workloads is then very simple. Each meet receives a workload when it is
created, and when a resource is assigned, the workload limit monitors attached to its resource in
solution object are updated, and pass revised costs to the solution.

KHE_RESOURCE_TIMETABLE_MONITOR receives many kinds of calls. However, since it main-
tains a timetable containing tasks with assigned times, all these can be mapped to just two in-
coming operations, which we call AddTaskAtTime and DeleteTaskAtTime. For example, a split
maps to one DeleteTaskAtTime and two AddTaskAtTime calls. The outgoing operations are

KHE_RESOURCE_TIMETABLE_MONITOR

KHE_AVOID_CLASHES_MONITOR

KHE_TIME_GROUP_MONITOR
ChangeClashCount

ChangeClashCount
Flush

AssignTimeNonClash

AssignTimeNonClash
UnAssignTimeNonClash
Flush

An avoid clashes monitor is notified whenever the number of meets at any one time increases to
more than 1 or decreases from more than 1 (operation ChangeClashCount above). It uses these
notifications to maintain its deviation. It updates the solution when a Flush is received from the
timetable at the end of the operation.

The other monitors are attached to the timetable at each time they are interested in, and are
notified when one of those times becomes busy (when its number of meets increases from 0 to
1) and when it becomes free (when its number of meets decreases from 1 to 0), by operations
AssignTimeNonClash and UnAssignTimeNonClash above.

A time group monitor monitors one time group within one timetable. It is attached to its
timetable at the times of its time group, so is notified when one of those times becomes busy or
free. It keeps track of the number of busy and idle times in its time group. As an optimization,
the number of idle times is calculated only when at least one limit idle times monitor is attached
to the time group monitor; otherwise the number is taken to be 0.

Old and new values for the number of busy and idle times are stored, and when a flush is
received they are propagated onwards via operation ChangeBusyAndIdle:

B.4. Monitor updating 471

KHE_TIME_GROUP_MONITOR

KHE_AVOID_UNAVAILABLE_TIMES_MONITOR

KHE_LIMIT_IDLE_TIMES_MONITOR

KHE_CLUSTER_BUSY_TIMES_MONITOR

KHE_LIMIT_BUSY_TIMES_MONITOR

KHE_LIMIT_ACTIVE_INTERVALS_MONITOR
AddBusyAndIdle

AddBusyAndIdle
DeleteBusyAndIdle
ChangeBusyAndIdle

When a monitor is attached, function AddBusyAndIdle is called instead, and when a monitor is
detached, function DeleteBusyAndIdle is called instead.

An unavailable times monitor is connected to a time group monitor monitoring the
unavailable times. It receives an updated number of busy times from ChangeBusyAndIdle and
reports any change of cost to the solution.

A limit idle times monitor is connected to the time group monitors corresponding to the time
groups of its constraint. It receives updated idle counts from each of them, and based on them
it maintains its deviation.

A cluster busy times monitor is connected to the time group monitors corresponding to the
time groups of its constraint. It is interested in whether the busy counts it receives from them
change from zero to non-zero, or conversely.

A limit busy times monitor is connected to the time group monitors corresponding to the
time groups of its constraint. It receives updated busy counts from each of them, and based on
them it maintains its deviation.

A limit active intervals monitor is connected to the time group monitors corresponding to
the time groups of its constraint. It is interested in whether the busy counts it receives from them
change from zero to non-zero, or conversely. Using a data structure holding the current set of
active intervals, it maintains its deviation by tracking changes in their lengths (Appendix B.6).

B.5. Monitor attachment and unattachment

Monitor attachment and unattachment are constrained by some basic facts: they can occur at
any time while a solver is running; unattachment is intended to save time, which means that an
unattached monitor must be genuinely unlinked from the solution; and an unattached monitor
has cost 0. Also, it is convenient to bring a monitor into existence in the unattached state and
then attach it, because there is a lot of shared code between creation and attachment.

When a monitor is unattached, it is in the unattached state. Its cost is 0 by definition, and its
attached flag is false. Any other attributes that change as the solution changes are in principle
undefined, because an unattached monitor, including these attributes, is usually out of date.
However a monitor’s invariant is free to assign particular values to any of these attributes in the

472 Appendix B. Implementation Notes

unattached state, if that is convenient.

A monitor becomes attached in two steps. The first step is to convert the unattached state
into the unlinked state, which is the appropriate state for the monitor when it is formally attached
but not yet linked in to the constraint propagation network. Its attached flag is true, and its
attributes that change as the solution changes (including its cost) have well-defined values, and
its cost has been reported to its parents. The second step is to call on each relevant part of the
constraint propagation network, informing it that the monitor is now attached and wants to
receive updates. Each such part will call back with an initial update, that the monitor uses to bring
itself fully up to date.

It is true that one could take a different approach, in which the monitor’s state is not
well-defined, and cost is not reported to parents, until after the monitor is fully linked in to the
constraint propagation network. However, linking to part of the solution or to a monitor often
has the same effect on the monitor as a change of state in that part of the solution or monitor, and
the approach taken here brings out that commonality.

Returning now to our two-step approach, we give some examples of unlinked states. To
keep above the details we confine ourselves to the unlinked cost: the monitor’s cost in the
unlinked state. This is often 0, but not always. Here are a few examples.

The unlinked cost of an assign resource monitor is 0, because it is not linked to any event
resources, and so it cannot be aware of any unassigned ones.

The unlinked cost of a limit busy times monitor is 0, because its cost is summed over its
time groups, and initially it is linked to none.

The main causes of non-zero unlinked costs are minimum limits. Consider a limit workload
monitor with a minimum limit. When it is unlinked, it has no evidence that its resource is
assigned any work at all, and so its unlinked deviation is the cost of being assigned nothing.

In general, the process of attachment of monitor m looks like this:

m->attached = true;
if(unlinked_cost > 0)
{
m->cost = unlinked_cost;
report to parents the cost change from 0 to m->cost;

}
add the links from the solution and other monitors to m;

As previously explained, the last step produces callbacks to m that further change its state, and so
possibly its cost. Unattachment reverses what attachment did:

remove the links from the solution and other monitors to m;
assert(m->cost == unlinked_cost);
if(unlinked_cost > 0)
{
report to parents the cost change from m->cost to 0;
m->cost = 0;

}
m->attached = false;

B.6. The limit active intervals monitor 473

B.6. The limit active intervals monitor

Monitors can be quite lengthy to implement, given the many state-changing operations they need
to accept. However they are usually straightforward, once one understands the basic structure of
taking a state change in, producing a new cost, and reporting it if it changed.

The limit active intervals monitor has a much longer and more complex implementation
than the other monitors. Finding an efficient and coherent implementation was challenging, so
this section documents that implementation in detail.

The basic data structure is a sequence of time group info objects, one for each time group,
holding four fields: a pointer to the time group monitor for that time group, a polarity, and state
and interval fields. A time group info object will be referred to here simply as a time group.

The state field contains the time group’s state. The user is encouraged to believe that there
are two states, active and inactive, but in fact there are three: active, inactive, and open, meaning
that the monitor cannot assume that the time group is either active or inactive.

As Jeff Kingston’s paper on history [10] explains, a limit active intervals monitor is
actually a projection of a larger monitor spanning the full cycle. Its history_before attribute
says how many active time groups there are immediately preceding the current monitor, and its
history_after attribute says how many time groups (in any state) there are following it. The
time group sequence is extended at each end to accommodate these virtual time groups:

a
history_before

history_before

ai aio
0

0

o
history_after

history_aftercutoff_index

cutoff_index

This diagram illustrates several points. The real (non-virtual) time groups are represented by
the white box. The first has index 0. But some indexes outside this range are permitted: down
to -history_before, and up to count + history_after - 1, where count is the number
of real time groups. Actual objects are not present in the two extended parts of the range, but
nevertheless the monitor’s functions accept these indexes. They behave as though each time
group in the left part is active, and each time group in the right part is open. In this way, the
virtuality of these time groups is hidden, except that it is not possible to change their state.

One could simplify the implementation by creating objects for all time groups, but that
would be a mistake. It would be safe enough for history_before, but history_after
could be very large, and creating all those extra time groups would waste time and memory.

A real time group can be active, inactive, or open. It is open when it lies at or after the
cutoff index and its busy count is zero. Otherwise, it is either active or inactive, depending on
its busy count and polarity in the usual way. A virtual time group is active when it lies in the
history_before range, and open when it lies in the history_after range, except that all
time groups (real and virtual) are inactive when the monitor is not attached.

This definition exposes the similarity between cutoff indexes and history after: both specify
that some part of the cycle is not being solved, and hence that time groups there may be open.

There is an asymmetry in when a time group is open which needs explanation. Consider
a real time group at or after the cutoff index. When it is busy (because of a preassignment, say,
or task grouping), its activity or inactivity, depending on its polarity, is known, so considering it
to be open, while possible, entails a loss of potentially valuable information. But when it is not

474 Appendix B. Implementation Notes

busy, its activity or inactivity is not known, so its state must be open, at least by default.

KheLimitActiveIntervalsMonitorSetNotBusyState mitigates this by allowing the user
to specify that when a given time group is at or after the cutoff index and is not busy, its state
is to be active or inactive rather than open. It would perhaps be better to add to the platform an
operation that declares that a certain resource will not be assigned anything at a certain time. But
such an operation would be a major undertaking and it is not likely that it will ever be added.

We’ve reached a key point: we now know what time groups (real and virtual) there are, and
how the state of each time group is defined. So we have a firm foundation to build intervals on.
In doing so we will forget that some time groups are virtual. We will also forget why time groups
have the states they have, and simply take those states as given.

An interval is a sequence of adjacent time groups. An active interval, or a-interval, is a
maximal sequence of adjacent active time groups. Maximum limits are checked by comparing
the lengths of the a-intervals with the limit. An ao-interval is a maximal sequence of adjacent
time groups, each of which is either active or open. Minimum limits are checked by comparing
the lengths of the ao-intervals with the minimum limit.

Actually the rules just given have a flaw. If an ao-interval is entirely open (if it contains no
active time groups), then it is not defective, even if its length is less than the minimum limit. For
now we will pretend that this flaw does not exist. We’ll return to it and handle it later.

An interval is represented by an object in the usual way, containing indexes defining its end-
points, and its cost. One option would be to maintain a list of a-intervals when the monitor has a
non-trivial maximum limit, and a list of ao-intervals when the monitor has a non-trivial minimum
limit. However, given that many monitors have both and that open time groups are uncommon,
this seems too expensive. What we actually do is maintain a list of ao-intervals only.

When a time group changes state for any reason, the sequence of ao-intervals is adjusted to
take account of the change. The relevant ao-intervals are easily reached, because each active and
each open time group contains a pointer to its enclosing interval. It may be necessary to lengthen
an adjacent interval, or merge two intervals that become adjacent, or even to delete an interval
(when the changing time group was its only element). Each interval that changes recalculates its
cost and reports the change in cost to the monitor, which passes on the total change in cost.

New intervals come from a free list of interval objects in the monitor; deleted intervals
return there. So once a solve is well under way there is little or no memory allocation.

It is trivial for an ao-interval to check itself against a minimum limit, because it knows its
own length. (We are still ignoring the problem of ao-intervals with no active time groups.) To
check itself against a maximum limit, it might seem that it needs to find all the a-intervals within
itself and check them against the limit. This is potentially slow. Of particular concern are cases
where there is a small cutoff index, and hence, potentially, a long ao-interval extending past it,
with a-intervals (produced by preassignments, say) scattered along it.

Here, however, we use the fact that the cost of a limit active intervals monitor when there
is a cutoff index is open to negotiation. We include the following in its definition: violations of
limits by active intervals that begin at or after the cutoff index attract no cost. This is a plausible
part of what it means to install a cutoff index; but its real reason for being there is efficiency.

Where then are the a-intervals whose costs we need to calculate? They must begin before
the cutoff index, so they must lie in ao-intervals that begin before the cutoff index. They cannot

B.6. The limit active intervals monitor 475

be preceded by open time groups, because all open time groups lie at or after the cutoff index.
So the a-intervals we need are exactly those whose first time group is the first time group of its
enclosing ao-interval, which itself must begin before the cutoff index.

For each ao-interval, even at and after the cutoff index, let its initial a-interval be the
a-interval (if any) whose first time group is the ao-interval’s first time group. Record in each
ao-interval the length of its initial a-interval, or 0 if there is no initial a-interval. When the
ao-interval’s first time group is before the cutoff index, compare this with the maximum limit and
generate a cost.

These initial a-interval lengths are easy to maintain as time groups change state and intervals
are merged and split. At the worst, when a time group changes from open to active just at the end
of the initial a-interval, the time groups from there on must be scanned to see how much longer
the initial a-interval has become.

Finally, we can now solve the problem of ao-intervals with no active time groups. Since
open time groups can only occur at or after the cutoff index, such intervals always begin at or
after the cutoff index. And we have just introduced a rule which requires all such intervals to
have no cost. Problem solved.

B.7. An arena and arena set plan

Arenas and arena sets can be used to allocate and free memory very efficiently. However, if their
advantages are to be realized, a carefully worked out plan for them is needed.

Some basic facts constrain this plan. Although arenas are cheap to create, still their number
should be minimized, since from one point of view every arena creation is an unproductive use of
time and memory; and it calls malloc and thus may produce contention. Accordingly, all objects
that are known to have the same lifetime should share an arena. For example, any significant
solver will allocate memory while it is running, but after it ends its effect will be confined to
changes in the solution it worked on. So it makes sense for all memory allocated by a solver to be
kept in a single arena, and for that arena to be deleted or recycled as one of the final steps of that
solver. Again, the objects making up one solution will all be deleted together (except the solution
object itself, which may need to survive as a placeholder), so they should lie in one arena.

To maximize the re-use of memory, two rules are needed. First, there should be as few arena
sets as possible, since then there will be as few idle arenas as possible. The minimum number
of arena sets is one per thread, because arena sets have no locking and cannot be shared between
threads. It would be possible to have locked arena sets and create just one global arena set that
all arenas come from, but that approach has not been followed, because even though there would
be very little contention for this arena set, still we prefer to avoid all unnecessary locking.

When a thread ends, its arena set is deleted, after moving its arenas across into the arena set
of the parent thread, the one that will be continuing. Care is needed here when the thread’s arena
set is stored in other objects that are continuing, as KHE stores it in solution objects.

KHE stores the arena set in solution objects but nowhere else. When the thread ends, the
arena set field of every solution that is being kept is set to the parent thread’s arena set, leaving
no trace of the thread arena set in any continuing object.

The second rule for maximizing re-use of memory is that every arena should be taken
from an arena set and returned to an arena set when it is no longer needed: HaArenaMake and

476 Appendix B. Implementation Notes

HaArenaDelete should not be called directly. The main issue here is ensuring that an arena set
is available at every point in the program. For the implementer of KHE, and for users who write
their own multi-threaded programs, this takes some care; but for most users of KHE, it is trivial,
because KHE supplies a suitable arena set with every solution, that the user can obtain arenas
from via functions KheSolnArenaBegin and KheSolnArenaEnd (Section 4.2.2).

We also need to consider modules which assist solvers, such as the priority queue or
weighted bipartite matching modules. Such modules might not wish to get their memory from
KheSolnArenaBegin and KheSolnArenaEnd, because they want to be independent of KHE
solution objects and rely only on Ha, or because they can use the same arena as the solver that
calls them, saving arena creations. These modules typically accept an arena parameter, and offer
no operation to delete themselves, that being done when the arena they are passed is deleted.

The remainder of this section analyses an issue that has puzzled the author. In general, it
arises when it is not known whether a program is going to break into multiple threads or not.

When a solution is created afresh, it is clear that it is going to be solved, and it can be passed
the arena set of the thread it is being solved by. Different solutions may thus have different arena
sets. But when a solution is read, the read is part of a single thread that reads many solutions, and
all solutions would naturally share a single arena set (and do so in the current implementation).

Now consider reading some solutions and resuming solving them in parallel. KHE offers
no functions for doing this, but there is nothing to prevent it, except that there will be a contention
problem in their shared arena set.

However, there is a way out. There is no contention within individual arenas, because each
solution occupies a separate arena (in fact two, owing to the placeholder issue). So the answer
is to create one new arena set for each solution and install it by calling KheSolnSetArenaSet.
Then parallel solving can proceed without problems. Solutions can even be deleted in parallel:
the arenas freed by deletions will be recycled into the new arena sets, not into the old one.

Appendix C. Dynamic Programming

Resource Reassignment:

Theory

This Appendix is rather out of date. It should be up to date in the next release of KHE. This
Appendix presents the theory underlying the dynamic programming algorithm for resource
reassignment (Section 12.6), including an overview of the algorithm, an analysis of its running
time, and the algebra behind its cost calculations. Appendix D presents the implementation.

C.1. Overview of the algorithm

This section gives an overview of the algorithm.

Let the days (time groups of the common frame) selected for reassignment, called the open
days, be 〈d1,… ,dn〉 in chronological order. This is not the full sequence of days of the cycle;other
days, the unselected ones, may occur before, between, and after the open days. Let the resources
(nurses or other employees) selected for reassignment, called the open resources, be {r1,… ,rm} .
Their order does not matter. Let the shift types (morning, afternoon, and so on) be {s0,s1,… ,sa} ,
where s0 is a special shift type denoting non-assignment (a free day).

Instead of using the terms ‘shift’ and ‘shift type’, whose exact meaning can be slippery,
we prefer the following terms when we need to be precise. A task is a variable representing an
indivisible piece of work. It can be unassigned, or else it can be assigned a single resource r,
indicating that r will carry out that work. A multi-task, or mtask, is a set of tasks which are
similar enough to be interchangeable for most purposes; Section 11.9 has the exact definition.
For example, the informal expression ‘the morning shift on the second Monday of the cycle’can
be formalized as an mtask. There is no precise equivalent for ‘shift type’, although one shift type
on one day often defines one mtask.

An assignment is a triple (di,rj,Cik), indicating that on open day di, open resource rj is
assigned to a task from mtask Cik, whose tasks all run on day di. By convention, mtask Ci0 on
day di is a special mtask indicating that rj is free on di. It does not matter which task from Cik

is assigned rj, since the tasks of Cik are interchangeable. In the implementation, the assignment
requests a task from Cik, which returns the best unassigned one.

A solution S is a set of assignments satisfying two conditions. First, at most one assignment
containing a given di and rj may appear in S, because rj may only do one thing on day di. If there
is no assignment containing di and rj in S, it does not mean that rj is free on di; rather, it means
that no decision has been made about what rj is doing on di. This is a key point: on any given
day, a resource is not either busy or free in S; rather, it is either busy, free, or undecided.

The second condition required for S to be a solution is that although each Cik may appear
multiple times in S, its number of occurrences may not exceed the number of tasks in Cik. The

477

478 Appendix C. Dynamic Programming Resource Reassignment: Theory

mtask Ci0, representing a free day on di, may appear any number of times.

If assignments containing all pairs (di,rj) are present, S is called a complete solution. We
often deal with solutions which are complete up to and including a given day dk; that is, with
solutions which contain one assignment for every di and rj such that i ≤ k, and no assignments
for any di and rj such that i > k. These we call dk-solutions. Even though there is no day d0, we
call the empty solution a d0-solution.

All solutions implicitly include many assignments from the initial solution (the one we are
finding a reassignment for): all time assignments, all assignments of unselected resources, and
all assignments of selected resources on unselected days.

An extension of a solution S is a solution S′ such that S ⊆ S′. That is, S′ is a solution that
contains all the assignments of S, plus possibly some others. A complete extension of a solution
S is an extension of S which is a complete solution.

The implementation has solution objects which represent solutions. Rather than holding its
full set of assignments, each solution object holds a few assignments plus a parent pointer which
when non-NULL points to another solution object that this solution object is an extension of. So
to find the full set of assignments one has to follow a path made by parent pointers.

As a step towards the dynamic programming algorithm,consider first a tree search algorithm
which assigns a C1k to each rj on d1, then a C2k to each rj on d2, and so on. If there are a mtasks
on each day (in reality the number can vary), and we ignore the fact that each Cij can be chosen

a limited number of times, then each day has m(a + 1) choices, so the tree tries up to mn(a + 1)
timetables altogether. Clearly this will find the best timetable, but at the cost of exploring an
infeasibly large number of alternatives in practice.

So let us move on to dynamic programming. Consider these two d5-solutions, assuming that
there is just one resource, r1. Each box represents what r1 is doing on one day:

S1 s1 s1 s1 s0 s0
S2 s2 s2 s2 s0 s0

For convenience we write s1 for C11, C21, etc. If there is no constraint on the total number of
s1 shifts that may be assigned r1, and none on the total number of s2 shifts that may be assigned
r1, then S1 and S2 are indistinguishable from here on. If, say, S1 has a smaller cost than S2 (for
example if there is an upper limit of 2 on the number of consecutive s2 shifts, but not on the
number of consecutive s1shifts), then it is safe to not explore the search tree rooted at S2, because
any timetable it leads to will be worse than the corresponding timetable in the search tree rooted
at S1. The dynamic programming algorithm exploits this idea.

Of course, one cannot simply ignore all but one solution for dk. In the example, if there are
upper limits on the number of s1 and s2 shifts, then the search trees rooted at both solutions must
be explored, because the different numbers of s1 and s2 shifts may lead to different costs later.

Given two solutions S1 and S2, we say that S1 dominates S2 if the presence of S1 allows S2
to be dropped. Dominance works by associating an array of numbers with each solution, called
its signature. Most of the numbers will be integers, but some can be floating-point numbers.
The signature has one element for each constraint, usually, recording the constraint’s state. For
example, if there is a maximum limit on the number of shifts worked, the signature of solution
S will have one element recording the number of shifts worked in S. By comparing this element

C.1. Overview of the algorithm 479

in S1 and S2 we can find out if S1 dominates S2 as far as this constraint goes. If S1 dominates S2
for all constraints, and its cost is not larger, then S1 dominates S2.

The solver implements several kinds of dominance. The simplest is equality dominance,
which says that S1 dominates S2 when their signatures are equal at every position, and the cost
of S1 does not exceed the cost of S2. Having equal signatures means that all costs incurred as the
solve progresses beyond dk will be the same, so S1’s cost advantage will never be lost. Another
kind, separate dominance, makes a ‘≤’, ‘≥’, or ‘=’ comparison at each element, depending on
whether the constraint there has a maximum limit, a minimum limit, or both. There are other
kinds of dominance as well, which we’ll explore later.

The dynamic programming algorithm is as follows. Search the search tree in a breadth-first
fashion, first finding the unique d0-solution, then d1-solutions, then d2-solutions, and so on.
For each day dk, maintain Pk, a set of dk-solutions. As each new dk-solution S is created, see
whether S is dominated by any existing solution in Pk and drop it if so. If not, drop from Pk any
existing solutions that are dominated by S, then add S to Pk. In this way, Pk eventually contains
all undominated dk-solutions.

Suppose Pk is all finished. To expand beyond there, for each solution S in Pk, create one new
solution for each combination of assignments of the rj to the su on day dk+1. Each of these new
solutions is a dk+1-solution (ignoring multi-day tasks), so each gets added to Pk+1, with dominance
testing applied within Pk+1just as within Pk. On the last day, dn, all that is required for dominance
is smaller cost, as we will see later. So Pn contains at most one solution, and that is the result.

As we will see, each solution comes with a cost. Solution cost is non-decreasing along each
path in the search tree,because no cost is added until it is certain that subsequent assignments will
not remove it. (This is true even of constraints with minimum limits, whose cost might otherwise
be expected to decrease as the solve proceeds.) So the algorithm compares the cost of each newly
created solution S with the cost of the initial solution, and deletes S when its cost is not smaller.
This is important: it prunes away many inferior alternatives.

Instead of proceeding from one day to the next, one can instead keep all the solutions in a
priority queue and proceed from one solution to the next, always choosing an unchosen solution
of minimum cost (this could be for any day). The advantage is that the algorithm can stop as soon
as a solution is chosen which is for the last day; the disadvantage is the priority queue overhead.
Some solves run more quickly when they use the priority queue; others run more slowly.

A clearer benefit is gained by grouping similar mtasks into larger structures that the author
calls shifts, just as tasks are grouped into mtasks. This is a subject for later.

C.2. Running time

We now prove the result stated in Section 12.6, that one solve runs in time O(n(a + m1) m cmn),
where m is the number of selected resources, n is the number of selected days, a is a constant,
the number of shift types, and c is another constant (usually 1or 2), the number of constraints per
resource whose maximum limits increase with n (such as limits on the total number of shifts).

Let Pk be the final set of stored undominated dk-solutions, for 0 ≤ k ≤ n. Let W (k) be the
number of solutions in Pk when equality dominance is used.

A constraint only needs a presence in the signatures of dk-solutions if its cost is affected

480 Appendix C. Dynamic Programming Resource Reassignment: Theory

ai The history before value of an (unspecified) monitor m
ci The history after value of an (unspecified) monitor m
c(m,S) The cost of monitor m in solution S
c(S) The cost of solution S
di A selected (also called open) day
(di,rj,Cik) An assignment of resource rj to a task of mtask Cik on open day di

[da,… ,db] The active interval of an (unspecified) monitor m
d(m,S) The determinant of monitor m in solution S
dom(S) The domain of solution S
f (x) The cost function attribute of a monitor
l(m,S), or just l The lower determinant of monitor m in solution S
l(z) The length of an a-interval or au-interval z
m The number of selected (also called open) resources; or a monitor
n The number of selected (also called open) days
ri A selected (also called open) resource
si A shift type
u(m,S), or just u The upper determinant of monitor m in solution S
v(x,k) The number of distinct values of expression x on day dk

w The weight attribute of a monitor, part of its cost function f (x)
xi The history value of an (unspecified) monitor m
z An a-interval or au-interval of a sequence monitor
A The set of a-intervals of an (unspecified) sequence monitor m
AU The set of au-intervals of an (unspecified) sequence monitor m
Cik An mtask (a set of interchangeable tasks)
Dl A minimum determinant—a lower limit on l(m,S)
Du A maximum determinant—an upper limit on u(m,S)
Ek The set of expressions requiring an entry in day dk signatures
L The lower limit attribute of a monitor
M The set of all monitors for the current instance
Mk The set of monitors that are active on open day dk

Pk The set (possibly under construction) of undominated dk-solutions
S A solution (a set of assignments), not necessarily complete
S0 The initial solution (the empty set of assignments)
S(k) The cardinality of the final value of Pk using separate dominance
U The upper limit attribute of a monitor
W (k) The cardinality of the final value of Pk using equality dominance
Z The allow zero flag of a monitor
δ(l,u) The deviation of a counter monitor with determinants l and u
χ(c,v1,v2) if c then v1 else v2
∆(m,S1,S2) A lower bound on m’s contribution to available cost

Figure C.1. Notations used in this Appendix (excluding separate and tradeoff dominance).

by what happens on dk or earlier, and dk is not the last day it is affected by. This is because on
earlier days there is nothing for the signature to remember, and on its last day its cost is finalized

C.2. Running time 481

and added to the solution cost, so that again there is nothing to remember.

We’ll see later that the solver represents constraints by expressions; so this analysis speaks
of expressions, but the reader can safely take them to be constraints. Let Ek be the set of
expressions which need a presence in the signatures for day dk. If x ∈ Ek, then x contributes one
value to the signature of each dk-solution. Let v(x,k) be the number of distinct values that could
be stored on behalf of x in the signature of a dk-solution. For example, there are OR expressions
representing the logical ‘or’of their children. If x is an OR expression, the stored value could be
0 or 1, so v(x,k) = 2.

The signature of a solution in Pk is the concatenation of the values stored for the expressions
x ∈ Ek, and under equality dominance the solutions of Pk have distinct signatures, so

W (k) ≤ ∏
x∈ Ek

v(x,k)

The next questions are, how large could Ek be, and how large could v(x,k) be? To answer these
questions, we will focus on nurse rostering instances that occur in practice, and we divide their
constraints (strictly, monitors) into three classes.

In the first class lie all event resource constraints. In practice, each of these applies to a
single day, and so its expressions do not lie in any Ek, and contribute nothing to the product.

In the second class lie resource constraints that concern local patterns, such as prohibiting
a day shift following a night shift, or requiring both days of a weekend to be busy or neither.
Clearly, for one resource on one day, there will be only a small constant number of these, say b,
and v(x,k) will also be a small constant, typically 2. So these constraints contribute about b2 to
the product per resource, or bm2 over all m selected resources.

In the third class lie resource constraints that concern global limits, for example on the total
number of shifts worked. For each resource there will only be a small constant number of such
constraints, say c, but for them v(x,k) will be larger, on the order of n. For one resource this
contributes about cn to the product, or cmn over all m selected resources.

Putting these three cases together, and observing that the last term dominates, we get

W (k) ≤ ∏
x∈ Ek

v(x,k) = O(cmn)

where c is the number of constraints per resource whose upper limits are on the order of n.

Given a solution in Pk, we may take the running time of assigning one more day’s worth of
shifts, including creating a new solution object, finding its signature and cost, and looking up the
signature in the Pk+1 hash table, to be m. This is because the number of constraints per resource
on a particular day is a constant. Our implementation does indeed do this in O(m) time.

For each of the W (k) solutions in Pk we generate at most (a + m1) new solutions, where a
is the number of shift types (really mtasks that begin on day dk), making a total running time of
(a + m1) mW (k) to generate the Pk+1 hash table. So the overall running time is at most

∑
0≤k<n

(a + m1) mW (k) ≤ n(a + m1) mW (n) = O(n(a + m1) m cmn)

482 Appendix C. Dynamic Programming Resource Reassignment: Theory

as advertised.

In some models, shifts have durations in minutes and there is a constraint on the total
duration of the shifts taken by a nurse. This could lead to a very large value of v(x,k), although
the number should be manageable if all durations are multiples of, say, 30 or 60 minutes.

The author has not found any way to tighten up this analysis for other forms of dominance.
It is easy to see that S(k) ≤ W (k), where S(k) is the size of Pk when separate dominance is used.
This can be proved using induction on k and the fact that every case of equality dominance is also
a case of separate dominance. The running time for creating one solution and inserting it into
Pk must be multiplied by S(k), to account for the cost of the pairwise dominance tests. (Equality
dominance is much faster, merely requiring a retrieval of the signature in a hash table.) One
would think that this would make separate dominance significantly slower, but testing suggests
otherwise. Similar remarks apply to tabulated dominance.

Also important in practice is the extent to which solutions get pruned because their cost
exceeds the cost of the initial solution. Again there seems to be no way to estimate this. Its effect
will be larger as the initial solution improves, and also as the search approaches its end.

C.3. Monitors, costs, and signatures

Each solution S has an associated cost, written c(S). When S is complete, its cost must equal the
cost of the solution as defined by XESTT. When S is incomplete, XESTT does not define any
cost, but we will define one ourselves.

Each solution also has a signature, which is an array of numbers (integers and floats)
whose values represent the states in S of the constraints of S’s instance. For example, if there
is a constraint on the number of days that resource r can be busy, there would be an entry in the
signature of S belonging to that constraint, recording the number of days that r is busy in S.

This section shows how to calculate costs and signatures as solutions are extended.

A monitor (the term comes from KHE) is one point of application of one constraint, whose
violation yields one soft or hard cost. For example, there might be a monitor requiring resource
r to be free on the second Monday of the cycle. If this is violated, a cost is incurred.

Where we have previously referred to constraints,we really meant monitors. One constraint
in XESTT is a template from which many monitors may be derived—one for each resource
subject to the constraint, typically. The monitors form a fixed set M, defined by the instance being
solved, and common to all solutions. By definition, their total cost is the cost of the solution.

In XESTT, monitors are classified into three major types. Event monitors monitor the
times assigned to events. Since all times are preassigned in nurse rostering, event monitors
play no role here. Event resource monitors, often called cover constraints in nurse rostering,
are concerned with ensuring that each event (shift) is assigned a suitable number of resources
(nurses) with suitable skills. Finally, resource monitors monitor the timetables of individual
resources, checking for undesirable patterns (such as a morning shift following a night shift), for
a reasonable total workload, and so on.

Classified another way, nurse rostering monitors may be counter monitors, which constrain
the number of occurrences of something (night shifts, busy weekends, and so on), sum monitors,
which constrain the total amount of something (workload in minutes, and so on), or sequence

C.3. Monitors, costs, and signatures 483

monitors, which constrain the length of each non-empty sequence of consecutive somethings
(night shifts, free days, and so on). All event resource monitors and most resource monitors are
either counter monitors, or else they can easily be converted into counter monitors. We make
these conversions. Sum monitors are derived only from XESTT limit busy times and limit
workload constraints, although counter monitors can be viewed as special cases of sum monitors,
where the values being summed are always 0 or 1. Sequence monitors are derived only from
XESTT limit active intervals constraints. The rule that each monitor yields one cost is modified
for sequence monitors: each non-empty sequence of consecutive somethings yields one cost.

As we will see in Appendix D, the solver represents monitors of all types by expression trees
called expressions. We are concerned here with what happens in the root nodes of expression
trees (this is where costs are calculated), so we will use ‘monitor’ rather than ‘expression’.

We write c(m,S) for the cost of monitor m in solution S. If S is a complete solution, we
require c(m,S) to be the cost of m in S as defined by the XESTT specification of m’s constraint.
This satisfies the condition c(m,S) ≥ 0, and larger values indicate worse violations.

The specifications of the constraints do not define c(m,S) when S is not complete. We’ll be
doing that ourselves later. We are free to choose any definition satisfying

0 ≤ c(m,S) ≤ c(m,S′)

for all extensions S′ of incomplete solution S. That is, monitor costs are non-negative, and
non-decreasing as solutions become more complete. We require this condition so that we can
prune S when its cost reaches the cost of a known complete solution, since at that point none of
its complete extensions can improve on what we have.

It helps with pruning if our definition of c(m,S) for an incomplete solution S yields values
that are as large as possible. That is why we do not define c(m,S) = 0 for incomplete solutions
S, even though that is legal and very simple.

Then we define c(S), the cost of solution S (which may be complete or incomplete), to be

c(S) = ∑
m ∈ M

c(m,S)

where M is the fixed set of all monitors, as defined above. It is clear that this is non-negative,
non-decreasing as we proceed from less complete to more complete solutions, and the same as
the XESTT definition of cost when S is complete.

The c(m,S) values which sum to c(S) are not stored individually. However, a monitor m
may own a position in S’s signature, an array of numbers (some integer, others floating-point)
stored in S, in which the monitor stores its own state, which we call its determinant, written
d(m,S). For example, if m monitors the number of days that resource r is busy, d(m,S) would be
the number of days that r is busy in S. If required, c(m,S) can be calculated from d(m,S).

Even before any assignments are made to open days, a monitor m may be making a
contribution to the total cost. For example, if m imposes an upper limit of 10 busy days, and
among the days that are not opened there are assignments that make 12 busy days, a cost caused
by the 2 extra days is already being contributed. Call this cost c(m,S0), where S0 denotes the
initial empty solution. The solver ensures that

484 Appendix C. Dynamic Programming Resource Reassignment: Theory

c(S0) = ∑
m ∈ M

c(m,S0)

when solving begins. It does this by taking the cost of the initial solution and carefully updating it
as resources and days are opened. The signature of S0 is the empty array, because nothing needs
to be remembered about the state of any monitor at that point. Each monitor does have an initial
state, but it remembers that within itself.

The remainder of this section is concerned with how a newly created solution S′, assumed
to be an extension of a solution S, obtains its correct cost and signature. Each monitor m is
responsible for calculating its own contribution: it needs to ensure that c(m,S′) is included in
c(S′), and that d(m,S′) is appended to S′’s signature. Our method of calculating the cost is this:

c(S′) = ∑
m ∈ M

c(m,S′)

= c(S) + ∑
m ∈ M

[c(m,S′) − c(m,S)]

We call c(m,S′) − c(m,S) an extra cost. We have already seen that it is non-negative. We do it
this way because it is faster and more convenient, as we will now show for dk-solutions. Other
types of solutions will be considered later.

Let [da,… ,db] be the largest sequence of consecutive open days such that what happens on
da and db affects the cost of m. The days in the interior of the sequence may affect m or not, but
the two endpoints (which could be equal) definitely affect m, and nothing outside the interval
affects m. As a special case, if m is not affected by what happens on any open day, the interval
is empty. A review of the XESTT monitors will show that there is no difficulty in calculating
[da,… ,db] before solving begins. The solver does this.

We say that m is active on the days of its interval, and we call the interval itself the active
interval of m. (This is unrelated to the active intervals of the limit active intervals constraint.) For
each open day dk, the solver builds a set Mk of the monitors that are active on that day. Monitor m
appears in b − a + 1sets, possibly none (if m is not affected by what happens on any open day).

As a solve proceeds, no work is done with m on open days before da. This is because m’s
cost remains constant at c(m,S0) on these days, so the extra cost is 0, and there is no need to
remember a determinant in any signature.

Similarly, no work is done with m on open days after db. This is because m works out its
final cost on db and includes it in the solution cost that day. There is no need to remember a
determinant from then on, because it would not be used. If S′ is a dk-solution, S is a dk−1-solution,
and Mk is the set of active monitors on day dk, we have just shown

c(S′) = c(S) + ∑
m ∈ Mk

[c(m,S′) − c(m,S)]

This greatly reduces the number of monitors that we have to visit.

On a typical day when m is active, m retrieves its determinant d(m,S) from the signature of S
and uses it to calculate c(m,S). Then it calculates d(m,S′) based on d(m,S)and other information
it has available to it (the details depend on the monitor type so will be given later) and uses it to

C.3. Monitors, costs, and signatures 485

calculate c(m,S′). It then adds c(m,S′) − c(m,S) to c(S′) and appends d(m,S′) to S′’s signature.

On m’s first active day the procedure is a little different. There is nothing for m to retrieve
from S’s signature. Instead it initializes itself from its own internal data, then goes on to store a
cost and signature value in S′ as usual.

On m’s last active day the procedure is different again. The usual cost calculation is made,
but no signature value is appended to S′’s signature.

In practice, event resource monitors always seem to have a single active day. This means
that they never need to store a determinant in the signature. However, the algorithm is quite open
to multi-day event resource monitors. For example, if at least four of the seven night shifts of
Week 1 must include a senior nurse, the monitor for that would store the number of night shifts
with senior nurses so far as its signature value. Everything follows as usual.

C.4. Dominance

An informal introduction to dominance was given in Section C.1. Formally, solution S1 is said
to dominate solution S2 if for every complete extension S′2 of S2 there is a complete extension S′1
of S1 such that c(S′1) ≤ c(S′2). If S1 dominates S2, then S2 can be dropped without increasing the
cost of the best complete solution found, saving the time required to construct S2’s extensions.

Finding as much dominance as possible is the key to low running time, so we will explore a
sequence of increasingly effective (but increasingly complicated)dominance tests. A dominance
test is needed for every expression that stores a value in the signatures,but we will not try to cover
every type of expression here. Instead, we’ll develop a repertoire of dominance tests, and leave
it to the different expression types to choose the best test that works for them.

C.4.1. Separate dominance

Perhaps the simplest form of dominance is equality dominance, in which S1 dominates S2
when c(S1) ≤ c(S2) and at each position along the signature the corresponding values are equal.
Since these values hold the state of all monitors in play, their equality implies that as the same
assignments are added to both solutions, the costs incurred will be the same, so that S1’s current
advantage over S2 will never be lost. Equality dominance is implemented efficiently by the
solver, using a hash table indexed by signature. But testing shows that it misses too many cases
of dominance to be efficient overall.

This section presents separate dominance, so named because, like equality dominance, it
handles each signature position independently of the others. The algebra gets a little messy, but
the idea is simple and widely applicable.

Given solutions S1 and S2 with costs c(S1) and c(S2), we say that S1 separately dominates S2
when c(S1) ≤ c(S2), and at each position in the signature arrays of S1 and S2, S1’s signature value
separately dominates S2’s signature value, in a sense to be defined now.

Just what constitutes dominance at position i along a signature depends on what the value
represents, but let’s take the most common case, where the value is the determinant of a monitor
m that has a non-negative maximum limit U, a non-negative minimum limit L, and a Boolean
allow zero flag Z. We require L ≤ U, and if Z is true we require L ≥ 2.

We allow L, U, and the values at position i to be integers or floating-point numbers; the

486 Appendix C. Dynamic Programming Resource Reassignment: Theory

algebra will work either way. If m has no maximum limit, we set U to any finite upper bound
on the value of the determinant. Although we won’t pause to prove it here, for all XESTT
constraints such upper bounds are easy to find. If m has no minimum limit, we set L to 0.

Suppose the signature of solution S1 contains value l1 at position i, and the signature of
solution S2 contains value l2 at position i. We ask whether l1 dominates l2, written dom(l1, l2).
Abstractly, l1 dominates l2 when these values ensure that, in each extension of S1, the cost of m
is not greater than it is in the corresponding extension of S2. We need to make this concrete.

Maximum limits affect dominance independently of minimum limits. Let dom_max(l1, l2)
be the dominance condition for the maximum limit, and let dom_min(l1, l2) be the dominance
condition for the minimum limit. Dominance requires both:

dom(l1, l2) = dom_max(l1, l2) and dom_min(l1, l2)

Clearly, dom_max(l1, l2) is true when l1 ≤ l2, because as S1 and S2 are extended, corresponding
solutions continue to have l1 ≤ l2 for m, and the cost associated with a maximum limit is always
a monotone non-decreasing function of the determinant. But dom_max(l1, l2) is also true when l1
is so small that m cannot ever violate the maximum limit, either now or on subsequent days. This
follows because then, in each extension of S1, the cost of m is 0, which cannot be greater than the
cost of m in S2. We write this condition as very_small(l), and we get

dom_max(l1, l2) = very_small(l1) or l1 ≤ l2

Including very_small(l1) may seem unimportant, but even a small increase in the chance of a
dominance test succeeding can have a large cumulative effect on the number of solutions kept.

We require the formula for very_small(l) to be just l ≤ a for some a. The choice of a varies
from one monitor type to another, so we’ll postpone it for now; but here is an example. Suppose
the instance covers four weekends and m imposes a maximum limit of two busy weekends for
some resource r. Suppose that the current solve has unassigned the first two weekends, that we
have just finished assigning the first weekend, and that r is free on the first weekend, busy on
the third weekend, and free on the fourth weekend. Then l1 is 1 and there is only one unassigned
weekend remaining, so m cannot be violated now or in the future, and so very_small(l1) is true.

If it is clear that very_small(l) can never be true, we can choose a = −1, so that l ≤ a is
always false (because l ≥ 0). So we don’t make the inclusion of very_small(l) optional; it is
always present, only possibly turned off by the choice of a.

Having very_small allows us to avoid treating the absence of a maximum limit as a special
case: we set a to any upper bound on the value of the determinant, making very_small(l1) true,
which in turn ensures that dom_max(l1, l2) is always true, in effect turning off the max test.

We turn now to minimum limits. Assuming for now that Z is false, l1 dominates l2 when
l1 ≥ l2, because as S1 and S2 are extended, corresponding solutions continue to have l1 ≥ l2 for
m, and the cost associated with a minimum limit is always a monotone non-increasing function
of the determinant. But dom_min(l1, l2) is also true when l1 is so large that m cannot ever violate
the minimum limit, either now or on subsequent days, because then, in each extension of S1,
the cost of m is 0, which cannot be greater than the cost of m in S2. We write this condition as
very_large(l), and we get

C.4. Dominance 487

dom_min(l1, l2) = very_large(l1) or l1 ≥ l2

We require the formula for very_large(l) to be just l ≥ b for some b. Once again, we need to look
into further details before we choose b.

If it is clear that very_large(l) can never be true, we can set b to any upper bound on the
value of the determinant, plus one, so that l ≥ b is always false. So we don’t make the inclusion
of very_large(l) optional; it is always present, only possibly turned off by the choice of b.

Having very_large allows us to avoid treating the absence of a minimum limit as a special
case: we set b to 0, making very_large(l1) true, which in turn ensures that dom_min(l1, l2) is
always true, in effect turning off the min test.

The next step is to incorporate Z, the allow zero flag, into our analysis. Z has no effect on
maximum limits, but it does modify the costs produced by minimum limits: value 0 can violate
a minimum limit and produce a cost, but that cost disappears if the allow zero flag is set.

Assume that the allow zero flag is set. If very_large(l1) is true, the cost of m is still 0 in all
extensions of S1, so l1 dominates l2. The remaining cases can therefore ignore very_large(l1). To
be quite certain about them, we use brute force.

Case 1: l1 = 0 and l2 = 0. When the two values are equal in S1 and S2, they remain equal in
all pairs of corresponding extensions. So l1 dominates l2 in this case (and l2 dominates l1).

Case 2: l1 = 0 and l2 > 0. At this moment, m has no cost in S1 but it may have a cost in S2.
Consider corresponding extensions S′1of S1and S′2 of S2, in both of which the value has increased
by 1. There may be a cost in S′1, and no cost in S′2. So l1 does not dominate l2 in this case.

Case 3: l1 > 0 and l2 = 0. This is tricky, because here we have l1 ≥ l2, which is enough for
dominance when there is no allow zero flag. But suppose several days go by, these values do not
change, and we reach the last day of the monitor. Then m may have a cost in the first extension
and it definitely has cost 0 in the second. So l1 does not dominate l2 in this case.

Case 4: l1 > 0 and l2 > 0. Z has no effect here, either now or on subsequent days, because
neither value is ever 0. So the analysis and formula for when Z is false applies here.

We can also say of Case 1 that the formula (although not the analysis) for when Z is false
applies. So a concise expression of the test here is

very_large(l1) or (l1 ∼ l2 and l1 ≥ l2)

defining l1 ∼ l2 to be Z ⇒ ((l1 = 0) = (l2 = 0)). In words, l1 ∼ l2 is true either when Z is false, or
when Z is true and l1 and l2 are either both 0 or both non-zero (Cases 1 and 4). Overall,

dom(l1, l2) = [l1 ≤ a or l1 ≤ l2] and [l1 ≥ b or (l1 ∼ l2 and l1 ≥ l2)]
where l1 ∼ l2 stands for Z ⇒ ((l1 = 0) = (l2 = 0))

We box this to make it easy to refer back to. Here a, b, and Z are constants; for a given monitor
m, they may be different on different days, but on any one day they are the same for all tests.

We’ll be using four simple equivalences:

488 Appendix C. Dynamic Programming Resource Reassignment: Theory

This is equivalent to this

l ≤ e1 and l ≤ e2 l ≤ min(e1,e2)
l ≤ e1 or l ≤ e2 l ≤ max(e1,e2)
l ≥ e1 and l ≥ e2 l ≥ max(e1,e2)
l ≥ e1 or l ≥ e2 l ≥ min(e1,e2)

The first part of the dom(l1, l2) formula, l1 ≤ a or l1 ≤ l2, is equivalent to l1 ≤ max(a, l2). When Z
is false, the second part, l1 ≥ b or l1 ≥ l2, is equivalent to l1 ≥ min(b, l2).

Dominance and equality. There is a minor question whose answer is needed elsewhere:
when is dom(l1, l2) the same as l1 = l2 for all l1 and l2? The obvious answer is when Z is false,
a = −1, and b is any upper bound on the value of the determinant, plus one, for then

dom(l1, l2) = [l1 ≤ a or l1 ≤ l2] and [l1 ≥ b or (l1 ∼ l2 and l1 ≥ l2)]

= [false or l1 ≤ l2] and [false or (true and l1 ≥ l2)]

= l1 = l2

But, perhaps surprisingly, the case Z is true, with a and b as before, also works:

dom(l1, l2) = [l1 ≤ a or l1 ≤ l2] and [l1 ≥ b or (l1 ∼ l2 and l1 ≥ l2)]

= [false or l1 ≤ l2] and [false or ((l1 = 0) = (l2 = 0) and l1 ≥ l2)]

= l1 ≤ l2 and (l1 = 0) = (l2 = 0) and l1 ≥ l2

= l1 = l2

since l1 = l2 implies (l1 = 0) = (l2 = 0). Or to put it another way, if (l1 = 0) = (l2 = 0) is false,
causing dom(l1, l2) to be false, we must have l1 ≠ l2 anyway. So a = −1and b set to any upper
bound on the value of the determinant plus one are sufficient.

Reflexivity and transitivity. We can prove that dom is reflexive very simply, by evaluating
dom(l, l). Proving transitivity is tedious, but important for assuring ourselves that our dominance
test is well behaved. We have to show that dom(l1, l2) and dom(l2, l3) imply dom(l1, l3), if a, b, and
Z are the same in all three formulas.

If relations R1 and R2 are transitive, then R1 and R2 is transitive. This easy result allows us
to focus on a single signature value as we have been doing, knowing that when we build the full
signature plus a cost, transitivity will be preserved. We also use it below.

First we show that ∼ is transitive: that l1 ∼ l2 and l2 ∼ l3 together imply l1 ∼ l3. If Z is false,
all three conditions are true, so we can assume that Z is true, reducing x ∼ y to (x = 0) = (y = 0).
Suppose l2 = 0. Then l1 ∼ l2 implies l1 = 0, and l2 ∼ l3 implies l3 = 0, so l1 ∼ l3 is true. Now
suppose l2 ≠ 0. Then the same argument shows that l1 ≠ 0 and l3 ≠ 0, so again l1 ∼ l3 is true.

Next we show that dom_max(l1, l2) and dom_max(l2, l3) imply dom_max(l1, l3). This is
equivalent to showing that l1 ≤ max(a, l2) and l2 ≤ max(a, l3) imply l1 ≤ max(a, l3), which is easy:
a valid substitution gives us l1 ≤ max(a,max(a, l3)) = max(a, l3).

C.4. Dominance 489

Finally, we show dom_min(l1, l2) and dom_min(l2, l3) imply dom_min(l1, l3). We are given

l1 ≥ b or (l1 ∼ l2 and l1 ≥ l2)

and

l2 ≥ b or (l2 ∼ l3 and l2 ≥ l3)

and we need to prove

l1 ≥ b or (l1 ∼ l3 and l1 ≥ l3)

When l1 ≥ b the result is evidently true, so we can assume l1 < b. The first formula then proves
that l1 ≥ l2, which gives us l2 < b. So we have eliminated b, and our result will follow if, given

l1 ∼ l2 and l1 ≥ l2

and

l2 ∼ l3 and l2 ≥ l3

we can prove

l1 ∼ l3 and l1 ≥ l3

But this is trivial, because ∼ and ≥ are transitive, so their conjunction is transitive. Then dom,
being the conjunction of dom_max and dom_min, is also transitive.

C.4.2. Tradeoff dominance

Suppose that solution S1 fails to dominate solution S2, but only at one point along the signature,
and only by 1. Suppose that the monitor m at that point has weight w. The failure means that
m could have a cost in some extension of S1 which is w more than its cost in the corresponding
extension of S2 (assuming the cost function is not quadratic), which is why dominance fails.

But now, if c(S1) + w ≤ c(S2), this extra w cannot make any extension of S2 cost less than
the corresponding extension of S1. In other words, S1 still dominates S2 even though separate
dominance fails at this one point.

This idea easily extends to differences greater than 1, and to multiple points along the
signature. It is simply a matter, as we proceed along the signature, of adding to c(S1) the cost
of overlooking each violation of separate dominance. Then, if c(S1) exceeds c(S2) at any point,
dominance has failed. We call this tradeoff dominance, because it trades off an initial difference
in cost against individual failures of dominance.

There may be places along the signature which are not directly associated with any monitor,
or where the monitor’s cost function is quadratic. So tradeoff dominance needs to trade off where
it can, and fall back on separate dominance where it can’t. Dominance still holds if it is justified
by tradeoff dominance at some points and by separate dominance at the rest.

The full dominance test works as follows, remembering that separate dominance applies at
every position along the signature, but tradeoff dominance only applies at some positions. First,

490 Appendix C. Dynamic Programming Resource Reassignment: Theory

initialize the available cost to c(S2) − c(S1). Fail immediately if this quantity is negative. Next,
for each position i along the signature, do the following. If the separate dominance test succeeds
at i, then do nothing more at i. Otherwise, if tradeoff dominance applies at i, then subtract the
tradeoff amount from the available cost and fail if the available cost goes negative. Otherwise,
at i we have found that separate dominance fails and tradeoff dominance does not apply, so fail.

C.4.3. Tabulated dominance

In this section we present tabulated dominance, the method we prefer when it applies. It is just
tradeoff dominance treated formally so as to squeeze as much dominance as possible out of it.

Let the domain of a set of assignments S, written dom(S), be the set of pairs (di,rj) such that
an assignment containing day di and resource rj appears in S. Tabulated dominance applies to
pairs of solutions S1and S2 such that dom(S1) = dom(S2). It tries to show that for every complete
extension S′2 of S2, the set of assignments defined by the formula

S′1 = S1 ∪ (S′2 − S2)

is a complete solution and satisfies

c(S′2) − c(S′1) = ∑
m ∈ M

(c(m,S′2) − c(m,S′1)) ≥ 0

As before, we calculate c(S′2) − c(S′1) rather than c(S′1) − c(S′2) so that the available cost is
non-negative when dominance is possible.

Our definition of S′1 takes the assignments that convert S2 into S′2 and adds them to S1. Our
first task is to investigate what is involved in proving that S′1 is a complete solution. Clearly, it
is a set of assignments. At most one assignment containing a given di and rj may appear in it,
because if such an assignment appears in S1, then an assignment for di and rj also appears in S2,
since we are assuming dom(S1) = dom(S2), and therefore not in S′2 − S2. S′1 is also easily seen to
be complete, as follows. Taking domains,

dom(S′1) = dom(S1) ∪ (dom(S′2) − dom(S2)) = dom(S′2)

and S′2 is assumed complete. But the last condition, that for each mtask Cik, the number of
occurrences of Cik in S′1may not exceed the number of tasks in Cik, does not always hold. It holds
when S1 and S2 are dk-solutions, because then all occurrences of Cik in S′1 come either from S1 or
from S′2; but in other cases further investigation will be needed.

Suppose now that we have been able to show that S′1 is a complete solution. We now make
the same transition from costs to extra costs that we made previously. Since

c(S1) − ∑
m ∈ M

c(m,S1) = 0

and

c(S2) − ∑
m ∈ M

c(m,S2) = 0

we can write

C.4. Dominance 491

c(S′2) − c(S′1) = ∑
m ∈ M

(c(m,S′2) − c(m,S′1))

= c(S2) − ∑
m ∈ M

c(m,S2) − c(S1) + ∑
m ∈ M

c(m,S1) + ∑
m ∈ M

(c(m,S′2) − c(m,S′1))

= c(S2) − c(S1) + ∑
m ∈ M

[(c(m,S′2) − c(m,S2)) − (c(m,S′1) − c(m,S1))]

and it is this quantity that we have to prove to be non-negative. For each monitor m we need to
find the difference between two extra costs.

In practice we obviously cannot visit every complete extension S′2 of S2. Instead, we
calculate a (possibly negative) quantity ∆(m,S1,S2) satisfying

∆(m,S1,S2) ≤ [(c(m,S′2) − c(m,S2)) − (c(m,S′1) − c(m,S1))]
for all complete extensions S′2 of S2. If we do this for every m ∈ M and find that

c(S2) − c(S1) + ∑
m ∈ M

∆(m,S1,S2) ≥ 0

then we will have shown

c(S′2) − c(S′1) = c(S2) − c(S1) + ∑
m ∈ M

[(c(m,S′2) − c(m,S2)) − (c(m,S′1) − c(m,S1))]

≥ c(S2) − c(S1) + ∑
m ∈ M

∆(m,S1,S2) ≥ 0

as required. Our dominance test, then, begins by setting the available cost to c(S2) − c(S1). Then
for each monitor m in M, it obtains a value for ∆(m,S1,S2) somehow and adds it to the available
cost. If the final sum is non-negative, dominance is proved.

When S1 and S2 are dk-solutions we can greatly reduce the number of monitors we have to
visit. In fact, we only have to visit monitors that contribute a value to the day dk signatures. To
prove this, let m be any monitor which does not contribute to the signatures on day dk. This means
that m’s active interval, [da,… ,db], is such that either k < a or k ≥ b.

Suppose first that k < a. Then m is unaffected by whatever happens on the days up to and
including dk, so c(m,S1) = c(m,S2) = c(m,S0), the initial cost of m. And the assignments that
affect m in S′1 and S′2 are the same, so c(m,S′1) = c(m,S′2). So

(c(m, S′2) − c(m,S2)) − (c(m,S′1) − c(m,S1))

= (c(m,S′2) − c(m,S′1)) − (c(m,S2) − c(m,S1)) = 0 − 0 = 0

and so there is no need to visit m.

Now suppose that k ≥ b. Then m’s cost attains its final value on or before dk, that is, within
S1 and S2. So c(m,S′1) = c(m,S1) and c(m,S′2) = c(m,S2), and once again m’s contribution to the
available cost is 0 and there is no need to visit m. That ends the proof.

So far we have merely formalized ideas already found in tradeoff dominance: subtracting

492 Appendix C. Dynamic Programming Resource Reassignment: Theory

tradeoffs from available cost, and visiting only monitors with a presence in the signature. But our
algebra applies to all monitors m, not just those whose cost functions are not quadratic, so we are
in a much better position to calculate tradeoffs, now represented by the ∆(m,S1,S2). And as we
will see when we come to instantiate this method for counter and sequence monitors, it will be
possible to tabulate values of ∆(m,S1,S2) in advance of solving, so that the appropriate change
to available cost can be obtained very quickly by a table lookup.

C.4.4. Early termination of the tabulated dominance test

Suppose we can prove that ∆(m,S1,S2) ≤ 0 for all m, S1, and S2. Then as we scan along the
signature, if the available cost ever becomes negative we can rule out dominance immediately,
because no subsequent additions could make it non-negative again.

The condition ∆(m,S1,S2) ≤ 0 holds most of the time but not always. When S1 and S2 are
dk-solutions, it always holds for counter monitors, as proved in Appendix C.5.5, and it holds most
of the time, but not always, for sequence monitors, as proved in Appendix C.7.5.

By ruling out dominance immediately when the available cost becomes negative, as we
choose to do, we may be failing to find dominance in some cases where it exists. This does
not invalidate the overall algorithm, it merely means that the tables Pk of undominated solutions
might be somewhat larger than they need to be. Since there are always many fewer sequence
monitors than counter monitors, and violations of the condition seem to be few and small, the
time saved by returning from many dominance tests early more than compensates for any slight
increase in the sizes of the tables Pk.

C.4.5. Correlated dominance

Sometimes two expressions are correlated: they do not have independent values, because they
measure related things. The chance of detecting dominance may be increased by recognizing
and taking advantage of correlated expressions.

We give two real-world examples. The first is the case, occurring only on Saturdays, of the
expression which has value 1if resource r is busy that day, and its parent, the monitor whose cost
depends on the number of r’s busy weekends.

If we do not recognize that these two expressions are correlated,we have to use two separate
tests. With correlation, we use the value of the first expression to form a more accurate estimate
of the current number of busy weekends than just the second expression. There are two variants
of this idea, that we call Type 1 and Type 2 correlations. Appendix C.5.6 has the details.

The second example concerns a monitor m1 which limits the number of consecutive busy
days, and a monitor m2 which limits the number of consecutive free days. The limits do not have
to be equal, nor do the weights.

The next assignment creates either a busy day or a free day, but not both. If we treat the two
monitors independently, we could pay a cost in one for a busy day and a cost in the other for a
free day, when only one of the two can occur. Again there are two variants of this idea; we call
them Type 3 and Type 4 correlations. Appendix C.7.6 has the details.

C.5. Counter monitors 493

C.5. Counter monitors

This section is devoted to counter monitors: defining them; defining their cost, both in com-
plete and in incomplete solutions; defining a suitable ∆(m,S1,S2) for them; and proving that
∆(m,S1,S2) ≤ 0. The following sections carry out the same programme for sum expressions and
sequence monitors.

C.5.1. Definition

We mentioned earlier that in the implementation, a monitor is the root node of an expression
tree. A counter monitor is a root node with a set of children. Each child represents one shift, or
weekend, or whatever is being counted, and has a value, which may be 0 or 1. Depending on a
given solution S, each child is in one of three states:

1. It is inactive if its value in S is known, and that value is 0;

2. It is active if its value in S is known, and that value is 1;

3. It is unassigned if its value in S is not known.

It will be unassigned if its value is affected by what happens on one of the selected days, and
the search is not up to that day yet. We use assigned to mean inactive or active. As the search
progresses, along any one search path the unassigned children gradually change to assigned.

XESTT has a feature, referred to generally as history, which helps to meld the solution for
the time interval covered by the current instance with solutions for preceding and following time
intervals. This is done by means of additional children, not given explicitly in the definition of
the constraint, but rather represented implicitly by these history attributes:

• A non-negative integer history before value ai, representing the number of children in the
preceding interval.

• An integer history value xi satisfying 0 ≤ xi ≤ ai, representing the number of children in the
preceding interval which are active.

• A non-negative integer history after value ci, representing the number of children in the
following interval.

These are constant attributes: they are independent of any solution. The subscript i means
nothing here; it is the notation used by a previous work on history [10].

What happened in the preceding interval is assumed to be finalized, known, and expressed
by xi. What will happen in the following interval is assumed to be undecided; all that is known
about that interval is the number of children it contains, ci. For convenience we will assume that
all monitors have ai, xi, and ci; if they are absent, it changes nothing to add them with value 0.

A counter monitor m places lower and upper limits on the number of active children in
the full interval (preceding plus current plus following). The xi active children in the preceding
interval are essentially the same as active children in the current interval, and the ci children in
the following interval are essentially the same as unassigned children in the current interval. But
even in a complete solution, the ci children in the following interval remain unassigned.

494 Appendix C. Dynamic Programming Resource Reassignment: Theory

The determinant of counter monitor m is the number compared with the limits to see if there
is any excess or deficiency. The presence of unassigned children,when the solution is incomplete
or ci > 0, makes this rather indeterminate. Instead of trying to pin it down exactly, we bound it:

• The lower determinant of counter monitor m in solution S, written l(m,S) or just l, is the
number of active children of m in S over the full interval (i.e. including xi).

• The upper determinant of counter monitor m in solution S, written u(m,S) or just u, is the
number of active and unassigned children over the full interval (i.e. including xi and ci).

The point here is that l(m,S) is a lower bound on the number of active children there could ever
be, and u(m,S) is an upper bound on this number. We have l(m,S) ≤ u(m,S), in fact we have
l(m,S) ≤ u(m,S) − ci, and also

l(m,S) ≤ l(m,S′) for all extensions S′ of S

u(m,S) ≥ u(m,S′) for all extensions S′ of S

These conditions are natural because as solutions become more complete, the number of
unassigned children decreases so our information about the determinant increases.

A counter monitor has many constant attributes in addition to its three history attributes:

• An integer minimum determinant Dl which is a lower limit on l(m,S). XESTT constraints
do not give Dl explicitly, but there is an obvious value to choose: xi.

• An integer maximum determinant Du which is an upper limit on u(m,S). Again, XESTT
constraints do not give Du explicitly, but again there is an obvious value to choose: the
number of children in the current interval, plus xi, plus ci.

• An integer lower limit L. A constraint without a lower limit is assigned lower limit Dl, and
a lower limit below Dl is increased to Dl. These changes do not change the meaning.

• An integer upper limit U. A constraint without an upper limit is assigned upper limit Du,
and an upper limit above Du is decreased to Du. These changes do not change the meaning.
The condition L ≤ U must hold, otherwise the instance is invalid.

• A Boolean allow zero flag Z, indicating that if the determinant is 0, the cost should be 0
regardless of the limits L and U.

• A cost function f (x), which could be linear (f (x) = wx for a given non-negative constant
w), quadratic (f (x) = w 2x), or step (f (x) = χ(x = 0,0,w)). Here and elsewhere we use the
notation χ(c,x,y) to mean ‘if c then x else y’.

All three cost functions f have two key properties: f (0) = 0, and f is monotone non-decreasing.
Our work on counter and sum monitors assumes only these two properties, so it handles any cost
function that has them. Later, when we come to sequence monitors, we will find an obscure case
where we need to make a special arrangement when f is a step function.

C.5. Counter monitors 495

C.5.2. Deviation and cost

This section defines the cost of a counter monitor, and shows that our definition has the right
properties: it is always non-negative, it agrees with the XESTT definition for complete solutions,
and it is monotone non-decreasing as solutions become more complete.

We generalize the well-known two-step procedure for calculating cost. The first step is to
produce a deviation δ, the amount by which the number of active children falls short of the lower
limit L or exceeds the upper limit U. Including the allow zero flag Z, which when set causes the
deviation to be 0 when the number of active children is zero regardless of the limits, we have

δ(l,u) = χ(Z ∧ l = 0,0,max(0,L − u, l − U))

where l is the lower determinant and u is the upper determinant. The rationale is that δ(l,u) needs
to be a lower bound on the deviation over the full interval (preceding, current, and following).
When Z ∧ l = 0 is true, the allow zero flag is set and the number of active children we are certain
about is 0, so we cannot justify any deviation larger than 0. When Z ∧ l = 0is false, we can forget
the allow zero flag. When finding the deviation from L, we need to assume that the number of
active children is as large as possible, and when finding the deviation from U, we need to assume
that the number of active children is as small as possible. L and U apply to the full interval.

The second step is to apply the cost function to obtain a cost:

c(m,S) = f (δ(l,u))

The c in c(m,S) has nothing to do with the history value ci. All values are non-negative integers.

In a complete solution the lower determinant is the number of active children in the current
interval plus xi, and the upper determinant is the lower determinant plus ci. Given this, it is easy
to check that our formula agrees with the XESTT one for complete solutions, as it must.

At most one of L − u and l − U can be positive. We prove this by showing that their sum
is not positive: (L − u) + (l − U) = (L − U) + (l − u) ≤ 0 since L ≤ U and l ≤ u. Another useful
result is that if L − u ≤ 0 and l − U ≤ 0, then δ(l,u) = 0 and f (δ(l,u)) = 0.

We may choose to assume Z ⇒ L ≥ 2, for the following reason. If Z is true and L = 0, we
can change Z to false without changing cost. If Z is true and L = 1, we can change Z to false and
L to 0 without changing cost. These changes never increase L, so they do not interact with U.

We now show that our cost formula c(m,S) = f (δ(l,u)) is monotone non-decreasing as
solutions become more complete. All cost functions f are monotone non-decreasing, so we just
have δ to consider. Omitting the allow zero flag for the moment, this is:

δ(l,u) = max(0,L − u, l − U)

As solutions become more complete, l and hence l − U is monotone non-decreasing, and u is
monotone non-increasing (see above) so L − u is monotone non-decreasing.

Now consider the full formula, including the allow zero flag:

δ(l,u) = χ(Z ∧ l = 0,0,max(0,L − u, l − U)))

When Z is false this is unchanged. When Z is true, its effect is to possibly reduce δ(l,u) for the
most incomplete solutions (those with l = 0), so δ(l,u) remains monotone non-decreasing as

496 Appendix C. Dynamic Programming Resource Reassignment: Theory

solutions become more complete.

During the construction of a new solution S′ by extending a given solution S, an active
counter monitor m needs to calculate l(m,S), u(m,S), l(m,S′), and u(m,S′). Given these four
values, it is trivial to find the extra cost c(m,S′) − c(m,S) and the new saved value l(m,S′).

To find l(m,S), we either use an initial value (if this is the first day that affects m), or retrieve
it from the signature of S (on days after the first). We find u(m,S) by adding to l(m,S) the number
of unassigned children. This number is easily found because it depends on the domain of S, not
its assignments: it is the number of children affected by days after S, plus ci.

To find l(m,S′), we add to l(m,S) the number of children that are unassigned in S but active
in S′. To find u(m,S′), we subtract from u(m,S) the number of children that are unassigned in S
but inactive in S′. Both parts are carried out in the course of a single traversal of the children that
are known to be unassigned in S but assigned in S′. These children depend only on the domains
of S and S′, so they are easy to find.

C.5.3. Separate dominance

In practice we prefer to use tabulated dominance for counter monitors, but for completeness we
record here what needs to be done to support separate dominance.

Separate dominance depends on function very_small(l) = (l ≤ a), which needs to be true
when l, the value retrieved from the signature, is so small that there can be no extension in which
it violates the maximum limit. We need to find a suitable value for a.

Now l contains the number of active children in the current solution, plus the xi history
children. Potentially it could increase by as much as e, the number of unassigned children still
to come, a constant which is known when the dominance test is created, because it depends on
which day we are up to. There is no prospect of exceeding the upper limit U when l + e ≤ U,
and so we may take a = U − e (this could be negative). This works when there is no upper limit,
because then U has value INT_MAX and the condition l ≤ a is always true, as required.

Separate dominance also requires a function very_large(l) = (l ≥ b), which needs to be true
when l is so large that there can be no extension in which it violates a minimum limit. We need
to find a suitable value for b.

Now l contains the number of active children in the current solution, plus the xi history
children. Potentially it might not increase at all, so there is no prospect of falling short of the
minimum limit L when l ≥ L, and so we may take b = L. This works when there is no lower limit,
because then L has value 0 and the condition l ≥ b is always true, as required.

OR and AND expressions. Counter monitors often have children which are OR (or AND)
expressions, whose value is 1when the resource is busy (or free) during some set of times. If the
times span more than one day (for example, if they are the times of a weekend), these children
will also have signature values.

OR and AND expressions are not suited to tradeoff dominance, because they have no
cost. We prefer to use correlated dominance, but that is not always possible (in the case of AND
expressions, because the analysis for it has not been a priority). So, as usual, we need to be able
to fall back on separate dominance.

For an OR expression, the signature value is 1 if any of the expression’s children are

C.5. Counter monitors 497

assigned with value 1, and 0 otherwise. For an AND expression, the signature value is 0 if any
of the expression’s children are assigned with value 0, and 1 otherwise.

Although these expressions are children of the counter monitor, not the monitor itself, a
larger value for a child has much the same effect as a larger value for the parent. So if the parent
has a maximum limit we want very_small(l) to be false, so that dominance includes the test
l1 ≤ l2. Accordingly, we set a to −1when the counter monitor has a maximum limit, and to a very
large number when it doesn’t.

In the same way, if the parent has a minimum limit we want very_large(l) to be false, so that
dominance includes the test l1 ≥ l2. So we set b to a very large number when the counter monitor
has a minimum limit, and to 0 when it doesn’t.

C.5.4. Tabulated dominance

A review of Section C.4.3 will show that what we need to do to incorporate a counter monitor m
into our tabulated dominance test is to define a ∆(m,S1,S2) satisfying

∆(m,S1,S2) ≤ [c(m,S′2) − c(m,S2)] − [c(m,S′1) − c(m,S1)]
for all complete extensions S′2 of S2, where S′1 = S1 ∪ (S′2 − S2). Now assuming that m is a counter
monitor, we have

c(m,S) = f (δ(l(m,S),u(m,S)))

for all solutions S, complete or incomplete. For readability, we define l1 = l(m,S1), l′1 = l(m,S′1),
u1 = u(m,S1), and u′1 = u(m,S′1), and similarly for S2. Here u′1 = l′1 + ci and u′2 = l′2 + ci, because
S′1 and S′2 are complete.

Now S1 and S2 have equal domains, so they leave the same children of m unassigned. Let e
be the number of unassigned children of m in S1 (or equally in S2) in the current interval (i.e. not
counting history after children). We have e ≥ 0 and u1 − l1 = u2 − l2 = e + ci.

Now since S′1 − S1 and S′2 − S2 are equal, their contributions to the determinant are equal.
(We are ignoring cases like busy weekends,where unassigned children are partly influenced by S1
and S2; we handle those in Appendix C.5.6.) This common contribution can be at most e, which
occurs when every child left unassigned by S1 and S2 in the current interval (i.e. not including
history after children) is made active. Letting this contribution be y, where 0 ≤ y ≤ e, we get
l′1 = l1 + y, l′2 = l2 + y, u′1 = l′1 + ci = l1 + y + ci, and u′2 = l′2 + ci = l2 + y + ci. So

∆(m,S1,S2) ≤ [c(m,S′2) − c(m,S2)] − [c(m,S′1) − c(m,S1)]

= [f (δ(l′2,u′2)) − f (δ(l2,u2))] − [f (δ(l′1,u′1)) − f (δ(l1,u1))]

= [f (δ(l2 + y, l2 + y + ci)) − f (δ(l2, l2 + e + ci))] − [f (δ(l1 + y, l1 + y + ci)) − f (δ(l1, l1 + e + ci))]

for all y. We write this last formula as Ψy(e, l1, l2). This is a reasonable notation because the other
quantities that go into it (ci and the attributes that define δ and f) are constants. This gives us

∆(m,S1,S2) ≤ min
0≤y≤e

Ψy(e, l1, l2) = Ψ(e, l1, l2)

498 Appendix C. Dynamic Programming Resource Reassignment: Theory

say. Finding an algebraic simplification for Ψ is complicated and might require approximation.
Instead, we actually evaluate it and use the result as our ∆(m,S1,S2). We build a cache holding
these values, indexed by the triple (e, l1, l2). These three indexes are easily obtained: e is just the
number of unassigned children in the current interval, which is the same for all solutions with
the same domain, l1 comes from the signature of S1, and l2 comes from the signature of S2. So
the dominance test at m is very fast and simple: find these three numbers, use them to retrieve
Ψ(e, l1, l2) from the cache, and add that amount to the available cost.

We need to work out the ranges of the three indexes. Let A be the number of children of
m, excluding the xi history children and the ci history after children. Then 0 ≤ e ≤ A. Then for
each of these values of e, we have xi ≤ l1 ≤ A + xi − e, since l1 is a number of active children
including the xi history children, and similarly xi ≤ l2 ≤ A + xi − e. Taking care to offset the l1and

l2 indexing by xi, the cache has size O(3A), which is acceptable given that we build the cache just
once, when we initialize the solver.

The value of e is the same for all dk-solutions. So within the object representing day dk we
can store the part of the cache that relates to e. Then when we consult the cache we just access
this part of it, supplying it with index pair (l1, l2).

C.5.5. Early termination of the tabulated dominance test

Appendix C.4.4 promised that we would prove ∆(m,S1,S2) ≤ 0, so we do that now. This is
equivalent to saying that for each (e, l1, l2) triple there exists a y in the range 0 ≤ y ≤ e such that

[f (δ(l2 + y, l2 + y + ci)) − f (δ(l2, l2 + e + ci))] − [f (δ(l1 + y, l1 + y + ci)) − f (δ(l1, l1 + e + ci))] ≤ 0

Since the second main term in this formula is an extra cost, it is non-negative, and so it is
sufficient to find a y in the range 0 ≤ y ≤ e such that

f (δ(l2 + y, l2 + y + ci)) − f (δ(l2, l2 + e + ci)) ≤ 0

This is what we will do.

In some cases we use a shortcut: we are able to find a y in the range 0 ≤ y ≤ e such that
δ(l2 + y, l2 + y + ci) = 0. That is all we need, because then f (δ(l2 + y, l2 + y + ci)) = f (0) = 0, and
since f (δ(l2, l2 + e + ci)) ≥ 0 we are done.

We prove our result using four cases. Let K = L − l2 − ci.

Case 1: Z is true and l2 = 0. Choose y = 0. This gives

δ(l2 + y, l2 + y + ci) = δ(l2, l2 + ci)

= χ(Z ∧ l2 = 0,0,max(0,L − l2 − ci, l2 − U))

= 0

taking the first branch of the χ. The shortcut applies so we are done for this case.

From now on we can ignore Z and use the simpler formula

δ(l,u) = max(0,L − u, l − U)

C.5. Counter monitors 499

We will do this in the remaining cases without further mention.

Case 2: K ≤ 0. Choose y = 0. This gives

δ(l2 + y, l2 + y + ci) = δ(l2, l2 + ci)

= max(0,L − l2 − ci, l2 − U)

= max(0,l2 − U)

because L − l2 − ci = K ≤ 0. And

δ(l2, l2 + e + ci) = max(0,L − l2 − e − ci, l2 − U)

= max(0,l2 − U)

because L − l2 − e − ci = K − e ≤ 0. Putting these results together, we get

f (δ(l2 + y, l2 + y + ci)) − f (δ(l2, l2 + e + ci)) = f (max(0,l2 − U)) − f (max(0,l2 − U)) = 0

So we have our result in Case 2.

Case 3: K > 0 and e ≤ K. Choose y = e. This gives

δ(l2 + y, l2 + y + ci) = δ(l2 + e, l2 + e + ci)

= max(0,L − l2 − e − ci, l2 + e − U)

= max(0,K − e, l2 + e − U)

= max(0,K − e)

because

l2 + e − U ≤ l2 + K − U

= l2 + (L − l2 − ci) − U

= L − ci − U

≤ 0

since L ≤ U. And

δ(l2, l2 + e + ci) = max(0,L − l2 − e − ci, l2 − U)

= max(0,K − e, l2 − U)

= max(0,K − e)

because l2 − U ≤ l2 + e − U ≤ 0 as we just saw. So

f (δ(l2 + y, l2 + y + ci)) − f (δ(l2, l2 + e + ci)) = f (max(0,K − e)) − f (max(0,K − e)) = 0

500 Appendix C. Dynamic Programming Resource Reassignment: Theory

So we have our result in Case 3.

Case 4: K > 0 and e > K. Choose y = K, which is legal since 0 < K < e. This gives

δ(l2 + y, l2 + y + ci) = δ(l2 + K, l2 + K + ci)

= max(0,L − l2 − K − ci, l2 + K − U)

= 0

because we can simplify the second term: L − l2 − K − ci = K − K = 0; and we can simplify the
third term: l2 + K − U = l2 + (L − l2 − ci) − U = L − ci − U ≤ 0. The shortcut applies and we have
our result in Case 4. This completes our proof that ∆(m,S1,S2) ≤ 0.

C.5.6. Correlated expressions

Here we work out the algebra for the Type 1 and Type 2 correlations from Appendix C.4.5,
involving a monitor m counting the number of busy weekends for some resource r, and its child
reporting whether r is busy on some Saturday. This analysis is relevant to any counter monitor’s
child whose value depends on more than one day, making it contribute a value to the signature.
However for concreteness we will continue to think and speak of busy weekends and Saturdays.
At the end of this section we will consider how general our analysis has turned out to be.

Suppose that the open days include an adjacent Saturday and Sunday. Let the signature
values for S1 on the Saturday be (a1, l1), where a1 is 1 if r is busy on the Saturday, or else 0, and l1
is the number of busy weekends before this current weekend. Let (a2, l2) be the same values, only
for S2. Without correlation, the value we need for adding to the available cost is

Ψ(e, l1, l2) = min
0≤y≤e

Ψy(e, l1, l2)

where e is the number of unassigned children, that is, the number of weekends whose busyness
is not yet known. On the Saturday, without correlation, that includes the current weekend.
Referring back to Appendix C.5.4, we see that Ψy(e, l1, l2) is

[f (δ(l2 + y, l2 + y + ci)) − f (δ(l2, l2 + e + ci))] − [f (δ(l1 + y, l1 + y + ci)) − f (δ(l1, l1 + e + ci))]

= Γy(e, l2) − Γy(e, l1)

say, letting Γy(e, l) = f (δ(l + y, l + y + ci)) − f (δ(l, l + e + ci)).
Adding correlation gives access to a child whose busyness is not completely known,

showing that the condition e ≥ 0 should be replaced by e ≥ 1. Its values a1 and a2 in S1 and S2
become available when calculating Ψ. If either or both is 1we have advance knowledge that the
current weekend, whose busyness without correlation is unknown, is in fact busy.

Our previous algebra assumed that y, the number of busy weekends still to come, was the
same in S′1 and S′2. But on Saturdays, this number can also be one greater in S′1 than in S′2 (when
a1 = 1and a2 = 0), or one greater in S′2 than in S′1 (when a2 = 1and a1 = 0). So our first step is
to divide y into two variables: y1, the number of busy weekends still to come in S′1, and y2, the
number of busy weekends still to come in S′2. We can express the correlated case by

C.5. Counter monitors 501

Ψ(e,a1,a2, l1, l2) = min
a1≤y1≤e

a2≤y2≤e

y1−y2 ∈ D(a1,a2)

[Γy2
(e, l2) − Γy1

(e, l1)]

The conditions a1 ≤ y1 and a2 ≤ y2 say that if the current Saturday is busy, then there must be
at least one busy weekend beyond the l1 and l2 previous busy weekends. The condition e ≥ 1 is
important here, because the iteration can be empty, leaving the value undefined, if e = 0.

Now |y1 − y2| ≤ 1, since only the current weekend can differ between S′1and S′2. Also, a1 = a2
implies y1 = y2. The set D(a1,a2) gives the precise choices for y1 − y2, depending on a1 and a2:

a1 a2 D(a1,a2)
0 0 {0}
0 1 {−1,0}
1 0 {0,1}
1 1 {0}

For example, when a1 = 0and a2 = 1, there could be one more busy weekend in S′2 than in S′1(this
will happen when the Sunday is free), and so y1 − y2 could be −1.

We build a table in the usual way to cache this version of Ψ. It has five indexes rather than
three, but it is not a large table, because a1 ∈ {0,1} and a2 ∈ {0,1} . For efficiency, initializing one
entry is done by iterating over y1 and the elements of D(a1,a2), not over y1 and y2.

That ends our analysis. Now we return to the issue we raised at the start. How general is
our analysis? Are there special cases or generalizations that we need to think about?

To begin with, there is a problem on the first open Saturday: the parent does not have a value
in the signature on that day. But the problem can be overcome, as follows.

If the parent did have a value in the signature, it would be its initial value, which is its history
value plus its number of busy weekends in parts of the cycle that have not opened. These values
are stored in the parent, and the child can easily access them there. So for the first week (i.e. for
any child that remains unmatched with its parent because the parent is not in the signature), the
child can carry out the same test, obtaining l1and l2 from its parent rather than from the signature.
In this case, l1 and l2 are equal, but that does not seem to either help or hinder.

If the Saturday is the last open day, all signatures are empty and dominance testing is just
simple cost comparison, so there is nothing to worry about. If the Sunday is the last open day, the
Saturday is not a special case and our regular analysis applies. This just leaves the case where the
Saturday is open, the Sunday is not open, but there are other open days later in the cycle. (Our
algorithm allows several disconnected intervals within the cycle to be opened.)

This too is not a special case. The child has a value for the Saturday, and its Sunday part is
constant, so it can and does report its final value to its parent on the Saturday. So such children
have no value in the signature, and they are not candidates for correlation.

We also need to think about different kinds of children. Given that we are not dealing
with arbitrary expression trees (because our trees are derived from XESTT constraints), a
consideration of cases will show that the only possibilities are that the child could depend on
more than two days, and that it could be testing whether the resource is free rather than busy.

502 Appendix C. Dynamic Programming Resource Reassignment: Theory

A careful review will show that our analysis holds for a child that depends on more than two
days, replacing ‘Saturday’ by ‘all days that have a value’ and ‘Sunday’ by ‘all days that do not
yet have a value’, where both sets are non-empty, and the current day is one that has a value.

Our analysis does not hold for counting free weekends. Although a corresponding analysis
could easily be constructed for that case, that has not been done, so the implementation does no
correlating when the child reports free weekends rather than busy ones.

A Type 1correlation is one where both the child and the parent have an entry in the signature.
A Type 2 correlation is one where the child has an entry but the parent does not.

C.6. Sum monitors

This section is devoted to sum monitors. These allow each assigned child to have a value which
is any non-negative number. The determinant is the sum of the assigned children’s values; a
deviation and cost are produced from the determinant in the usual way.

We also allow for sum expressions, which omit the cost calculation. Instead of a cost, sum
expressions produce a value, which is the deviation. This form of the general idea is needed by
the implementation of the XESTT limit busy times and limit workload monitors.

Sum monitors generalize counter monitors: a counter monitor is a sum monitor in which
the value of each assigned child is limited to either 0 or 1. Much of the algebra for sum monitors
follows the algebra for counter monitors. We have chosen not to subsume counter monitors into
sum monitors because the limited range of counter monitor values makes counter monitors better
suited to tabulated dominance than sum monitors are. Indeed the implementation uses tabulated
dominance for counter monitors but separate dominance for sum monitors.

C.6.1. Definition

A sum monitor is a monitor whose determinant is the sum of its children’s values. It calculates a
deviation based on this determinant in the usual way, and optionally a cost from the deviation.

The value of each child, and the value of the sum, are numeric, by which we mean that they
may have type int or float. The type is float when we use sum monitors to model XESTT
limit workload monitors, and int otherwise. Deviations, however, are always integers, as the
documentation of the limit workload constraint explains.

In the implementation, type KHE_DRS_EXPR_SUM_INT represents sum monitors with int

values, and type KHE_DRS_EXPR_SUM_FLOAT represents sum monitors with float values. Apart
from the value type these are identical, so this section describes both.

Within a given solution S, each child x is either assigned, in which case it has a numeric
value v(x,S) ≥ 0, or else it is unassigned, in which case it has no value.

Although an unassigned child has no value, each child x has a value upper bound u(x)which
is an upper bound on its value: v(x,S) ≤ u(x) for all S. For example, if we use a sum monitor
to model a counter monitor, we would have u(x) = 1for each child. If we are modelling a limit
workload monitor, and each child represents what one nurse is doing at one time or on one day,
we would set u(x) to the largest possible workload available at that time or on that day. And so
on. It turns out that for every child it is easy to calculate a reasonable value upper bound before
solving begins. The solver does this.

C.6. Sum monitors 503

We can include history in sum monitors by defining these generalizations of the three
history values from counter monitors:

• A non-negative numeric history before value ai, representing the sum of the value upper
bounds of the children in the preceding interval.

• A numeric history value xi satisfying 0 ≤ xi ≤ ai, representing the sum of the values of the
children in the preceding interval. These children are assumed to be assigned, as usual.

• A non-negative numeric history after value ci, representing the sum of the value upper
bounds of the the children in the following interval. We can’t sum their values because these
children are assumed to be unassigned, as usual.

These definitions agree with those used with counter monitors, given that when using a value
sum monitor to model a counter monitor we would set u(x) = 1for each child x.

A value sum monitor places lower and upper limits on the total value of the children in the
full interval (preceding plus current plus following). The xi value from children in the preceding
interval is essentially the same as the values of children in the current interval, and the ci value
from the following interval is essentially the same as the value upper bounds of unassigned
children in the current interval.

The determinant of sum monitor m is the number compared with the limits to see if there
is any excess or deficiency. As defined earlier, this is the sum of the values of the children. The
presence of unassigned children, when the solution is incomplete or ci > 0, makes this rather
indeterminate, so instead of trying to pin it down exactly, we bound it:

• The lower determinant of sum monitor m in solution S, written l(m,S) or just l, is the sum
of the values of the assigned children of m in S, including xi.

• The upper determinant of sum monitor m in solution S, written u(m,S) or just u, is l(m,S)
plus the sum of the value upper bounds of the unassigned children, including ci.

Clearly l(m,S) is a lower bound on the determinant, and u(m,S) is an upper bound on the
determinant. We have l(m,S) ≤ u(m,S), in fact we have l(m,S) ≤ u(m,S) − ci, and also

l(m,S) ≤ l(m,S′) for all extensions S′ of S

u(m,S) ≥ u(m,S′) for all extensions S′ of S

These conditions are natural because as solutions become more complete, the number of
unassigned children decreases so our information about the determinant increases.

A sum monitor has many constant attributes in addition to its history attributes:

• A numeric minimum determinant Dl which is a lower limit on l(m,S). XESTT constraints
do not give Dl explicitly, but there is an obvious value to choose: xi.

• A numeric maximum determinant Du which is an upper limit on u(m,S). Again, XESTT
constraints do not give Du explicitly, but again there is an obvious value to choose: the sum
of the value upper bounds of the children in the current interval, plus xi, plus ci.

504 Appendix C. Dynamic Programming Resource Reassignment: Theory

• A numeric lower limit L. A constraint without a lower limit is assigned lower limit Dl, and
a lower limit below Dl is increased to Dl. These changes do not change the meaning.

• A numeric upper limit U. A constraint without an upper limit is assigned upper limit Du,
and an upper limit above Du is decreased to Du. These changes do not change the meaning.
The condition L ≤ U must hold, otherwise the instance is invalid.

• A Boolean allow zero flag Z, indicating that if the determinant is 0, the cost should be 0
regardless of the limits L and U.

• A cost function f (x), which could be linear (f (x) = wx for a given non-negative constant
w), quadratic (f (x) = w 2x), or step (f (x) = χ(x = 0,0,w)). Here and elsewhere we use the
notation χ(c,x,y) to mean ‘if c then x else y’. We sometimes need to calculate a deviation
without also reporting a cost; in those cases it will be easy to omit the cost calculation.

All three cost functions f satisfy f (0) = 0, and f is monotone non-decreasing. Our work on sum
monitors assumes only these two properties, so it handles any cost function that has them.

C.6.2. Deviation and cost

This section defines the deviation and cost of a sum monitor precisely, and shows that they
are always non-negative, have the expected values in complete solutions, and are monotone
non-decreasing as solutions become more complete.

We proceed in the usual way, only allowing for float values. The first step is to produce
a deviation δ, the amount by which the sum of the values of the children falls short of the lower
limit L or exceeds the upper limit U. Including the allow zero flag Z, which when set causes the
deviation to be 0 when the sum is zero regardless of the limits, we have

δ(l,u) = χ(Z ∧ l = 0,0,max(0, L − u , l − U))

where l is the lower determinant,and u is the upper determinant. Here x is the ceiling function,
returning the smallest integer greater than or equal to x; it is only relevant when float values
are in use. As usual, the rationale for this formula is that δ(l,u) needs to be a lower bound on the
deviation over the full interval (preceding, current, and following). When Z ∧ l = 0 is true, the
allow zero flag is set and the value we are certain about is 0, so we cannot justify any deviation
larger than 0. When Z ∧ l = 0 is false, we can forget the allow zero flag, leaving us with

max(0, L − u , l − U))

When finding the deviation from L, we take the sum of the values of the children to be as large
as possible, and when finding the deviation from U, we take the sum to be as small as possible.
L, U, l, and u apply to the full interval, that is, including history.

The second step (which is optional) is to apply the cost function to obtain a cost:

c(m,S) = f (δ(l,u))

The c in c(m,S) has nothing to do with the history value ci. All values are non-negative.

In a complete solution l is the sum of the values of the children in the current interval plus

C.6. Sum monitors 505

xi, and u is l + ci. Given this, it is easy to check that our formula agrees with the various XESTT
cost formulas, as it needs to do.

At most one of L − u and l − U can be positive. We prove this by showing that their sum
is not positive: (L − u) + (l − U) = (L − U) + (l − u) ≤ 0 since L ≤ U and l ≤ u. Another useful
result is that if L − u ≤ 0 and l − U ≤ 0, then δ(l,u) = 0 and f (δ(l,u)) = 0.

When values have type int, we may choose to assume Z ⇒ L ≥ 2, for the following reason.
If Z is true and L = 0, we can change Z to false without changing cost. If Z is true and L = 1, we
can change Z to false and L to 0 without changing cost. These changes never increase L, so they
do not interact with U. When values have type float, there is no useful corresponding result.

We now show that our cost formula c(m,S) = f (δ(l,u)) is monotone non-decreasing as
solutions become more complete. All cost functions f are monotone non-decreasing, so we just
have δ to consider. Omitting the allow zero flag for the moment, this is:

δ(l,u) = max(0, L − u , l − U)

As solutions become more complete, l is monotone non-decreasing so l − U is too, and u is
monotone non-increasing (see above) so L − u is monotone non-decreasing.

Now consider the full formula, including the allow zero flag:

δ(l,u) = χ(Z ∧ l = 0,0,max(0, L − u , l − U)))

When Z is false this is unchanged. When Z is true, its effect is to possibly reduce δ(l,u) for the
most incomplete solutions (those with l = 0), so δ(l,u) remains monotone non-decreasing as
solutions become more complete.

During the construction of a new solution S′ by extending a given solution S, a value sum
expression m needs to calculate l(m,S), u(m,S), l(m,S′), and u(m,S′). Given these four values, it
is trivial to find the extra cost c(m,S′) − c(m,S) and the new saved value l(m,S′).

To find l(m,S), we either use an initial value (if this is the first day that affects m), or
retrieve it from the signature of S (on days after the first). We find u(m,S) by adding to l(m,S)
the value upper bounds of all the unassigned children. This number can be tabulated before the
solve begins, because tbe unassigned children in S depend only on the domain of S, not on its
assignments, and each child’s value upper bound is independent of S.

To find l(m,S′), we add to l(m,S) the values of the children that are unassigned in S but
assigned in S′. To find u(m,S′), we make these same additions (since u includes l), but we also
subtract from u(m,S) the value upper bounds of these same children. These steps are carried
out in the course of a single traversal of the children that are known to be unassigned in S but
assigned in S′. These children depend only on the domains of S and S′, so they are easy to find.

C.6.3. Upper bounds

We stated earlier that upper bounds u(x) for each child x are easy to find. We have to take account
of the possibility that a child x might itself be a sum expression, in which case we need an upper
bound on a deviation. (In practice, it turns out that no sum expressions x are used in contexts
where u(x) is needed, so the work done in this section is only for completeness.)

So suppose some expression e has a value which is a deviation:

506 Appendix C. Dynamic Programming Resource Reassignment: Theory

δ(l,u) = χ(Z ∧ l = 0,0,max(0, L − u , l − U))

for given fixed Z, L, and U such that L ≤ U. Assuming that l and u satisfy 0 ≤ l ≤ u ≤ M for some
given M (in fact, M will be the sum of the value upper bounds of the children of e), how large
could δ(l,u) be? The answer, as we’ll prove in this section, is

 max(L,M − U)

This can be improved slightly to

 max(0,L − 1,M − U)

when values are integers and Z = true. Our method is a straightforward analysis of cases.

Let’s start with the case Z = false, so that δ(l,u) = max(0, L − u , l − U).
Suppose l ≤ U. Then max(0, L − u , l − U) = max(0, L − u), which is a monotone

non-increasing function of u alone, so it reaches its maximum value when u is as small as
possible, that is, when u = 0, at which point its value is max(0, L) = L .

Now suppose u ≥ L. Then max(0, L − u , l − U) = max(0, l − U), which is a
monotone non-decreasing function of l alone, so it reaches its maximum value when l is as large
as possible, that is, when l = M, at which point its value is max(0, M − U).

The remaining case, l > U and u < L, cannot occur, because the two conditions imply
u < L ≤ U < l when in fact l ≤ u. Overall, then, the maximum value is

max(L ,max(0, M − U)) = max(L,M − U)

since L ≥ 0.

We now consider the second main case, Z = true. We can divide this into two sub-cases:
l = 0and l > 0. When l = 0, the deviation is 0. When l > 0, the previous analysis applies, except
that the additional condition l > 0 is present. When values are integers this implies u ≥ 1 and
leads to maximum value max(0,L − 1,M − U) , which subsumes the l = 0 sub-case.

C.6.4. Dominance

We do not use tabulated dominance with sum monitors. This is because the determinant of a sum
monitor can have many different values, even floating-point values in some cases, making the
table potentially much larger than for counter monitors. Also, indexing the table is a problem
with float-valued indexes. So we fall back on separate dominance and tradeoff dominance.

The XESTT monitors that give rise to sum expressions (limit busy times and limit workload
monitors) do not offer history. However, they easily could, for each of their time groups. So each
sum expression has ai, xi, and ci history attributes, although currently they are set to 0 or 0.0.

Sum monitors are used in several contexts in the expression trees that model XESTT
constraints. Dominance testing varies depending on this context, as follows.

(1) Sum monitor at the root, with two or more children, each of which is a sum expression.
In this case, the sum monitor calculates an integer-valued determinant which is the sum of the
values of its children, a deviation which is the amount by which the determinant exceeds zero

C.6. Sum monitors 507

(making it equal to the determinant), and a cost based on the determinant.

This is a very standard situation which can be handled with tradeoff dominance when the
cost function is linear, and with separate dominance otherwise. Because the maximum limit is
0 we need very_small(l) = false, so we set a to −1. And because there is no minimum limit, we
need very_large(l) = true, so we set b to 0.

(2) Sum monitor at the root, with one or more int-valued children, none of which is a sum
expression. In this case the children all have value 0 or 1, as it turns out, so we use a counter
monitor instead of a sum monitor, to allow tabulated dominance to be used.

(3) Sum monitor at the root, with one or more float-valued children, none of which is a
sum expression. The determinant is the sum of the values of the children, and an integer-valued
deviation is calculated, and based on that a cost. Because of the float values we don’t use
tabulated dominance or tradeoff dominance. But a float-valued separate dominance test may
be used in the usual way.

If there is a maximum limit, we need a non-trivial value of very_small(l). The value l
retrieved from the signature is xi plus the values of the assigned children. This could increase by
as much as B, the sum of the value upper bounds of the unassigned children. (These children are
easily determined,because they just depend on which day the solve is up to; and their value upper
bounds are fixed constants stored in the expressions.) So very_small(l) is true when l + B ≤ U,
and we may take a = U − B. This may be negative. This also works when there is no maximum
limit, because U is FLT_MAX then. A previous analysis for counter monitors is just this analysis
when the value upper bounds of the unassigned children are all 1.

If there is a minimum limit, we need a non-trivial value of very_large(l). Clearly it holds
when l ≥ L, so we may take b = L. This is correct when there is no minimum limit, because L = 0
then. Again this generalizes an argument made previously for counter monitors.

(4) Sum expression which is a child of a sum monitor. In this case the determinant is the sum
of the values of the children, possibly float-valued, and the value is the deviation from given
limits. There is no cost, so separate dominance (possibly float-valued) is the only option.

We can find a and b based on the limits stored in the expression; the parent has trivial limits
(maximum limit 0) which don’t affect dominance at the children. The formulas to use are the
same as those for case (3) above, although here they may be int-valued, not just float-valued.

C.7. Sequence monitors

A sequence monitor monitors the lengths of non-empty sequences of consecutive things. This
section defines sequence monitors, defines their costs in complete and incomplete solutions,
shows that cost is non-negative and non-decreasing as solutions become more complete, and
defines a suitable ∆(m,S1,S2) for use with tabulated dominance.

C.7.1. Definition

This section defines sequence monitors. They have a lot in common with counter monitors.
Where they are the same, we’ll use the same notation and explain things only briefly.

Just as in counter monitors, a sequence monitor has some number of children, each repre-
senting one shift, or weekend, or whatever is being monitored, and having one of three states:

508 Appendix C. Dynamic Programming Resource Reassignment: Theory

active (value 1), inactive (value 0), or unassigned. As usual, a child is unassigned if its value is
affected by what happens on one of the selected days, and the search is not up to that day yet;
and as the search progresses, the unassigned children gradually change their state to assigned.

However, in sequence monitors the order of the children matters. So it makes sense to talk
about the first or last child, the child just before or just after a given child, and so on. Any subset
of the days may be unassigned initially, so as we proceed along the sequence of children we may
encounter active, inactive, and unassigned children, arbitrarily intermingled. This intermingling
adds considerable complexity to the implementation. It also occurs with counter monitors, but
it does not matter there because the order of the children does not matter.

An active interval, or a-interval, is a non-empty maximal sequence of consecutive active
children. A sequence monitor constrains the length (number of children) of each a-interval.

Sequence monitors have the usual history attributes, although xi is defined differently:

• A non-negative integer history before value ai, representing the number of children in the
preceding interval.

• An integer history value xi satisfying 0 ≤ xi ≤ ai, representing the length of the a-interval
whose last element is the history child immediately before the first true child, or 0 if ai = 0
or the last history child is inactive.

• A non-negative integer history after value ci, representing the number of children in the
following interval.

The monitor constrains the a-intervals of the full interval (preceding plus current plus following,
although there can be no a-intervals in the following interval), and understands that an a-interval
can span across the boundary between the preceding interval and the current interval.

There is no single determinant for sequence monitors like there is for counter monitors; a
separate determinant is calculated for each a-interval. We’ll see the details in the next section.
There are lower and upper limits L and U, but here they constrain the length of any one a-interval.
So Dl, the lower limit on L, is 1, while Du, the upper limit on U, is as for counter monitors. There
is no allow zero flag Z and no need for it, because an a-interval always has length at least 1. The
usual cost functions f , monotone non-increasing and satisfying f (0) = 0, are available.

C.7.2. Deviation and cost

This section defines the cost of sequence monitors in complete and incomplete solutions. As
usual, we need a definition of c(m,S), the cost of sequence monitor m in complete or incomplete
solution S, such that when S is complete the definition agrees with the XESTT definition; and we
need this cost to be non-negative, and non-decreasing as solutions become more complete.

First recall the XESTT rule for complete solutions. An interval is a sequence of consecutive
children. An active interval, or a-interval, is a maximal non-empty sequence of consecutive
active children, as we already know. It is defined for a given monitor m in a given solution S.
If an a-interval includes the very first child, then it also includes m’s xi history children. Two
a-intervals for m in S cannot overlap or abut, because then they would not be maximal.

Let S be a complete solution, and let A be the set of a-intervals of m in S. XESTT defines

C.7. Sequence monitors 509

c(m,S) = ∑
z ∈ A

f (max(0,L − l(z), l(z) − U))

where l(z) is the length of a-interval z. If z includes the first child, l(z) includes xi, and if z
includes the last child, L − l(z) must be replaced by L − l(z) − ci.

We now define c(m,S) for incomplete solutions. Our definition will work for arbitrarily
intermingled active, inactive, and unassigned children, as it must; and it will be non-negative, and
monotone non-decreasing as solutions become more complete.

An au-interval is a maximal non-empty sequence of consecutive children which are either
active or unassigned. If an au-interval includes the very first child, then it also includes the xi

history children, which are considered to be active; and if it includes the very last child, then it
also includes the ci history after children, which are considered to be unassigned.

Two au-intervals cannot overlap or abut, because then they would not be maximal. Every
a-interval is contained within an au-interval, but despite this intimate connection, we handle
a-intervals and au-intervals separately.

Given a sequence monitor m, we can construct a corresponding counter monitor m′, by
using the same children. The total length of the a-intervals of m in solution S equals the lower
determinant l(m′, S) of m′ in S, and the total length of the au-intervals of m in S equals the upper
determinant u(m′, S)of m′ in S. This correspondence between a-intervalsand lower determinants
on the one hand, and au-intervals and upper determinants on the other, can help to illuminate
what is going on. However, we do not use it in any technical way, largely because although each
a-interval lies within exactly one au-interval, an au-interval may contain several a-intervals.

As a search progresses, unassigned children become assigned. These changes cannot make
an au-interval longer. All cost functions f are monotone non-decreasing, so if we assign cost

f (max(0,L − l(z)))

to au-interval z with length l(z), possibly including xi or ci or both as we stated above, this will
be non-decreasing as the search progresses, and at the end it will be the cost contributed by z if
it violates the lower limit L.

Actually this argument has a flaw: if an au-interval has no active children at all, it might
never lead to any a-interval (Section B.6), making f (max(0,L − l(z))) too large (just what we
need to avoid) when z contains no active children. So we correct the formula to

f (χ(a(z) = 0,0,max(0,L − l(z))))

where a(z) is the number of active children in au-interval z.

Let AU be the set of au-intervals in solution S. We need to show that as the solve proceeds
and unassigned children switch to being assigned, the sum

∑
z ∈ AU

f (χ(a(z) = 0,0,max(0,L − l(z))))

is non-decreasing. Making an unassigned child inactive splits the au-interval containing that
child into zero, one, or two smaller au-intervals. If the unsplit au-interval has no active children,
it has cost 0 which cannot decrease. If it has at least one active child, then there will be a smaller

510 Appendix C. Dynamic Programming Resource Reassignment: Theory

au-interval containing that child which is shorter than the original, so again there can be no cost
decrease. Making an unassigned child active has no effect on the set of au-intervals, but it may
change the value of the condition a(z) = 0 from true to false. This again cannot decrease cost.

We can make a similar argument for a-intervals. Making an unassigned child assigned
cannot make an a-interval shorter. So if we assign cost

f (max(0,l(z) − U))

to a-interval z with length l(z), possibly including xi, this will be non-decreasing as the search
progresses, and at the end it will be the cost contributed by z if it violates the upper limit U.

Once again, however, this argument has a flaw. Suppose that when an unassigned child
becomes active, it causes two a-intervals z1and z2 to be merged into one a-interval z whose length
l(z) is l(z1) + l(z2) + 1. The change in cost is

f (max(0,l(z) − U)) − f (max(0,l(z1) − U)) − f (max(0,l(z2) − U))

This is non-negative when f is linear or quadratic, but it may be negative if f is a step function,
for example when U = 1and l(z1) = l(z2) = 2. The step function counts the number of over-long
a-intervals, and that number has decreased. We handle this by changing the formula so that when
the cost function is a step function and there is an unassigned child adjacent on the left, the result
is 0 instead of max(0,l(z) − U). Then z2 contributes cost 0 before the switch, and the problem is
solved. Our corrected cost formula for a-intervals is

f (χ(u(z),0,max(0,l(z) − U)))

where u(z) is true when the cost function is a step function and there is an unassigned child
adjacent on the left of a-interval z.

Let A be the set of a-intervals in solution S. We can show now that as the solve proceeds
and unassigned children switch to being assigned, the sum

∑
z ∈ A

f (χ(u(z),0,max(0,l(z) − U)))

is non-decreasing. Making an unassigned child inactive has no effect on the set of a-intervals. It
may however change u(z) in an immediately following a-interval z from true to false. This cannot
decrease the cost of z. Making an unassigned child active cannot decrease cost if it creates an
a-interval of length 1, or increases the length of an existing a-interval by 1. We have already
analysed what happens if it causes two a-intervals to merge into one.

So then, in any solution S, let AU be the set of au-intervals for m in S, and let A be the set of
a-intervals for m in S. Define the cost of m in S to be

c(m,S) = ∑
z ∈ AU

f (χ(a(z) = 0,0,max(0,L − l(z)))) + ∑
z ∈ A

f (χ(u(z),0,max(0,l(z) − U)))

where a(z) is the number of active children in au-interval z, u(z) is true if there is an unassigned
child adjacent to a-interval z on the left, and l(z) may include xi or ci or both as explained above.
This is non-negative, and non-decreasing as solutions become more complete, as just shown.

To show that it equals the XESTT cost of m in complete solutions,we argue as follows. First

C.7. Sequence monitors 511

assume that there are no history after children. There are no unassigned children in complete
solutions, so a(z) > 0 for every au-interval, u(z) is false for every a-interval, and A = AU, giving

c(m,S) = ∑
z ∈ A

[f (max(0,L − l(z))) + f (max(0,l(z) − U))]

= ∑
z ∈ A

f (max(0,L − l(z), l(z) − U))

as required. The second line follows because at most one of L − l(z) and l(z) − U can be positive,
and f (0) = 0for all cost functions f . The XESTT cost formula includes xi in l(z) if z includes the
first child, and replaces L − l(z) by L − l(z) − ci if z includes the last child. These adjustments are
easily seen to happen in our formula too.

One point we forgot to mention is that when xi > 0 we are supposed to subtract cost

f (max(0,L − xi − bi − ci,xi − U))

where bi is the number of non-history children of m. This happens automatically when we set
the start cost to the solution cost as reported by KHE, since KHE performs this subtraction.

To see that our formula falls short of the ideal even when f is not a step function, consider
this example, which could arise in practice when reassigning weekends:

 0
W

Wed

 1
Thu

Thu

 1
Fri

Fri

 ?
Sat

Sat

 ?
Sun

Sun

 1
Mon

Mon

 1
T

Tue

 0
W

Wed

writing ‘0’ for inactive, ‘1’ for active, and ‘?’ for unassigned. Suppose L = 3and U = 5. As the
search proceeds, if both unassigned children become active we have one a-interval of length 6
and deviation 1; if both become inactive we have two a-intervals, each of length 2 and deviation
1; and if one becomes active we have two a-intervals, one of length 2 and deviation 1, the other
of length 3 and deviation 0. The total deviation is at least 1, and ideally our formula would
give this, but in fact it gives 0: there are two a-intervals, both under the maximum limit, and
one au-interval, over the minimum limit. There seems to be no easy way to calculate the ideal
deviation in such cases, so we don’t try to.

The implementation follows the cost formula quite literally. When a child changes from
unassigned to assigned, it searches the child’s neighbourhood to find the enclosing au-interval
and any neighbouring a-intervals, and applies the formula to each of these intervals. An extra
cost is needed, so it first calculates the cost of the old nearby intervals and subtracts that away,
then it calculates the cost of the new nearby intervals and adds that in.

The cost formula supports changing an arbitrary child from unassigned to assigned and
vice versa, which is handy during the opening and closing parts of a solve. But during the main
part, the implementation assumes that when a child becomes assigned, no unassigned children
precede it. This simplifies things (for example, it allows the determinant to be a single integer)
and make the cost calculations faster. Appendix D explains how the implementation guarantees
this assumption, by delaying the switch in some children if necessary.

512 Appendix C. Dynamic Programming Resource Reassignment: Theory

C.7.3. Separate dominance

The signature value for sequence monitors is the number of active children in the sequence
of active children immediately to the left of the point where the solve is up to. Although this
is rather different from the signature value for counter monitors, the remarks about separate
dominance for counter monitors (Appendix C.5.3) apply without change to sequence monitors,
including the treatment of OR and AND children.

C.7.4. Tabulated dominance

To incorporate a sequence monitor m into our tabulated dominance test, we need to find a
∆(m,S1,S2) satisfying

∆(m,S1,S2) ≤ [c(m,S′2) − c(m,S2)] − [c(m,S′1) − c(m,S1)]

for all complete extensions S′2 of S2, where S′1 = S1 ∪ (S′2 − S2) and

c(m,S) = ∑
z ∈ AU

f (χ(a(z) = 0,0,max(0,L − l(z)))) + ∑
z ∈ A

f (χ(u(z),0,max(0,l(z) − U)))

as defined in the previous section. We need to remember that inactive, active, and unassigned
children may be arbitrarily intermingled.

Let a cut of m be a partition of the sequence of m’s children into left and right parts, with the
left part children preceding the right part children. Either part may be empty. We also refer to the
point in the sequence of children where the left part ends and the right part begins as the cut.

The current cut of m in S is a particular cut of m. Its left part begins at the beginning and
ends at the last assigned child before the first unassigned child. Its right part begins at the first
unassigned child and ends at the end. If the first child is unassigned, the left part is empty (or
one could consider the xi history children to lie in it) and all children lie in the right part. If there
are no unassigned children, the left part contains all children and the right part is empty (or one
could consider the ci history after children to lie in it).

If, as we assume, S1and S2 have equal domains, then the current cut of m in S1 is the same as
the current cut of m in S2. This is because the cut depends only on whether children are assigned
or unassigned, not on whether assigned children are active or inactive. We call this cut the
common cut. We also use it within S′1 and S′2: it is not the current cut there, but it is a cut.

An interval lies strictly left of the common cut when it lies in the left part of the common cut
and does not include the last child of the left part. An interval lies strictly right of the common
cut when it lies in the right part of the cut and does not include the first child of the right part.

The neighbours of an interval are the child immediately to its left, if any, and the child
immediately to its right, if any. They are not part of the interval, but they have an important role
in delimiting it. Also, the cost of an a-interval is influenced by the state of its left neighbour.

We consider intervals from different solutions to be distinct. We say that two a-intervals or
two au-intervals z and z′ form a complementary pair when they come from different solutions,
contain the same children in the same states, and one’s cost counts positively within the formula
for ∆ while the other’s counts negatively. For a-intervals, we also require the state of the left
neighbour to be the same for both intervals, to ensure u(z) = u(z′). The costs of the two intervals

C.7. Sequence monitors 513

of a complementary pair are equal and cancel each other out, and in that sense those intervals do
not contribute to [c(m,S′2) − c(m,S2)] − [c(m,S′1) − c(m,S1)] at all.

We now group most of the intervals from the four solutions S1, S2, S′1, and S′2, into exactly
one complementary pair each. There are four cases.

(1) Let z be any a-interval or au-interval in S1 lying strictly left of the common cut. Then
z’s children, as well as its neighbours, are all assigned and will remain in the same state as S1 is
extended. So, since S′1 is an extension of S1, an interval z′ must appear in S′1 such that z and z′
form a complementary pair. Conversely, each a-interval or au-interval z′ in S′1 lying strictly left
of the common cut must derive from a z in S1. So this argument cancels out all a-intervals and
au-intervals lying strictly left of the common cut in S1 and S′1.

(2) The same argument applied to S2 and S′2 cancels out all a-intervals and au-intervals lying
strictly left of the common cut in S2 and S′2.

(3) Let z be any a-interval or au-interval in S1 lying strictly right of the common cut. Now
S1 includes no children that have switched from unassigned to active or inactive strictly right
of the common cut, because the first child of the right part is unassigned, and, as we explained
earlier, switching occurs strictly from left to right. So z must have been present in the initial
solution that S1 was derived from. Therefore a complementary z′ must be present in S2, since S2
was derived from the same initial solution. The converse argument also works. So this cancels
out all a-intervals and au-intervals in S1 and S2 that lie strictly right of the common cut.

(4) Let z be any a-interval or au-interval in S′1lying strictly right of the common cut. Since S′1
is complete, z’s children and the adjacent children are assigned, and their states are determined by
the initial solution and by the assignments in S′1 − S1. There must therefore be a complementary
interval in S′2, since S′2 is derived from the same initial solution and the assignments of S′2 − S2 are
the same as the assignments of S′1 − S1. So this cancels out all a-intervals and au-intervals lying
strictly right of the common cut in S′1 and S′2.

Looking through the four cases, we see that they cover every a-interval and au-interval lying
strictly left or right of the common cut in S1, S2, S′1, and S′2:

S1 Case (1) Case (3)

S2 Case (2) Case (3)

S′1 Case (1) Case (4)

S′2 Case (2) Case (4)

common

common cut

So the only intervals that contribute to [c(m,S′2) − c(m,S2)] − [c(m,S′1) − c(m,S1)] are those not
lying strictly left or right of the common cut. Call them unpaired intervals. We have shown

[c(m,S′2) − c(m,S2)] − [c(m,S′1) − c(m,S1)] = [cu(m,S′2) − cu(m,S2)] − [cu(m,S′1) − cu(m,S1)]

514 Appendix C. Dynamic Programming Resource Reassignment: Theory

where each cu(m,S) is the cost of unpaired intervals in its solution.

Now there cannot be two unpaired au-intervals in one solution, because if there were, they
would both not lie strictly to the left or right of the common cut, which means that they would
have to overlap or abut, which au-intervals never do. For the same reason, there cannot be two
unpaired a-intervals in one solution.

The next step is to find a formula which combines the cost of the single unpaired au-interval
and the single unpaired a-interval of one solution S into a single cost, cu(m,S). The contribution
to cu(m,S) made by a non-existent interval needs to be 0.

Care is needed when including history after children in unpaired au-intervals. Let p be the
number of children to the right of the common cut, not counting history after children. Define

−ci(x) = χ(x < p,0,ci)

Then if x is the number of non-history children to the right of the cut in some au-interval, this
will return ci when these children abut the history after children, and 0 when they don’t.

In S1, the left part of the common cut ends with (say) l1 active children, possibly none, and
possibly including the xi history children. Immediately to the left of these children there is either
nothing or an inactive child, because there are no unassigned children to the left of the cut. The
right part of the common cut begins with (say) q unassigned children (not including history
after children) and r active children, arbitrarily intermingled. Immediately to the right of these
children there is either nothing, or an inactive child, or the first history after child. The values l1, p,
q, and r are always well-defined, independently of whether any unpaired intervals are present.

If there are no unassigned children to the right of the common cut, we have completed the
last open day, and p = q = r = 0. If it is not the last day, a result that will be important to us later
is that q > 0. This is because the first child to the right of the common cut is unassigned, so it
counts towards q.

If there is an unpaired au-interval z in S1 then it consists of l1 active children immediately
to the left of the cut, followed by q + r + −ci(q + r) unassigned and active children immediately to
the right of the cut. After all that comes nothing or an inactive child. The cost of z is

f (χ(a(z) = 0,0,max(0,L − l(z)))) = f (χ(l1 + r = 0,0,max(0,L − l1 − q − r − −ci(q + r))))

This formula is also correct when there is no unpaired au-interval, since then l1 = 0 and r = 0.

Still in S1, if there is an unpaired a-interval z, then it consists of the same l1 active children
immediately to the left of the cut, and nothing to the right, since immediately to the right of the
cut is either nothing or an unassigned child (possibly a history after child). The cost of z is

f (χ(u(z),0,max(0,l(z) − U))) = f (max(0,l1 − U))

since u(z) is false, because there can be no unassigned child to the left of the cut. Again, this is
correct when there is no a-interval, since then l1 = 0.

Our next step is to make this simple formula more complicated:

f (max(0,l1 − U)) = f (χ(l1 + r = 0,0,max(0,l1 − U)))

C.7. Sequence monitors 515

This follows because if l1 + r = 0, then this formula gives 0 and the simple formula does too,
because l1 = 0; while if l1 + r > 0, this formula reduces to the simple formula.

We now combine the au-interval formula with the a-interval formula to get

cu(m,S1) = f (χ(l1 + r = 0,0,max(0,L − l1 − q − r − −ci(q + r)))) +

f (χ(l1 + r = 0,0,max(0,l1 − U)))

Now if l1 + r = 0 this gives 0, while if l1 + r > 0 it gives

f (max(0,L − l1 − q − r − −ci(q + r))) + f (max(0,l1 − U))

= f (max(0,L − l1 − q − r − −ci(q + r), l1 − U))

since at most one of L − l1 − q − r − −ci(q + r) and l1 − U is positive, and f (0) = 0. So the total cost
of unpaired intervals in S1 is

cu(m,S1) = f (χ(l1 + r = 0,0,max(0,L − l1 − q − r − −ci(q + r), l1 − U)))

= f (δ(l1 + r, l1, l1 + q + r + −ci(q + r)))

writing

δ(z, l,u) = χ(z = 0,0,max(0,L − u, l − U))

This is similar to the δ function for counter monitors, omitting the allow zero flag Z and allowing
the test for the zero special case to depend on a separate parameter z. The same argument applies
to S2, replacing l1 by l2. Note that p (used by −ci) is the same for S1 and S2, as are q and r because
only initial assignments determine the states of m’s children to the right of the cut.

We turn now to S′1. Since S′1 is complete, all m’s children are assigned in it (except history
after children), and since it is an extension of S1, each assigned child in S1preserves its state in S′1.
So there are l1active children immediately to the left of the common cut in S′1, and some number
y such that 0 ≤ y ≤ q + r of active children immediately to the right of the cut. After them comes
an inactive child, the first history after child, or nothing. Here l1 and y are always well-defined,
independently of whether any unpaired intervals are present.

So if there is an unpaired au-interval z in S′1 then it consists of l1active children immediately
to the left of the common cut, followed by some number y such that 0 ≤ y ≤ q + r of active
children to the right of the cut, possibly followed by the ci history after children. The cost is

f (χ(a(z) = 0,0,max(0,L − l(z)))) = f (χ(l1 + y = 0,0,max(0,L − l1 − y − −ci(y))))

This is also correct when there is no au-interval, since then l1 = 0 and y = 0.

Since S′1 is complete, if there is an unpaired a-interval z in S′1 then it consists of the same
children as the au-interval, although not the history after children. The cost is

f (χ(u(z),0,max(0,l(z) − U))) = f (max(0,l1 + y − U))

since u(z) is false as before. As usual, this is correct when there is no a-interval.

516 Appendix C. Dynamic Programming Resource Reassignment: Theory

Once again our next step is to make this simple formula more complicated:

f (max(0,l1 + y − U)) = f (χ(l1 + y = 0,0,max(0,l1 + y − U)))

which is clearly true. Then we combine the au-interval and a-interval formulas to get

cu(m,S′1) = f (χ(l1 + y = 0,0,max(0,L − l1 − y − −ci(y)))) +

f (χ(l1 + y = 0,0,max(0,l1 + y − U)))

Now if l1 + y = 0 this gives 0, while if l1 + y > 0 it gives

f (max(0,L − l1 − y − −ci(y))) + f (max(0,l1 + y − U))

= f (max(0,L − l1 − y − −ci(y), l1 + y − U))

since at most one of L − l1 − y − −ci(y) and l1 + y − U is positive, and f (0) = 0. So the total cost of
unpaired intervals in S′1 is

cu(m,S′1) = f (χ(l1 + y = 0,0,max(0,L − l1 − y − −ci(y), l1 + y − U)))

= f (δ(l1 + y, l1 + y, l1 + y + −ci(y)))

using the δ function we defined above. The same argument applies to S′2, changing l1 to l2. The
values of y and −ci(y) are the same for S′2 as for S′1, because they depend on assignments that are
the same in both solutions.

Putting everything together, we find that

∆(m,S1,S2) ≤ [c(m,S′2) − c(m,S2)] − [c(m,S′1) − c(m,S1)]

= [cu(m,S′2) − cu(m,S2)] − [cu(m,S′1) − cu(m,S1)]

= [f (δ(l2 + y, l2 + y, l2 + y + −ci(y))) − f (δ(l2 + r, l2, l2 + q + r + −ci(q + r)))]

− [f (δ(l1 + y, l1 + y, l1 + y + −ci(y))) − f (δ(l1 + r, l1, l1 + q + r + −ci(q + r)))]

for all y such that 0 ≤ y ≤ q + r. We define Ψy(p,q,r, l1, l2) as a name for this last formula, and
Ψ(p,q,r, l1, l2) for its minimum value. This gives us

∆(m,S1,S2) ≤ Ψ(p,q,r, l1, l2) = min
0≤y≤q+r

Ψy(p,q,r, l1, l2)

We will use Ψy(p,q,r, l1, l2) in Appendix C.7.6.

All this is similar to what we had for counter monitors, and here too we can calculate the
minimum over all y and cache the results. For counter monitors the cache is indexed by the triple
(e, l1, l2), but here it is indexed by the quintuple (p,q,r, l1, l2), where, within S1 (or any solution
with the same domain), p is the number of current interval children to the right of the common
cut, q is the number of unassigned current interval children to the right of the common cut in the
adjacent au-interval, and r is the number of active children to the right of the common cut in that

C.7. Sequence monitors 517

same interval. Letting A be the number of children in the current interval, the index ranges are
easily seen to be 0 ≤ p ≤ A, 0 ≤ q ≤ p, 0 ≤ r ≤ p − q, 0 ≤ l1 ≤ A − p + xi, and 0 ≤ l2 ≤ A − p + xi.

The five indexes are all easy to find during dominance checking. There does not seem to be
a way to reduce their number, because they appear in different combinations at different points
in the formula. However, similarly to counter monitors, for a given k, all dk-solutions have the
same values for p, q, and r. So we can store a pointer to the part of the cache indexed by these
numbers in the object representing m’s dominance test on day dk, and pass just the pair (l1, l2) to
that part of the cache to retrieve the particular Ψ(p,q,r, l1, l2) we need.

We need to give thought to how to calculate the correct p, q, and r. These are defined in
terms of the current cut, but when we set up for solving, our starting point is dk, the day that will
have just been assigned in the dk-solutions that we wish to test for dominance.

In a dk-solution, then, the first unassigned child is the first child x whose value depends on
any of the open days dk+1,… ,dn. If there is no such x, dk is m’s last open day, so we don’t need
a dominance test for m on that day. Otherwise, this x is the first child of the right part of the cut,
and p is the number of current interval children from x inclusive to the end. For q and r we scan
to the right, starting with x, counting the number of unassigned and active children we pass over,
stopping at the first inactive child, or at the end of the current interval. We do this only when
setting up for solving, not during solving.

C.7.5. Early termination of the tabulated dominance test

Appendix C.4.3 stated that ∆(m,S1,S2) ≤ 0 holds for sequence monitors in most cases but not
always. We prove this now.

An example where the condition does not hold, the first example found by the author’s
checking code, is L = 2, U = 5, p = 2, q = 0, r = 1, l1 = 0, and l2 = 5. This gives range 0 ≤ y ≤ 1,
and for both of these values of y the difference in extra cost is the positive value f (1).

We now prove that ∆(m,S1,S2) ≤ 0when r = 0. This is most of the time in practice, because
r is the number of active children in the au-interval to the right of the cut, so that the condition
r ≥ 1, while possible, is not common. The proof follows the proof for counter monitors closely.
Two small adjustments are needed, one for when the determinant is 0, and the other for handling
−ci instead of ci. These seem to prevent us from simply re-using the earlier result.

Our task then is to prove that for each (p,q, l1, l2) quadruple there exists a y in the range
0 ≤ y ≤ q + r such that

[f (δ(l2 + y, l2 + y, l2 + y + −ci(y))) − f (δ(l2 + r, l2, l2 + q + r + −ci(q + r)))]

− [f (δ(l1 + y, l1 + y, l1 + y + −ci(y))) − f (δ(l1 + r, l1, l1 + q + r + −ci(q + r)))] ≤ 0

assuming r = 0.

Since the second main term in this formula is an extra cost, it is non-negative. Using this
and the condition r = 0 we see that it is sufficient to find a y in the range 0 ≤ y ≤ q such that

f (δ(l2 + y, l2 + y, l2 + y + −ci(y))) − f (δ(l2, l2, l2 + q + −ci(q))) ≤ 0

This is what we will do.

518 Appendix C. Dynamic Programming Resource Reassignment: Theory

In some cases we use a shortcut: we are able to find a y in the range 0 ≤ y ≤ q such that
δ(l2 + y, l2 + y, l2 + y + −ci(y)) = 0. This then gives us f (δ(l2 + y, l2 + y, l2 + y + −ci(y))) = f (0) = 0,
and since f (δ(l2, l2, l2 + q + −ci(q))) ≥ 0 we are done.

We prove our result using four cases. Let K = L − l2 − −ci(0).
Case 1: l2 = 0. Choose y = 0. This gives

δ(l2 + y, l2 + y, l2 + y + −ci(y)) = δ(l2, l2, l2 + −ci(0))

= χ(l2 = 0,0,max(0,L − l2 − −ci(0),l2 − U))

= 0

taking the first branch of the χ. The shortcut applies so we are done for this case.

From now on we assume l2 > 0. This means that in all cases the first argument of δ is strictly
positive, and so we can ignore χ and use the simpler formula

δ(z, l,u) = max(0,L − u, l − U)

We will do this in the remaining cases without further mention.

Case 2: l2 > 0 and K ≤ 0. Choose y = 0. This gives

δ(l2 + y, l2 + y, l2 + y + −ci(y)) = δ(l2, l2, l2 + −ci(0))

= max(0,L − l2 − −ci(0),l2 − U)

= max(0,l2 − U)

because L − l2 − −ci(0) = K ≤ 0. And

δ(l2, l2, l2 + q + −ci(q)) = max(0,L − l2 − q − −ci(q), l2 − U)

= max(0,l2 − U)

because −ci(0) ≤ −ci(q) and so

L − l2 − q − −ci(q) ≤ L − l2 − q − −ci(0) = K − q ≤ 0

Putting these results together, we get

f (δ(l2 + y, l2 + y, l2 + y + −ci(y))) − f (δ(l2, l2, l2 + q + −ci(q)))

= f (max(0,l2 − U)) − f (max(0,l2 − U))

= 0

So we have our result in Case 2.

Case 3: l2 > 0 and K > 0 and q ≤ K. Choose y = q. This gives

δ(l2 + y, l2 + y, l2 + y + −ci(y)) = δ(l2 + q, l2 + q, l2 + q + −ci(q))

C.7. Sequence monitors 519

= max(0,L − l2 − q − −ci(q), l2 + q − U)

= max(0,L − l2 − q − −ci(q))

because

l2 + q − U ≤ l2 + K − U

= l2 + (L − l2 − −ci(0)) −U

= L − −ci(0) −U

≤ 0

since L ≤ U. And

δ(l2, l2, l2 + q + −ci(q)) = max(0,L − l2 − q − −ci(q), l2 − U)

= max(0,L − l2 − q − −ci(q))

because l2 − U ≤ l2 + K − U ≤ 0 as we just saw. So

f (δ(l2 + y, l2 + y, l2 + y + −ci(y))) − f (δ(l2, l2, l2 + q + −ci(q)))

= f (max(0,L − l2 − q − −ci(q)) − f (max(0,L − l2 − q − −ci(q))

= 0

So we have our result in Case 3.

Case 4: l2 > 0 and K > 0 and q > K. Choose y = K (legal since 0 < K < q). This gives

δ(l2 + y, l2 + y, l2 + y + −ci(y)) = δ(l2 + K, l2 + K, l2 + K + −ci(K))

= max(0,L − l2 − K − −ci(K), l2 + K − U)

= 0

because the second term of the ‘max’ is

L − l2 − K − −ci(K) = L − l2 − (L − l2 − −ci(0)) −−ci(K)

= −ci(0) −−ci(K)

≤ 0

since −ci(x) is a monotone non-decreasing function of x, and K ≥ 0. And the third term is

l2 + K − U = l2 + (L − l2 − −ci(0)) −U

= L − −ci(0) −U

≤ 0

520 Appendix C. Dynamic Programming Resource Reassignment: Theory

The shortcut applies so Case 4 is done. This completes our proof that ∆ ≤ 0 when r = 0.

C.7.6. Correlated expressions

Here we work out the algebra for Type 3 and Type 4 correlations, as defined in Appendix C.4.5.
We’ll start with the definite case of a monitor m1 which limits the number of consecutive busy
days, and a monitor m2 which limits the number of consecutive free days, then generalize it. Any
limits and cost functions are allowed.

Appendix C.7.4 gives us this formula for any sequence monitor m:

∆(m,S1,S2) ≤ Ψ(p,q,r, l1, l2) = min
0≤y≤q+r

Ψy(p,q,r, l1, l2)

It will be convenient here to write this as

∆(m,S1,S2) ≤ Ψ(m) = min
0≤y≤u(m)

Ψy(m)

This is a reasonable notation because each monitor m knows its own values for p, q, and r on any
given day, and also the common index of l1 and l2 in the signatures of S1 and S2.

Now correlating m1 and m2 amounts to merging the two monitors into a single monitor
{m1,m2} whose cost is the sum of the costs of m1 and m2. A little thought will show that

∆({m1,m2}, S1,S2) ≤ min
(y1,y2) s.t.

0≤y1≤u(m1)
0≤y2≤u(m2)

[Ψy1
(m1) + Ψy2

(m2)]

But now, y1 represents some number of busy days immediately to the right of the common cut,
bounded above by u(m1), while y2 represents some number of free days immediately to the
right of the same common cut, bounded above by u(m2). Since the first day after the common
cut cannot be both busy and free for the same resource, at least one of y1 and y2 must be 0.
Accordingly, {m1,m2} needs to add min(D,E) to the available cost, where

D = Ψ0(m1) + min
0≤y2≤u(m2)

Ψy2
(m2)

E = min
0≤y1≤u(m1)

Ψy1
(m1) + Ψ0(m2)

Using the terminology above, D and E can be expressed as

D = Ψ0(m1) + Ψ(m2)

E = Ψ(m1) + Ψ0(m2)

We can implement this by storing Ψ0 alongside Ψ in each dominance test, and calculating the
minimum of these two sums of table lookups. We could use a single lookup in a larger table,
but given the number of indexes that does not seem to be a good idea. It is true that p1 = p2, that
l1 cannot be non-zero for both m1 and m2, and that l2 cannot be non-zero for both m1 and m2, but

C.7. Sequence monitors 521

that still leaves too many independent indexes to make a single table an attractive option.

The inequalities Ψ0(m1) ≥ Ψ(m1) and Ψ0(m2) ≥ Ψ(m2) follow trivially from the definitions.
Using them we have

min(D,E) = min(Ψ0(m1) + Ψ(m2),Ψ(m1) + Ψ0(m2))

≥ min(Ψ(m1) + Ψ(m2),Ψ(m1) + Ψ(m2))

= Ψ(m1) + Ψ(m2)

which is the quantity we add to the available cost when m1and m2 are not correlated. This shows
that using correlation is always at least as good as not using it.

We can generalize all this to any set of sequence monitors {m1,… ,mk} , each with one child
for each day, such that for each i, if y

i > 0 then y
j = 0 for every j ≠ i. The available cost is

min
1≤i≤k (Ψ(mi) + ∑

1≤j≤k

j≠ i

Ψ0(mj))
Assuming as usual that each resource can take at most one shift per day, an example of such a
larger set is {m1,m2,m3,m4} , where m1 limits the number of consecutive early shifts, m2 limits the
number of consecutive morning shifts, m3 limits the number of consecutive day shifts, and m4
limits the number of consecutive night shifts. The implementation uses a trivial transformation
of this formula: it calculates

Ψz = ∑
1≤j≤k

Ψ0(mj)

and reports

min
1≤i≤k

[Ψ(mi) − Ψ0(mi) + Ψz] = min
1≤i≤k

[Ψ(mi) − Ψ0(mi)] + Ψz

for the available cost. In its final form this can be calculated in a single pass through the mi,
accumulating two values, one for each part of the formula, and adding them at the end. The loss
of efficiency, compared with the uncorrelated calculation, is not large.

What we have done so far we call a Type 3 correlation. In some cases we can refine this
further into what we call a Type 4 correlation, as follows.

If m1counts consecutive busy days and m2 counts consecutive free days, then, since the next
day is either busy or free, we have y1 ≥ 1or y2 ≥ 1. (No such result holds for consecutive early,
morning, day, and night shifts, because for them all the y

i
could be zero, when the next day is a

free day. We can’t add the consecutive free days monitor to them, because it is already linked
with the consecutive busy days monitor, and we can’t use it twice.) The easy way to add the new
condition is to return to D and E:

D = Ψ0(m1) + min
0≤y2≤u(m2)

Ψy2
(m2)

522 Appendix C. Dynamic Programming Resource Reassignment: Theory

E = min
0≤y1≤u(m1)

Ψy1
(m1) + Ψ0(m2)

and require the y
i
that is not fixed to 0 to be at least 1:

D′ = Ψ0(m1) + min
1≤y2≤u(m2)

Ψy2
(m2)

E ′ = min
1≤y1≤u(m1)

Ψy1
(m1) + Ψ0(m2)

This is undefined when u(m1) = 0 or u(m2) = 0. But those cases cannot happen, because
u(m) = q + r, where r ≥ 0, and q > 0 on every open day except the last (Appendix C.7.4). This
cannot be the last day, because all signatures are empty then and dominance checking is just cost
comparison. We define

Ψ+(m) = min
1≤y≤u(m)

Ψy(m)

and tabulate this with Ψ and Ψ0. We incorporate the new condition by replacing Ψ with Ψ+.

Real-world cases where Type 3 correlation is superior to no correlation are common, and
indeed normal. However, at the time of writing the author has not observed a real-world case
where the extra step from Type 3 to Type 4 was beneficial.

C.8. Solution types

In this section we consider types of solutions beyond the usual dk-solutions. These other types
support optimizations that we will come to later. Here we introduce the different types and
explain how dominance testing works for each.

A solution is a set of assignments. Each solution has a type: a set of rules that restrict the
assignments. (The familiar dk-solution is one type.) For any k ≥ 0, an assignment is a triple

(V, 〈r1,… ,rk〉, 〈 v1,… ,vk〉)

where V is a set of tasks, each ri is an open resource,and each vi is a set of open tasks. It represents
the assignment of each ri to an unspecified element of the corresponding vi. When k = 1, the angle
brackets may be omitted. A single task ti may replace a set of tasks vi.

An assignment is valid when it satisfies two conditions. First, for each i we require vi ⊂ V.
Second, for each i, we require ri to be a suitable resource for assignment to each task of vi. For
example, if ri is an ordinary nurse and some task of vi requires a senior nurse, an assignment
that pairs ri with vi is invalid. As a reminder of these conditions we sometimes speak of valid
assignments; but in fact invalid assignments are never created.

The initial V serves to indicate in a general way what is being assigned. Although V could
be any set of tasks, in practice only these kinds of sets of tasks are used:

1. The set of all tasks which begin on a given day di. We denote this set by di, overloading the
notation in an obvious way.

C.8. Solution types 523

2. The set of all tasks of a shift si. A shift is a maximal set of tasks which have the same busy
times and the same workload. This guarantees that whichever task of shift si is assigned a
resource r, the effect on r’s resource monitors is the same.

3. The set of all tasks of an mtask ci. An mtask is a maximal set of tasks which have the same
busy times and workload, and which satisfy other conditions defined elsewhere.

Each task lies in exactly one mtask, each mtask lies in exactly one shift, and each shift lies in
exactly one day.

It is vital to distinguish between the case of a resource that is free on some day, and the
case of a resource whose assignment on that day has not been decided on. To do this, each day
contains a special shift called s0, which contains one mtask called c0, which contains an unlimited
number of distinct tasks representing free time. Thus, to say that a resource has a free day, one
has to assign it to one of these special sets or tasks. To say that a resource’s assignment on some
day has not been decided on, one has to ensure that no assignment of that resource to any task
lying within that day appears in the solution.

Dominance testing between solutions is always carried out between pairs of solutions of
the same type. In addition, there are usually additional rules, such as the one that states that two
dk-solutions can only be tested for dominance if they are for the same day.

The implementation uses a variety of type-dependent optimizations to reduce the memory
consumed by assignments and solutions. For example, the object representing a dk-solution
holds a set of assignments for day dk plus a pointer to a dk−1-solution. It formerly also held its
day, but no longer does. During the expansion of a solution S, solution objects of several types
are created whose lifetime is limited to the time that S is being expanded. Although they are all
extensions of S, they do not refer to S explicitly.

C.8.1. The dk-solution

We are already familiar with dk-solutions, so this section will be brief. A dk-solution is a set of
assignments of the form

(di,r, t)

indicating that on open day di (standing for the set of tasks that begin on that day) resource r
is assigned to task t. For every open resource r and every open day di such that 1 ≤ i ≤ k, a
dk-solution must include exactly one assignment containing di and r, and at most one assignment
containing any given task t. Also, there must be no assignments for days di such that i > k.

Dominance testing is allowed between any two dk-solutions for the same day.

C.8.2. The ci-solution

As we’ve seen, if there are a mtasks and m selected resources, then each solution for day dk

gives rise to up to (a + m1) solutions for day dk+1. Many of these new solutions will turn out
to be dominated and will be deleted, but before that happens we will have wasted a lot of time
generating them. For example, if a = 4and m = 5, we generate up to 55 = 3125dk+1-solutions for
each undominated dk-solution.

524 Appendix C. Dynamic Programming Resource Reassignment: Theory

If we could take smaller steps, for example adding just one assignment before testing for
dominance, we might be able to drop many solutions early and avoid generating those (a + m1)
extensions. This is what ci-solutions aim to achieve.

A ci-solution is a solution of the form

S ∪ {(dk+1,r,ci)}

where S is a dk-solution and ci is an mtask from day dk+1. There are no other conditions: any
dk-solution, and any one assignment on day dk+1, are acceptable.

Assigning to an mtask rather than to a single task amounts to saying that the properties of
interest here are the same for all tasks of ci. All algorithms for expanding S begin by building
one ci-solution for each valid combination of an open resource r and an open mtask ci (including
the special mtask c0 denoting a free day), calculating the effect on r’s monitors of assigning r to
any one task of ci (the effect is the same for all tasks of ci), and building a signature holding that
common effect. Ultimately a single task from ci must be chosen, but before then it saves a lot of
time to do this work once for each mtask rather than once for each task.

We sometimes refer to ci-solution objects as assignment objects. This is understandable
because each contains an assignment and does not refer explicitly to S. However it is strictly
incorrect because it ignores their signatures’dependence on S.

Now for dominance. Let S be any dk-solution. Consider these two ci-solutions:

S1 = S ∪ {(dk+1,r,ci)}

and

S2 = S ∪ {(dk+1,r,cj)}

where ci ≠ cj. As usual, we require both assignments to be valid (r must be acceptable to both
ci and cj). It would be good if we could show that S1 dominates S2, say, because then, during the
expansion of S, we can safely omit (dk+1,r,cj) from r’s list of possible assignments (that is, we
can rule out assigning r to any task from cj), saving a lot of time. For example, if r’s timetable
in S ends with a night shift, we might be able to show that adding one more night shift is at least
as good as adding a morning shift.

When we apply our usual formula S′1 = S1 ∪ (S′2 − S2), an issue arises. Because S′2 is an
arbitrary extension of S2, we cannot prevent S′2 − S2 from containing, say, (dk+1,r ′, ci), but when
we add this to S1 we find that ci appears twice. This will be a problem when ci contains only one
task, because there will be no way to refine the two assignments into assignments to different
specific tasks. We’ll be handling this by declaring that there is no dominance in this case. For
the moment, though, we’ll proceed as though it is not a problem.

Suppose, then, that we have S1 and S2 as defined above, that S′2 is an arbitrary complete
extension of S2, and that S′1 is valid and defined by S′1 = S1 ∪ (S′2 − S2). Our task now is to work
out c(S′2) − c(S′1) given that S′1 and S′2 differ only in the assignment to r on dk+1.

Suppose m is a resource monitor for a resource other than r. Then c(m,S′2) − c(m,S′1) = 0
because S′1 and S′2 differ only in the one assignment to r, and that has no effect on m.

Now suppose m is a resource monitor for r. Clearly, m has the same cost and signature in

C.8. Solution types 525

S1 as it has in any dk+1-solution that includes S and (dk+1,r,ci), and similarly for S2. So we can
handle all such monitors m by working out their extra costs and signatures just as we do when
building a dk+1-solution. We then add their extra costs to c(S) to get c(S1) and c(S2), and perform
the usual scan along the signature to test for dominance.

If we try to use signatures with event resource monitors we encounter problems. One is that
one assignment does not produce a complete day’s action on an event resource monitor m like it
does on a resource monitor: other assignments on the same day may affect m. But expressions
are set up to be evaluated once per day. This is not a problem for dk-solutions, because they add
an entire day’s worth of assignments at once.

Furthermore, an assignment is between an mtask and a resource. It has the same effect
on resource monitors whichever task is chosen from the mtask, but its effect on event resource
monitors varies with the task. This is again not a problem for dk-solutions, because they make a
whole day’s worth of assignments at once, and that enables them to choose particular tasks from
the mtasks. In principle we could carry out one dominance test for each pair (x,y), where x is
an unassigned task from ci and y is an unassigned task from cj, using a signature containing one
entry for each monitor that monitors x or y, and declare that S1 dominates S2 when all of these
tests succeed; but that seems like a bridge too far.

So although we make signatures for event resource monitors when building dk-solutions,we
will not do that here. Instead, we find lower bounds on available cost that suit all signatures.

It is a property of mtasks that the order in which resources are assigned to them does not
matter. This allows us to make two key assumptions:

• In S′1, r is the last resource assigned to an unassigned task of ci, after p other open resources
are assigned. Let Mi(p+1) be the monitors that monitor the task assigned r.

• In S′2, r is the last resource assigned to an unassigned task of cj, after q other open resources
are assigned. Let Mj(q+1) be the monitors that monitor the task assigned r.

When an mtask represents a free day, the set of monitors is empty. The point here is that to get
from S′1 to S′2, as we will be doing, we have to take the assignment of r to a task of ci away, and
we have to add an assignment of r to a task of cj. If these are the last assignments in their mtasks,
the only event resource monitors affected by these changes are Mi(p+1) and Mj(q+1).

Let x be the number of open resources. We previously called this m, but now m is a monitor.
In any solution, p + q + 1 ≤ x, because the tasks of ci and cj all run on the same day, dk+1, so they
must be assigned distinct resources. This is true even when one of the mtasks represents a free
day. However, we make the weaker assumptions p ≤ x − 1and q ≤ x − 1. This allows us to keep
the two mtasks separate, at the cost of a possibly weaker result overall.

Let u(ci) be the number of open tasks in ci, and let u(cj) be the number of open tasks in cj.
These are infinite if the mtask represents a free day. Since S′2 is given, we know that q has a valid
value, that is, 1 ≤ q + 1 ≤ u(cj). But for p we have the possibility that we mentioned earlier: if
p = u(ci) we find that there is no task available for assignment to r in ci, and we have to declare
that there is no dominance.

Putting all this together, we get that if x − 1 ≥ u(ci) then p = u(ci) is possible and we
must declare that there is no dominance. Otherwise we have 0 ≤ p ≤ min(x − 1,u(ci) − 1)

526 Appendix C. Dynamic Programming Resource Reassignment: Theory

and 0 ≤ q ≤ min(x − 1,u(cj) − 1).
For a given set of monitors M and a given solution S, let

c(M,S) = ∑
m ∈ M

c(m,S)

Assuming that p and q are as defined above, the only event resource monitors that differ in cost
between S′1 and S′2 are Mi(p+1) and Mj(q+1), and so the cost difference we need is

c(Mi(p+1) ∪ Mj(q+1),S′2) − c(Mi(p+1) ∪ Mj(q+1),S′1)

= c(Mi(p+1),S′2) + c(Mj(q+1),S′2) − c(Mi(p+1),S′1) − c(Mj(q+1),S′1)

= [c(Mi(p+1),S′2) − c(Mi(p+1),S′1)] + [c(Mj(q+1),S′2) − c(Mj(q+1),S′1)]

The second line is not as trivial as it looks, because it is not impossible for some monitor −m to lie
in both Mi(p+1) and Mj(q+1). Then the first line counts the change in −m’s cost once, but the second
line counts it twice. However, what changes for −m is that one of its tasks loses r while another
gains it, and so c(−m,S′1) = c(−m,S′2), assuming that the two tasks involved have equal durations.
So it does not matter how often −m is counted, because its contribution is 0 anyway.

Let −c (m,r) be a lower bound on the change in cost (i.e. cost after minus cost before) of m
when a task monitored by m is unassigned resource r, and let +c (m,r) be a lower bound on the
change in cost of m when a task monitored by m is assigned resource r. If m ∈ Mi(p+1), then

−c (m,r) ≤ c(m,S′2) − c(m,S′1)

because in proceeding from S′1 to S′2 what changes for the monitors of Mi(p+1) is that the (p + 1)st
task of C(k+1)i becomes unassigned from r. Similarly, if m ∈ Mj(q+1), then

+c (m,r) ≤ c(m,S′2) − c(m,S′1)

because in proceeding from S′1 to S′2 what changes for the monitors of Mj(q+1) is that the (q + 1)st
task of C(k+1)j becomes assigned r. Define

+c (M,r) = ∑
m ∈ M

+c (m,r) and −c (M,r) = ∑
m ∈ M

−c (m,r)

and choose for adding to the available cost the quantity

∆ = min
p

−c (Mi(p+1),r) + min
q

+c (Mi(q+1),r)

This is the lower bound we need on the change in cost, because

∆ = min
p

−c (Mi(p+1),r) + min
q

+c (Mj(q+1),r)

≤ min
p

[c(Mi(p+1),S′2) − c(Mi(p+1),S′1)] + min
q

[c(Mj(q+1),S′2) − c(Mj(q+1),S′1)]

C.8. Solution types 527

≤ [c(Mi(p+1),S′2) − c(Mi(p+1),S′1)] + [c(Mj(q+1),S′2) − c(Mj(q+1),S′1)]

for all p and q in the range given above.

Defining −c and +c as lower bounds, and taking the minimum over all p and q, is our
alternative to the more precise but impractical method outlined above, of conducting a whole set
of dominance tests using event resource monitor signatures.

Calculating ∆ is straightforward. The dependence on r is unavoidable, because prefer
resources constraints largely determine whether dominance is possible in these cases. The
dependence on x, the number of open resources (in the ranges of p and q), is also unavoidable,
because there may be some very undesirable open tasks in a mtask, and the only way to rule them
out may be to notice that there are not enough open resources to require them to be used.

We now find −c (m,r) and +c (m,r) for each kind of event resource monitor m. We assume
that m’s cost function is linear, that its weight is w, and that the task duration is d. Other cost
functions can be and are handled, but the argument becomes more complicated.

If m is an assign resource monitor, the costs are independent of r. Unassigning r produces
cost change −c (m,r) = wd, and assigning it produces cost change +c (m,ra) = − wd.

If m is a prefer resources monitor, the costs depend on whether r is a preferred resource or
not. If r is a preferred resource, unassigning or assigning it produces no cost change. If r is
not a preferred resource, unassigning it produces cost change −c (m,r) = − wd and assigning it
produces cost change +c (m,r) = wd.

If m is a limit resources monitor, the costs depend on whether r is one of m’s resources of
interest. If no, there is no change in cost. If yes, the change in cost depends on how the total
number of assigned resources of interest compares with the limits. Since we want a lower
bound, rather than trying to work this out in detail we simply take −c (m,r) = +c (m,r) = − wd. If
instances arise where a better estimate would make a difference, we could revisit this.

Most instances contain only assign resource monitors and prefer resources monitors, both
with linear cost functions. In those cases our choices for −c (m,r) and +c (m,r) are exact.

It is clearly possible to get ∆ > 0 in some cases. So we should add ∆ to the available cost
before failing any dominance test owing to negative available cost.

C.8.3. The cicj-solution type

A cicj-solution is like a ci-solution, except that it adds two assignments to dk-solution S:

S1 = S ∪ {(dk+1,ra,ci), (dk+1,rb,cj)}

and

S2 = S ∪ {(dk+1,ra,cj), (dk+1,rb,ci)}

where ra ≠ rb and ci ≠ cj (without both conditions, S1 and S2 would be the same). For example,
we might be comparing (say) assigning a morning shift to ra and a night shift to rb with assigning
a night shift to ra and a morning shift to rb. The assignments must be valid as usual.

The implementation does not define an object type representing one cicj-solution. Instead,

528 Appendix C. Dynamic Programming Resource Reassignment: Theory

it uses two objects, a ci-solution and a cj-solution. It can do this because these solutions are used
only for dominance testing, as follows.

We can be brief here, because much of the notation and analysis for ci-solutions carries over
to cicj-solutions. We get from S′1 to S′2 by changing the assignment to the (p + 1)st task of ci from
ra to rb, and changing the assignment to the (q + 1)st task of cj from rb to ra. There are no issues
with not having a task to assign these resources to.

Let −+c (m,ra,rb) be a lower bound on the change in cost (i.e. cost after minus cost before) of
m when a task monitored by m is unassigned resource ra and then assigned resource rb. Let

−+c (M,ra,rb) = ∑
m∈ M

−+c (m,ra,rb)

as usual. Then following the same analysis that we used for ci-solutions, we find that the value
to add to the available cost is

∆ = min
p

−+c (Mi(p+1),ra,rb) + min
q

−+c (Mj(q+1),rb,ra)

where p and q have the usual ranges.

If m is an assign resource monitor, nothing that matters changes so −+c (m,ra,rb) = 0.

If m is a prefer resources monitor, it is fairly clear that −+c (m,ra,rb) = −c (m,ra) + +c (m,rb).
If m is a limit resources monitor, if both resources are of interest to m, or both are not of

interest to m, then −+c (m,ra,rb) = 0. Otherwise we take −+c (m,ra,rb) = − wd as usual.

Now supposing that we have established that S1 dominates S2, our last job is to ensure that
all dk+1-solution extensions of S2 are dropped. There will be many such solutions in general: all
extensions of S that contain S2’s two dk+1 assignments.

As we saw in the previous section, the solver has a type representing one ci-solution, and
if some ci-solution is ruled out by dominance, its object is simply dropped from the list of its
resource’s possible assignments (we here exercise our right to refer to ci-solution objects as
assignment objects). This happens before cicj-solution dominance testing begins. After that, all
pairs of assignments that produce dominated solutions are calculated, and each assignment of
each pair is placed in a list of assignments held in the other. For example, if

S2 = S ∪ {(dk+1,ra,cj), (dk+1,rb,ci)}

is dominated, (dk+1,ra,cj) goes into (dk+1,rb,ci)’s list, and (dk+1,rb,ci) goes into (dk+1,ra,cj)’s list.

If S1 and S2 dominate each other, either may be dropped, but care is needed to avoid
dropping both. We iterate over all unordered pairs of solutions {S1,S2} , visiting each unordered
pair once, not twice. For each such pair,we test whether S1dominates S2, and take the appropriate
action if so. But we only test whether S2 dominates S1 when S1 does not dominate S2.

Each assignment object contains a counter, initialized to zero. When the solver chooses to
use assignment (dk+1,ra,cj), it increments the counter in every assignment in that assignment’s
list; and when it finishes with that assignment, it decrements all those counters. Then it skips any
assignments whose counter is non-zero.

If the overall algorithm is expansion by resources, it suffices to place the first of the two

C.8. Solution types 529

assignments on the second’s list, not each on the other’s. However, this does not work for
expansion by shifts, so for simplicity we always place each assignment on the other’s list.

C.8.4. The si-solution type

Define an equivalence relation between proper root tasks in which two proper root tasks are
equivalent when they have the same busy times and the same workload, taking the tasks assigned
to them (directly or indirectly) into account. We call one equivalence class of this relation a shift,
because such a class will usually consist of the tasks of one shift (the day shift on Monday, or
whatever). However, there are exceptions to this, notably when tasks are assigned to one another,
so the reader should bear this definition in mind and not take the term ‘shift’ too literally.

Tasks in the same mtask are also required to be proper root tasks with the same busy times
and total workload. So each mtask, considered as a set of tasks, is a subset of one shift. There
are usually several mtasks in each shift, since the tasks of mtasks are required to satisfy other
conditions, on their event resource monitors, which are not required by shifts.

An si-solution consists of a dk-solution S plus the assignment of a set of n resources
R = {r1,… ,rn} to some of the open tasks of a shift si whose tasks begin on day dk+1:

S ∪ {(si, 〈r1,… ,rn〉, 〈 t1,… ,tn〉)}

We use a single shift assignment rather than n separate assignments for an important reason:
each shift assignment may assume that its resources are the only ones that will be assigned to
tasks of si. Thus, the unmentioned open tasks of si will remain unassigned, which may lead to
event resource monitor costs which are included in the cost of the si-solution. (We saw a similar
condition applied to dk-solutions: all assignments on days up to dk inclusive are present.)

At present, dominance tests between si-solutions are used for one purpose: to find the set
U(S,s,R) of all undominated si-solutions for a given S, s, and R.

Since the tasks of shift s have the same busy times and workloads, the signature value and
cost of any resource monitor for a resource r ∈ R will be the same in each of the solutions based
on (S,s,R). The signature value and cost of any resource monitor for a resource r ∉ R will also
be the same, because it will just be its signature and cost in S. So the only monitors that matter
for dominance testing are the event resource monitors that monitor the tasks of s, and so, to save
time, the signature arrays and costs of the si-solutions we build reflect these monitors only.

U(S,s,R) is created using a cut-down version of the straightforward method of expanding
a dk-solution S into its dk+1-solution extensions: first one resource is assigned in all possible
ways, then for each of those ways the second resource is assigned in all possible ways, and so
on. Instead of using all the dk mtasks, only the mtasks of s are used; instead of using all the open
resources, only the resources of R are used; and instead of evaluating all constraints, only the
event resource constraints affected by the tasks of s are evaluated.

Most event resource constraints monitor tasks from just one shift. These produce a final
cost once s has been assigned the resources R, and add nothing to the signature. So in practice we
can expect the signature array to be empty, meaning that U(S,s,R) will contain just one solution.
(This is partly why we expect to save time by using shifts.) However, the implementation handles
arbitrary event resource constraints and any number of undominated solutions.

530 Appendix C. Dynamic Programming Resource Reassignment: Theory

what follows explains expansion by shifts and belongs elsewhere

Here is how to expand a dk-solution S into its dk+1-extensions with shifts.

The straightforward shift based method for this overall expansion is to assign the first open
resource to each shift in turn (including a special shift denoting a free day), then for each of those
cases to assign the second open resource to each shift in turn, and so on. This way, the number
of combinations is easy to count. If there are l shifts, plus one free day shift, there are (l + m1)
combinations. If each gives rise to just one undominated solution, as suggested above, this is
significantly fewer than the (a + m1) potential solutions from the mtask based method, where a
is the number of mtasks. This is because each shift usually contains several mtasks, making l
significantly smaller than a.

However, the straightforward method does not exploit the shift basis of the search very
well, because until the bottom of the recursion is reached it is not clear which subset of the
open resources is being assigned to each shift: the last resource could be assigned to any shift.
The method we actually use comes to the same thing in the end, and so has the same number of
combinations, but it fills each shift completely before moving on to the next, as follows.

Given a dk-solution S, the first step is to calculate and cache the sets U(S,s,R) for each day
dk+1 shift s and each subset R of the open resources. Each U(S,s,R) will be needed many times
while expanding S; calculating it just once saves a lot of time. Each U(S,s,R) is represented by
a simple list of solutions. The collection of all the U(S,s,R) sets is stored in a trie, held in the
object representing s, and indexed by the open resource indexes of R’s resources.

Given {s0,s1,s2,… ,sl} , the set of all shifts whose first busy time lies in day dk+1 (with s0
representing a free day), we first generate all subsets R1of open resources to assign to s1. For each
subset R1 we traverse U(S,s1,R1), and for each of those solutions we recurse to the second level,
where we generate all subsets R2 of R − R1 to assign to s2, and so on. Any resources unassigned
after Rl is assigned are then assigned to s0, that is, they are given a free day. At the bottom of
the recursion, the assignments of the current members of U(S,s1,R1), U(S,s2,R2), and so on are
assembled into a dk+1-solution which is added to the day dk+1 table in the usual way.

The usual optimizations apply. Each shift has some minimum number of tasks that must
be assigned, otherwise too high a cost will be paid, and we can prune a search path if it does not
contain enough unconsumed open resources to cover all these tasks. Also, if assigning some set
Ri costs too much, typically because Ri is too small or too large, we can prune there.

C.8.5. The sisj-solution type

The sisj-solution type adds two shift assignments for day dk+1 shifts to a dk-solution S:

S ∪ {(sa,Ra,Ta), (sb,Rb,Tb)}

We require sa ≠ sb, and this forces Ta and Tb to be disjoint. We also require Ra and Rb to be
disjoint, otherwise some resource is assigned twice on dk+1, which is not allowed.

The idea here is the same as for cicj-solutions, only applied to shifts: to find dominated pairs
of shift assignments and avoid generating solutions that contain those pairs while expanding S.
Shift pair dominance testing takes place between pairs of solutions of this form:

C.8. Solution types 531

S1 = S ∪ {(sa,Ra,Ta), (sb,Rb,Tb)}

and

S2 = S ∪ {(sa,Rb,T ′a), (sb,Ra,T ′b)}

These two solutions start from the same dk-solution S and assign the same shifts sa and sb and the
same resources Ra and Rb, but the resources are assigned to opposite shifts, and the tasks they are
assigned to may be different.

When Ra and Rb are both empty, S1 and S2 are valid sisj-solutions but they are equal.
Dominance testing between equal solutions is futile and could lead to the erroneous conclusion
that the solution is dominated. So we allow each of Ra and Rb to be empty, but not both.

The tasks to which these resources are assigned in each shift are not constrained in any
way, apart from needing to exist: if it is not possible to assign each of Ra and Rb to each of sa

and sb, then either or both of S1 or S2 cannot be constructed. However, this is not a problem in
practice because we build all sisj-solutions by taking all previously constructed si-solutions and
merging pairs of them with disjoint shifts and resources in all possible ways. This produces many
sisj-solutions, but nowhere near as many as the dk-solutions produced by expanding S by shifts.

As usual with dominance testing, the main issue is which monitors have the same values
in both solutions, allowing them to be ignored by the test. In this case, resource monitors for
resources outside of Ra ∪ Rb can be omitted, and event resource monitors that do not monitor any
tasks within sa or sb can be omitted. At the time these tests are carried out, the needed resource
monitor signatures will have already been constructed,as usual; so the only expression evaluation
and signature construction actually needed will be for the the event resource monitors of the two
shifts, taking care that any expression dependent on both shifts is only evaluated once.

Although the signatures to be compared depend on everything in S1 and S2, the dominance
tests themselves depend only on dk, sa, and sb. There are relatively few pairs of shifts on any one
day, and so it is quite feasible to construct the dominance test for each unordered pair of shifts
{sa,sb} just once, when the current solve opens.

remainder (if any) still to do

Appendix D. Dynamic Programming

Resource Reassignment:

Implementation

This Appendix is rather out of date. It should be up to date in the next release of KHE. This
Appendix presents the implementation of the dynamic programming algorithm for resource
assignment. It is a companion to Appendix C, which describes the algorithm and the algebra
underlying its cost calculations.

D.1. Introducing the implementation

The implementation can be found in file khe_sr_dynamic_resource.c. This file is over 26,000
lines long, making it easily the largest of KHE’s solvers. The code is presented here in the order
that it appears in the file, with some exceptions.

The implementation defines over sixty types, not counting array types. We group them into
ten ‘major categories’. Here they are, with examples of their types:

Category KHE type Dynamic resource solver (DRS) type
Times KHE_TIME_GROUP (common frame) KHE_DRS_DAY

Resources KHE_RESOURCE KHE_DRS_RESOURCE

Events KHE_TASK KHE_DRS_TASK

Signatures - KHE_DRS_SIGNATURE

Constraints KHE_CONSTRAINT KHE_DRS_CONSTRAINT

Expressions KHE_MONITOR KHE_DRS_EXPR

Solutions KHE_SOLN KHE_DRS_SOLN

Expansion - KHE_DRS_EXPANDER

Sets of solutions KHE_SOLN_GROUP KHE_DRS_SOLN_SET

Solvers - KHE_DYNAMIC_RESOURCE_SOLVER

Seven of these categories resemble categories found in KHE: times, resources, events, con-
straints, expressions, solutions, and sets of solutions. The other three have no KHE equivalents.

The solver utilizes two kinds of trees: search trees, whose nodes represent partial solutions
and have type KHE_DRS_SOLN, and expression trees, representing constraints, whose nodes have
type KHE_DRS_EXPR. This makes the term ‘node’ ambiguous, so it will not be used. Instead,
search tree nodes will be called solutions, and expression tree nodes will be called expressions.

KheDynamicResourceSolverMake(soln, rt, options) creates data structures for all of
soln relevant to resource type rt. It saves time, when there are many solves, for as many objects
as possible to be created just once like this, at the start. Objects that are created during individual
solves come from free lists, recycled from previous solves.

532

D.1. Introducing the implementation 533

When KheDynamicResourceSolverMake returns, all its objects are in the closed state,
meaning that they are not part of any solve. Closed objects contain values that reflect the initial
solution. At the start of each solve, a process called opening occurs, which identifies the DRS
objects that are part of that solve. Opening also unassigns any KHE tasks affected by the solve
that happen to be assigned initially. Its running time depends on the number of objects opened,
not on the total number of objects.

At the end of each solve, an opposite process called closing occurs. It returns the open
objects to the closed state, with values that reflect the new best solution found by the solve, if
there is one, or the initial solution if there isn’t. Closing also performs KHE task assignments to
change the KHE solution into the new best solution, or return it to the initial solution.

In between opening and closing we build the search tree, a process we call searching. So
the implementation has four main operations: construction of a solver object and its many
associated objects (a slow but easy job which needs little documentation); opening; searching;
and closing. The last three operations, carried out in sequence, make one solve.

Another key operation, part of searching, is expansion. This takes one dk-solution S as its
main argument and expands it, that is, it adds one assignment for each open resource on day
dk+1 to S in all possible ways, and stores the resulting dk+1-solutions within the day dk+1 table
of solutions, after checking for dominance relations. Searching is in fact just a sequence of
expansions, starting with the unique d0-solution, then proceeding to the d1-solutions, then to the
the d2-solutions, and so on.

The code is organized hierarchically. At the top level are the ten major categories given
above, in the order shown above. For each of these, the second level contains one submodule
for each of the types of that major category. Within each submodule are the operations on its
type, typically organized into construction, simple queries, opening, closing, and other (including
debugging), in that order. Helper functions appear wherever seems best.

Searching is mostly about expansion. The expansion algorithm is lengthy and distributed
over many types, but is best understood as a whole. So its code appears in special submodules
distributed through the implementation, but documented in one place here (Appendix D.10).

D.2. Exactly what gets opened

Before diving into the code, we pause to explain exactly what gets opened. This question has
puzzled the author, so here we set out a precise, complete answer.

We view that part of the initial solution that gets opened as a planning timetable, in which
each column represents a selected day, and each row represents a selected resource:

Day 5 Day 6 Day 12 Day 13 Day 19 Day 20

Resource 3

Resource 4

Resource 7

This shows six selected days (presumably three weekends) and three selected resources. In any
solution, for each selected resource r and each selected day d, the table cell (r,d) either contains

534 Appendix D. Dynamic Programming Resource Reassignment: Implementation

a single proper root task, one that r is assigned to and that (counting all the tasks assigned to it
directly or indirectly) is running on day d, or else it is empty, indicating that r is free on d. This
is the view of the problem taken by the solver, which proceeds from left to right across the table,
filling in the cells one day at a time.

Everything that gets opened lies within this table, but the converse is not quite true. Most
things within this table get opened, but with the following exceptions. Let r be any selected
resource, and let d be any selected day. The assignments referred to are in the initial solution,
the solution passed in to the solver.

1. If r is assigned to some proper root task on d, and the busy day range of that task (counting
all the tasks assigned to it directly or indirectly) includes one or more unselected days, then
the cell (r,d) is not opened, that is, the solver will leave that assignment untouched.

2. If r is preassigned to some proper root task on d, and also assigned to that task, then even
if that assignment can be removed, it won’t be removed, and again (r,d) is not opened.

3. If r is assigned to some proper root task on d, and that assignment cannot be removed
(because KheTaskUnAssign returns false), then (r,d) is not opened.

In the unlikely case that r is preassigned to some task on d but not assigned to it, cell (r,d)
is opened in the usual way, but the solver will try only one option for assigning it, namely the
preassigned task. It will not try leaving the cell unassigned.

The data structure representing solutions contains one element for each cell (r,d). A cell
that is not opened is given a special CLOSED value, saying that the solver should not make and
has not made an assignment to this cell. (The other special value, NULL, means that the solver
has decided that r should be free on d). After opening, the table might be

Day 5 Day 6 Day 12 Day 13 Day 19 Day 20

Resource 3 CLOSED

Resource 4 CLOSED

Resource 7 CLOSED CLOSED

A CLOSED entry may appear anywhere. It represents a point where the solve may not change the
initial state. Conceptually, the entire solution outside this table is filled with CLOSED entries.

An expression whose value depends directly on the timetable of some resource always
depends on what that resource is doing on one specific day. It is open when the cell representing
that resource on that day is not CLOSED.

An expression whose value depends directly on whether some proper root task is assigned
or not, and possibly on what it is assigned to, is open when that task is open. A proper root task
is open when its busy day range lies entirely within the set of selected days, its domain has a
non-empty intersection with the set of selected resources, and it is either unassigned or else
neither of the two impediments to removing its assignment (points (2) and (3) above) apply.

An expression whose value depends directly on the values of its children is open when at
least one of its children is open. It may have some open and some closed children.

D.3. Times 535

D.3. Times

This section describes the two DRS types related to times. The first is KHE_INTERVAL, defined
in file khe_solvers.h to represent an integer interval (Section 8.12). When used here it always
represents an interval of days. The integers are indexes into the common frame, or into an array
of open days.

The second time-related type is KHE_DRS_DAY. It represents one day, that is, one time group
of the common frame:

typedef struct khe_drs_day_rec *KHE_DRS_DAY;
typedef HA_ARRAY(KHE_DRS_DAY) ARRAY_KHE_DRS_DAY;

struct khe_drs_day_rec {
int frame_index;
int open_day_index;
KHE_TIME_GROUP time_group;
ARRAY_KHE_DRS_SHIFT shifts;
KHE_DRS_SIGNER_SET signer_set;
KHE_DRS_SOLN_SET soln_set;
KHE_DRS_SOLN_LIST soln_list;
int soln_made_count;
int solve_expand_count;

};

The frame_index field is the day’s time group’s index in the common frame. It is a fixed value,
set when the day is created during KheDynamicResourceSolverMake. The open_day_index

field is the day’s index in the list of open days when it is open, and -1 when it is closed. So it is
fixed during any one solve, but may vary from one solve to the next. The time_group field holds
the time group defining the day, taken from the common frame.

The shifts field holds a set of shifts. Each shift contains a set of similar mtasks; each
mtask contains a set of similar tasks. The first time of every task in every mtask of every shift
lies in this day’s time group. Full details will be given when we come to these other types.

The signer_set field holds a set of signers, which are rather artificial objects representing
templates for how to construct signatures and perform dominance testing for solutions which are
dk-solutions where dk is this day. Signatures and signers will be explained later (Section D.6). A
signer set object is always present, but its value is set up afresh each time the day is opened.

The soln_set field is only defined when the day is open. It is initialized to empty at the
start of each solve, but comes to hold the set of all undominated solutions within which resources
are assigned tasks up to and including this day. This field was called Pk in Appendix C.1.

The soln_list field holds a simple list of solutions. It is created by traversing soln_set

after it is completed, and adding each solution found there to soln_list. Once the solutions are
in the list, they are sorted by increasing cost, and then an optional daily limit on the number of
solutions may be enforced, by removing solutions from the end until the limit is not exceeded.

The soln_made_count field holds the number of solutions created during the current solve
that end on this day (not the number of undominated solutions). The solve_expand_count field
is used during solving and will be explained later.

536 Appendix D. Dynamic Programming Resource Reassignment: Implementation

The operations on days are quite simple. Creation is easy. Opening sets open_day_index
and clears the fields defined when the day is open. They are set properly later, when opening ex-
pressions, as explained below. Closing reverses opening, and also frees the solutions stored in the
day. Searching adds solutions to the soln_set field but leaves the day object itself untouched.

There are also two operations, KheDrsDayExpandBegin and KheDrsDayExpandEnd, which
are part of expansion. Following our policy, these have been placed into a separate submodule
and documented elsewhere (Appendix D.10).

D.4. Resources

This section describes the DRS types related to resources.

D.4.1. The resource type

Type KHE_DRS_RESOURCE represents one resource. Here is its type definition:

typedef struct khe_drs_resource_rec *KHE_DRS_RESOURCE;
typedef HA_ARRAY(KHE_DRS_RESOURCE) ARRAY_KHE_DRS_RESOURCE;

struct khe_drs_resource_rec {
KHE_RESOURCE resource;
int open_resource_index;
ARRAY_KHE_DRS_RESOURCE_ON_DAY days;
KHE_DRS_RESOURCE_EXPAND_ROLE expand_role;
ARRAY_KHE_DRS_SIGNATURE expand_signatures;
ARRAY_KHE_DRS_MTASK_SOLN expand_mtask_solns;
KHE_DRS_MTASK_SOLN expand_free_mtask_soln;
KHE_DRS_DIM2_TABLE expand_dom_test_cache;

};

The last five fields are used by expansion and will be explained later (Appendix D.10). The other
fields hold the corresponding KHE resource, the resource’s index in the array of open resources
when open (or -1 when closed), and an array of KHE_DRS_RESOURCE_ON_DAY objects, one for
each day of the cycle, recording what the resource is doing on that day (Appendix D.4.2).

Resource and resource on day objects are easily built during the initialization of the solver.
The most complex resource operation is the one for opening a resource on the selected days:

D.4. Resources 537

void KheDrsResourceOpen(KHE_DRS_RESOURCE dr, int open_resource_index,
KHE_DRS_PACKED_SOLN init_soln, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_DAY_RANGE ddr; int i, j, open_day_index;
KHE_DRS_RESOURCE_ON_DAY drd;
dr->open_resource_index = open_resource_index;
open_day_index = 0;
HaArrayForEach(drs->selected_day_ranges, ddr, i)

for(j = ddr.first; j <= ddr.last; j++)
{

/* unassign any task assigned on drd, if it lies entirely in ddr */
drd = HaArray(dr->days, j);
KheDrsResourceOnDayOpen(drd, open_resource_index, open_day_index,

ddr, init_soln, drs);

/* increase open_day_index */
open_day_index++;

}
}

The first step is to set dr->open_resource_index. After that, the two outer loops set j to the
index in the cycle of each selected day, so each iteration of the inner loop opens one of dr’s
resource on day objects.

The matching KheDrsResourceClose operation resets dr->open_resource_index to -1

and calls KheDrsResourceOnDayClose repeatedly to clear the signer in each resource on day
object. It does not make any task assignments, because KheDrsTaskAssign below does that,
including setting the closed_asst fields in the affected resource on day objects.

After the KHE_DRS_RESOURCE submodule there is another submodule concerned with that
part of the expansion operation that is concerned with resources. This submodule, and the
expand_assignments and similar fields that we passed over briefly earlier, are presented in
Appendix D.10.

D.4.2. The resource on day type

Type KHE_DRS_RESOURCE_ON_DAY represents what one resource is doing on one day. Here is its
type definition:

typedef struct khe_drs_resource_on_day_rec *KHE_DRS_RESOURCE_ON_DAY;
typedef HA_ARRAY(KHE_DRS_RESOURCE_ON_DAY) ARRAY_KHE_DRS_RESOURCE_ON_DAY;

struct khe_drs_resource_on_day_rec {
KHE_DRS_RESOURCE encl_dr;
KHE_DRS_DAY day;
KHE_DRS_TASK_ON_DAY closed_dtd;
ARRAY_KHE_DRS_EXPR external_today;
KHE_DRS_SIGNER signer;

};

538 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Here encl_dr and day hold the DRS resource and day that this object is for; they are fixed.

Suppose dr is an object of type KHE_DRS_RESOURCE, and suppose drd is one of its
KHE_DRS_RESOURCE_ON_DAY objects. When there is no solve underway, or there is a solve but dr
is not open to reassignment on drd->day during that solve, drd->closed_asst says what dr is
doing on that day. If dr is free on that day, drd->closed_asst is NULL. When there is a solve
and dr is open to reassignment on drd->day, drd->closed_asst is unused and has value NULL.
There would be no problem adding a Boolean open field to make it quite clear at every moment
whether drd is open or closed, but it turns out that that is not needed, so it has been omitted.

The external_today field is a fixed array of expressions representing parts of constraints
(always resource constraints) that are affected by what drd is doing on this day. When what drd
is doing changes, these expressions need to be informed. They are external expressions: they
are leaves in their expression trees.

Similarly to day objects, the signer field contains a template for the signatures of solutions
that end at this resource on day. These are solutions that are complete up to the day before this
day, plus they hold one assignment, for this resource on this day.

Here is the operation for opening a resource on day object:

D.4. Resources 539

void KheDrsResourceOnDayOpen(KHE_DRS_RESOURCE_ON_DAY drd,
int open_resource_index, int open_day_index, KHE_DRS_DAY_RANGE ddr,
KHE_DRS_PACKED_SOLN init_soln, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_TASK_ON_DAY dtd; KHE_DRS_TASK dt; KHE_DRS_EXPR e; int i;
KHE_DRS_DAY_RANGE open_day_range;

/* unassign affected tasks and possibly add assignments to init_soln */
dtd = drd->closed_dtd;
if(dtd != NULL)
{

dt = dtd->encl_dt;
if(KheDrsDayRangeSubset(dt->encl_dmt->day_range, ddr))
{

KheDrsTaskUnAssign(dt, true);
if(init_soln != NULL)

KheDrsPackedSolnSetTaskOnDay(init_soln, open_day_index,
open_resource_index, dtd);

}
}

/* set make_correlated field of signer */
if(drs->solve_correlated_exprs)

KheDrsSignerMakeCorrelated(drd->signer);

/* gather for opening expressions depending on drd (unassigned or not) */
open_day_range = KheDrsDayRangeMake(open_day_index, open_day_index);
HaArrayForEach(drd->external_today, e, i)
{

e->open_children_by_day.range = open_day_range;
KheDrsExprGatherForOpening(e, drs);

}
}

The first paragraph unassigns any task assigned to dr on drd’s day, unless it is part of a multi-day
task which extends beyond the current day range. This includes adding this assignment to packed
solution init_soln (see Appendix D.9.9) so that it can be redone later if required.

The second step informs drd->signer, when appropriate, that it is to find correlations
among expressions. This is a subject for later (Appendix D.6).

The third step gathers the expressions dependent on drd into a list. These expressions need
to be opened, but that is delayed until that list is traversed later.

A potentially confusing point is that the calls to KheDrsTaskUnAssign unassign KHE tasks
and so change the cost of the solution. Does this cause problems for the cost accounting? No,
because the original solution cost is saved before these unassignments are made, and the costs
stored in expressions are not affected by them: when those expressions are opened later, they
subtract their costs from the total, and those costs do not take these unassignments into account.

540 Appendix D. Dynamic Programming Resource Reassignment: Implementation

The matching KheDrsResourceOnDayClose operation just clears the signer in the resource
on day object. It does not make any task assignments, because KheDrsTaskAssign below does
that, including setting the closed_asst fields in the affected resource on day objects.

D.4.3. Resource sets

A resource set is a set (actually a sequence) of resource objects:

typedef struct khe_drs_resource_set_rec *KHE_DRS_RESOURCE_SET;
typedef HA_ARRAY(KHE_DRS_RESOURCE_SET) ARRAY_KHE_DRS_RESOURCE_SET;

struct khe_drs_resource_set_rec {
ARRAY_KHE_DRS_RESOURCE resources;

};

There are operations for creating a new set, adding one resource on day to a set, iterating over
the elements of a set (macro KheDrsResourceSetForEach), and so on.

D.5. Events

This section presents the types related to events. All events have fixed times in this application,
so actually it is the events’tasks that matter. The main DRStypes are KHE_DRS_TASK representing
one task, KHE_DRS_MTASK representing one mtask, and KHE_DRS_SHIFT representing one set of
similar mtasks.

D.5.1. Tasks

For each proper root task of the required resource type, there is a corresponding DRS task:

typedef struct khe_drs_task_rec *KHE_DRS_TASK;
typedef HA_ARRAY(KHE_DRS_TASK) ARRAY_KHE_DRS_TASK;

struct khe_drs_task_rec {
KHE_DRS_MTASK encl_dmt;
int index_in_encl_dmt;
KHE_DRS_TASK_EXPAND_ROLE expand_role;
bool open;
KHE_TASK task;
KHE_DRS_RESOURCE closed_asst;
KHE_COST non_asst_cost;
KHE_COST asst_cost;
ARRAY_KHE_DRS_TASK_ON_DAY days;

};

Each DRS task lies in one DRS mtask (Appendex D.5.2); encl_dmt is that mtask, and
index_in_encl_dmt is the task’s index in that mtask. The expand_role field is used by
KheDrsSolnExpand and is explained later (Appendix D.10). The open field is true when this
task is open (when there is a current solve and this task may be assigned or reassigned by it).

D.5. Events 541

The task field is the corresponding KHE proper root task. When a DRS task is open,
its closed_asst field is NULL and its KHE task is unassigned. When a DRS task is closed, its
closed_asst field is set to the DRS resource corresponding to the KHE resource assigned to the
KHE task, or to NULL when the KHE task is unassigned.

The non_asst_cost field is a constant lower bound on the cost of not assigning task, and
the asst_cost field is a constant lower bound on the cost of assigning it. These values come
from KheMTaskTask (Section 11.9.2).

The days field holds one KHE_DRS_TASK_ON_DAY object for each day the task is running.
These are sorted chronologically, and the implementation uses this in one place to check whether
a given task on day object is for the first day of its task. Here is KHE_DRS_TASK_ON_DAY:

typedef struct khe_drs_task_on_day_rec *KHE_DRS_TASK_ON_DAY;
typedef HA_ARRAY(KHE_DRS_TASK_ON_DAY) ARRAY_KHE_DRS_TASK_ON_DAY;

struct khe_drs_task_on_day_rec {
KHE_DRS_TASK encl_dt;
KHE_DRS_DAY day;
KHE_TASK task;
KHE_TIME time;
KHE_DRS_RESOURCE_ON_DAY closed_asst;
ARRAY_KHE_DRS_EXPR external_today;

};

Here encl_dt is the enclosing DRS task, day is the day concerned, and task is the KHE task
running on this day: either the original KHE proper root task, or some other KHE task assigned,
directly or indirectly, to that task. Also, time is the time within day that task is running. The
task and time fields are always well-defined and non-NULL, because, as specified in Section 12.6,
a multi-day task must run on every day of its busy day range, and it cannot run twice on one day.
These conditions always hold, because if they don’t, a solver is not created.

The closed_asst field holds the resource on day object that this task on day is assigned to
when the task is closed. It is non-NULL exactly when the adjacent task field and the closed_asst
field of the enclosing DRS task are both non-NULL.

Finally, external_today holds a list of all external expressions (expressions with no child
expressions) whose value depends on what this task is doing on this day. This is similar to the
external_today field in resource on day objects, except that these leaves lie in expression
trees representing event resource constraints (assign resource, prefer resources, and limit
resources constraints) rather than in expression trees representing resource constraints. When
the assignment of the task represented here changes, these expressions need to be informed.

This function makes a closed assignment of a DRS resource to a DRS task:

542 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsTaskAssign(KHE_DRS_TASK dt, KHE_DRS_RESOURCE dr, bool task)
{

KHE_DRS_TASK_ON_DAY dtd; int i; KHE_DRS_RESOURCE_ON_DAY drd;
HnAssert(dt->closed_asst == NULL, "KheDrsTaskAssign internal error 1");
HnAssert(dr != NULL, "KheDrsTaskAssign internal error 2");
if(task && !KheTaskAssignResource(dt->task, dr->resource))

HnAbort("KheDrsTaskAssign internal error 3 (cannot assign %s to %s)",
KheDrsResourceId(dr), KheTaskId(dt->task));

dt->closed_asst = dr;
HaArrayForEach(dt->days, dtd, i)
{

drd = KheDrsResourceOnDay(dr, dtd->day);
HnAssert(dtd->closed_asst == NULL, "KheDrsTaskAssign internal error 4");
if(drd->closed_asst != NULL)

return false;
dtd->closed_asst = drd;
drd->closed_asst = dtd;

}
return true;

}

KheDrsTaskAssign only omits calling KheTaskAssignResource when the object is first built.
KheDrsResourceOnDay returns the resource on day object representing what dr is doing on
dtd->day. When dtd->closed_asst or drd->closed_asst changes, the expressions in their
external_today arrays must be informed. This is done separately from KheDrsTaskAssign.

At the time a DRS task is first made, if the corresponding KHE task is assigned a resource,
then KheDrsTaskAssign is called to assign the DRS task correspondingly,which includes setting
the closed_asst fields of the resource’s resource on day objects, as shown above. At this point,
KheDrsTaskAssign could discover that one of these fields is already set, meaning that in the
initial state, the resource is assigned to two tasks on the same day. The solver cannot handle this,
so if it occurs, KheDrsTaskAssign returns false, and KheDynamicResourceSolverMake takes
this as a signal to discard the solver object it was initializing and return NULL.

It will become clear (Appendix D.5.2) that only unassigned tasks are ever opened, so all that
needs to be done when opening a task is to set its open field to true and to gather for opening all
the expressions in the external_today arrays of its task on day objects:

D.5. Events 543

void KheDrsTaskOpen(KHE_DRS_TASK dt, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
KHE_DRS_TASK_ON_DAY dtd; KHE_DRS_EXPR e; int i, j, di;
KHE_DRS_DAY_RANGE open_day_range;

/* open dt */
HnAssert(!dt->open, "KheDrsTaskOpen internal error 1");
HnAssert(dt->closed_asst == NULL, "KheDrsTaskOpen internal error 2");
dt->open = true;

/* gather external expressions for opening */
HaArrayForEach(dt->days, dtd, i)
{
di = dtd->day->open_day_index;
open_day_range = KheDrsDayRangeMake(di, di);
HaArrayForEach(dtd->external_today, e, j)
{
e->open_day_range = open_day_range;
KheDrsExprGatherForOpening(e, drs);

}
}

}

Closing a DRS task sets the open field to false, and may also assign a DRS resource:

void KheDrsTaskClose(KHE_DRS_TASK dt, KHE_DRS_RESOURCE dr)
{
if(dt->open)
{
dt->open = false;
if(dr != NULL)
KheDrsTaskAssign(dt, dr, true);

}
}

KheDrsTaskClose may be called on the same task several times, but does the work only once.

D.5.2. Multi-tasks

The basic idea of multi-tasks, or mtasks as we prefer to call them, is that in every instance there
are often equivalent tasks. To be equivalent, two tasks must run at the same times, but they must
also be subject to the same constraints, so that assigning a resource to one task of an mtask is
really the same as assigning it to another. When trying alternative assignments we can save a lot
of time by recognizing this and avoiding alternatives which formally are different but in reality
are equivalent.

The dynamic resource solver calls on a multi-task finder from Section 11.9 to partition the
set of all the proper root tasks of the required resource type into mtasks. Then for each of these

544 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KHE_MTASK objects it makes one KHE_DRS_MTASK object, and for each KHE task in each mtask
it adds one DRS task to the DRS mtask. It calls KheMTaskNoOverlap on each mtask, and if any
of the calls return false, no solver is created. So it is safe for the solver to assume that none of
its tasks run twice at the same time or on the same day.

The type declarations for KHE_DRS_MTASK are:

typedef struct khe_drs_mtask_rec *KHE_DRS_MTASK;
typedef HA_ARRAY(KHE_DRS_MTASK) ARRAY_KHE_DRS_MTASK;

struct khe_drs_mtask_rec {
KHE_MTASK orig_mtask;
KHE_DRS_SHIFT encl_shift;
KHE_DRS_DAY_RANGE day_range;
ARRAY_KHE_DRS_TASK all_tasks;
ARRAY_KHE_DRS_TASK unassigned_tasks;
int expand_must_assign_count;
int expand_prev_unfixed;

};

Here orig_mtask is the KHE_MTASK that this DRS mtask is derived from, encl_shift is the
shift (see below) that this mtask lies within, day_range says which days the tasks of this mtask
are busy (they are all busy at the same times, hence on the same days), all_tasks contains the
DRS tasks corresponding to the KHE tasks of orig_mtask, and unassigned_tasks contains
those tasks from all_tasks which are open during the current solve. The last two fields,
expand_must_assign_count and expand_prev_unfixed, are used by KheDrsSolnExpand and
will be explained later (Appendix D.10).

During solving, we want unassigned_tasks to contain the open tasks of this mtask, that is,
the tasks from all_tasks which are available for the open resources to be assigned to. By the
time that solving starts, these tasks will all be unassigned. When we build unassigned_tasks

at the start of each solve, there are two issues.

First, two tasks lying in the same mtask may differ in the cost incurred by assigning (or not
assigning) them. Those which are least costly come first in the mtask, and should be chosen for
assignment before later tasks in the mtask. This is explained fully in Section 11.9.4. So open
tasks must appear within unassigned_tasks in the same order that they appear in all_tasks.

Second, we want the running time of opening and closing to be proportional to the
number of objects opened, not the total number of objects. Accordingly, we cannot build
unassigned_tasks by traversing all_tasks when opening, because all_tasks may contain
many tasks which will not be opened, because they are assigned unselected resources.

So we proceed as follows. When the DRS mtask is created, unassigned_tasks is ini-
tialized to contain all unassigned DRS tasks from all_tasks. Whenever a DRS task from
all_tasks is unassigned, its encl_dts field is followed to its enclosing DRS mtask and it is
added to unassigned_tasks. But when it is assigned, it is not deleted from unassigned_tasks.
So at any moment, unassigned_tasks must contain all the unassigned tasks from all_tasks,
but it may contain some assigned tasks as well.

Each DRS mtask is stored in the mtasks field of one shift object, and that shift is stored in

D.5. Events 545

a day object which is the first day on which the mtask’s tasks are busy. If that day is one of the
selected days for solving, as part of opening it, each of its mtasks is visited and potentially opened
by a call to KheDrsMTaskOpen:

bool KheDrsMTaskOpen(KHE_DRS_MTASK dmt, KHE_DRS_DAY_RANGE ddr,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_TASK dt; int i; bool res;
if(KheDrsDayRangeSubset(dmt->day_range, ddr) &&

!KheResourceSetDisjointGroup(drs->selected_resource_set,
KheMTaskDomain(dmt->orig_mtask)))

{
/* dmt can open; organize and open unassigned_tasks */
KheDrsMTaskOrganizeUnassignedTasks(dmt);
HaArrayForEach(dmt->unassigned_tasks, dt, i)
KheDrsTaskOpen(dt, drs);

dmt->expand_must_assign_count = 0;
dmt->expand_prev_unfixed = -1;
res = true;

}
else
{
/* dmt can’t open; set dmt->expand_used to make that clear */
dmt->expand_prev_unfixed = HaArrayCount(dmt->unassigned_tasks) - 1;
res = false;

}
return res;

}

This function is slightly mis-named: it only opens dmt if its tasks lie entirely within open day
range ddr and their shared domain is not disjoint from the set of open resources.

Opening an mtask begins by sorting unassigned_tasks so that the genuinely unassigned
tasks come first, in their order in all_tasks (the index_in_encl_dmt field helps with this), and
deleting any assigned tasks from the end. KheDrsMTaskOrganizeUnassignedTasks does these
two steps. After that, the unassigned tasks are opened. This way, the issues identified above
are handled correctly. This is done after resources are opened, by which time all tasks from the
mtask that were assigned a selected resource are unassigned, and so lie in unassigned_tasks,
justifying the statement made earlier that only unassigned tasks are ever opened.

The mtask submodule is followed by another submodule containing mtask code related to
expansion. As usual, we’ll return to this later (Appendix D.10).

D.5.3. Shifts

To the solver, a shift is a set of mtasks whose tasks all have the same busy times and workloads.
Usually this will be the tasks of one shift (defined informally), but not always; for example, not
when some of the tasks are grouped. When a resource r is assigned to any of the tasks of the
mtasks of a given shift, the effect on r’s resource constraints is the same.

546 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Here is the type declaration:

typedef struct khe_drs_shift_rec *KHE_DRS_SHIFT;
typedef HA_ARRAY(KHE_DRS_SHIFT) ARRAY_KHE_DRS_SHIFT;

struct khe_drs_shift_rec {
KHE_DRS_DAY encl_day;
int open_shift_index;
int expand_must_assign_count;
int expand_max_included_free_resource_count;
ARRAY_KHE_DRS_MTASK mtasks;
ARRAY_KHE_DRS_MTASK open_mtasks;
ARRAY_KHE_DRS_SHIFT_PAIR shift_pairs;
KHE_DRS_SIGNER signer;
KHE_DRS_SHIFT_SOLN_TRIE soln_trie;

};

Field encl_day is the day containing this shift (the day containing the first busy time of this
shift’s tasks). Field open_shift_index is -1 when the shift is not open for solving, and has a
unique non-negative value when the shift is open.

Fields expand_must_assign_count and expand_max_included_free_resource_count

are defined during the expansion of a day solution from the previous day and will be explained
later. Field mtasks holds the mtasks that contain the tasks of the shift, and open_mtasks

holds the open ones when the shift is open for solving. Field shift_pairs contains objects
representing all pairs of shifts whose first element is this shift.

Field signer holds a signer for evaluating signatures and dominance testing for the event
resource monitors that monitor the tasks of this shift, and field soln_trie holds a set of shift
solutions, that is, objects representing the assignment of sets of resources R to tasks of this shift.
These will be explained later.

The operations on shifts include KheDrsShiftMake for making a new shift, initially holding
one mtask, and KheDrsShiftAcceptsMTask for deciding whether to add a given mtask to a shift,
because its busy times and workloads are the same as those of the mtasks already in the shift.
There is also KheDrsShiftOpen, which opens a shift by assigning an open shift index to it and
opening its mtasks:

D.5. Events 547

void KheDrsShiftOpen(KHE_DRS_SHIFT ds, KHE_DRS_DAY_RANGE ddr,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_MTASK dmt; int i;
ds->open_shift_index = HaArrayCount(drs->open_shifts);
HaArrayAddLast(drs->open_shifts, ds);
HnAssert(HaArrayCount(ds->open_mtasks) == 0,
"KheDrsShiftOpen internal error");

HaArrayForEach(ds->mtasks, dmt, i)
if(KheDrsMTaskOpen(dmt, ddr, drs))
HaArrayAddLast(ds->open_mtasks, dmt);

}

and KheDrsShiftClose, which closes its mtasks and clears its signer:

void KheDrsShiftClose(KHE_DRS_SHIFT ds, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
KHE_DRS_MTASK dmt; int i;
HaArrayForEach(ds->open_mtasks, dmt, i)
KheDrsMTaskClose(dmt);

HaArrayClear(ds->open_mtasks);
ds->open_shift_index = -1;
KheDrsSignerClear(ds->signer, drs);

}

After the KHE_DRS_SHIFT submodule there is another submodule which implements that part of
the expansion operation concerned with shifts. That submodule is presented in Appendix D.10.

D.5.4. Shift pairs

A shift pair is a pair of shifts:

typedef struct khe_drs_shift_pair_rec *KHE_DRS_SHIFT_PAIR;
typedef HA_ARRAY(KHE_DRS_SHIFT_PAIR) ARRAY_KHE_DRS_SHIFT_PAIR;

struct khe_drs_shift_pair_rec {
KHE_DRS_SHIFT shift[2];
KHE_DRS_SIGNER signer;

};

When the solver is created, one shift pair object is created for each pair of distinct shifts whose
tasks’ first times lie within the same day.

The main purpose of this type is to store the signer, which is used to control the signatures
of shift pair solutions. Apart from KheDrsShiftPairMake, the only shift pair functions are
functions related to the signer.

548 Appendix D. Dynamic Programming Resource Reassignment: Implementation

D.6. Signatures

This section presents the types concerned with signatures and dominance testing.

D.6.1. Signatures

The author is guilty of ambivalence in the use of the term signature. It can mean just an array of
integers recording the current states of some active monitors, but it can also mean a solution cost
in addition to the array. This second meaning predominates in this section.

The type declaration for signatures is

typedef struct khe_drs_signature_rec *KHE_DRS_SIGNATURE;
typedef HA_ARRAY(KHE_DRS_SIGNATURE) ARRAY_KHE_DRS_SIGNATURE;

struct khe_drs_signature_rec {
int reference_count;
int asst_to_shift_index;
KHE_COST cost;
HA_ARRAY_SHORT states;

};

Signatures have unpredictable lifetimes, but they are widely used and it is important to recycle
them. Accordingly, a reference counting system is used. The reference_count field records
the number of references to this object from other heap-allocated objects. Those other objects
are required to register the addition or deletion of a reference to a signature, by calling

void KheDrsSignatureRefer(KHE_DRS_SIGNATURE sig)
{
sig->reference_count++;

}

void KheDrsSignatureUnRefer(KHE_DRS_SIGNATURE sig,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
sig->reference_count--;
KheDrsSignatureOptionallyFree(sig, drs);

}

KheDrsSignatureOptionallyFree adds sig to a free list in drs when its reference count is 0.

The asst_to_shift_index field is used to implement caching of dominance tests. It holds
the index of the signature in an enclosing array.

The last two fields hold the value of the signature. Each signature depends on a particular
set of monitors; its cost is the total cost of those monitors, and its states are state values for the
monitors, as required. For each signature there is a signer (Appendix D.6.3) which knows which
monitors these are. It would make a lot of sense to store a pointer to this signer in the signature.
However, to save space (given that solutions contain signatures, and there can be many thousands
of solutions), this pointer has been omitted. The functions that operate on signatures have to use

D.6. Signatures 549

context to find the signer.

The remaining operations on signatures are straightforward and won’t be shown here. They
include KheDrsSignatureMake to make a new signature object, KheDrsSignatureAddCost to
add a cost to a signature, and KheDrsSignatureAddState to add a state.

D.6.2. Signature sets

A signature set is a set of signatures. It is logically the same as a signature: it has a cost and an
array of states. It is basically an optimization: one can build a signature set by adding pointers
to signatures to it more quickly than by appending arrays of state values. Its type declaration is

typedef struct khe_drs_signature_set_rec *KHE_DRS_SIGNATURE_SET;
typedef HA_ARRAY(KHE_DRS_SIGNATURE_SET) ARRAY_KHE_DRS_SIGNATURE_SET;

struct khe_drs_signature_set_rec {
KHE_COST cost;
ARRAY_KHE_DRS_SIGNATURE signatures;

};

The cost field always holds the sum of the cost fields of the individual signatures.

To save space, signature sets are stored in expanded form: fields representing them have
type struct khe_drs_signature_set_rec rather than type KHE_DRS_SIGNATURE_SET. This
has no drawbacks and saves one pointer, which is significant given that every day solution
contains a signature set, and there may be many thousands of those.

Function KheDrsSignatureSetInit initializes a signature set. This name is used, rather
than KheDrsSignatureSetMake, to indicate that the memory for the signature set is already
allocated and just needs to be initialized. There are operations for clearing a signature set,
hashing it, testing two signature sets for equality, and adding a signature to a signature set:

void KheDrsSignatureSetAddSignature(KHE_DRS_SIGNATURE_SET sig_set,
KHE_DRS_SIGNATURE sig, bool with_cost)

{
if(with_cost)
sig_set->cost += sig->cost;

HaArrayAddLast(sig_set->signatures, sig);
KheDrsSignatureRefer(sig);

}

This implements the rule given earlier, that the cost holds the sum of the component signatures’
costs. This is omitted (i.e. false is passed for with_cost) only in one rather special case where
the component costs are already included. Note the call to KheDrsSignatureRefer.

D.6.3. Signers

A signer, short for signature controller, is an object which acts as a controller for the construction
of signatures and testing them for dominance.

Different signatures may have different formats (different numbers of states, or different

550 Appendix D. Dynamic Programming Resource Reassignment: Implementation

meanings for their states). Signatures constructed using a given signer share the format defined
by that signer, allowing them to be compared for dominance.

The type of signers is

typedef struct khe_drs_signer_rec *KHE_DRS_SIGNER;
typedef HA_ARRAY(KHE_DRS_SIGNER) ARRAY_KHE_DRS_SIGNER;

typedef enum {
KHE_DRS_SIGNER_DAY,
KHE_DRS_SIGNER_RESOURCE_ON_DAY,
KHE_DRS_SIGNER_SHIFT,
KHE_DRS_SIGNER_SHIFT_PAIR

} KHE_DRS_SIGNER_TYPE;

struct khe_drs_signer_rec {
ARRAY_KHE_DRS_EXPR internal_exprs;
ARRAY_KHE_DRS_DOM_TEST dom_tests;
HA_ARRAY_INT eq_dom_test_indexes;
int last_hard_cost_index;
KHE_DRS_CORRELATOR correlator;
KHE_DRS_SIGNER_TYPE type;
union {
KHE_DRS_DAY day;
KHE_DRS_RESOURCE_ON_DAY resource_on_day;
KHE_DRS_SHIFT shift;
KHE_DRS_SHIFT_PAIR shift_pair;

} u;
};

The internal_exprs field holds the internal (non-leaf) expressions that must be evaluated when
creating a signature using this signer. All expressions that contribute some state or cost must
enrol themselves onto this list, in postorder (children before parents) as evaluation requires.

The dom_tests field holds the dominance tests, one for each position in the signatures that
this signer controls.

The eq_dom_test_indexes field contains a set of indexes into the dom_tests array. These
point to those dominance tests whose test is equality. This is used by ‘medium’ dominance
testing, which is obsolete but still supported.

The type field records the type of solution handled by this signer, and also which field of
the following union is used.

The last_hard_cost_index field is another index into the dom_tests array. It points to
the last dominance test whose cost is hard (at least KheCost(1, 0)), or is -1 when there are no
such tests. This makes it possible to carry out the dominance testing of the hard cost elements of
a set of signatures before the soft cost ones. This often saves a lot of time, because when a hard
cost element produces a cost, dominance testing can end immediately (with failure).

The correlator field points to a correlator, an internal element of the signer which, when
present, allows it to detect and handle correlated expressions (Appendix D.6.5).

D.6. Signatures 551

The type and u fields define a tagged union which records whether the signer is used for
day solutions, task solutions, shift solutions, or shift pair solutions. The main use for this is that
some INT_SUM_COST expressions are evaluated differently depending on the type of signer.

There are operations for creating a signer, clearing it back to the initial state (no internal
expressions or dominance tests), adding an internal expression, and adding a dominance test.
The latter adds an entry to eq_dom_test_indexes when an equality dominance test is added.
But the two main operations offered by signers are, first, to build a signature by visiting and
evaluating the internal expressions:

KHE_DRS_SIGNATURE KheDrsSignerEvalSignature(KHE_DRS_SIGNER dsg,
bool debug_if_rerun, KHE_DRS_SIGNATURE prev_sig, int next_di,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_EXPR e; int i; KHE_DRS_SIGNATURE res;
res = KheDrsSignatureMake(drs);
HaArrayForEach(dsg->internal_exprs, e, i)

KheDrsExprEvalSignature(e, dsg, prev_sig, next_di, res, drs);
return res;

}

and second, to compare two signatures for dominance:

bool KheDrsSignerDominates(KHE_DRS_SIGNER dsg,
KHE_DRS_SIGNATURE sig1, KHE_DRS_SIGNATURE sig2,
KHE_COST *avail_cost)

{

*avail_cost += (sig2->cost - sig1->cost);
return KheDrsSignerDoDominates(dsg, sig1, sig2, KHE_DRS_SIGNER_ALL,
0, true, avail_cost);

}

This function assumes that *avail_cost has already been initialized, allowing it to become
part of a larger dominance test which has these signatures as just one part. It calls function
KheDrsSignerDoDominates to do the actual work. We’ll start by examining its header:

bool KheDrsSignerDoDominates(KHE_DRS_SIGNER dsg,
KHE_DRS_SIGNATURE sig1, KHE_DRS_SIGNATURE sig2,
KHE_DRS_SIGNER_TEST test, int trie_start_depth, bool stop_on_neg,
KHE_COST *avail_cost);

This tests sig1 and sig3 for dominance, assuming that *avail_cost is already initialized to the
available cost and includes sig2->cost - sig1->cost. Parameter test has type

typedef enum {
KHE_DRS_SIGNER_HARD,
KHE_DRS_SIGNER_SOFT,
KHE_DRS_SIGNER_ALL

} KHE_DRS_SIGNER_TEST;

552 Appendix D. Dynamic Programming Resource Reassignment: Implementation

and specifies that only states up to position last_hard_cost_index are to be tested, or only
states from last_hard_cost_index + 1 onwards, or all states. As it turns out, when testing
signature sets for dominance there are significant time savings to be made by testing all the hard
constraints before testing all the soft ones.

Parameter trie_start_depth is non-zero only when this function is called from within the
trie data structure; some dominance testing will have already occurred and we want to continue
on from position trie_start_depth. In this case, test will be KHE_DRS_SIGNER_ALL.

Parameter stop_on_neg, when true, says that if *avail_cost ever goes negative,we are to
stop immediately and declare that there is no dominance. As discussed in Appendix C, this is best
for efficiency, although there are rare cases where it declares that there is no dominance when in
fact carrying on would show that there is dominance. It does not break anything to occasionally
make this mistake; it just means that a few more solutions are kept than is absolutely necessary,
because a slightly weaker dominance test is being applied than what could be.

Here now is KheDrsSignerDoDominates. It is more than one page long, so we’ll start by
presenting it in outline, then fill in each piece separately:

D.6. Signatures 553

bool KheDrsSignerDoDominates(KHE_DRS_SIGNER dsg,
KHE_DRS_SIGNATURE sig1, KHE_DRS_SIGNATURE sig2,
KHE_DRS_SIGNER_TEST test, int trie_start_depth, bool stop_on_neg,
KHE_COST *avail_cost, int verbosity, int indent, FILE *fp)

{
KHE_DRS_DOM_TEST dt;
int start_index, stop_index, dt_index, v1, v2, sig_len;

/* consistency checks */
... see first code excerpt below ...

/* work out start_index and stop_index */
... see second code excerpt below ...

/* quit immediately if no available cost */
if(stop_on_neg && *avail_cost < 0)
return false;

/* do the test from start_index inclusive to stop_index exclusive */
for(dt_index = start_index; dt_index < stop_index; dt_index++)
{
dt = HaArray(dsg->dom_tests, dt_index);
v1 = HaArray(sig1->states, dt_index);
v2 = HaArray(sig2->states, dt_index);
switch(dt->type)
{
... see third code excerpt below ...

}

/* quit early if *avail_cost is now negative */
if(stop_on_neg && *avail_cost < 0)

return false;
}
return *avail_cost >= 0;

}

The two signatures are supposed to have been created by signer dsg. Because we have chosen
not to store a signer within each signature, we cannot check this. But we can check that the
number of dominance tests in the signer equals the number of states in each signature:

554 Appendix D. Dynamic Programming Resource Reassignment: Implementation

/* consistency checks */
sig_len = HaArrayCount(dsg->dom_tests);
HnAssert(HaArrayCount(sig1->states) == sig_len,
"KheDrsSignerDoDominates internal error 1 (count %d != count %d)\n",
HaArrayCount(sig1->states), sig_len);

HnAssert(HaArrayCount(sig2->states) == sig_len,
"KheDrsSignerDoDominates internal error 2 (count %d != count %d)\n",
HaArrayCount(sig2->states), sig_len);

Next we use test to work out start_index, the place along the states arrays to start testing, and
stop_index, the index just past the stopping point:

/* work out start_index and stop_index */
switch(test)
{
case KHE_DRS_SIGNER_HARD:

HnAssert(trie_start_depth == 0,
"KheDrsSignerDoDominates internal error 1");

start_index = 0;
stop_index = dsg->last_hard_cost_index + 1;
break;

case KHE_DRS_SIGNER_SOFT:

HnAssert(trie_start_depth == 0,
"KheDrsSignerDoDominates internal error 2");

start_index = dsg->last_hard_cost_index + 1;
stop_index = sig_len;
break;

case KHE_DRS_SIGNER_ALL:

start_index = trie_start_depth;
stop_index = sig_len;
break;

default:

HnAbort("KheDrsSignerDoDominates internal error 3");
start_index = 0, stop_index = 0; /* keep compiler happy */

}

Now returning to the original function, we see that it iterates along the states arrays from
start_index inclusive to stop_index exclusive, extracting the dominance test dt from the
signer (this says how to test for dominance at this position), and state values v1 and v2 from the
states arrays of the signature.

D.6. Signatures 555

The switch on dt->type has 13 branches. Most of them are concerned with dominance
testing involving correlated expressions, which we will omit for now. Here are the others:

switch(dt->type)
{
case KHE_DRS_DOM_TEST_UNUSED:

/* unused test, should never happen */
HnAbort("internal error in KheDrsSignerDominates (UNUSED)");
break;

case KHE_DRS_DOM_TEST_STRONG:

/* strong dominance */
if(!KheDrsDomTestDominatesStrong(dt, v1, v2))

*avail_cost -= KheCost(1, 0);
break;

case KHE_DRS_DOM_TEST_TRADEOFF:

/* tradeoff dominance */
if(!KheDrsDomTestDominatesTradeoff(dt, v1, v2, avail_cost))

*avail_cost -= KheCost(1, 0);
break;

case KHE_DRS_DOM_TEST_UNIFORM:

/* uniform dominance */
KheDrsDomTestDominatesUniform(dt, v1, v2, avail_cost);
break;

... cases for correlated expressions omitted ...

default:

HnAbort("KheDrsSignerDominates internal error 5 (%d)", dt->type);
break;

}

Two old dominance tests, strong dominance and tradeoff dominance, are offered,but the function
called in practice is KheDrsDomTestDominatesUniform. We’ll present it later when we come to
dominance tests.

D.6.4. Signer sets

Just as a signature set is a set of signatures, so a signer set is a set of signers:

556 Appendix D. Dynamic Programming Resource Reassignment: Implementation

typedef struct khe_drs_signer_set_rec *KHE_DRS_SIGNER_SET;
typedef HA_ARRAY(KHE_DRS_SIGNER_SET) ARRAY_KHE_DRS_SIGNER_SET;

struct khe_drs_signer_set_rec {
ARRAY_KHE_DRS_SIGNER signers;

};

There are operations for creating and freeing a signer set, adding a signer to a signer set, and
clearing a signer set back to empty. There is also this operation, called when a day is opened:

void KheDrsSignerSetDayOpen(KHE_DRS_SIGNER_SET signer_set,
KHE_DRS_DAY day, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_RESOURCE dr; int i; KHE_DRS_RESOURCE_ON_DAY drd;
KHE_DRS_SIGNER dsg;

/* one signer for each open resource */
HnAssert(HaArrayCount(signer_set->signers) == 0,
"KheDrsSignerSetDayOpen internal error");

KheDrsResourceSetForEach(drs->open_resources, dr, i)
{
drd = KheDrsResourceOnDay(dr, day);
KheDrsSignerSetAddSigner(signer_set, drd->signer);

}

/* one additional signer for event resource expressions */
dsg = KheDrsSignerMake(day, NULL, NULL, NULL, drs);
KheDrsSignerSetAddSigner(signer_set, dsg);

}

This fills a signer set with one pre-existing signer for each open resource, and one newly created
signer to hold the event resource constraints affected by the tasks of this day. When the day is
closed, this function is called:

void KheDrsSignerSetDayClose(KHE_DRS_SIGNER_SET signer_set,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SIGNER dsg;

/* delete and free the last signer (the others were not made here) */
HnAssert(HaArrayCount(signer_set->signers) > 0,
"KheDrsSignerSetDayClose internal error");

dsg = HaArrayLast(signer_set->signers);
KheDrsSignerFree(dsg, drs);

/* clear the signers */
HaArrayClear(signer_set->signers);

}

D.6. Signatures 557

This frees the last signer and clears the signer set.

After that come operations for hashing signatures and comparing them for equality, which
we won’t show because they are used only by superseded dominance tests. Finally we get to
KheDrsSignerSetDominates, which performs dominance testing between two signature sets.
It’s a long one so we’ll start with the header:

bool KheDrsSignerSetDominates(KHE_DRS_SIGNER_SET signer_set,
KHE_DRS_SIGNATURE_SET sig_set1, KHE_DRS_SIGNATURE_SET sig_set2,
KHE_COST trie_extra_cost, int trie_start_depth, bool use_caching,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

This returns true when sig_set1 dominates sig_set2, using signer_set to determine what
to do at each position. Parameters trie_extra_cost and trie_start_depth have non-zero
values only when KheDrsSignerSetDominates is called from within the trie data structure,
where some dominance testing (the first trie_start_depth positions) will have already been
done. Parameter use_caching is true when we are using caching of the results of this function
to speed up later calls to it. We’ll see how that works shortly. Here is the function, in outline:

558 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsSignerSetDominates(KHE_DRS_SIGNER_SET signer_set,
KHE_DRS_SIGNATURE_SET sig_set1, KHE_DRS_SIGNATURE_SET sig_set2,
KHE_COST trie_extra_cost, int trie_start_depth, bool use_caching,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i, count, last_cache; KHE_DRS_SIGNER dsg; KHE_COST avail_cost;
KHE_DRS_SIGNATURE sig1, sig2; KHE_DRS_RESOURCE dr;
KHE_DRS_COST_TUPLE ct;
count = HaArrayCount(signer_set->signers);
HnAssert(HaArrayCount(sig_set1->signatures) == count,
"KheDrsSignerSetDominates internal error 1");

HnAssert(HaArrayCount(sig_set2->signatures) == count,
"KheDrsSignerSetDominates internal error 2");

avail_cost = sig_set2->cost - sig_set1->cost - trie_extra_cost;
if(avail_cost < 0)
return false;

if(drs->solve_dom_approx > 0)
avail_cost += (avail_cost * drs->solve_dom_approx) / 10;

if(trie_start_depth > 0)
{
/* won’t happen anyway but do it the easy way if it does */
... see first code excerpt below ...

}
else if(USE_DOM_CACHING && use_caching)
{
/* use a cached value for all positions except the last */
... see second code excerpt below ...

}
else
{
/* visit hard constraints first; they often end the test quickly */
... see third code excerpt below ...

}
return true;

}

After checking that the number of signers in the signer set equals the number of signatures in
each signature set, the function initializes avail_cost and returns false immediately if it is
negative. This code:

if(drs->solve_dom_approx > 0)
avail_cost += (avail_cost * drs->solve_dom_approx) / 10;

implements the dom_approx feature, which arbitrarily enlarges avail_cost, increasing the
chance of a successful test but giving up provable optimality.

If trie_start_depth > 0, we have to start trie_start_depth places along the signature,
which is done like this:

D.6. Signatures 559

/* won’t happen anyway but do it the easy way if it does */
HaArrayForEach(signer_set->signers, dsg, i)
{
if(trie_start_depth < HaArrayCount(dsg->dom_tests))
{
sig1 = HaArray(sig_set1->signatures, i);
sig2 = HaArray(sig_set2->signatures, i);
if(!KheDrsSignerDoDominates(dsg, sig1, sig2, KHE_DRS_SIGNER_ALL,

trie_start_depth, true, &avail_cost))
return false;

trie_start_depth = 0;
}
else
trie_start_depth -= HaArrayCount(dsg->dom_tests);

}

We saw KheDrsSignerDoDominates earlier. If we are using cached dominance test results, we
execute this code:

/* use a cached value for all positions except the last */
HnAbort("KheDrsSignerSetDominates - dom caching unavailable");
last_cache = HaArrayCount(signer_set->signers) - 2;
for(i = 0; i <= last_cache; i++)
{
dr = KheDrsResourceSetResource(drs->open_resources, i);
dsg = HaArray(signer_set->signers, i);
sig1 = HaArray(sig_set1->signatures, i);
HnAssert(sig1->asst_to_shift_index >= 0,
"KheDrsSignerSetDominates internal error 3");

sig2 = HaArray(sig_set2->signatures, i);
HnAssert(sig2->asst_to_shift_index >= 0,
"KheDrsSignerSetDominates internal error 4");

ct = KheDrsDim2TableGet2(dr->expand_dom_test_cache,
sig1->asst_to_shift_index, sig2->asst_to_shift_index);

avail_cost += ct.unweighted_psi;
if(avail_cost < 0)
return false;

}

/* regular test for the last position */
dsg = HaArrayLast(signer_set->signers);
sig1 = HaArrayLast(sig_set1->signatures);
sig2 = HaArrayLast(sig_set2->signatures);
if(!KheDrsSignerDoDominates(dsg, sig1, sig2, KHE_DRS_SIGNER_ALL,

0, true, &avail_cost))
return false;

560 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Caching is available only for resource signatures, and is only used within day solutions. When it
is in use, the asst_to_shift_index fields of the two signatures must be set and are used to index
a cache of results of calls to this function, stored in dr->expand_dom_test_cache. Looking up a
table should be much faster than redoing the dominance test over and over, although the author’s
tests do not show any benefit.

Finally we come to the usual case, where we just run along each signature’s state array in
the usual way. But even here there is a wrinkle:

/* visit hard constraints first; they often end the test quickly */
HaArrayForEach(signer_set->signers, dsg, i)
{
sig1 = HaArray(sig_set1->signatures, i);
sig2 = HaArray(sig_set2->signatures, i);
if(!KheDrsSignerDoDominates(dsg, sig1, sig2, KHE_DRS_SIGNER_HARD,

0, true, &avail_cost))
return false;

}

/* visit soft constraints */
HaArrayForEach(signer_set->signers, dsg, i)
{
sig1 = HaArray(sig_set1->signatures, i);
sig2 = HaArray(sig_set2->signatures, i);
if(!KheDrsSignerDoDominates(dsg, sig1, sig2, KHE_DRS_SIGNER_SOFT,

0, true, &avail_cost))
return false;

}

The hard constraint states are visited first, because if they fail they end dominance testing
immediately. This saves a lot of time, as the author’s tests confirm.

D.6.5. Correlators

still to do

D.6.6. Types of signers and their signatures

At the risk of getting ahead of ourselves, we now give a detailed description of the four types of
signers and their signatures. For each type of signer we will give: the type of solution it handles;
which signers of this type there are and where they are kept; which internal expressions are added
to each signer; which dominance tests are added to each signer; and which signatures are created
by each signer of this type, how their costs and states are determined, and where they are kept.

But first, a few general points. When an expression e adds itself to a signer, it is requesting
that the signer call it back as part of creating the signatures controlled by that signer. When it
adds a dominance test to a signer, it is saying that there will be a position in the state array of the
signatures controlled by that signer which holds the state of e, and that the supplied dominance
test is to be used at that position during dominance testing. In that case, e is obliged to ensure

D.6. Signatures 561

that a state value is added to the signature during evaluation.

An expression which adds a dominance test to a signer must also add itself to the signer.
However, it can add itself to the signer without adding a dominance test. This occurs when the
expression needs to be evaluated but that evaluation will be the last one, the one that finalizes the
expression’s value, so that the value is stored somewhere other than in a signature’s state array.

The code that adds internal expressions and dominance tests to signers is part of function
KheDrsExprOpen (Appendix D.8.5). The code that adds costs and states to signatures is part of
function KheDrsExprEvalSignature (Appendix D.8.7). Hopefully this unified and detailed
presentation will make those functions easier to follow.

As we’ll see, resource constraints are handled differently from event resource constraints.
This is an optimization which exploits the fact that each resource constraint is affected by just one
of the assignments on any one day (the one containing the resource that the constraint monitors).
Event resource constraints may be affected by several of the assignments on any one day.

Resource on day signers. When type is KHE_DRS_SIGNER_RESOURCE_ON_DAY, the signer
is a resource on day signer. It handles signatures for task solutions. These consist of one
dk-complete solution plus one assignment of one resource r on day dk+1 to some task (or free
day). Field u.resource_on_day holds the resource on day object representing r on day dk+1.

There is one of these signers for each open resource on day, held in the resource on day
object drd and created when drd is opened (actually, it is created when drd is created and
cleared out when drd is closed, which comes to the same thing). This same signer is used for
all dk-complete solutions and all tasks, which is fine: changing these things will lead to different
signatures, but it does not change the signer (it has no effect on the signature format).

The expressions that enrol themselves with a resource on day signer are all those derived
from resource constraints for r that are affected by what r is doing on day dk+1. These contribute
dominance tests, reserving for themselves a place in the states array, when this is not the last day
they are affected by. Event resource constraints take no part in resource on day signatures.

For these signers, signatures exist only while expanding a given dk-complete solution. Each
signature is held in a KHE_DRS_MTASK_SOLN object representing the assignment of resource r
to an arbitrary task of an mtask c whose first day is dk+1. There is one of these mtask solution
objects for each (r,c) pair such that r can be assigned to c. However, the implementation knows
that all tasks from the same shift produce the same signature, and so two mtask solutions share
a signature when they are from the same shift. All these mtask solution objects are held in the
KHE_DRS_RESOURCE object representing r.

The cost of a resource on day signature is the sum, over all monitors enrolled in the signer,
of their extra cost on day dk+1 over their cost on day dk. Extra costs are more convenient than
full costs when these signatures go into signature sets, because they can be added to the cost of
the dk-solution with no risk of double counting.

Resource on day signersand signaturesare essentiallyan optimization. Many dk+1-complete
solutions derived from a given dk-complete solution contain an assignment of r to a task of shift
s. The effect of this assignment on r’s resource constraints is calculated only once, held in a
resource on day signature, and added to the signature sets of dk+1-solutions as required.

Day signers. When type is KHE_DRS_SIGNER_DAY, the signer is a day signer. It handles
signatures for the event resource constraints of dk-solutions. Field u.day holds the day dk up

562 Appendix D. Dynamic Programming Resource Reassignment: Implementation

to which these solutions are complete. There is one day signer for each open day, held in the
KHE_DRS_DAY object representing that day and created when the day is opened.

A day signer’s internal expressions are the internal expressions derived from event resource
constraints which are affected by what happens on its day. As usual, there is one dominance test
for each of these internal expressions for which this is not the last day.

This signer must not be confused with the signer set for a given day. The signer set
contains one resource on day signer for each open resource r, each recording the cost and state
of the resource constraints of r up to day dk inclusive, plus the day signer for the event resource
constraints as just explained. So the signer set covers the entire solution and defines signature
sets whose cost is the full solution cost of one dk-solution.

There is one solution object that none of the above applies to: the root solution. It is not
on any day, so its signature can’t be related to any day signer. But its signature contains just the
initial solution cost (after the selected tasks are unassigned), has no states (initial states are stored
in expressions, not in signatures), and never participates in dominance testing. So the absence of
a signer does not matter in this case.

Shift signers. When type is KHE_DRS_SIGNER_SHIFT, the signer is a shift signer. It
handles shift solutions, made of one dk-solution plus one assignment of each element of a set of
resources R to an unspecified task of a shift s beginning on day dk+1. These are assumed to be
the only assignments to the tasks of s. Field u.shift holds s.

There is one shift signer for each open shift s, held in s, and one signature for each
KHE_DRS_SHIFT_SOLN object associated with s. The internal expressions are those derived from
event resource constraints which are affected by assignments to any of the tasks of s. As usual,
there is one dominance test for each of these internal expressions e for which the assignments to
the dk-solution, plus the assignments to s (crucially, combined with the knowledge that there are
no other assignments to s) leave some children of e with undetermined values.

The same signer can be and is used for all sets R, although dominance tests are made only
between KHE_DRS_SHIFT_SOLN objects with the same R. For objects with the same R, the effect
on resource constraints is the same, because each resource of R is assigned to some task of s, and
those tasks have the same effect on resource constraints (by how shifts are defined). This is why
resource constraints are omitted completely from these signatures: for dominance testing, which
is all we are interested in here, they make no difference. The cost of each signature is the extra
cost of its expressions on day dk+1, beyond their cost on day dk.

Shift pair signers. When type is KHE_DRS_SIGNER_SHIFT_PAIR, the signer is a shift pair
signer. It handles shift pair solutions, made of one dk-solution, plus one assignment of a set of
resources R1 to tasks of a shift s1beginning on day dk+1, plus one assignment of a set of resources
R2 to a tasks of a shift s2 beginning on day dk+1. We require s1 ≠ s2 and R1 ∩ R2 = ∅ .

There is one shift pair signer for each pair of shifts that begin on the same day, held in the
shift pair object for those two shifts. The expressions are all those derived from event resource
monitors whose values are affected by assignments to the tasks of s1 or s2. As usual, if those
assignments do not finish off the expression value, a dominance test is added as well.

A very similar result could be obtained by a signer set consisting of the two shift signers
for s1 and s2. But this fails to work in the unlikely case where there is a monitor whose value is
affected by assignments in both shifts. Such a monitor would have its cost counted twice.

D.6. Signatures 563

D.6.7. Dominance kinds and dominance test types

Type KHE_DRS_DOM_KIND is an enumerated type, defined publicly in khe_solvers.h, and used
to specify the kind of dominance testing to employ:

typedef enum {
KHE_DRS_DOM_LIST_NONE,
KHE_DRS_DOM_LIST_STRONG,
KHE_DRS_DOM_LIST_TRADEOFF,
KHE_DRS_DOM_LIST_UNIFORM,
KHE_DRS_DOM_HASH_WEAK,
KHE_DRS_DOM_HASH_MEDIUM,
KHE_DRS_DOM_TRIE_STRONG,
KHE_DRS_DOM_TRIE_TRADEOFF,
KHE_DRS_DOM_INDEXED_TRADEOFF,
KHE_DRS_DOM_INDEXED_UNIFORM

} KHE_DRS_DOM_KIND;

Two ideas are mixed here: how to organize a set of solutions (simple list, hash table, trie, or
indexed array), and how to test a pair of solutions for dominance (none, weak, medium, strong,
tradeoff, or uniform). They are mixed because different organizations support different tests.

These choices record the author’s attempts to speed up dominance testing. Eventually it will
become clear that one is better than the others, and the others can be forgotten, even deleted. At
the time of writing the author inclines towards indexed uniform testing; time will tell.

For the dominance test type aspect of KHE_DRS_DOM_KIND, the solver defines type

typedef enum {
KHE_DRS_DOM_TEST_UNUSED,
KHE_DRS_DOM_TEST_STRONG,
KHE_DRS_DOM_TEST_TRADEOFF,
KHE_DRS_DOM_TEST_UNIFORM,
KHE_DRS_DOM_TEST_CORR1_PARENT,
KHE_DRS_DOM_TEST_CORR1_CHILD,
KHE_DRS_DOM_TEST_CORR2_CHILD,
KHE_DRS_DOM_TEST_CORR3_FIRST,
KHE_DRS_DOM_TEST_CORR3_MID,
KHE_DRS_DOM_TEST_CORR3_LAST,
KHE_DRS_DOM_TEST_CORR4_FIRST,
KHE_DRS_DOM_TEST_CORR4_MID,
KHE_DRS_DOM_TEST_CORR4_LAST

} KHE_DRS_DOM_TEST_TYPE;

The CORR1 through CORR4 values are for dominance testing of correlated expressions, and are
not of concern to us here. Values KHE_DRS_DOM_TEST_STRONG, KHE_DRS_DOM_TEST_TRADEOFF,
and KHE_DRS_DOM_TEST_UNIFORM are the main ones; they indicate that strong dominance,
tradeoff dominance, or uniform dominance is wanted. These values are extracted from a
KHE_DRS_DOM_KIND value by function

564 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KHE_DRS_DOM_TEST_TYPE KheDomKindToDomTestType(KHE_DRS_DOM_KIND dom_kind)
{

switch(dom_kind)
{

case KHE_DRS_DOM_LIST_NONE: return KHE_DRS_DOM_TEST_UNUSED;
case KHE_DRS_DOM_LIST_STRONG: return KHE_DRS_DOM_TEST_STRONG;
case KHE_DRS_DOM_LIST_TRADEOFF: return KHE_DRS_DOM_TEST_TRADEOFF;
case KHE_DRS_DOM_LIST_UNIFORM: return KHE_DRS_DOM_TEST_UNIFORM;
case KHE_DRS_DOM_HASH_WEAK: return KHE_DRS_DOM_TEST_UNUSED;
case KHE_DRS_DOM_HASH_MEDIUM: return KHE_DRS_DOM_TEST_STRONG;
case KHE_DRS_DOM_TRIE_STRONG: return KHE_DRS_DOM_TEST_STRONG;
case KHE_DRS_DOM_TRIE_TRADEOFF: return KHE_DRS_DOM_TEST_TRADEOFF;
case KHE_DRS_DOM_INDEXED_TRADEOFF: return KHE_DRS_DOM_TEST_TRADEOFF;
case KHE_DRS_DOM_INDEXED_UNIFORM: return KHE_DRS_DOM_TEST_UNIFORM;

default:

HnAbort("KheDomKindToDomTestType: unknown dom_kind (%d)", dom_kind);
return 0; /* keep compiler happy */

}
}

which carries out the obvious mapping.

As the description of KheDynamicResourceSolverSolve explains, when solutions are held
in a cache as well as in a main table, a consistency issue arises: the main table’s dominance kind
and the cache’s dominance kind do not have to agree, but their dominance test types do. This is
implemented by the following little function:

KHE_DRS_DOM_TEST_TYPE KheDomKindCheckConsistency(
KHE_DRS_DOM_KIND main_dom_kind, bool cache,
KHE_DRS_DOM_KIND cache_dom_kind)

{
KHE_DRS_DOM_TEST_TYPE main_dom_test_type, cache_dom_test_type;
main_dom_test_type = KheDomKindToDomTestType(main_dom_kind);
if(cache)
{
cache_dom_test_type = KheDomKindToDomTestType(cache_dom_kind);
HnAssert(main_dom_test_type == KHE_DRS_DOM_TEST_UNUSED ||
cache_dom_test_type == KHE_DRS_DOM_TEST_UNUSED ||
main_dom_test_type == cache_dom_test_type,
"KheDomKindCheckConsistency: inconsistent main_dom_kind "
"and cache_dom_kind arguments");

}
return main_dom_test_type;

}

The only other function on type KHE_DRS_DOM_KIND is KheDomKindShow, used to display a value

D.6. Signatures 565

of type KHE_DRS_DOM_KIND during debugging. Values of this type are mainly used to control
switch statements which implement the different kinds of dominance testing.

D.6.8. Dominance tables

A dominance table is a table used to cache available costs during uniform dominance testing, as
explained in Appendix C. The type of one entry in such a table is a triple of three costs:

typedef struct khe_drs_cost_tuple_rec {
short unweighted_psi;
short unweighted_psi0;
short unweighted_psi_plus;

} KHE_DRS_COST_TUPLE;

typedef HA_ARRAY(KHE_DRS_COST_TUPLE) ARRAY_KHE_DRS_COST_TUPLE;

To save memory it stores 16-bit unweighted costs rather than 64-bit costs. These unweighted
costs need to be multiplied by a constraint weight, stored elsewhere, to produce costs.

Next comes type

typedef struct khe_drs_dim1_table_rec {
ARRAY_KHE_DRS_COST_TUPLE children;
int offset;

} *KHE_DRS_DIM1_TABLE;

typedef HA_ARRAY(KHE_DRS_DIM1_TABLE) ARRAY_KHE_DRS_DIM1_TABLE;

representing a one-dimensional table of arbitrary length whose elements have type
KHE_DRS_COST_TUPLE. As far as the caller is concerned, the first element has index offset. This
offset field is maintained automatically as elements are added, as we’ll see. Next comes

struct khe_drs_dim2_table_rec {
ARRAY_KHE_DRS_DIM1_TABLE children;
int offset;

};

typedef HA_ARRAY(KHE_DRS_DIM2_TABLE) ARRAY_KHE_DRS_DIM2_TABLE;

which is a one-dimensional table of arbitrary length whose children are one-dimensional arrays
of cost tuples. This same pattern is continued up to type

typedef struct khe_drs_dim5_table_rec {
ARRAY_KHE_DRS_DIM4_TABLE children;
int offset;

} *KHE_DRS_DIM5_TABLE;

typedef HA_ARRAY(KHE_DRS_DIM5_TABLE) ARRAY_KHE_DRS_DIM5_TABLE;

which offers five-dimensional tables whose individual elements are cost tuples, and which are

566 Appendix D. Dynamic Programming Resource Reassignment: Implementation

extensible with an adjustable starting index (stored in offset) in each sub-array.

There is a lot of repetitive code in these types, but the author wanted the strong typing. Here
is a typical function, which adds a new cost tuple ct to five-dimensional array d5:

void KheDrsDim5TablePut(KHE_DRS_DIM5_TABLE d5, int index5, int index4,
int index3, int index2, int index1, KHE_DRS_COST_TUPLE ct,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_DIM4_TABLE d4; int pos; HA_ARENA a;

/* set offset if this is the first insertion */
if(HaArrayCount(d5->children) == 0)
d5->offset = index5;

/* make sure index5 is within, or just beyond, the current range */
pos = index5 - d5->offset;
HnAssert(0 <= pos && pos <= HaArrayCount(d5->children),
"KheDrsDim5TablePut: index5 %d is out of range %d .. %d", index5,
d5->offset, d5->offset + HaArrayCount(d5->children));

/* find or make-and-add d4, the sub-array to insert into */
if(pos < HaArrayCount(d5->children))
d4 = HaArray(d5->children, pos);

else
{
a = HaArrayArena(d5->children);
d4 = KheDrsDim4TableMake(a);
HaArrayAddLast(d5->children, d4);

}

/* do the insertion */
KheDrsDim4TablePut(d4, index4, index3, index2, index1, ct, drs);

}

If this is the first insertion into this array, its offset field is set to index5, the new entry’s position
in this array, as far as the caller is concerned. This assumes that the smallest index is passed first.
That assumption could be avoided but there is no need for that in this application.

The next step is to find pos, the internal index corresponding to the external index index5;
this is just index5 - d5->offset. There must already be a four-dimensional array at position
pos, in which case d4 is set to that array, or else pos must be just off the end, in which case
d4 is set to a new four-dimensional array and added to the end. Again, this ‘just off the end’
assumption could be avoided, but there is no need here.

Finally, ct is inserted into d4 by a call to KheDrsDim4TablePut, the four-dimensional
version of KheDrsDim5TablePut.

There is a KheDrsDim5TableGet operation which retrieves one four-dimensional table from
a five-dimensional table:

D.6. Signatures 567

KHE_DRS_DIM4_TABLE KheDrsDim5TableGet(KHE_DRS_DIM5_TABLE d5, int index5)
{
int pos;
pos = index5 - d5->offset;
HnAssert(0 <= pos && pos < HaArrayCount(d5->children),
"KheDrsDim5TableGet: index %d out of range %d .. %d", index5,
d5->offset, HaArrayCount(d5->children) + d5->offset - 1);

return HaArray(d5->children, pos);
}

Applying this idea three times produces this function, which uses three indexes to retrieve a
two-dimensional table from a five-dimensional table:

KHE_DRS_DIM2_TABLE KheDrsDim5TableGet3(KHE_DRS_DIM5_TABLE d5,
int index5, int index4, int index3)

{
return KheDrsDim3TableGet(KheDrsDim4TableGet(
KheDrsDim5TableGet(d5, index5), index4), index3);

}

This will be used when constructing dominance tests: we extract the appropriate two-dimension-
al table for a given test from a five-dimensional table and store it in the test.

D.6.9. Dominance tests

A value of type KHE_DRS_DOM_TEST represents the dominance test at one position along some
signature. It knows which constraint owns that position, and when dominance testing reaches
that position it supplies the information needed to carry out the correct test for that constraint.

Eventually, if all dominance tests are replaced by uniform dominance, it should be possible
to store nothing in each KHE_DRS_DOM_TEST object except a single KHE_DRS_DIM2_TABLE which
can be consulted using KheDrsDim2TableGet2 to get the cost needed for adding to the available
cost during the uniform dominance test. However, at present there are many other fields,
supporting the other tests that the author has tried:

568 Appendix D. Dynamic Programming Resource Reassignment: Implementation

typedef struct khe_drs_dom_test_rec *KHE_DRS_DOM_TEST;
typedef HA_ARRAY(KHE_DRS_DOM_TEST) ARRAY_KHE_DRS_DOM_TEST;

struct khe_drs_dom_test_rec {
KHE_DRS_DOM_TEST_TYPE type;
int correlated_delta;
KHE_DRS_EXPR expr;
bool allow_zero;
int min_limit;
int max_limit;
int a;
int b;
KHE_COST combined_weight;
KHE_DRS_DIM2_TABLE main_dom_table2;
KHE_DRS_DIM4_TABLE corr_dom_table4;
KHE_MONITOR monitor;

};

Most of these fields have self-explanatory names. When type is KHE_DRS_DOM_TEST_UNIFORM,
main_dom_table2 contains the two-dimensional table consulted by uniform dominance. When
type denotes a correlated expression, correlated_delta may hold a value to add to the index
of this dominance test to obtain the index of a correlated one, and corr_dom_table4 may hold
a four-dimensional table which is consulted to obtain a correlated available cost.

The operations on dominance tests include KheDrsDomTestMake for creating one and
setting its fields, and KheDrsDomTestDominatesStrong, KheDrsDomTestDominatesTradeoff,
and KheDrsDomTestDominatesUniform for carrying out one test. Here is the last of these:

void KheDrsDomTestDominatesUniform(KHE_DRS_DOM_TEST dt,
int val1, int val2, KHE_COST *avail_cost)

{
KHE_DRS_COST_TUPLE ct;
ct = KheDrsDim2TableGet2(dt->main_dom_table2, val1, val2);

*avail_cost += ct.unweighted_psi * dt->combined_weight;
}

It uses the two values (taken from two signatures) to index into dt->main_dom_table2, and uses
the unweighted_psi value from the resulting cost tuple, multiplied by a weight, as the change
in available cost.

D.6.10. Dominance test caching

Function KheDrsSignerDoDominates is a good candidate for caching. Assuming that tries are
not in use and that we want to do a dominance test of the whole signature (not the hard parts
and soft parts separately), there are essentially just two parameters—the two signatures to be
compared—and the result is just the cost, usually zero or negative, to add to the available cost.
So the cache can be very simple: a two-dimensional table whose elements are costs. Retrieving
from it should be a lot faster than slogging through the two signatures.

D.6. Signatures 569

All this applies equally well to signature sets. However, caching them would not be useful,
because a given ordered pair of signature sets is almost never tested for dominance twice. In
the same way, we should not cache all pairs of signatures that ever get tested for dominance
(although logically we could), because many of those would never recur. We need to choose
pairs of signatures that are easy to cache and likely to be tested for dominance repeatedly.

At the start of expanding each dk-complete solution S, for each open resource r, and for
each shift s beginning on day dk+1 that r is qualified for (including the special shift denoting a
free day), the solver builds one signature holding the state of r’s resource monitors when r has its
assignments from S, and is also assigned to s. These signatures are stored in an array within the
KHE_DRS_RESOURCE object representing r.

Dominance testing caches are built immediately after these signatures are created. Each
cache is a two-dimensional array containing one entry for each ordered pair of signatures for the
same S and r, whose value is the cost to add to the available cost when these two signatures are
compared for dominance. The cache is stored in r alongside r’s signatures.

At position (i, j) of the cache, what is stored is the cost associated with comparing
the signature of r’s ith signature with its jth signature. The cache is constructed by calling
KheDrsSignerDoDominates once for each of these pairs of signatures and storing the result.
Each resource signature contains its own index, so given two signatures it is easy to use these
indexes to access the cache and avoid calling KheDrsSignerDoDominates.

The cache must only be consulted when a value for the two signatures being compared is in
it. To ensure this, whenever two solutions are tested for dominance, we first check whether both
have the same previous solution S. If they do, then the test must be part of the expansion of S
(because all dominance tests between pairs of solutions are part of some expansion, and at least
one of the solutions in each test must have the solution being expanded as its previous solution),
and at each position along the two solutions’ signature sets except the last, the signatures at
that position form a pair that must be in the cache (because the cache is present for the entire
expansion of S). So the whole signature set test for dominance can and does use cached values
at each position except the last, where KheDrsSignerDoDominates is called. The last position
usually has empty signatures anyway.

If two solutions have different previous solutions, the test is part of the expansion of one of
those but not the other. Caching such cases would be much more expensive in time and memory
than what we are doing. Our method might do a lot of good and costs very little.

D.7. Constraints

This section documents the solver’s types that parallel KHE’s constraint and monitor types.
These are only a minor part of the system, needed for technical reasons that will be explained.

D.7.1. Constraints

The solver has a constraint type defined by

570 Appendix D. Dynamic Programming Resource Reassignment: Implementation

typedef struct khe_drs_constraint_rec {
KHE_CONSTRAINT constraint;
int min_history;
int max_history;
KHE_DRS_EXPR sample_expr;
KHE_DRS_DIM3_TABLE counter_main_dom_table3;
KHE_DRS_DIM5_TABLE counter_corr_dom_table5;
KHE_DRS_DIM5_TABLE sequence_main_dom_table5;

} *KHE_DRS_CONSTRAINT;

typedef HA_ARRAY(KHE_DRS_CONSTRAINT) ARRAY_KHE_DRS_CONSTRAINT;

There is one of these objects for each KHE constraint whose resource type agrees with the
solver’s resource type. There is no absolute requirement to have such a type; it has been included
because the tables needed for uniform dominance testing are the same for all monitors derived
from the same constraint. Having this type allows them to be built only once per constraint rather
than once per monitor. This is a worthwhile saving because these tables can be very large.

There is the usual KheDrsConstraintMake operation, which however just leaves NULL

values in the tables. Then there is

void KheDrsConstraintUpdateHistory(KHE_DRS_CONSTRAINT dc, int history)
{
if(history < dc->min_history)
dc->min_history = history;

if(history > dc->max_history)
dc->max_history = history;

}

which ensures that dc->min_history is the minimum of the history values of the constraint, and
that dc->max_history is the maximum. The point of this is that the tables need indexes for all
history values that actually occur.

It might help to look ahead to how these functions are used. One part of defining an
expression derived from a constraint is to call this function:

D.7. Constraints 571

void KheDrsExprCostSetConstraint(KHE_DRS_EXPR_COST ec,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_CONSTRAINT c; int index; KHE_DRS_CONSTRAINT dc;
c = KheMonitorConstraint(ec->monitor->monitor);
index = KheConstraintIndex(c);
HaArrayFill(drs->all_constraints, index + 1, NULL);
dc = HaArray(drs->all_constraints, index);
if(dc == NULL)
{
/* new, so build and add a new object */
dc = KheDrsConstraintMake(c, ec->history, (KHE_DRS_EXPR) ec, drs);
HaArrayPut(drs->all_constraints, index, dc);

}
else
{
/* already built, so just update min_history and max_history */
KheDrsConstraintUpdateHistory(dc, ec->history);

}
}

It uses the expression’s constraint’s index to look up the all_constraints array in the solver.
If there is no constraint there, it calls KheDrsConstraintMake and adds one. If there is already
one there, it updates its history. Once all expressions are created, all constraints will be too.

The other main function builds the three tables stored in the constraint object:

572 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsConstraintSetTables(KHE_DRS_CONSTRAINT dc,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
switch(dc->sample_expr->tag)
{
case KHE_DRS_EXPR_INT_SUM_COST_TAG:

/* set counter dom tables */
KheDrsConstrainSetCounterDomTables(dc,
(KHE_DRS_EXPR_INT_SUM_COST) dc->sample_expr, drs);

break;

case KHE_DRS_EXPR_INT_SEQ_COST_TAG:

/* set sequence dom tables */
KheDrsConstrainSetSequenceDomTables(dc,
(KHE_DRS_EXPR_INT_SEQ_COST) dc->sample_expr, drs);

break;

default:

HnAbort("KheDrsConstraintSetTables internal error (tag %d)",
dc->sample_expr->tag);

break;
}

}

When the constraint supports INT_SUM_COST expressions, the counter_main_dom_table3

and counter_corr_dom_table5 tables are set. When the constraint supports INT_SEQ_COST
expressions, the sequence_main_dom_table5 table is set. The code for this, beginning with
KheDrsConstrainSetCounterDomTables and KheDrsConstrainSetSequenceDomTables,
may be found in this submodule, but we won’t show it here. It is a direct transcription of the
uniform dominance formulas of Appendix C.

D.7.2. Monitors

The solver has a KHE_DRS_MONITOR type:

typedef struct khe_drs_monitor_rec {
KHE_MONITOR monitor;
KHE_COST rerun_open_and_search_cost;
KHE_COST rerun_open_and_close_cost;

} *KHE_DRS_MONITOR;

typedef HA_ARRAY(KHE_DRS_MONITOR) ARRAY_KHE_DRS_MONITOR;

There is one of these monitor objects for each KHE monitor whose resource type agrees with

D.7. Constraints 573

the resource type of the solver.

As for constraints, this type is not absolutely needed. Here, the motive is not to save space,
but rather to test the solver. It is not practicable to debug a full run, because there is too much
data. But one can debug a single path through the search tree, which the solver calls a rerun, as
explained in detail in Appendix D.12.4. While doing this, the rerun_open_and_search_cost

and rerun_open_and_close_cost fields are kept up to date, and at the end one can check for
disagreements with the authoritative costs produced by the KHE platform.

This work needs to be done per monitor, not per expression, because the costs obtainable
from KHE are per monitor. So all expressions derived from a given KHE monitor contain a
pointer to a shared DRS monitor object. (The solver often converts one monitor into several
expressions. This often allows these expressions to avoid having to contribute state information
to solution signatures, a significant saving.)

The operations on DRS monitors include KheDrsMonitorMakeAndAdd, which makes a
monitor and adds it to the solver’s all_monitors array; KheDrsMonitorUpdateRerunCost,
which is called during reruns to update the two cost fields, and optionally to produce debug
output saying what was done; and KheDrsMonitorCheckRerunCost, which checks at the end
of the run that rerun_open_and_search_cost and rerun_open_and_close_cost both agree
with KHE’s value for the monitor’s cost.

D.8. Expressions

D.8.1. Introduction

The reader is assumed to be familiar with expression trees, which are tree structures representing

algebraic expressions. For example, √ 2
b − 4ac may be represented by the expression tree

sqrt

-

*

b b

*

4 *

a c

If variables have values, each node has a value, dependent on its type and its children’s values.

Each node is similar to the other nodes in some ways (they are all expression tree nodes),
but different in others (for example, in the operations they perform). This situation calls for
inheritance, with an abstract base class representing expression tree nodes in general, inherited
by several concrete child classes representing particular kinds of expressions.

In our application, each constraint (strictly speaking, each point of application of each
constraint, represented in KHE by a monitor) is represented by an expression tree which, given
a particular solution, can be evaluated to yield the cost of the monitor. The abstract base class is
KHE_DRS_EXPR. There are 15 concrete subclasses representing particular types of expressions.

574 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Here we are concerned with introducing expressions generally, so although we will use some
concrete subtypes in examples, we leave the full list for later (Appendix D.8.8).

Although the term ‘expression’most naturally means ‘expression tree’, we usually use it to
mean ‘expression tree node’. As explained earlier, this is done to avoid the term ‘node’, which
is ambiguous here because it could also mean ‘search tree node’.

Here is an expression tree for constraining the number of busy weekends for resource r:

INT_SUM_COST

OR

BUSY_TIME(r,1Sat1)

BUSY_TIME(r,1Sat2)

BUSY_TIME(r,1Sun1)

BUSY_TIME(r,1Sun2)

…

OR

BUSY_TIME(r,4Sat1)

BUSY_TIME(r,4Sat2)

BUSY_TIME(r,4Sun1)

BUSY_TIME(r,4Sun2)

To fit it onto the page, it is drawn sideways with the subtrees for two weekends omitted. We
assume that the instance has 28 days, starting on a Monday, with two shifts per day.

A BUSY_TIME(r, t) expression has value 1 when r is busy at time t. An OR expression has
value 1 when at least one of its children has value 1. An INT_SUM_COST expression sums the
values of its children, compares the result with the limits (stored in the expression, but not shown
here), and calculates a cost, using a cost function and weight stored in the expression.

Although every expression has a value, different types of expressions have different types
of values. Most have values of type int; INT_SUM_COST expressions have values of type
KHE_COST; and there are also expressions whose values have type float.

An external expression is an expression with no children. Its value depends on the state
of the solution. For example, the BUSY_TIME expressions above are external expressions. An
internal expression is an expression with one or more children. Its value depends on its children’s
values. The INT_SUM_COST and OR expressions above are internal expressions.

External and internal expressions are sometimes handled differently. For example,although
the implementation allows arbitrary common sub-expressions (that is, it allows any tree to be a
subtree of any number of larger trees), only external expressions utilize this option.

The KHE platform does not use expression trees; it implements each kind of constraint
with its own data structure. Expression trees allow more code sharing than special data structures

D.8. Expressions 575

do: INT_SUM_COST, for example, is used by several constraints. Another reason for using
expression trees will be given when we come to consider signatures in detail (Appendix D.8.3).

Here is the base class, KHE_DRS_EXPR:

typedef struct khe_drs_expr_rec *KHE_DRS_EXPR;
typedef HA_ARRAY(KHE_DRS_EXPR) ARRAY_KHE_DRS_EXPR;

#define INHERIT_KHE_DRS_EXPR \
KHE_DRS_EXPR_TAG tag; \
bool gathered; \
int postorder_index; \
KHE_DRS_RESOURCE resource; \
KHE_DRS_VALUE u; \
ARRAY_KHE_DRS_PARENT parents; \
ARRAY_KHE_DRS_EXPR children; \
struct khe_drs_open_children_rec open_children_by_day; \
HA_ARRAY_INT sig_indexes;

struct khe_drs_expr_rec {
INHERIT_KHE_DRS_EXPR

};

The fields lie in a macro to facilitate inheritance, as we’ll see. The tag field has enumerated
type and says which concrete type of expression this is. The gathered field is true when the
expression has been gathered for opening (explained later) but not actually opened yet.

Each expression has a unique value of the postorder_index field. Children have smaller
values than their parents, so that if the expressions are sorted by increasing postorder_index,
they appear in postorder. These fields are set as expressions are created, and remain fixed.

The resource field is set in expressions that represent resource constraints, to the resource
that the constraint applies to. It is NULL in expressions that represent event resource constraints.

The u field contains the value of the expression when a value is defined. It was stated
earlier that an expression’s value could have type int, float, or KHE_COST. However, values
of type KHE_COST are not stored in expressions (instead, as we will see later, costs are reported
immediately to solutions), so type KHE_DRS_VALUE is

typedef union {
int int_val;
float float_val;

} KHE_DRS_VALUE;

In an expression e of type OR, say, which has an integer value, the value is e->u.int_val.

The u field has a defined value in two contexts. First, when e is closed, e’s value is fixed
and its u field holds that value. Indeed, the u field is assumed to continue to hold the closed value
even after e opens, but only until its parents open. Second, when e is open, and a solution is being
evaluated which happens to be for e’s last open day, u holds e’s value temporarily, from when
the value is calculated until its parents have retrieved it. Otherwise the u field is undefined.

576 Appendix D. Dynamic Programming Resource Reassignment: Implementation

The parents field contains pointers to the expression’s parents. Most expressions have one
parent, but external expressions may have several. KHE_DRS_PARENT is

typedef struct khe_drs_parent_rec {
KHE_DRS_EXPR expr;
int index;

} KHE_DRS_PARENT;

typedef HA_ARRAY(KHE_DRS_PARENT) ARRAY_KHE_DRS_PARENT;

and holds the parent plus the child expression’s index in the list of children of the parent.

Field children holds the children of this expression. Fields open_children_by_day and
sig_indexes are used only when the expression is open. We’ll discuss them later.

As an example of inheritance, here is type KHE_DRS_EXPR_OR, the type of OR expressions:

typedef struct khe_drs_expr_or_rec {
INHERIT_KHE_DRS_EXPR
int closed_state;

} *KHE_DRS_EXPR_OR;

It inherits all the fields of KHE_DRS_EXPR, making a C typecast from KHE_DRS_EXPR_OR to
KHE_DRS_EXPR safe. Its tag field has the enumerated value KHE_DRS_EXPR_OR_TAG.

When present in an expression x, the closed_state field holds a summary of the values of
x’s closed children. It is always defined, even when x is open. (If an expression is open, its parents
must also be open, but not all of its children need be open.) In OR expressions, the closed state
is the number of closed children with value 1. Consulting this rather than the closed children
themselves avoids visiting closed expressions during the solve, needed to fulfil the promise of
running in time proportional to the number of open objects, not the number of objects.

D.8.2. Construction

Constructing expression trees is basically a simple matter of creating the right objects and linking
them together correctly. There are however a couple of things that deserve some attention.

The solver uses three private functions, KheDrsExprInitBegin, KheDrsExprInitEnd,
and KheDrsExprAddChild, for constructing expression trees. For example, suppose we want to
construct an OR expression with some children. We do this as follows:

KHE_DRS_EXPR_OR res;
HaMake(res, drs->arena);
KheDrsExprInitBegin((KHE_DRS_EXPR) res, KHE_DRS_EXPR_OR_TAG, dr, drs);
... initialize fields specific to OR expressions ...
... make child expressions and call KheDrsExprAddChild on each ...
KheDrsExprInitEnd((KHE_DRS_EXPR) res, drs);

HaMake obtains memory for the new object, res, as usual. KheDrsExprInitBegin initializes
its fields that are common to all expressions, including tag and resource, which vary from one
expression to another. Next, fields specific to the type of expression being constructed must be

D.8. Expressions 577

initialized. For OR expressions this is just the closed_state field. Then the children of the new
expression must be created, which involves, for each child, carrying out this same sequence, from
KheDrsExprInitBegin to KheDrsExprInitEnd, followed by a call to KheDrsExprAddChild to
link parent and child.

Correct construction requires that KheDrsExprInitEnd be called immediately after the
children have been constructed and linked in, but not before. We can see why by studying the
functions. KheDrsExprInitBegin is quite trivial:

void KheDrsExprInitBegin(KHE_DRS_EXPR e, KHE_DRS_EXPR_TAG tag,
KHE_DRS_RESOURCE dr, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
e->tag = tag;
e->gathered = false;
e->postorder_index = -1;
e->resource = dr;
HaArrayInit(e->parents, drs->arena);
HaArrayInit(e->children, drs->arena);
KheDrsOpenChildrenInit(&e->open_children_by_day, drs);
HaArrayInit(e->sig_indexes, drs->arena);

}

but KheDrsExprInitEnd is more interesting:

void KheDrsExprInitEnd(KHE_DRS_EXPR e, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
e->postorder_index = drs->postorder_count++;
KheDrsExprSetClosedValue(e, drs);

}

There are two points here. First, KheDrsExprInitEnd assigns e->postorder_index using a
value from the solver. Clearly, this will only work as intended when KheDrsExprInitEnd is
called on e after it has been called on each of e’s children.

Second, KheDrsExprInitEnd calls KheDrsExprSetClosedValue (Appendix D.8.5) to
initialize the value of e. Although we mainly use KheDrsExprSetClosedValue to find the
closed value of e at the end of a solve, what it does is just right here: it sets the closed value of
e, assuming that the children of e have their correct closed values, and that any closed state in e

is correct. The closed value is wanted here, because initially all expressions are closed.

Now here is KheDrsExprAddChild:

578 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExprAddChild(KHE_DRS_EXPR parent, KHE_DRS_EXPR child,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_PARENT prnt;

/* link parent and child */
HnAssert(HaArrayCount(parent->parents) == 0,
"KheDrsExprAddChild internal error: too late to add child (1)");

HnAssert(parent->postorder_index == -1,
"KheDrsExprAddChild internal error: too late to add child (2)");

prnt.expr = parent;
prnt.index = HaArrayCount(parent->children);
HaArrayAddLast(child->parents, prnt);
HaArrayAddLast(parent->children, child);

/* update state in each parent */
switch(parent->tag)
{
case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrAddChild((KHE_DRS_EXPR_OR) parent, child, drs);
break;

...
}

}

The first part is common to all expressions: it adds child to parent’s list of children, and it adds
parent to child’s list of parents. The second part updates the state of the parent to include the
child, and is specific to each type of expression, hence the large switch. Here is one branch:

void KheDrsExprOrAddChild(KHE_DRS_EXPR_OR eo, KHE_DRS_EXPR child_e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if(child_e->u.int_val == 1)
eo->closed_state += 1;

}

The closed state of eo is the number of closed children with value 1. All children are closed
initially, so this adds 1 to eo->closed_state if child_e’s value is 1. The value is well-defined,
because KheDrsExprInitEnd is called on child_e before this call is made.

KheDrsExprAddChild is declared in the expression construction submodule, but not
defined until after KHE_DRS_EXPR’s subtypes, to avoid having to give forward declarations
of its subtype versions. This is done for each function which switches on the expression’s
tag field: KheDrsExprAddChild, KheDrsExprChildHasOpened, KheDrsExprChildDomTest,
KheDrsExprDayDomTest, KheDrsExprChildHasClosed, KheDrsExprSetClosedValue,
KheDrsExprLeafSet, KheDrsExprLeafClear, and KheDrsExprEvalSignature.

D.8. Expressions 579

D.8.3. Open day ranges and signatures

This section explains in detail the values that expressions add to signatures. The implementation
is part of expression opening and will be given later, in Appendix D.8.5.

We may have used the term open day range previously, more or less synonymously with
selected day range. But now we define the open day range of an expression precisely. As an
example, we’ll use the constraint that limits the number of busy weekends for resource r in a
four-week timetable beginning on a Monday. The weekend days are 5, 6, 12, 13, 19, 20, 26, and
27. Here is the expression tree, showing open day ranges:

INT_SUM_COST
6-27

6-27

OR
5-6

5-6

BUSY_TIME(r,1Sat1)
5-5

5-5

BUSY_TIME(r,1Sat2)
5-5

5-5

BUSY_TIME(r,1Sun1)
6-6

6-6

BUSY_TIME(r,1Sun2)
6-6

6-6

…

OR
26-27

26-27

BUSY_TIME(r,4Sat1)
26-26

26-26

BUSY_TIME(r,4Sat2)
26-26

26-26

BUSY_TIME(r,4Sun1)
27-27

27-27

BUSY_TIME(r,4Sun2)
27-27

27-27

A review of the external expression types (like BUSY_TIME) given in Appendix D.8.8 will show
that each is affected by what happens on exactly one day. The open day range of an external
expression contains exactly this one day. The open day range of an internal expression (like
INT_SUM_COST and OR) is the smallest range of days which includes the last day of each of its
children’s open day ranges. For example, the last days of the open day ranges of the children of
the INT_SUM_COST expression above are 6, 13, 20, and 27, so its open day range is 6-27. (The
reader who expected it to be 5-27 needs to disabuse himself of that idea now.)

The numbers used in open day ranges are open day indexes,not frame indexes. The example
assumes that all days are open. If some are closed, the open day indexes will be different.

When we speak of an expression’s open days, we mean the days of its open day range. For
example, we can say that every open expression has at least one open day, meaning that every

580 Appendix D. Dynamic Programming Resource Reassignment: Implementation

open expression has a non-empty open day range.

A solve takes a whole set of solutions for some open day di, and from each of them it makes
solutions for day di+1. It needs to be able to pick up a solution for day di, build a new solution
for day di+1 consisting of the solution for di plus one day’s worth of new assignments, and then
set the new solution aside. But it can’t ignore the constraints and their costs, because it needs
to prune solutions whose cost so far is not less than the cost of the initial solution, and it needs
to implement dominance testing, as described in Appendix C.1. Information about a solution’s
constraints and costs is stored in its cost and signature fields.

So then, what does a solution for up to day di need to store about our example constraint?
Clearly, the number of open busy weekends up to di. This way, as we proceed along any path in
the search tree from the root solution of the tree to a final complete solution, each solution will
record the number of open busy weekends so far. It will be easy, at each solution, to combine the
number of open busy weekends up to the previous day with the task assignment for r on the new
day to find the number of busy weekends up to the new day. Then, on the constraint’s last open
day, the number of open busy weekends can be added to the number of closed busy weekends,
and the sum compared with the limits to find a cost. (Actually, we calculate a cost on every day,
since it may be useful in pruning solutions. See Appendix D.8.10.)

But suppose di is a Saturday. Then the solution must also remember whether that Saturday
is busy. It is not enough to store just a number of busy weekends, because then it is not possible
to say whether a busy next day (Sunday) makes one more busy weekend or not.

The reader who ponders this will find that an expression contributes a value to store on each
day of its open day range except its last. Before its first open day, there is nothing to remember
(not counting closed state, which is the same for each solution so is stored in the expression). On
days during the open day range other than the last, there is information from that day and previous
days to store. For example, a day 7 solution needs to store, for the INT_SUM_COST expression,
the number of open busy weekends so far. This is true even though none of that expression’s
children are open on day 7, which explains why we use open day ranges rather than open day sets.
On the last open day, the expression’s value is found and reported to its parents. It becomes the
parents’ responsibility, so there is nothing to store on that day, or afterwards.

Applying this rule to the tree above, information needs to be stored for the INT_SUM_COST
expression on days 6-26, information for the first OR expression needs to be stored on day 5, and
so on. Nothing ever needs to be stored for the BUSY_TIME expressions, because their open day
ranges contain no days that are not last. Nothing is stored for the INT_SUM_COST expression
on day 5, because none of its children will have reported anything then.

It is clear now why we use expression trees to represent constraints. A solution stores one
item of information (or nothing) per expression, not per constraint. The item stored need not be
the expression’s value. For example, the INT_SUM_COST expression’s value is a cost, but what
is stored for it is an integer number of open busy weekends.

The signature of a solution for a given day di consists of one item of information for each
open expression for which di is one of its open days other than the last. The items’ types are not
clear at this point, but, looking ahead, it will turn out that the root of each expression tree will
have type KHE_COST, and the sum of these costs will be stored in the solution’s cost field; while
the non-root expressions will contribute one int each, held in the signature field. (Actually
some of them contribute a float, but those are converted to int by multiplying by 100 and

D.8. Expressions 581

rounding. This is convenient but inexact, and arguably should be reexamined.)

When two signatures are compared during dominance testing, each position along the
signature is an independent test. While this keeps things simple, it does cause some cases of
dominance to be missed. For example, suppose that the current day is 2Sat, and some resource is
busy on that day in solution S1 but not in solution S2. If there is a maximum limit on the number
of busy weekends, S1 cannot dominate S2, because the ‘≤’ test at the OR expression affected by
2Sat fails. But suppose the ‘≤’ test at the enclosing INT_SUM_COST expression succeeds with
one weekend to spare. Then S1 does in fact dominate S2. This problem has in fact been fixed, by
correlated expressions. But we won’t delve into them now.

We’ll see in Appendix D.9 that the parts of each signature made by expressions representing
resource constraints are calculated separately, before KheDrsSolnExpand generates any new
solutions, while the parts representing event resource constraints are calculated as new solutions
are generated. This distinction is irrelevant to the actual process of calculating the signature, and
expression objects are unaware of it.

Here are two points that the author is inclined to view as rather profound. The reader can
make up his own mind. First, each expression only ever needs to store a small constant amount
of information in a signature. It never stores anything complicated, such as a set of values.
However, if we were supporting the avoid split assignments constraint we would need to store a
set: the set of distinct resources assigned so far. So this first point may be just luck.

Second, although signatures were created to ensure that costs can be calculated efficiently
as solving proceeds, it turns out that they are just what is needed for dominance testing too. This
has something to do with the fact that a signature contains complete information about the state
of the constraints in its solution, but still it seems somewhat miraculous that the form in which
this information is held for cost calculating should also suit dominance testing.

D.8.4. Open children

Our next job is to explain how expressions are opened, but before that we need to consider type
KHE_DRS_OPEN_CHILDREN, whose functions do most of the actual work of opening expressions.
Each expression e has a field of this type, holding its open children:

typedef struct khe_drs_open_children_rec {
ARRAY_KHE_DRS_EXPR children;
KHE_DRS_DAY_RANGE range;
HA_ARRAY_INT child_indexes;

} *KHE_DRS_OPEN_CHILDREN;

It is a pointer type as usual, but (as we saw above) the field within KHE_DRS_EXPR is expanded,
that is, it is a struct rather than a pointer to a struct:

#define INHERIT_KHE_DRS_EXPR \
... \
struct khe_drs_open_children_rec open_children_by_day; \
...

It is done this way purely to save memory.

582 Appendix D. Dynamic Programming Resource Reassignment: Implementation

When solving, the children field of e->open_children_by_day holds the open children
of e, stored in non-decreasing order of an attribute of each child called its open index (nothing
to do with a child’s index in the children array). Fields range.first and range.last contain
the minimum and maximum, over the children, of their open indexes. If the children array is
empty, then range.first > range.last, except that in a leaf expression, range.first and
range.last are both set to some value whose provenance does not concern us here.

When a child child_e is accessed via open_children_by_day, its open index is
child_e->open_children_by_day.range.last, the last element of its open day range. This
implements the definition given above (Appendix D.8.3) of the open day range of an expression.
There is another field, open_children_by_shift, only in INT_SUM_COST expressions, for
which the open index is an open shift index: the children are sorted by shift rather than by day.
But for now it is probably best to think of open indexes as open day indexes.

The child_indexes array is used to speed up access to the elements of children whose
open index has a given value. For each i from range.first to range.last + 1 inclusive,

HaArray(oc->child_indexes, i - oc->range.first)

is the number of elements of oc->children whose open index is less than i. For example,
if i == oc->range.first the result is 0, and if i == oc->range.last + 1 the result is
HaArrayCount(oc->children). Later we’ll see an iterator, defined by a macro, that uses
child_indexes to efficiently visit all children with a given open index.

The functions begin with KheDrsOpenChildrenInit, which initializes an open children
object (giving it no children and an empty range), KheDrsOpenChildrenClear, which clears
an open children object back to that state, and KheDrsOpenChildrenCount, which returns the
length of the children array. Then comes a function to add a child in open day index order:

void KheDrsOpenChildrenAddChildInDayOrder(KHE_DRS_OPEN_CHILDREN oc,
KHE_DRS_EXPR child_e)

{
KHE_DRS_EXPR e; int i;

/* add child_e to oc->children in sorted position */
HaArrayAddLast(oc->children, NULL);
for(i = HaArrayCount(oc->children) - 2; i >= 0; i--)
{

e = HaArray(oc->children, i);
if(e->open_children_by_day.range.last <=

child_e->open_children_by_day.range.last)
break;

HaArrayPut(oc->children, i + 1, e);
}
HaArrayPut(oc->children, i + 1, child_e);

/* add child_e’s last open day to oc->range */
KheDrsDayRangeAdd(&oc->range, child_e->open_children_by_day.range.last);

}

D.8. Expressions 583

Notice that range is kept up to date as children are added, but child_indexes is not: it is left
empty until after the last child is added, then set all at once, as we’ll see later.

There is another way to add a child in open day index order, used by INT_SEQ_COST
expressions, where the order of the open children matters and must not be altered:

void KheDrsOpenChildrenAddChildWithDayUpdate(KHE_DRS_OPEN_CHILDREN oc,
KHE_DRS_EXPR child_e)

{
KHE_DRS_EXPR e;

/* increase child_e’s last open day if required */
if(HaArrayCount(oc->children) > 0)
{

e = HaArrayLast(oc->children);
if(e->open_children_by_day.range.last >

child_e->open_children_by_day.range.last)
child_e->open_children_by_day.range.last =

e->open_children_by_day.range.last;
}

/* add child_e to the end of oc->children */
HaArrayAddLast(oc->children, child_e);

/* add child_e’s last open day to e’s open_day_range */
KheDrsDayRangeAdd(&oc->range, child_e->open_children_by_day.range.last);

}

Rather than inserting child_e into its place in the sorted list, child_e’s open day index is
increased by the minimum amount needed to allow it to be placed safely at the end.

Yet another function is used when the open index is an open shift index:

int KheDrsExprOpenShiftIndex(KHE_DRS_EXPR e)
{

KHE_DRS_EXPR_ASSIGNED_TASK eat; int res;
eat = (KHE_DRS_EXPR_ASSIGNED_TASK) e;
res = eat->task_on_day->encl_dt->encl_dmt->encl_shift->open_shift_index;
HnAssert(res >= 0, "KheDrsExprOpenShiftIndex internal error 2");
return res;

}

584 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsOpenChildrenAddChildInShiftOrder(KHE_DRS_OPEN_CHILDREN oc,
KHE_DRS_EXPR child_e)

{
KHE_DRS_EXPR e; int i, child_e_index;

/* make sure child_e is an assigned task child */
HnAssert(child_e->tag == KHE_DRS_EXPR_ASSIGNED_TASK_TAG,

"KheDrsOpenChildrenAddChildInShiftOrder internal error (tag %d)",
child_e->tag);

/* add child_e to oc->children in sorted position */
child_e_index = KheDrsExprOpenShiftIndex(child_e);
HaArrayAddLast(oc->children, NULL);
for(i = HaArrayCount(oc->children) - 2; i >= 0; i--)
{

e = HaArray(oc->children, i);
if(KheDrsExprOpenShiftIndex(e) <= child_e_index)

break;
HaArrayPut(oc->children, i + 1, e);

}
HaArrayPut(oc->children, i + 1, child_e);

/* add child_e’s shift index to oc->range */
KheDrsDayRangeAdd(&oc->range, child_e_index);

}

This is just KheDrsOpenChildrenAddChildInDayOrder, replacing open day index by open shift
index. All children must be assigned task expressions, a fact that we won’t pause to justify here.
Each open assigned task expression has a well-defined open shift index.

After all open children are added, this function is called to set child_indexes:

void KheDrsOpenChildrenBuildDayChildIndexes(KHE_DRS_OPEN_CHILDREN oc)
{
int index, i, open_index; KHE_DRS_EXPR child_e;
HaArrayClear(oc->child_indexes);
index = oc->range.first - 1;
HaArrayForEach(oc->children, child_e, i)
{
open_index = child_e->open_children_by_day.range.last;
while(open_index > index)
{
index++;
HaArrayAddLast(oc->child_indexes, i);

}
}
HaArrayAddLast(oc->child_indexes, i);

}

D.8. Expressions 585

The reader can verify that this function sets child_indexes as described above. There is also
KheDrsOpenChildrenBuildShiftChildIndexes:

void KheDrsOpenChildrenBuildShiftChildIndexes(KHE_DRS_OPEN_CHILDREN oc)
{
int index, i, open_index; KHE_DRS_EXPR child_e;
HaArrayClear(oc->child_indexes);
index = oc->range.first - 1;
HaArrayForEach(oc->children, child_e, i)
{
open_index = KheDrsExprOpenShiftIndex(child_e);
while(open_index > index)
{
index++;
HaArrayAddLast(oc->child_indexes, i);

}
}
HaArrayAddLast(oc->child_indexes, i);

}

it’s the same, only using open shift indexes.

Once child_indexes is set, the remaining operations become available:

int KheDrsOpenChildrenBefore(KHE_DRS_OPEN_CHILDREN oc, int index)
{
if(index < oc->range.first)
return 0;

else if(index > oc->range.last)
return HaArrayCount(oc->children);

else
return HaArray(oc->child_indexes, index - oc->range.first);

}

This returns the number of open children whose open index is less than index. At the time
of writing, the author is unsure whether the first two cases, which return correct values for
out-of-range indexes, are needed. And

int KheDrsOpenChildrenAtOrAfter(KHE_DRS_OPEN_CHILDREN oc, int index)
{

return HaArrayCount(oc->children) - KheDrsOpenChildrenBefore(oc, index);
}

returns the number of open children whose open index is greater than or equal to index. Also,

#define KheDrsOpenChildrenForEachIndex(oc, index) \
for(index = (oc)->range.first; index <= (oc)->range.last; index++)

iterates index over each index in oc->range, and

586 Appendix D. Dynamic Programming Resource Reassignment: Implementation

#define KheDrsOpenChildrenForEach(oc, index, x, i) \
i1 = KheDrsOpenChildrenBefore((oc), (index)); \
i2 = KheDrsOpenChildrenBefore((oc), (index) + 1); \
for((i) = i1; \

(i) < i2 ? ((x) = HaArray((oc)->children, (i)), true) : false; \
(i)++)

iterates x over each open child in oc whose open index is index. The last four functions are

bool KheDrsOpenChildrenIndexIsFirst(KHE_DRS_OPEN_CHILDREN oc, int index)
{
return index == oc->range.first;

}

bool KheDrsOpenChildrenIndexIsFirstOrLess(KHE_DRS_OPEN_CHILDREN oc,
int index)

{
return index <= oc->range.first;

}

bool KheDrsOpenChildrenIndexIsLast(KHE_DRS_OPEN_CHILDREN oc, int index)
{
return index == oc->range.last;

}

int KheDrsOpenChildrenWithIndex(KHE_DRS_OPEN_CHILDREN oc, int index)
{
return KheDrsOpenChildrenBefore(oc, index + 1) -
KheDrsOpenChildrenBefore(oc, index);

}

Assuming that index is in oc->range, the last function returns the number of open children
whose open index is index.

D.8.5. Opening

This section explains how expressions are opened. An expression needs to be opened when its
value may be affected by an assignment to some open task.

The first step in opening expressions is to build a complete list of all expressions that need
to be opened, in field open_exprs of the solver. This is done by calls to this function:

D.8. Expressions 587

void KheDrsExprGatherForOpening(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_PARENT prnt; int i;
if(!e->gathered)
{
e->gathered = true;
HaArrayAddLast(drs->open_exprs, e);
HaArrayForEach(e->parents, prnt, i)
KheDrsExprGatherForOpening(prnt.expr, drs);

}
}

Whenever e should open, KheDrsExprGatherForOpening is called. If e->gathered is true,
meaning that e has already been gathered, this does nothing. Otherwise it sets e->gathered to
true to ensure that e will not be gathered again on this solve, adds e to drs->open_exprs, and
gathers its parents (an open expression’s parents must also be open).

We have already seen the calls to KheDrsExprGatherForOpening which start the gathering
process, in KheDrsResourceOnDayOpen:

open_day_range = KheDrsDayRangeMake(open_day_index, open_day_index);
HaArrayForEach(drd->external_today, e, i)
{
e->open_children_by_day.range = open_day_range;
KheDrsExprGatherForOpening(e, drs);

}

and in KheDrsTaskOpen, which we won’t show again. These gather all external expressions that
need to be opened, because they depend on what an open resource on day or task on day is doing.
They also set the open day range in each external expression to the single day that the expression
is affected by. Then KheDrsExprGatherForOpening gathers their ancestors, which accounts for
all expressions that need to be opened.

After all expressions have been gathered, they are sorted by increasing postorder index and
opened. The code for this is far ahead of where we are now, in KheDrsSolveOpen:

HaArraySort(drs->open_exprs, &KheDrsExprPostorderCmp);
HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprOpen(e, drs);

HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprNotifySigners(e, drs);

Sorting ensures that parents are opened after their children. KheDrsExprNotifySigners

informs various signers that e has opened, as required. We need to do this in a separate pass over
the expressions, but at the time of writing the author has forgotten why.

At the moment each expression opens, it calls KheDrsExprChildHasOpened once for each
parent to inform it that one of its children has opened:

588 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExprChildHasOpened(KHE_DRS_EXPR e, KHE_DRS_EXPR child_e,
int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
/* add child_e to e->open_children_by_day */
if(e->tag == KHE_DRS_EXPR_INT_SEQ_COST_TAG)
KheDrsOpenChildrenAddChildWithDayUpdate(&e->open_children_by_day, child_e);

else
KheDrsOpenChildrenAddChildInDayOrder(&e->open_children_by_day, child_e);

/* alter the state of e to take account of child_e opening */
switch(e->tag)
{

case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrChildHasOpened((KHE_DRS_EXPR_OR) e,
child_e, child_index, drs);

break;

...
}

}

Here child_e is the child that has just opened, and e is the parent, not yet opened. Clearly e

must be an internal expression, since it has a child.

The first step is to add the child to the parent’s list of open children, in increasing last open
day index order. As shown, this is done differently when the parent is an INT_SEQ_COST object
(Appendix D.8.4), although the result is substantially the same in both cases.

The second part of KheDrsExprChildHasOpened updates the state of the parent to take
account of the opening of the child. This is done differently depending on the type of the parent,
so this part is a large switch on the parent’s type tag. Here is one branch of the switch:

void KheDrsExprOrChildHasOpened(KHE_DRS_EXPR_OR eo,
KHE_DRS_EXPR child_e, int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if(child_e->u.int_val == 1)

eo->closed_state -= 1;
}

Within OR expressions, the closed_state field holds the number of closed children whose value
is 1, so it has to be reduced by 1 if child_e’s value is 1, since child_e is no longer closed.

There are two important points here. First, while an expression is closed, its value is up
to date, and does not change during the current solve. When a closed expression is opened, as
child_e is opened here, it retains its closed value for some time, at least until its parents are
opened. So it is safe here to access child_e->u.int_val. Second, this code only touches open
expressions. It avoids closed children, as it must if we are to meet our efficiency goals.

Here now is KheDrsExprOpen:

D.8. Expressions 589

void KheDrsExprOpen(KHE_DRS_EXPR e, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
KHE_DRS_PARENT prnt; int i;

/* inform e’s parents that e is now open */
e->gathered = false;
HaArrayForEach(e->parents, prnt, i)
KheDrsExprChildHasOpened(prnt.expr, e, prnt.index, drs);

/* what to do now depends on whether e is external or internal */
if(e->tag <= KHE_DRS_EXPR_WORK_DAY_TAG)
{
/* external expression; clear its value */
KheDrsExprLeafClear(e);

}
else
{
/* internal expression, build day child indexes */
KheDrsOpenChildrenBuildDayChildIndexes(&e->open_children_by_day);

}
}

At the moment KheDrsExprOpen(e, drs) begins, e is considered to open. So the first step is to
set e->gathered to false (‘gathered’means ‘gathered but not opened’) and inform e’s parents
that e has opened, by calling KheDrsExprChildHasOpened on each of them.

What happens after that depends on whether e is external or internal. If e is external,
searching assumes that e’s initial value is correct for when there are no assignments of open tasks
to open resources. So KheDrsExprOpen calls KheDrsExprLeafClear to give this value to e.

If e is internal, by the time KheDrsExprOpen(e, drs) is called, all of e’s open children
have made their calls to KheDrsExprChildHasOpened. So e->open_children_by_day is
finalized (for this solve), except for its child_indexes field, which is finalized here, by the call
to KheDrsOpenChildrenBuildDayChildIndexes.

After all the expressions are opened, as shown above we re-traverse them and call
KheDrsExprNotifySigners:

590 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExprNotifySigners(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if(e->tag <= KHE_DRS_EXPR_WORK_DAY_TAG)
{
/* external expression; nothing to do */

}
else if(e->resource != NULL)
{
/* internal expression derived from a resource constraint */
KheDrsExprNotifyResourceSigners(e, drs);

}
else
{
/* internal expression from an event resource constraint */
HnAssert(e->tag == KHE_DRS_EXPR_INT_SUM_COST_TAG,
"KheDrsExprNotifySigners: internal error");

KheDrsExprIntSumCostNotifyCoverSigners(
(KHE_DRS_EXPR_INT_SUM_COST) e, drs);

}
}

We previously gave a detailed description of each kind of signer, including the expressions and
dominance tests each kind requires (Appendix D.6.3). We’re now about to make that happen,
but organized for each expression rather than for each signer.

If e is derived from a resource constraint, the code for enrolling it into its signers is

void KheDrsExprNotifyResourceSigners(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_DAY day; KHE_DRS_RESOURCE_ON_DAY drd; int di;
KHE_DRS_DOM_TEST dom_test;
HaArrayClear(e->sig_indexes);
KheDrsOpenChildrenForEachIndex(&e->open_children_by_day, di)
{
day = HaArray(drs->open_days, di);
if(KheDrsExprNeedsDayEval(e, day, drs, &dom_test))
{
drd = KheDrsResourceOnDay(e->resource, day);
KheDrsResourceOnDayAddOpenExpr(drd, e);
if(dom_test != NULL)
HaArrayAddLast(e->sig_indexes,
KheDrsResourceOnDayAddDomTest(drd, dom_test, drs));

}
}

}

D.8. Expressions 591

First, we clear the sig_indexes array. Then we call KheDrsResourceOnDayAddOpenExpr for
each open day, to add e to the signer for resource on day drd. This ensures that e is called back
for evaluation when we are constructing the signature for that resource on day. And we call
KheDrsResourceOnDayAddDomTest for each resource on day except the last. This reserves a
position for e in the states array of the signatures built by signers for that resource on day. The
position reserved in the day signer is returned by KheDrsResourceOnDayAddDomTest, and this
code saves it in e->sig_indexes.

If e is an internal expression derived from an event resource constraint, as we stated above
it must be an INT_SUM_COST expression. The code for notifying its signers is

592 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExprIntSumCostNotifyCoverSigners(
KHE_DRS_EXPR_INT_SUM_COST eisc, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int si, di, i, j; KHE_DRS_SHIFT ds; KHE_DRS_DOM_TEST dom_test;
KHE_DRS_DAY day; KHE_DRS_SHIFT_PAIR dsp;

/* notify day signers */
HaArrayClear(eisc->sig_indexes);
KheDrsOpenChildrenForEachIndex(&eisc->open_children_by_day, di)
{

day = HaArray(drs->open_days, di);
if(KheDrsExprNeedsDayEval((KHE_DRS_EXPR) eisc, day, drs, &dom_test))
{

KheDrsDayAddOpenExpr(day, (KHE_DRS_EXPR) eisc);
if(dom_test != NULL)

HaArrayAddLast(eisc->sig_indexes,
KheDrsDayAddDomTest(day, dom_test, drs));

}
}

/* notify shift signers */
KheDrsOpenChildrenBuildShiftChildIndexes(&eisc->open_children_by_shift);
KheDrsOpenChildrenForEachIndex(&eisc->open_children_by_shift, si)
{

ds = HaArray(drs->open_shifts, si);
if(KheDrsIntSumCostNeedsShiftEval(eisc, ds, drs, &dom_test))
{

KheDrsShiftAddOpenExpr(ds, (KHE_DRS_EXPR) eisc);
if(dom_test != NULL)

KheDrsShiftAddDomTest(ds, dom_test, drs);
}

}

/* notify shift pair signers */
KheDrsOpenChildrenForEachIndex(&eisc->open_children_by_day, di)
{

day = HaArray(drs->open_days, di);
HaArrayForEach(day->shifts, ds, i)

HaArrayForEach(ds->shift_pairs, dsp, j)
if(KheDrsIntSumCostNeedsShiftPairEval(eisc, dsp, drs, &dom_test))
{

KheDrsShiftPairAddOpenExpr(dsp, (KHE_DRS_EXPR) eisc);
if(dom_test != NULL)

KheDrsShiftPairAddDomTest(dsp, dom_test, drs);
}

}
}

D.8. Expressions 593

The first paragraph is concerned with e’s day signers. This e has nothing to do with any resource
on day signer. Instead, it is evaluated directly by its day signers, so it is added to them all, by the
calls to KheDrsDayAddOpenExpr. The code for optionally also adding a dominance test to the
day is the same as for expressions derived from resource constraints.

The second paragraph is concerned with e’s shift signers. It enrols e into the signer of each
shift ds such that assignments to ds can affect e. After building shift indexes, the iterator

KheDrsOpenChildrenForEachIndex(&eisc->open_children_by_shift, si)

visits all these shifts, but it may also visit some that lie between the first and last shifts but are
not themselves relevant, hence the test

KheDrsIntSumCostNeedsShiftEval(eisc, ds, drs, &dom_test)

which succeeds only on those shifts that actually affect e. This is not done when iterating over
days, because a state has to be calculated and stored even on days that do not directly affect e.
After this test, the code adds e to ds (that is, to its signer) and optionally adds a dominance test as
well. There is no need to remember the position of the dominance test, because evaluation during
the construction of shift assignment solutions does not retrieve anything from that position; the
stored state is used only for dominance testing.

The function that decides whether a dominance test is needed is

bool KheDrsIntSumCostNeedsShiftEval(KHE_DRS_EXPR_INT_SUM_COST eisc,
KHE_DRS_SHIFT ds, KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_DRS_DOM_TEST *dom_test)

{
int di, si, open;
si = ds->open_shift_index;
di = ds->encl_day->open_day_index;
open = KheDrsOpenChildrenWithIndex(&eisc->open_children_by_shift, si);
return KheDrsIntSumCostNeedsEval(eisc, di, open, drs, dom_test);

}

It answers the question, ‘if assignment is complete on the days before the shift ds with open
index si begins, and ds itself is assigned, how many unassigned children will eisc have then?’.
If there is at least one unassigned child, a dominance test will be needed. So it finds ds from si,
and finds the open day index di of the first day of ds. Then the number of assigned children will
be the number of children whose last open day index is less than di, plus the number of children
affected by assignments to ds. The number of unassigned children,*val, is found by subtracting
the number of assigned children from the total number of children.

Similar code is used to notify shift pair signers. One can’t just use both shift signers,
because an expression that appears in both would be evaluated twice.

When a dominance test is added to a day signer, its index in that signer’s signatures is
returned, and stored in e->sig_indexes, as we saw above. So when e wants to retrieve its state
from a signature, it can consult its own sig_indexes array to work out where to look. (These
retrievals are only needed from signatures controlled by day signers, not signatures controlled by
the other two types of signers.) Here is the function that performs that retrieval:

594 Appendix D. Dynamic Programming Resource Reassignment: Implementation

int KheDrsExprDaySigVal(KHE_DRS_EXPR e, int open_day_index,
KHE_DRS_SIGNATURE sig)

{
int pos;
pos = HaArray(e->sig_indexes, open_day_index -
e->open_children_by_day.range.first);

return HaArray(sig->states, pos);
}

It returns the state of e stored in the signature of soln, using e->sig_indexes to find its index.

D.8.6. Closing

After solving, the open expressions need to be closed. The open_exprs array is used to visit
each open expression and close it:

HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprClose(e, drs);

Again, this closes children before parents. To close one expression, the code is

void KheDrsExprClose(KHE_DRS_EXPR e, KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
KHE_DRS_PARENT prnt; int i; KHE_DRS_EXPR_INT_SUM_COST eisc;

/* set e’s closed value */
KheDrsExprSetClosedValue(e, drs);

/* clear fields that are used only when e is open */
KheDrsOpenChildrenClear(&e->open_children_by_day);
HaArrayClear(e->sig_indexes);
if(e->tag == KHE_DRS_EXPR_INT_SUM_COST_TAG)
{
eisc = (KHE_DRS_EXPR_INT_SUM_COST) e;
KheDrsOpenChildrenClear(&eisc->open_children_by_shift);

}

/* inform e’s parents that e has closed */
HaArrayForEach(e->parents, prnt, i)
KheDrsExprChildHasClosed(prnt.expr, e, prnt.index, drs);

}

The first step is to set e’s value to whatever it is to be in the closed state, assuming for external
expressions that all assignments are expressed in the closed_asst fields of tasks and resources
(as we can do because expressions are closed after all assignments are made), and for internal
expressions that e’s children are now all closed (as we can do because of the expression sorting).
KheDrsExprSetClosedValue is the usual large switch:

D.8. Expressions 595

void KheDrsExprSetClosedValue(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
switch(e->tag)
{
case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrSetClosedValue((KHE_DRS_EXPR_OR) e, drs);
break;

...
}

}

This is different for each concrete expression type; here is one example:

void KheDrsExprOrSetClosedValue(KHE_DRS_EXPR_OR eo,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
eo->u.int_val = (eo->closed_state > 0 ? 1 : 0);

}

In OR expressions, the value is 1 if there is at least one child with value 1, and, since all the
children are now closed, the closed_state field can tell us how many such children there are.

After KheDrsExprClose calls KheDrsExprSetClosedValue, it clears e’s fields and then
ends with this code that we saw above:

/* inform e’s parents that e has closed */
HaArrayForEach(e->parents, prnt, i)
KheDrsExprChildHasClosed(prnt.expr, e, prnt.index, drs);

This informs e’s parents that e has closed, by calling this function on each parent:

void KheDrsExprChildHasClosed(KHE_DRS_EXPR e,
KHE_DRS_EXPR child_e, int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
switch(e->tag)
{

case KHE_DRS_EXPR_OR_TAG:

KheDrsExprOrChildHasClosed((KHE_DRS_EXPR_OR) e,
child_e, child_index, drs);

break;

...
}

}

596 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KheDrsExprChildHasClosed does not remove child_e from e’s list of open children, even
though KheDrsExprChildHasOpened adds child_e to e’s list of open children. Once again the
other details depend on the expression type. Here they are for OR expressions:

void KheDrsExprOrChildHasClosed(KHE_DRS_EXPR_OR eo,
KHE_DRS_EXPR child_e, int child_index)

{
if(child_e->u.int_val == 1)
eo->closed_state += 1;

}

If the child’s value is 1, that makes one more closed child with value 1.

D.8.7. Searching

For expressions, searching is basically about evaluating an expression in the context of some
solution. External expressions are evaluated by these functions:

void KheDrsExprLeafSet(KHE_DRS_EXPR e, KHE_DRS_TASK_ON_DAY dtd,
KHE_DRS_RESOURCE_ON_DAY drd);

void KheDrsExprLeafClear(KHE_DRS_EXPR e,
KHE_DYNAMIC_RESOURCE_SOLVER drs);

KheDrsExprLeafSet is called when drd is assigned to dtd, and KheDrsExprLeafClear is called
when that assignment is removed. Both functions contain a switch with one branch for each
external expression type. Here is an example of one of the branches:

void KheDrsExprBusyTimeLeafSet(KHE_DRS_EXPR_BUSY_TIME ebt,
KHE_DRS_TASK_ON_DAY dtd, KHE_DRS_RESOURCE_ON_DAY drd)

{
ebt->u.int_val = (dtd->time == ebt->time ? 1 : 0);

}

If drd is assigned to dtd, then ebt has value 1 if dtd’s time is ebt’s time, and 0 otherwise (no
resource is busy twice on one day). KheDrsExprBusyTimeLeafClear sets the value to 0.

For internal nodes evaluation is more complicated. It is done by calls on this function:

void KheDrsExprEvalSignature(KHE_DRS_EXPR e, KHE_DRS_SIGNER dsg,
KHE_DRS_SIGNATURE prev_sig, int next_di, KHE_DRS_SIGNATURE next_sig,
KHE_DYNAMIC_RESOURCE_SOLVER drs);

This evaluates e on the day with open day index next_di (the open day after prev_soln’s day),
and updates next_sig, which is controlled by dsg, by adding a value to the end of its signature,
or changing its cost, or both. Its body is the usual large switch, this time with one branch for each
internal expression type. Here is an example of one of the branches:

D.8. Expressions 597

void KheDrsExprOrEvalSignature(KHE_DRS_EXPR_OR eo, KHE_DRS_SIGNER dsg,
KHE_DRS_SIGNATURE prev_sig, int next_di, KHE_DRS_SIGNATURE next_sig,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i, i1, i2, val; KHE_DRS_EXPR child_e;

if(KheDrsOpenChildrenIndexIsFirst(&eo->open_children_by_day, next_di))
{

/* first day, so we have a 0 (false) value here */
val = 0;

}
else
{

/* not first day, so retrieve a previous value */
val = KheDrsExprDaySigVal((KHE_DRS_EXPR) eo, next_di - 1, prev_sig);

}

/* accumulate the values of the children of eo that finalized today */
KheDrsOpenChildrenForEach(&eo->open_children_by_day, next_di, child_e, i)

if(child_e->u.int_val == 1)
val = 1;

if(KheDrsOpenChildrenIndexIsLast(&eo->open_children_by_day, next_di))
{

/* last day; incorporate closed state and set value */
if(eo->closed_state > 0)
val = 1;

eo->u.int_val = val;
}
else
{

/* not last day; store val in next_soln */
KheDrsSignatureAddState(next_sig, val, dsg, (KHE_DRS_EXPR) eo);

}
}

The details depend on the particular expression type, but the structure is common to all types.

First, find the expression’s value before this day. This will be an initial value (here 0) if this
is the expression’s first open day, and will come from the signature of prev_soln otherwise.

Second, use iterator macro KheDrsOpenChildrenForEach (Appendix D.8.4) to visit the
children for which next_di is the last open day, retrieve their values, and incorporate those
values into the value of this expression. Here, to implement the OR function, any child whose
value is 1 causes val to be set to 1. The children have their final values, because the postorder
sorting ensures that KheDrsExprEvalSignature is called on the children before the parent.

Third, save the value. If this is the expression’s last open day, the value simply remains in
the expression (here, in eo->u.int_val) where it will be picked up by the expression’s parents

598 Appendix D. Dynamic Programming Resource Reassignment: Implementation

during their KheDrsExprEvalSignature calls. If this is not the expression’s last open day, the
value (or whatever state needs to be stored) is added to next_sig.

When the value is a cost, things are slightly different. No value is kept in the expression;
instead, an extra cost (Appendix C.3) is added to next_sig each day.

This function does not use parameter dsg. However, in some cases (INT_SUM_COST
expressions derived from event resource constraints) evaluation needs to know the type of the
signer, hence the presence of dsg.

D.8.8. Types of expressions

In this section we present the types of expressions needed for the XESTT constraints.

First we have the types of external expressions in expression trees for event resource
constraints. There is just one of these:

ASSIGNED_TASK(t,g)
An expression whose value is 1 when t, a task on day object, is assigned a resource from
resource group g, and 0 otherwise.

Next we have the types of external expressions in expression trees for resource constraints:

BUSY_TIME(r, t)
An expression whose value is 1 when resource r is busy at time t, otherwise 0.

FREE_TIME(r, t)
An expression whose value is 1 when resource r is free at time t, otherwise 0.

WORK_TIME(r, t)
An expression whose value is the workload of resource r at time t (a float value). This
will be 0.0 when r is free at time t.

BUSY_DAY (r,d)
An expression whose value is 1 when resource r is busy on day d, otherwise 0.

FREE_DAY (r,d)
An expression whose value is 1 when resource r is free on day d, otherwise 0.

WORK_DAY (r,d)
An expression whose value is the workload of resource r on day d (a float value). This
will be 0.0 when r is free on day d.

The last three could be omitted, but they speed up some common cases, and they produce better
value upper bounds. And here are the types of internal expressions:

OR
An expression whose value is 1 when at least one of its children has value 1, else 0. All its
children must have value 0 or 1.

D.8. Expressions 599

AND
An expression whose value is 1when all of its children have value 1, else 0. All its children
must have value 0 or 1.

INT_SUM_COST
An expression whose value is the deviation from given limits of the number of its children
whose value is 1. All its children must have value 0 or 1. This is the cluster busy times
monitor, essentially,

SUM_INT
An expression whose value is the deviation from given limits of the sum of the values of its
children. All values are non-negative integers. This ought to subsume INT_SUM_COST,
but the two types handle dominance testing differently, so they remain separate for now.

SUM_FLOAT
Absolutely identical to SUM_INT except that the children have non-negative float values,
and this expression produces a float sum before converting it into an integer deviation.

INT_SEQ_COST
Like INT_SUM_COST, except that its value is the set of deviations of sequences of children
with value 1. This is the limit active intervals monitor, essentially. It is easily the most
complex expression type to implement. A full description is given in Appendix D.8.11.

The last four types may also report a cost based on their deviation (or a set of costs in the case of
INT_SEQ_COST). They also handle history; SUM_FLOAT is ahead of XESTT in that respect.

These expression types are implemented as subtypes of KHE_DRS_EXPR. All subtypes have
the same operations. For example, the operations on KHE_DRS_EXPR_OR are KheDrsExprOrMake,
KheDrsExprOrAddChild, KheDrsExprOrChildHasOpened, KheDrsExprOrChildHasClosed,
KheDrsExprOrSetClosedValue, KheDrsExprOrEvalSignature, and KheDrsExprOrDoDebug.
We have seen most of these functions already, in the preceding sections.

With two exceptions, INT_SUM_COST and INT_SEQ_COST, we won’t present the
implementations of the other types, because they are quite straightforward. The two exceptions
are much more complicated, and our next task is to study them in detail.

D.8.9. The COST expression type

Type KHE_DRS_EXPR_COST is the abstract supertype of the solver’s two expression types,
KHE_DRS_EXPR_INT_SUM_COST and KHE_DRS_EXPR_INT_SEQ_COST, whose value is a cost:

600 Appendix D. Dynamic Programming Resource Reassignment: Implementation

#define INHERIT_KHE_DRS_EXPR_COST \
INHERIT_KHE_DRS_EXPR \
KHE_COST_FUNCTION cost_fn; \
KHE_COST combined_weight; \
KHE_DRS_MONITOR monitor; \
int min_limit; \
int max_limit; \
int history_before; \
int history_after; \
int history;

typedef struct khe_drs_expr_cost_rec {
INHERIT_KHE_DRS_EXPR_COST

} *KHE_DRS_EXPR_COST;

This is not COST (f ,w), which is defined in Appendix D.8.8 but not implemented.

All of the fields shown here (i.e. not the inherited ones) come from the expression’s monitor
or from that monitor’s constraint, and mean what they seem to mean. The type has only a few
operations. They include KheDrsExprCostUnweightedCost, which returns the cost of the
expression, for a given deviation, before multiplication by the weight:

int KheDrsExprCostUnweightedCost(KHE_DRS_EXPR_COST ec, int dev)
{
switch(ec->cost_fn)
{
case KHE_STEP_COST_FUNCTION:

return dev > 0 ? 1 : 0;

case KHE_LINEAR_COST_FUNCTION:

return dev;

case KHE_QUADRATIC_COST_FUNCTION:

return dev * dev;

default:

HnAbort("KheDrsExprCostUnweightedCost internal error");
return 0; /* keep compiler happy */

}
}

For the actual cost there is

D.8. Expressions 601

KHE_COST KheDrsExprCostCost(KHE_DRS_EXPR_COST ec, int dev)
{
return ec->combined_weight * KheDrsExprCostUnweightedCost(ec, dev);

}

These two macros allow the child types to access these two functions without a visible upcast,
and with a much briefer function name:

#define f(e, d) KheDrsExprCostCost((KHE_DRS_EXPR_COST) (e), (d))
#define uf(e, d) KheDrsExprCostUnweightedCost((KHE_DRS_EXPR_COST) (e), (d))

There are also two operations which associate a cost expression with a DRS constraint object:
KheDrsExprCostSetConstraint (Appendix D.7.1) and KheDrsExprCostConstraint.

D.8.10. The INT_SUM_COST expression type

This section presents the implementation of the INT_SUM_COST expression type. It is all based
on the formulas from Appendix C.5, where these expressions were called counter monitors, and
we refer freely to that Appendix and its terminology.

typedef struct khe_drs_expr_int_sum_cost_rec {
INHERIT_KHE_DRS_EXPR_COST
KHE_DRS_ADJUST_TYPE adjust_type;
int closed_state;
bool allow_zero;
struct khe_drs_open_children_rec open_children_by_shift;

} *KHE_DRS_EXPR_INT_SUM_COST;

typedef HA_ARRAY(KHE_DRS_EXPR_INT_SUM_COST)
ARRAY_KHE_DRS_EXPR_INT_SUM_COST;

Most of the fields are inherited from the KHE_DRS_EXPR_COST type presented above. For the rest,
adjust_type is an enumerated value saying what type of signature value adjustment to employ;
closed_state holds the number of closed children whose value is 1; allow_zero is the expres-
sion’s constraint’s allow zero flag; and open_children_by_shift, which is used only when the
inherited resource field is NULL, holds the same open children as open_children_by_day, only
sorted by open shift index rather than open day index.

Before the main INT_SUM_COST submodule there is a submodule which is concerned
with notifying signers of the existence of this expression. We have presented part of that
already (function KheDrsExprIntSumCostNotifyCoverSigners in Appendix D.8.5), and we’re
skipping the rest, although there is some detail there that really should be documented.

The main INT_SUM_COST submodule begins with two functions for handling deviations:

602 Appendix D. Dynamic Programming Resource Reassignment: Implementation

int KheDrsExprIntSumCostDelta(KHE_DRS_EXPR_INT_SUM_COST eisc,
int lower_det, int upper_det)

{
if(eisc->allow_zero && lower_det == 0)
return 0;

else if(lower_det > eisc->max_limit)
return lower_det - eisc->max_limit;

else if(upper_det < eisc->min_limit)
return eisc->min_limit - upper_det;

else
return 0;

}

This is δ(l,u) from Appendix C. Next comes

int KheDrsExprIntSumCostDev(KHE_DRS_EXPR_INT_SUM_COST eisc,
int active_children, int unassigned_children)

{
return KheDrsExprIntSumCostDelta(eisc, active_children,
active_children + unassigned_children);

}

which is a more convenient way to call δ sometimes.

Next we have a function for working out the kind of signature value adjustment that is
appropriate for eisc. Its result is a value of type

typedef enum {
KHE_DRS_ADJUST_ORDINARY,
KHE_DRS_ADJUST_NO_MAX,
KHE_DRS_ADJUST_LINEAR,
KHE_DRS_ADJUST_STEP

} KHE_DRS_ADJUST_TYPE;

and the function itself is

KHE_DRS_ADJUST_TYPE KheDrsAdjustType(KHE_COST_FUNCTION cost_fn,
int max_limit)

{
if(max_limit == INT_MAX)
return KHE_DRS_ADJUST_NO_MAX;

else if(cost_fn == KHE_LINEAR_COST_FUNCTION)
return KHE_DRS_ADJUST_LINEAR;

else if(cost_fn == KHE_STEP_COST_FUNCTION)
return KHE_DRS_ADJUST_STEP;

else
return KHE_DRS_ADJUST_ORDINARY;

}

D.8. Expressions 603

Actually signature value adjustment is being withdrawn.

After that come two straightforward functions, for creating a new INT_SUM_COST object,
and for creating a new INT_SUM_COST object with maximum limit 0 (a common special case).
When a child is added during the initial construction of the expression, we do this:

void KheDrsExprIntSumCostAddChild(KHE_DRS_EXPR_INT_SUM_COST eisc,
KHE_DRS_EXPR child_e, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
eisc->closed_state += child_e->u.int_val;

}

to make closed_state hold the number of children with value 1. After all children are added,
we do this:

void KheDrsIntSumCostAdjustLimits(KHE_DRS_EXPR_INT_SUM_COST eisc)
{
int max_max_limit;

/* adjust the lower limit if required */
if(eisc->min_limit < eisc->history)

eisc->min_limit = eisc->history;

/* adjust eisc->max_limit if required */
max_max_limit = HaArrayCount(eisc->children) + eisc->history +

eisc->history_after;
if(eisc->max_limit > max_max_limit)

eisc->max_limit = max_max_limit;

/* make sure limits are consistent */
HnAssert(eisc->min_limit <= eisc->max_limit, "KheDrsIntSumCostAdjustLimits: "

"after adjustment, inconsistent limits (min %d, max %d) for monitor %s",
eisc->min_limit, eisc->max_limit, KheMonitorInfoId(eisc->monitor));

}

to ensure that the limits have suitable finite values and are not inconsistent. When a child is
opened we do this:

604 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExprIntSumCostChildHasOpened(KHE_DRS_EXPR_INT_SUM_COST eisc,
KHE_DRS_EXPR child_e, int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int old_dev, new_dev, i; KHE_DRS_EXPR e; KHE_COST old_cost, new_cost;

/* update deviation and cost */
old_dev = KheDrsExprIntSumCostDev(eisc, eisc->history + eisc->closed_state,

HaArrayCount(eisc->open_children) - 1 + eisc->history_after);
eisc->closed_state -= child_e->u.int_val;
new_dev = KheDrsExprIntSumCostDev(eisc, eisc->history + eisc->closed_state,

HaArrayCount(eisc->open_children) + eisc->history_after);
if(old_dev != new_dev)
{

old_cost = f(eisc, old_dev);
new_cost = f(eisc, new_dev);
drs->solve_start_cost += new_cost - old_cost;

}

/* update open_children_by_shift, if required */
if(eisc->resource == NULL)

KheDrsOpenChildrenAddChildInShiftOrder(&eisc->open_children_by_shift,
child_e);

}

The old deviation is based on eisc->history + eisc->closed_state active children and
HaArrayCount(eisc->open_children) - 1 + eisc->history_after unassigned children
(child_e will have already been added to the open children at this point, hence the minus 1).
The new deviation is based on an altered closed state and one more unassigned child. Any
change in cost is added to drs->solve_start_cost. And if required, we add child_e to
eisc->open_children_by_shift.

When a child is closed we do the reverse:

D.8. Expressions 605

void KheDrsExprIntSumCostChildHasClosed(KHE_DRS_EXPR_INT_SUM_COST eisc,
KHE_DRS_EXPR child_e, int child_index, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int old_dev, new_dev; KHE_COST old_cost, new_cost;
old_dev = KheDrsExprIntSumCostDev(eisc, eisc->history + eisc->closed_state,

HaArrayCount(eisc->open_children) + eisc->history_after);
HaArrayDeleteLast(eisc->open_children_by_day.children);
eisc->closed_state += child_e->u.int_val;
new_dev = KheDrsExprIntSumCostDev(eisc, eisc->history + eisc->closed_state,

HaArrayCount(eisc->open_children) + eisc->history_after);
if(old_dev != new_dev)
{

new_cost = f(eisc, new_dev);
old_cost = f(eisc, old_dev);
drs->solve_start_cost += new_cost - old_cost;

}
if(eisc->resource != NULL)

HaArrayDeleteLast(eisc->open_children_by_shift.children);
}

Even though KheDrsExprIntSumCostChildHasOpened is not responsible for adding the opened
child, KheDrsExprIntSumCostChildHasClosed is responsible for deleting the closed one. This
will not necessarily be the last child, but deleting the last child is close enough, because it is only
the number of open children that matters during closing, not which ones they are.

There is a KheDrsExprIntSumCostSetClosedValue function, but it has nothing to do here,
because INT_SUM_COST expressions do not store a closed value.

Finally, and most importantly, comes the function for adding this expression’s extra cost and
signature value to a new signature:

606 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExprIntSumCostEvalSignature(KHE_DRS_EXPR_INT_SUM_COST eisc,
KHE_DRS_SIGNER dsg, KHE_DRS_SIGNATURE prev_sig, int next_di,
KHE_DRS_SIGNATURE next_sig, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int ld1, ld2, ud1, ud2, i, i1, i2, dev1, dev2, adjusted_ld2, si, count;
KHE_DRS_EXPR child_e;

/* get ld1, ud1, and dev1 (for all days before next_di) */
if(KheDrsOpenChildrenIndexIsFirstOrLess(&eisc->open_children_by_day,next_di))

ld1 = KheDrsExprIntSumCostInitialValue(eisc);
else

ld1 = KheDrsExprDaySigVal((KHE_DRS_EXPR) eisc, next_di - 1, prev_sig);
ud1 = ld1 + eisc->history_after +

KheDrsOpenChildrenAtOrAfter(&eisc->open_children_by_day, next_di);
dev1 = KheDrsExprIntSumCostDelta(eisc, ld1, ud1);

/* get ld2, ud2, and dev2 for one more day, shift, or shift pair */
ld2 = ld1;
ud2 = ud1;
switch(dsg->type)
{

case KHE_DRS_SIGNER_DAY:
case KHE_DRS_SIGNER_RESOURCE_ON_DAY:

/* signer is for day or mtask solutions */
KheDrsOpenChildrenForEach(&eisc->open_children_by_day, next_di,child_e,i)
KheDrsIntSumCostUpdateLU(child_e, &ld2, &ud2, i);

break;

... two cases omitted here, see below ...

default:

HnAbort("KheDrsExprIntSumCostEvalSignature internal error");
break;

}
dev2 = KheDrsExprIntSumCostDelta(eisc, ld2, ud2);

/* if more to do, store ld2 (adjusted) in next_sig */
if(ud2 - ld2 > eisc->history_after)
{

adjusted_ld2 = KheDrsAdjustedSigVal(ld2, eisc->adjust_type,
eisc->min_limit, eisc->max_limit, eisc->history_after);

KheDrsSignatureAddState(next_sig, adjusted_ld2, dsg, (KHE_DRS_EXPR) eisc);
}

/* report the extra cost, if any */
if(dev2 != dev1)

KheDrsSignatureAddCost(next_sig, f(eisc, dev2) - f(eisc, dev1));
}

D.8. Expressions 607

The structure here is the same as that of KheDrsExprOrEvalSignature that we saw earlier,
except that here the value (an extra cost) is added to the signature rather than stored in eisc.
We’ll go through it step by step now.

Here ld1 and ud1 are lower and upper determinants, the l and u of Appendix C, for the
solution up to and including the day before the open day with open day index next_di. Now l
is the number of active children (children whose value is known to be 1), and u is the number of
active or unassigned children (children whose value is not known). We find ld1 by calling

int KheDrsExprIntSumCostInitialValue(KHE_DRS_EXPR_INT_SUM_COST eisc)
{
return eisc->history + eisc->closed_state;

}

if there is no previous day, and by retrieving it from prev_sig if there is. Then ud1 is ld1 plus the
children lying on or after the day with open day index next_di, or in the history after range.

We can derive ld2 and ud2, the values for the solution just described, plus children newly
needing to be taken into account in the current evaluation, by visiting those new children. If the
new children are those whose values become finalized on the next day (the day with open day
index next_di), we do that like this:

KheDrsOpenChildrenForEach(&eisc->open_children_by_day, next_di, child_e, i)
KheDrsIntSumCostUpdateLU(child_e, &ld2, &ud2);

where the updating for one child child_e is done by a call to

void KheDrsIntSumCostUpdateLU(KHE_DRS_EXPR child_e, int *ld2, int *ud2)
{
if(child_e->u.int_val == 1)

ld2 += 1; / unassigned to active */
else

ud2 -= 1; / unassigned to inactive */
}

The child is changing from unassigned to either active or inactive. In the first case, l increases
by 1 and u does not change; in the second case, u decreases by 1 and l does not change.

With the old and new values of l, u, and δ in hand, it just remains to report the results. If
there are more unassigned children, we add ld2, possibly adjusted, to next_sig. Separately, if
the cost has changed, we add the extra cost f(eisc, dev2) - f(eisc, dev1) to next_sig.

It remains to present the two switch cases omitted above. Of all the expression types,
KHE_DSR_EXPR_INT_SUM_COST is the only one whose evaluation depends on the type of the
signer, and even then, only when the expression is derived from an event resource constraint. The
idea is the same but there is a different set of newly evaluated children to traverse:

608 Appendix D. Dynamic Programming Resource Reassignment: Implementation

case KHE_DRS_SIGNER_SHIFT:

/* signer is for shift solutions */
si = dsg->u.shift->open_shift_index;
KheDrsOpenChildrenForEach(&eisc->open_children_by_shift, si, child_e, i)

KheDrsIntSumCostUpdateLU(child_e, &ld2, &ud2);
break;

case KHE_DRS_SIGNER_SHIFT_PAIR:

/* signer is for shift pair solutions */
for(count = 0; count < 2; count++)
{

si = dsg->u.shift_pair->shift[count]->open_shift_index;
KheDrsOpenChildrenForEach(&eisc->open_children_by_shift, si, child_e,i)

KheDrsIntSumCostUpdateLU(child_e, &ld2, &ud2);
}
break;

Instead of traversing all the children on the next day, this traverses all the children affected by a
particular shift, or pair of shifts, on that day. No child is affected by two or more shifts, because
the children are always ASSIGNED_TASK expressions, each representing one task at one time.

D.8.11. The INT_SEQ_COST expression type

This section presents the implementation of the INT_SEQ_COST expression type, based on the
formulas from Appendix C.7, where these expressions were called sequence monitors, and we
refer freely to that Appendix and its terminology.

Child order. In an INT_SEQ_COST expression, the order of the children matters. Although
it never happens in practice, the last open days of the open children (taken in order) could be
out of chronological order. For other kinds of expressions, where the children’s order does not
matter, the open children are sorted by function KheDrsExprChildHasOpened (Appendix D.8.5)
so that their last open days are in chronological order. But doing that to an INT_SEQ_COST
expression would change its meaning.

Instead of sorting the children, we change their open day ranges. For each open child y
i

after the first, if the last open day of y
i
precedes the last open day of y

i−1, then the last open day
of y

i
is increased to the last open day of y

i−1. This does not break anything, it merely causes y
i
to

contribute a value to the signature on more days than it otherwise would have done. It is done
as each child is opened, so the last open day of y

i+1 is affected by any previous adjustment to the
last open day of y

i
, and so on. Thankfully, after doing this we can forget about it.

We do not allow a child of an INT_SEQ_COST expression to be a leaf (external expression),
and this need to change open day ranges is one of the two reasons why. A leaf may be shared
with other expressions, and increasing its open day range might well disrupt them. But non-leaf
expressions are not shared, so their open day ranges can be increased safely.

The other reason is that the INT_SEQ_COST expression type is much easier to implement
if it can be assumed that the children of an INT_SEQ_COST expression are opened in increasing

D.8. Expressions 609

child index order. This will happen if the postorder indexes of the children are increasing,
which is easily ensured if the children are all newly created, simply by visiting the time groups
of the monitor in the natural order during construction. But it cannot be guaranteed for shared
expressions, since they may be created at arbitrary points during the initialization.

These redundant expressions slow down the evaluation of some constraints slightly, for
example constraints on consecutive night shifts. But, importantly, they do not make signatures
any longer (except when open day ranges are extended), as a moment’s thought will show.

In practice, the number of children with a given last open day is always at most 1. However,
to cover all cases we allow any number of children to have the same last open day.

Sequences. In this section, a sequence means a sequence of adjacent children of an
INT_SEQ_COST expression. The implementation makes use of three kinds of sequences:
closed sequences (defined below), a-intervals, and au-intervals. We represent a sequence by a
pair of indexes [a,b] such that a ≤ b. Consider this sequence of four children:

0 1 2 3

We’ve shown their indexes inside, starting from 0 as is usual in C. But actually, the indexes that
define a sequence are indexes into the sequence of gaps that precede and follow the children:

0
0

0

1
1

1

2
2

2

3
3

3
4

4

So the pair of indexes [1,3]for example specifies the children with indexes 1and 2, because gap 1
precedes child 1and gap 3 follows child 2. We call the first index the start index; as well as being
the index of a gap, it also happens to be the index of the first specified child. We call the second
index the stop index; it is one greater than the index of the last specified child.

These details are important because they make an empty sequence be more than an empty
sequence of children; it has a definite location in the enclosing sequence. For example, [1,1] is
the empty sequence starting at index 1. It is different from, say, [4,4]. We do it this way with
good reason. For example, there is an operation which extends a sequence k places to the right.
Applied to [a,b], the result is [a,b + k]. This makes sense even when [a,b] is empty.

Closed sequences. A closed sequence, denoted Zi, is the sequence of closed children lying
between two open children, or between an open child and one end of the sequence of children.
Each INT_SEQ_COST object contains a sequence of closed sequences. They summarise the
closed children, allowing them to be skipped over quickly while solving.

Consider the sequence y0,… ,y
k−1of all open children of C. We index them starting from 0

to agree with the C implementation. They appear in C’s list of open children in the same order
that they appear in C’s list of all children, thanks to the work done above on the order that the
children are opened. This order is the one used when naming them y0,… ,y

k−1. Now consider the
list of all children. Within this list, assuming k > 0, let Z0 be the closed sequence of zero or more
closed children preceding y0; for i in the range 0 < i < k let Zi be the closed sequence of zero or
more closed children following y

i−1 and preceding y
i
; and let Zk be the closed sequence of zero

or more closed children following y
k−1. The full sequence of all children thus looks like this:

610 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Z0 y0 Z1 y1 Z2 … Zk−1 y
k−1 Zk

If k = 0 the whole sequence is a closed sequence; let Z0 be that sequence. Although we prefer
to think of history values as sequences of children, they are not included here, because there is
no efficient way here to represent ci, which could be very large.

This way of defining the Zi can be confusing, because it has little connection with open days.
The open day ranges of the open children may be adjusted, as explained above, and the closed
children have no open day ranges at all. Instead, the definition relies on the order of the children,
which is after all what matters, and on the fact that the open children are not reordered.

Each Zi is represented in the implementation by an object of type KHE_DRS_CLOSED_SEQ:

typedef struct {
int start_index;
int stop_index;
int active_at_left;
int active_at_right;

} *KHE_DRS_CLOSED_SEQ;

Fields start_index and stop_index are the start index and stop index of the closed sequence.
Field active_at_left is the number of active children within Zi adjacent to its left end, and
active_at_right is the number of active children within Zi adjacent to its right end. If every
child in Zi is active, active_at_left and active_at_right are equal to each other and to the
length of Zi. This will be the case, for example, when Zi is empty.

Before a solve, the y
i
are opened in increasing order, as we know. Initially only Z0 is present,

representing all the children. As each y
i
is opened, it is appended to the list of open children, and

the last closed sequence, Zi, is split into two, a shortened Zi and a new Zi+1. The reverse procedure
is followed as open children are closed at the end of the solve. Splitting a closed sequence into
two and merging two closed sequences into one are the only non-trivial operations on this type.

A-intervals. Here is the type representing an a-interval:

typedef struct {
int start_index;
int stop_index;
bool unassigned_precedes;

} KHE_DRS_A_INTERVAL;

It is a non-pointer type, to avoid memory allocation. In addition to the start index and stop
index, it contains unassigned_precedes, which is true when an unassigned child immediately
precedes this interval. This is needed when calculating deviations:

D.8. Expressions 611

int KheDrsAIntervalDev(KHE_DRS_A_INTERVAL ai,
KHE_DRS_EXPR_INT_SEQ_COST eisc)

{
int len;
if(ai.unassigned_precedes && eisc->cost_fn == KHE_STEP_COST_FUNCTION)

return 0;
len = ai.stop_index - ai.start_index;
return len > eisc->max_limit ? len - eisc->max_limit : 0;

}

If an unassigned child immediately precedes this interval and the cost function is Step, the
deviation is 0. Otherwise the deviation is the amount by which the interval’s length exceeds U.
All this follows Appendix C.7 exactly.

There are also straightforward functions for creating a-intervals, finding the a-interval
adjacent to a given point, merging two a-intervals, and so on. An example appears below. They
optimize by not searching the children directly; instead they assume that the closed sequences
are up to date and search those, where most of the work has already been done.

Unlike a closed sequence, an a-interval at the extreme left includes the eisc->history

active children from history. It does this by setting its start index to -eisc->history. Because
of this, KheDrsAIntervalDev does not need to pay any special attention to history.

An example of this treatment of history occurs in the following function, which finds the
(possibly empty) a-interval just to the left of the open child with a given open_index:

612 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KHE_DRS_A_INTERVAL KheDrsAIntervalFindLeft(
KHE_DRS_EXPR_INT_SEQ_COST eisc, int open_index)

{
KHE_DRS_CLOSED_SEQ dcs;
dcs = HaArray(eisc->closed_seqs, open_index);
if(!KheDrsClosedSeqAllActive(dcs))
{

/* an inactive child precedes the active_at_right active children */
return KheDrsAIntervalMake(dcs->stop_index - dcs->active_at_right,

dcs->stop_index, false);
}
else if(open_index > 0)
{

/* an unassigned child precedes the active_at_right active children */
return KheDrsAIntervalMake(dcs->stop_index - dcs->active_at_right,

dcs->stop_index, true);
}
else
{

/* nothing but history precedes the active_at_right active children */
return KheDrsAIntervalMake(dcs->stop_index - dcs->active_at_right

- eisc->history, dcs->stop_index, false);
}

}

The stop index of this a-interval is the stop index of the closed sequence just to the left. Its start
index is dcs->active_at_right places left of there, plus eisc->history more places to the
left if we are at the start. The function also finds a suitable value for unassigned_precedes, the
third parameter of KheDrsAIntervalMake.

In Appendix C.7, a-intervals were said to be maximal and non-empty. There is nothing
about the KHE_DRS_A_INTERVAL type which guarantees these conditions. The functions that
use a-intervals never create non-maximal ones, but they may create empty ones. This is done
to reduce the number of cases. For example, if one of the children of an a-interval becomes
unassigned or inactive, the a-interval splits into two pieces, one on each side of the changed child.
Either or both could be empty, but by allowing a-intervals to be empty the implementation has
just one case to handle. Empty a-intervals have deviation 0, so they cause no problems.

AU-intervals. Here is the type representing an au-interval:

typedef struct {
int start_index;
int stop_index;
bool has_active_child;

} KHE_DRS_AU_INTERVAL;

Once again it is a non-pointer type. In addition to the start index and stop index, it contains
has_active_child, which is true when the interval contains at least one active child. This is
needed when calculating deviations:

D.8. Expressions 613

int KheDrsAUIntervalDev(KHE_DRS_AU_INTERVAL aui,
KHE_DRS_EXPR_INT_SEQ_COST eisc)

{
int len;
if(!aui.has_active_child)
return 0;

len = aui.stop_index - aui.start_index;
return len < eisc->min_limit ? eisc->min_limit - len : 0;

}

If the interval contains no active children, the deviation is 0. Otherwise the deviation is the
amount by which the interval’s length falls short of L. As for a-intervals, there are functions for
creating, finding, merging, and splitting au-intervals, which assume that closed sequences are
up to date and search them rather than the children. Examples of these functions appear below.
Once again, the code that creates au-intervals never creates non-maximal ones, and although it
does create empty ones, those have deviation 0, because has_active_child is necessarily 0.

An au-interval at the extreme left includes the active children from history, by setting its
start index to -eisc->history. An au-interval at the extreme right includes the unassigned
children from history, by increasing its stop index by eisc->history_after. When there are no
inactive children (unlikely, but possible), both of these adjustments apply to the same au-interval.
Because of this, KheDrsAUIntervalDev does not need to pay any special attention to history.

Here is an example of an au-interval function. It finds the (possibly empty) au-interval just
to the left of the open child with the given open_index:

614 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KHE_DRS_AU_INTERVAL KheDrsAUIntervalFindLeft(
KHE_DRS_EXPR_INT_SEQ_COST eisc, int open_index)

{
KHE_DRS_CLOSED_SEQ dcs; KHE_DRS_AU_INTERVAL res; int i;

/* initialize res to the active children at the right of dcs */
dcs = HaArray(eisc->closed_seqs, open_index);
res = KheDrsAUIntervalMake(dcs->stop_index - dcs->active_at_right,
dcs->stop_index, true);

if(!KheDrsClosedSeqAllActive(dcs))
return res;

/* now keep looking to the left of there */
for(i = open_index - 1; i >= 0; i--)
{
/* return early if eisc->min_limit reached */
if(KheDrsAUIntervalLength(res) >= eisc->min_limit)
return res;

/* res includes the open unassigned child before the previous dcs */
KheDrsAUIntervalExtendToLeft(&res, 1, false);

/* res includes the active children at the right of the next dcs */
dcs = HaArray(eisc->closed_seqs, i);
KheDrsAUIntervalExtendToLeft(&res, dcs->active_at_right, true);
if(!KheDrsClosedSeqAllActive(dcs))
return res;

}

/* at the start, so res includes history */
KheDrsAUIntervalExtendToLeft(&res, eisc->history, true);
return res;

}

It starts with the closed sequence object dcs immediately to the left of the open child. The
active_at_right active children at the right of dcs are part of the au-interval, but if they are
preceded by an inactive child (if dcs is not entirely active) it’s time to stop. Otherwise the open
child preceding dcs is included, as are the active_at_right active children of the preceding
closed sequence, and so on.

The loop in this function could cause it to run for longer than a constant amount of time.
However, it returns early if the interval length reaches eisc->min_limit. This is safe because
the cost at that point is 0, so there is no need to make the interval any longer. It keeps the running
time constant, assuming (as is true in practice) that the minimum limit is a small constant.

KheDrsAUIntervalExtendToLeft extends an au-interval to the left:

D.8. Expressions 615

void KheDrsAUIntervalExtendToLeft(KHE_DRS_AU_INTERVAL *aui,
int extra_len, bool has_active_child)

{
if(extra_len > 0)
{
aui->start_index -= extra_len;
if(has_active_child)
aui->has_active_child = true;

}
}

This is done by reducing its start index by extra_len, and updating its has_active_child if
new children are actually added.

Opening and closing. Each of the four changes to the state of a child (inactive or active
to unassigned when opening, and unassigned to inactive or active when closing) takes away old
intervals (both a-intervals and au-intervals) and adds in new ones. We treat any change to any
interval as taking away one interval and adding another. We need to find the old intervals and
subtract their costs, and find the new intervals and add their costs.

This is straightforward in principle, although to explain all the code in detail would be
tedious. As an example, here is what happens when the child whose index in the sequence of
open children is open_index is opened and changes its state from inactive to unassigned. First,
it is added to the list of open children and its Zi is split into Zi and Zi+1. Then comes this:

/* the au-intervals on each side merge */
aui_left = KheDrsAUIntervalFindLeft(eisc, open_index);
aui_right = KheDrsAUIntervalFindRight(eisc, open_index);
aui_merged = KheDrsAUIntervalMerge(aui_left, aui_right, false);
drs->solve_start_cost += KheDrsAUIntervalCost(aui_merged, eisc)

- KheDrsAUIntervalCost(aui_left, eisc)
- KheDrsAUIntervalCost(aui_right, eisc);

/* the a-interval to the right changes its unassigned_precedes */
ai_before = KheDrsAIntervalFindRight(eisc, open_index, false);
ai_after = KheDrsAIntervalFindRight(eisc, open_index, true);
drs->solve_start_cost += KheDrsAIntervalCost(ai_after, eisc)

- KheDrsAIntervalCost(ai_before, eisc);

The au-intervals on each side of the changed child become merged, so we add in the cost of the
new merged interval and subtract away the costs of the two old unmerged intervals (possibly
empty). And the a-interval to the right changes its unassigned_precedes from false to true,
which could change its cost, so again we add the new and subtract the old.

No au-intervals or a-intervals are preserved in any data structure. As in the example above,
they are all calculated on the fly as required.

Searching. Searching is basically function KheDrsExprIntSeqCostEvalSignature:

616 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExprIntSeqCostEvalSignature(KHE_DRS_EXPR_INT_SEQ_COST eisc,
KHE_DRS_SIGNER dsg, KHE_DRS_SIGNATURE prev_sig, int next_di,
KHE_DRS_SIGNATURE next_sig, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int open_index, i1, i2, active_len, adjusted_len; KHE_DRS_EXPR child_e;
KHE_DRS_AU_INTERVAL aui_left, aui_right, aui_merged, aui_before, aui_after;
KHE_DRS_A_INTERVAL ai_right_before, ai_right_after;
KHE_DRS_A_INTERVAL ai_left, ai_right, ai_merged; KHE_DRS_CLOSED_SEQ dcs;

/* initialize active_len */
if(KheDrsOpenChildrenIndexIsFirst(&eisc->open_children_by_day, next_di))
{

/* first day */
dcs = HaArrayFirst(eisc->closed_seqs);
active_len = dcs->active_at_right;
if(KheDrsClosedSeqAllActive(dcs))
active_len += eisc->history;

}
else /* not first day, so retrieve previous active_len */

active_len = KheDrsExprDaySigVal((KHE_DRS_EXPR) eisc, next_di-1, prev_sig);

/* handle each child_e whose last open day is next_di */
KheDrsOpenChildrenForEach(&eisc->open_children_by_day, next_di,

child_e, open_index)
if(child_e->u.int_val == 0)
{
/* child_e moves from unassigned to inactive: update cost */
... see below ...

/* set active_len for next iteration (child_e is now inactive) */
dcs = HaArray(eisc->closed_seqs, open_index + 1);
active_len = dcs->active_at_right;

}
else
{
/* child_e moves from unassigned to active: update cost */
... see below ...

/* set active_len for next iteration (child_e is now active) */
dcs = HaArray(eisc->closed_seqs, open_index + 1);
if(KheDrsClosedSeqAllActive(dcs))
active_len += 1 + dcs->active_at_right;

else
active_len = dcs->active_at_right;

}

/* if not last day, store adjusted active_len in next_sig */
... see below ...

}

D.8. Expressions 617

It iterates over the open children whose value is being finalized on some day, and over the adja-
cent closed sequences, and makes the same cost changes as closing a child makes, only adding
the changes to next_sig->cost, rather than to drs->solve_start_cost. We’ve omitted for
the moment the parts that update next_sig->cost.

The signature value is the number of active children immediately to the left of the start point
of the iteration, called active_len in the code. Any unassigned children there were given values
earlier in the search path leading to the current solution, so this is the length of both the a-interval
and the au-interval immediately to the left. There is no need to search for these intervals.

The main focus of what we’ve shown here is to initialize active_len and keep it up to date
as the children are processed. If this is the first day, there is no signature to retrieve active_len
from. Instead, it is equal to the active_at_right field of the (only) closed sequence just to the
left of the current day, increased by eisc->history if all the children to the left are active. On
other days, active_len is stored in the signature and retrieved from there.

The code then visits each open child child_e whose last open day is the current day, and
examines its value. If it has changed from unassigned to inactive, the cost is updated as explained
below, then active_len is updated to the correct value for the following child. Because child_e
is now inactive, that value is the active_at_right field of the next closed sequence.

If child_e has changed from unassigned to active, the new active_len will still be the
active_at_right value if there is an inactive child within the next closed sequence. But if
the next closed sequence consists entirely of active children, active_len will have its previous
value plus 1 for child_e plus the active_at_right value.

After the last child has been handled, the remaining active_len value has to be stored in
the signature of next_soln for retrieval on the next day. Here is the code omitted above:

/* if not last day, store adjusted active_len in next_sig */
if(!KheDrsOpenChildrenIndexIsLast(&eisc->open_children_by_day, next_di))
{
adjusted_len = KheDrsAdjustedSigVal(active_len,

eisc->adjust_type, eisc->min_limit, eisc->max_limit, 0);
KheDrsSignatureAddState(next_sig, adjusted_len, dsg, (KHE_DRS_EXPR) eisc);

}

As usual an adjusted value is stored.

We turn now to the two other parts of the function that were omitted, that update solution
cost. When child_e changes from unassigned to inactive, the enclosing au-interval splits, and
the a-interval to the right changes its unassigned_precedes flag from false to true:

618 Appendix D. Dynamic Programming Resource Reassignment: Implementation

/* child_e moves from unassigned to inactive: update cost */
/* the enclosing au-interval splits */
aui_left = KheDrsAUIntervalMakeLeft(eisc, open_index, active_len);
aui_right = KheDrsAUIntervalFindRight(eisc, open_index, drs);
aui_merged = KheDrsAUIntervalMerge(aui_left, aui_right, false);
KheDrsSignatureAddCost(next_sig, KheDrsAUIntervalCost(aui_left, eisc)
+ KheDrsAUIntervalCost(aui_right, eisc)
- KheDrsAUIntervalCost(aui_merged, eisc));

/* the a-interval to the right changes its unassigned_precedes */
ai_right_before = KheDrsAIntervalFindRight(eisc, open_index, true);
ai_right_after = KheDrsAIntervalFindRight(eisc, open_index, false);
KheDrsSignatureAddCost(next_sig, KheDrsAIntervalCost(ai_right_after, eisc)
- KheDrsAIntervalCost(ai_right_before, eisc));

Function KheDrsAUIntervalMakeLeft makes an au-interval ending just before open_index

with length active_len; no searching is required for this.

When child_e changes from unassigned to active, the enclosing au-interval is unchanged,
but it may gain an active child for the first time, which could change its cost; and the a-intervals
on each side merge:

/* child_e moves from unassigned to active: update cost */
/* the enclosing au-interval is unchanged, but its cost may change */
aui_left = KheDrsAUIntervalMakeLeft(eisc, open_index, active_len);
aui_right = KheDrsAUIntervalFindRight(eisc, open_index, drs);
aui_before = KheDrsAUIntervalMerge(aui_left, aui_right, false);
aui_after = KheDrsAUIntervalMerge(aui_left, aui_right, true);
KheDrsSignatureAddCost(next_sig, KheDrsAUIntervalCost(aui_after, eisc)
- KheDrsAUIntervalCost(aui_before, eisc));

/* the a-intervals on each side merge */
ai_left = KheDrsAIntervalMakeLeft(eisc, open_index, active_len);
ai_right = KheDrsAIntervalFindRight(eisc, open_index, true);
ai_merged = KheDrsAIntervalMerge(ai_left, ai_right);
KheDrsSignatureAddCost(next_sig, KheDrsAIntervalCost(ai_merged, eisc)
- KheDrsAIntervalCost(ai_left, eisc)
- KheDrsAIntervalCost(ai_right, eisc));

Function KheDrsAIntervalMakeLeft makes an a-interval ending just before open_index with
length active_len; no searching is required for this.

This ends our presentation of the KHE_DRS_EXPR_INT_SEQ_COST type. Including code for
the various kinds of sequences, this type occupies about 1900 lines of the source file.

D.9. Solutions 619

D.9. Solutions

A solution is a set of assignments of resources to tasks. Curiously enough, when we come to
implement solutions and assignments we find that the two ideas seem to merge: an assignment
could represent just itself, but it could also represent the solution created by adding that
assignment to some other solution. Experience has shown that it is best to have no assignment
objects, strictly speaking, in the implementation, only solution objects.

There are several solution types, representing variants of the idea. It would be wonderful
if they formed a neat inheritance hierarchy, with their shared fields in an abstract parent type.
Sadly, efficiency demands prevent that. One of the types is not even a pointer type, as we’ll see.
But we can say that a solution object S of any type contains two main kinds of fields.

First, there are fields which define the assignments. Some of them may be pointers to other
solution objects. This almost always means that the assignments of those other solutions are
included in the assignments of S. Some of them may be (resource, task) pairs, meaning that those
basic assignments are included in S.

Many solutions are created in the context of expanding one day solution. They logically
include that solution, but the pointer to it is often omitted, since it is known from the context.

Second, there is one field, of type KHE_DRS_SIGNATURE or KHE_DRS_SIGNATURE_SET,
which holds the signature of S, including its cost. It is often convenient to include in the signature
only things that differ from the signature of some other solution that S is based on. We take care
below to define precisely what goes into each signature.

When another solution’sassignmentsare included in S, that other solution’s signature will be
relevant to S. But different kinds of solutions have different ways of incorporating the signatures
of other solutions into their own signatures. This could be as simple as adding a signature to a
signature set, or as complicated as creating a new signature by evaluating expressions.

D.9.1. Day solutions

The day solution is the most important type of solution. It implicitly contains all the time
assignments from the initial solution, and all the assignments of closed tasks from the initial
solution. It explicitly contains all the assignments that there are going to be of open tasks on days
up to and including one particular known open day, called the solution’s day, and no asssignments
for days after that. We often write ‘dk-solution’ for a day solution whose day is dk.

Day solution objects should probably have type KHE_DRS_DAY_SOLN, but at present their
type is KHE_DRS_SOLN. The nodes of the dynamic programming search tree are day solutions:

620 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KHE_DRS_SOLN
no

no day

KHE_DRS_SOLN
day

day 0 KHE_DRS_SOLN
day

day 1

KHE_DRS_SOLN
day

day 1

KHE_DRS_SOLN
day

day 0 KHE_DRS_SOLN
day

day 1

KHE_DRS_SOLN
day

day 1

The day indexes in this diagram are open day indexes, not frame indexes. The search tree has
one level of solutions for each open day, plus the extra level holding the root solution. The root
solution is special in that, despite being a day solution, it has no day. There may be closed days,
obviously, but they are not visible in the search tree.

Type KHE_DRS_SOLN is defined by

typedef struct khe_drs_soln_rec *KHE_DRS_SOLN;
typedef HA_ARRAY(KHE_DRS_SOLN) ARRAY_KHE_DRS_SOLN;
typedef HP_TABLE(KHE_DRS_SOLN) TABLE_KHE_DRS_SOLN;

struct khe_drs_soln_rec {
struct khe_drs_signature_set_rec sig_set;
KHE_DRS_SOLN prev_soln;
ARRAY_KHE_DRS_TASK_ON_DAY prev_tasks;
int priqueue_index;

#if TESTING
int sorted_rank;

#endif
};

The sig_set field is the solution’s signature. There may be many thousands of day solution
objects, so to save one pointer, the signature has type struct khe_drs_signature_set_rec

rather than the pointer type KHE_DRS_SIGNATURE_SET.

The prev_soln field points to this solution’s predecessor (its parent in the search tree). The
root solution has value NULL for this field. No valid KHE_DRS_SOLN has value NULL.

The prev_tasks field really belongs to the incoming edge, but we are saving memory by
not having edge objects. In the root solution it is empty, since there is no incoming edge. In
other solutions, its length equals the number of open resources, and the ith value is the task on
day object assigned the ith open resource on this solution’s day, or NULL if that resource is free.

It would arguably be more consistent for these task fields to have type KHE_DRS_TASK_SOLN
(Appendix D.9.4), the type of a solution containing one assignment of a resource to a task. But
objects of that type have short lifetimes, whereas objects of type KHE_DRS_TASK_ON_DAY have
lifetime equal to the lifetime of the solver. So the use of KHE_DRS_TASK_ON_DAY objects can be
understood as another memory optimization.

D.9. Solutions 621

The priqueue_index field holds the index of the solution in the priority queue, if there is
one. This ‘back index’allows the solution to be deleted efficiently from the priority queue when
it is found to be dominated by some other solution, and so needs to be deleted and freed. If the
solution is not in the priority queue, either because it has been deleted from it or because the
priority queue is not in use, priqueue_index holds -1.

The sorted_rank field holds the rank of this solution in the sequence of all undominated
solutions for its day, when those solutions are sorted into non-decreasing cost order. It is used
only for gathering statistics, which is why it is optional.

The operations on solutions begin with KheDrsSolnMake, which makes a new solution
object, and KheDrsSolnFree, which frees a solution. Then come KheDrsSolnMarkExpanded

and KheDrsSolnNotExpanded, which set and test the special -1 value of the priqueue_index

field. Then comes this rather ugly operation to work out which day the solution is for:

KHE_DRS_DAY KheDrsSolnDay(KHE_DRS_SOLN soln,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_TASK_ON_DAY dtd; int i; KHE_DRS_DAY prev_day;

/* return NULL if this is the root solution, not on any day */
if(soln->prev_soln == NULL)
return NULL;

/* if prev_tasks has a non-NULL task on day, return its day */
HaArrayForEach(soln->prev_tasks, dtd, i)
if(dtd != NULL)
return dtd->day;

/* else have to recurse back */
prev_day = KheDrsSolnDay(soln->prev_soln, drs);
if(prev_day == NULL)
return HaArray(drs->open_days, 0);

else
return HaArray(drs->open_days, prev_day->open_day_index + 1);

}

The day comes from any non-NULL task, or else from the parent solution. Previously, solutions
stored their day as an attribute, but the author removed it to save memory.

After KheDrsSolnDay there are functions used when hashing a solution’s signature, which
just delegate their work to the sig_set attribute: KheDrsSolnSignatureSetFullHash and so
on. For dominance testing there are two functions:

622 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsSolnDoDominates(KHE_DRS_SOLN soln1, KHE_DRS_SOLN soln2,
KHE_DRS_SIGNER_SET signer_set, KHE_COST trie_extra_cost,
int trie_start_depth, int *dom_test_count,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{

*dom_test_count += 1;
return KheDrsSignerSetDominates(signer_set, &soln1->sig_set,
&soln2->sig_set, trie_extra_cost, trie_start_depth,
soln1->prev_soln == soln2->prev_soln, drs);

}

bool KheDrsSolnDominates(KHE_DRS_SOLN soln1, KHE_DRS_SOLN soln2,
KHE_DRS_SIGNER_SET signer_set, int *dom_test_count,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
return KheDrsSolnDoDominates(soln1, soln2, signer_set, 0, 0,
dom_test_count, drs);

}

We’ve omitted some debugging and testing code. KheDrsSolnDoDominates is called directly
only when solutions are stored in a trie data structure; it avoids visiting parts of the signatures
that the trie has already handled. For the most part, KheDrsSolnDominates is called.

Next comes a function for overwriting one solution by another,used when solutions are held
in hash tables, and then this little helper function:

bool KheDrsSolnResourceIsAssigned(KHE_DRS_SOLN soln,
KHE_DRS_RESOURCE dr, KHE_DRS_TASK_ON_DAY *dtd)

{
if(soln->prev_soln == NULL)
{
/* this is the root solution, so there can be no assignment */
return *dtd = NULL, false;

}
else
{
/* non-root solution, get assignment from soln->prev_tasks */

*dtd = HaArray(soln->prev_tasks, dr->open_resource_index);
return *dtd != NULL;

}
}

If dr is assigned a task in soln, this sets *dtd to the appropriate task on day object and returns
true. Otherwise (if soln is the root solution or dr is not assigned in soln), it returns false.
This function is called by KheDrsResourceOnDayIsFixed (Appendix D.10.3).

Following this come some debug functions, including one that prints a neat table showing
the timetable of a given resource in a given solution.

D.9. Solutions 623

D.9.2. Mtask solutions

An mtask solution is an object representing a day solution S plus the assignment on the following
day of a resource r to an unspecified task from a given mtask c. The mtask may be NULL, meaning
that the resource has a free day. We often write ‘ci-solution’for an mtask solution whose mtask
is ci. Here is the type:

typedef struct Khe_drs_mtask_soln_rec *KHE_DRS_MTASK_SOLN;
typedef HA_ARRAY(KHE_DRS_MTASK_SOLN) ARRAY_KHE_DRS_MTASK_SOLN;

struct Khe_drs_mtask_soln_rec {
KHE_DRS_SIGNATURE sig;
KHE_DRS_RESOURCE_ON_DAY resource_on_day;
KHE_DRS_MTASK mtask;
KHE_DRS_TASK_ON_DAY fixed_task_on_day;
ARRAY_KHE_DRS_MTASK_SOLN skip_assts;
int skip_count;

};

The day solution S is known from the context and is not stored explicitly.

The sig field contains a signature holding the states of the resource monitors of r after the
assignment. Its cost field holds the extra cost of those monitors, beyond their cost in S. It is this
field that makes this object best interpreted as a solution, rather than as an assignment.

Even though the exact task to which the resource is assigned is not specified, the signature
is fully specified. This is because the tasks of one mtask have the same busy times and the same
workloads, and so they have the same effect on resource monitors.

The resource_on_day field, which is always non-NULL, holds the resource on day object
representing r on the day of the assignment—the day following S’s day. The mtask and
fixed_task_on_day fields determine what the resource on day is assigned to, as follows.

If mtask != NULL, the assignment may be to any task of that mtask. Someone will have
to decide which of mtask’s tasks to use before the assignment can actually be made. In this case
fixed_task_on_day is not used. Its value will be NULL.

Otherwise, mtask == NULL. The decision about which task to use has already been made,
and fixed_task_on_day holds that decision. It could be NULL, in which case the decision is to
assign a free day. Otherwise its day is the day of resource_on_day.

The last two fields support the implementation of mtask pair dominance. As explained in
Appendix C.8.3, this involves storing a list of mtask solutions in each mtask solution object, and
incrementing a counter in those mtask solutions when this one is used. The skip_assts field
holds the mtask solutions, and the skip_count field holds the counter.

The KHE_DRS_MTASK_SOLN submodule holds a few simple operations on mtask solution
objects, including KheDrsMTaskSolnMake for creating them, and KheDrsMTaskSolnFree for
freeing them. After that there is another submodule holding the code for dominance testing
between mtask solutions, which implements the method given in the theory appendix:

624 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsMTaskSolnDominates(KHE_DRS_MTASK_SOLN dms_r_c1,
KHE_DRS_MTASK_SOLN dms_r_c2, KHE_DYNAMIC_RESOURCE_SOLVER drs,
int verbosity, int indent, FILE *fp)

{
KHE_COST avail_cost; int m; bool res;
KHE_DRS_RESOURCE dr; KHE_DRS_MTASK dmt_r_c1, dmt_r_c2;
dr = dms_r_c1->resource_on_day->encl_dr;
m = KheDrsResourceSetCount(drs->open_resources);
avail_cost = 0;
dmt_r_c1 = dms_r_c1->mtask;
dmt_r_c2 = dms_r_c2->mtask;
res = KheDrsMTaskOneExtraAvailable(dmt_r_c1, m) &&
KheDrsMTaskMinCost(dmt_r_c1, KHE_DRS_ASST_OP_UNASSIGN, dr,
NULL, m, &avail_cost, verbosity, indent, fp) &&

KheDrsMTaskMinCost(dmt_r_c2, KHE_DRS_ASST_OP_ASSIGN, dr,
NULL, m, &avail_cost, verbosity, indent, fp) &&

KheDrsSignerDominates(dms_r_c1->resource_on_day->signer,
KheDrsMTaskSolnSignature(dms_r_c1),
KheDrsMTaskSolnSignature(dms_r_c2),
&avail_cost, verbosity, indent, fp);

return res;
}

We’ve omitted some debugging code here. There is also a function (arguably out of place) for
finding all pairs of mtask solutions that could be tested for dominance, making the tests, and
removing any dominated mtask solutions:

D.9. Solutions 625

void KheDrsMTaskSolnDominanceInit(KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
int ri, i, j; KHE_DRS_RESOURCE dr;
KHE_DRS_MTASK_SOLN dms_r_c1, dms_r_c2;
KheDrsResourceSetForEach(drs->open_resources, dr, ri)
HaArrayForEach(dr->expand_mtask_solns, dms_r_c1, i)
for(j = i + 1; j < HaArrayCount(dr->expand_mtask_solns); j++)
{
/* for each distinct pair of assignments (dms_r_c1, dms_r_c2) */
dms_r_c2 = HaArray(dr->expand_mtask_solns, j);
if(KheDrsMTaskSolnDominates(dms_r_c1, dms_r_c2, drs))
{
/* dms_r_c1 dominates dms_r_c2, so delete dms_r_c2 */
HaArrayDeleteAndShift(dr->expand_mtask_solns, j);
if(dr->expand_free_mtask_soln == dms_r_c2)
dr->expand_free_mtask_soln = NULL;

KheDrsMTaskSolnFree(dms_r_c2, drs);
j--; /* and try the next dms_r_c2 */

}
else if(KheDrsMTaskSolnDominates(dms_r_c2, dms_r_c1, drs))
{
/* dms_r_c2 dominates dms_r_c1, so delete dms_r_c1 */
HaArrayDeleteAndShift(dr->expand_mtask_solns, i);
if(dr->expand_free_mtask_soln == dms_r_c1)
dr->expand_free_mtask_soln = NULL;

KheDrsMTaskSolnFree(dms_r_c1, drs);
i--;
break; /* and try the next dms_r_c1 */

}
}

}

Again we’ve omitted some debugging code. By the time this function is called, all mtask solution
objects for a given resource dr on the current day are stored in array dr->expand_mtask_solns.
This function finds all unordered pairs of those, tests each pair both ways for dominance, and
deletes any dominated ones. Care is needed to continue iterating correctly when a mtask solution
is deleted.

Finally comes another submodule, holding the code for the part of the expansion operation
which is concerned with mtask solutions. This code is presented in Appendix D.10.

D.9.3. Mtask pair solutions

An mtask pair solution is like an mtask solution except that it adds two assignments of resources
to mtasks on the day after S, rather than one. We might use the notation ‘cicj-solution’ for an
mtask pair solution involving mtasks ci and cj.

There is no KHE_DRS_MTASK_PAIR_SOLN object type, because none is needed. Instead, two

626 Appendix D. Dynamic Programming Resource Reassignment: Implementation

mtask solutions are passed side by side that together make up one mtask pair solution.

Here is the code for deciding whether mtask pair solution {dcs_r1_c1, dcs_r2_c2}

dominates mtask pair solution {dcs_r1_c2, dcs_r2_c1}. The variable names indicate which
resource is involved (r1 or r2) and which mtask (c1 or c2):

bool KheDrsMTaskPairSolnDominates(KHE_DRS_MTASK_SOLN dms_r1_c1,
KHE_DRS_MTASK_SOLN dms_r2_c2, KHE_DRS_MTASK_SOLN dms_r1_c2,
KHE_DRS_MTASK_SOLN dms_r2_c1, KHE_DRS_RESOURCE dr1,
KHE_DRS_RESOURCE dr2, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_COST avail_cost; int m; bool res;
KHE_DRS_MTASK dmt_r1_c1, dmt_r2_c2;

m = KheDrsResourceSetCount(drs->open_resources);
avail_cost = 0;
dmt_r1_c1 = dms_r1_c1->mtask;
dmt_r2_c2 = dms_r2_c2->mtask;
res =
KheDrsMTaskMinCost(dmt_r1_c1, KHE_DRS_ASST_OP_REPLACE,
dr1, dr2, m, &avail_cost) &&

KheDrsMTaskMinCost(dmt_r2_c2, KHE_DRS_ASST_OP_REPLACE,
dr2, dr1, m, &avail_cost) &&

KheDrsSignerDominates(dms_r1_c1->resource_on_day->signer,
KheDrsMTaskSolnSignature(dms_r1_c1),
KheDrsMTaskSolnSignature(dms_r1_c2), &avail_cost) &&

KheDrsSignerDominates(dms_r2_c1->resource_on_day->signer,
KheDrsMTaskSolnSignature(dms_r2_c2),
KheDrsMTaskSolnSignature(dms_r2_c1), &avail_cost);

return res;
}

Some debug code has been omitted. The algorithm is the one presented in the theory appendix.

To help with testing all pairs of mtask pair solutions for dominance, we need this function,
which determines whether resource dr contains a mtask solution object corresponding to dms:

D.9. Solutions 627

bool KheDrsResourceHasMTaskSoln(KHE_DRS_RESOURCE dr,
KHE_DRS_MTASK_SOLN dms, KHE_DRS_MTASK_SOLN *res)

{
KHE_DRS_MTASK_SOLN dms2; int i;

if(dms->mtask != NULL)
{
/* Case 1: mtask != NULL */
HaArrayForEach(dr->expand_mtask_solns, dms2, i)
if(dms2->mtask == dms->mtask)
return *res = dms2, true;

return *res = NULL, false;
}
else if(dms->fixed_task_on_day != NULL)
{
/* Case 2: mtask == NULL && fixed_task_on_day != NULL */
return *res = NULL, false;

}
else
{
/* Case 3: mtask == NULL && fixed_task_on_day == NULL */
HaArrayForEach(dr->expand_mtask_solns, dms2, i)
if(dms2->mtask == NULL && dms2->fixed_task_on_day == NULL)
return *res = dms2, true;

return *res = NULL, false;
}

}

If dcs has a non-NULL mtask field, we search dr’s mtask solutions for one for the same mtask.
Else, we do a similar search if the assignment is for a free day; else we give up.

Now we are ready to find all pairs of mtask pair solutions and record cases of dominance
in the skip_assts arrays of the dominated mtask pair solutions:

628 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsMTaskPairSolnDominanceInit(KHE_DYNAMIC_RESOURCE_SOLVER drs)
{
int i1, i2, i, j, verbosity, indent; KHE_DRS_RESOURCE dr1, dr2; FILE *fp;
KHE_DRS_MTASK_SOLN dms_r1_c1, dms_r1_c2, dms_r2_c1, dms_r2_c2;
KheDrsResourceSetForEach(drs->open_resources, dr1, i1)

if(HaArrayCount(dr1->expand_mtask_solns) >= 2)
for(i2 = i1 + 1; i2 < KheDrsResourceSetCount(drs->open_resources); i2++)
{
dr2 = KheDrsResourceSetResource(drs->open_resources, i2);
if(HaArrayCount(dr2->expand_mtask_solns) >= 2)
HaArrayForEach(dr1->expand_mtask_solns, dms_r1_c1, i)
{

if(KheDrsResourceHasMTaskSoln(dr2, dms_r1_c1, &dms_r2_c1))
{
for(j = i + 1; j < HaArrayCount(dr1->expand_mtask_solns); j++)
{
dms_r1_c2 = HaArray(dr1->expand_mtask_solns, j);
if(KheDrsResourceHasMTaskSoln(dr2, dms_r1_c2, &dms_r2_c2))
{

if(KheDrsMTaskPairSolnDominates(dms_r1_c1, dms_r2_c2,
dms_r1_c2, dms_r2_c1, dr1, dr2, drs,verbosity,indent,fp))

{
/* S + dms_r1_c2 + dms_r2_c1 is dominated */
HaArrayAddLast(dms_r1_c2->skip_assts, dms_r2_c1);
HaArrayAddLast(dms_r2_c1->skip_assts, dms_r1_c2);

}
else if(KheDrsMTaskPairSolnDominates(dms_r1_c2, dms_r2_c1,

dms_r1_c1, dms_r2_c2, dr1, dr2, drs,verbosity,indent,fp))
{
/* S + dms_r1_c1 + dms_r2_c2 is dominated */
HaArrayAddLast(dms_r1_c1->skip_assts, dms_r2_c2);
HaArrayAddLast(dms_r2_c2->skip_assts, dms_r1_c1);

}
}

}
}

}
}

}

The two outer loops iterate over all unordered pairs of distinct open resources {dr1, dr2}

such that both resources have two or more mtask solutions. The two inner loops iterate over all
unordered pairs of distinct mtask solutions for dr1, called dcs_r1_c1 and dcs_r1_c2, for which
there are corresponding mtask solutions for dr2, called dcs_r2_c1 and dcs_r2_c2. These four
mtask solutions make two mtask pair solutions, which are then tested for dominance both ways.
Dominated solutions are marked by adding entries to their skip_assts arrays.

D.9. Solutions 629

This algorithm could mark a given mtask pair solution as dominated more than once. This
does not affect its correctness, so it has seemed simplest not to prevent it.

D.9.4. Task solutions

A task solution represents one day solution S plus one assignment of a resource r to a specific
task t on the day after S’s day. We might write ‘t-solution’ for a task solution whose task is t.

Type KHE_DRS_TASK_SOLN is defined by

typedef struct khe_drs_task_soln_rec KHE_DRS_TASK_SOLN;
typedef HA_ARRAY(KHE_DRS_TASK_SOLN) ARRAY_KHE_DRS_TASK_SOLN;

struct khe_drs_task_soln_rec {
KHE_DRS_MTASK_SOLN mtask_soln;
KHE_DRS_TASK_ON_DAY fixed_dtd;

};

As shown, this is implemented by taking an mtask solution mtask_soln, which assigns r to an
unspecified task of some mtask, and adding fixed_dtd to it, which specifies the task within
the mtask. Here fixed_dtd may be NULL, meaning that the assignment is to a free day, but
mtask_soln is never NULL.

Task solution objects come and go quickly during expansion, so it has seemed best to
implement them as record types, to avoid allocating and deallocating objects:

KHE_DRS_TASK_SOLN KheDrsTaskSolnMake(KHE_DRS_MTASK_SOLN dms,
KHE_DRS_TASK_ON_DAY fixed_dtd)

{
KHE_DRS_TASK_SOLN res;
res.mtask_soln = dms;
res.fixed_dtd = fixed_dtd;
return res;

}

After this come a few simple functions for accessing the attributes of a task solution, such as

KHE_DRS_RESOURCE KheDrsTaskSolnResource(KHE_DRS_TASK_SOLN dts)
{
return dts.mtask_soln->resource_on_day->encl_dr;

}

The last two functions are for requesting the task on day of a given task solution to update the
affected external expressions to reflect the assignment expressed by the task solution:

630 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsTaskSolnLeafSet(KHE_DRS_TASK_SOLN dts, bool whole_task)
{
KHE_DRS_RESOURCE dr; KHE_DRS_TASK dt; int i;
KHE_DRS_TASK_ON_DAY dtd;
if(dts.fixed_dtd != NULL)
{
dr = KheDrsTaskSolnResource(dts);
if(whole_task)
{
dt = dts.fixed_dtd->encl_dt;
HaArrayForEach(dt->days, dtd, i)
KheDrsTaskOnDayLeafSet(dtd, dr);

}
else
KheDrsTaskOnDayLeafSet(dts.fixed_dtd, dr);

}
}

If the assignment is for a free day, there is nothing to do. Otherwise this code offers the choice
of using dts as a template for assigning the task on all of its days (this will be significant if it
is a multi-day task), or just assigning it on dts’s day. Either way, KheDrsTaskOnDayLeafSet is
called to inform the expressions affected by dtd that dr is being assigned to it. Then

void KheDrsTaskSolnLeafClear(KHE_DRS_TASK_SOLN dts, bool whole_task)
{
KHE_DRS_TASK dt; int i; KHE_DRS_TASK_ON_DAY dtd;
if(dts.fixed_dtd != NULL)
{
if(whole_task)
{
dt = dts.fixed_dtd->encl_dt;
HaArrayForEach(dt->days, dtd, i)
KheDrsTaskOnDayLeafClear(dtd);

}
else
KheDrsTaskOnDayLeafClear(dts.fixed_dtd);

}
}

may be called to undo the effect of KheDrsTaskSolnLeafSet.

After these functions there is a submodule holding the task solution functions related to
expansion, which will be documented later.

D.9.5. Task solution sets

A task solution set is a set of task solutions. It has type KHE_DRS_TASK_SOLN_SET:

D.9. Solutions 631

typedef struct khe_drs_task_soln_set *KHE_DRS_TASK_SOLN_SET;
typedef HA_ARRAY(KHE_DRS_TASK_SOLN_SET) ARRAY_KHE_DRS_TASK_SOLN_SET;

struct khe_drs_task_soln_set {
ARRAY_KHE_DRS_TASK_SOLN task_solns;

};

Its operations include the straightforward KheDrsTaskSolnSetMake, KheDrsTaskSolnSetFree,
KheDrsTaskSolnSetClear, KheDrsTaskSolnSetCount, KheDrsTaskSolnSetAddLast, and

void KheDrsTaskSolnSetLeafSet(KHE_DRS_TASK_SOLN_SET dtss,
bool whole_task)

{
KHE_DRS_TASK_SOLN dts; int i;
KheDrsTaskSolnSetForEach(dtss, dts, i)
KheDrsTaskSolnLeafSet(dts, whole_task);

}

with its corresponding

void KheDrsTaskSolnSetLeafClear(KHE_DRS_TASK_SOLN_SET dtss,
bool whole_task)

{
KHE_DRS_TASK_SOLN dts; int i;
KheDrsTaskSolnSetForEach(dtss, dts, i)
KheDrsTaskSolnLeafClear(dts, whole_task);

}

These last two functions assign and unassign a whole set of task solutions at once.

D.9.6. Shift solutions

A shift solution is a solution whose assignments consist of the assignments of a day solution S,
plus one assignment for each resource in a subset R of the open resources to an open task of a
shift s, whose tasks begin on the day following S’s day. These assigments are the only ones that
will be made to the open tasks of s; all others will remain unassigned. We may write ‘si-solution’
for a shift solution whose shift is si.

A shift solution is represented by type KHE_DRS_SHIFT_SOLN:

typedef struct khe_drs_shift_soln_rec *KHE_DRS_SHIFT_SOLN;
typedef HA_ARRAY(KHE_DRS_SHIFT_SOLN) ARRAY_KHE_DRS_SHIFT_SOLN;

struct khe_drs_shift_soln_rec {
KHE_DRS_SIGNATURE sig;
KHE_DRS_TASK_SOLN_SET task_solns;
ARRAY_KHE_DRS_SHIFT_SOLN skip_assts;
int skip_count;

};

632 Appendix D. Dynamic Programming Resource Reassignment: Implementation

S and s are known from the context, so this just stores, in task_solns, one
KHE_DRS_TASK_SOLN_SET object, representing the assignment of one resource to one task for
each member of R.

The sig field holds a signature, used for dominance testing between shift solution objects
with the same S, s, and R. It is created by evaluating each expression derived from an event
resource monitor which is affected by at least one task from s. These are the only expressions
relevant to dominance testing between solutions for the same S, s, and R: event resource monitors
not affected by the tasks of s are clearly irrelevant, and resource monitors for each resource r in
R have the same values whichever task r is assigned to, because the tasks of s have the same busy
times and workloads, by definition.

The skip_assts and skip_count fields hold the results of shift pair dominance testing
(Appendix D.9.8). They work just like the corresponding fields in mtask solution objects, to
ensure that pairs of shift solutions known to be uncompetitive are never used together.

The operations on shift solutions include KheDrsShiftSolnMake, for making a new
shift solution object, and KheDrsShiftSolnFree, for freeing it. There is also a function for
dominance testing between shift solution objects, assuming the signatures are set:

bool KheDrsShiftSolnDominates(KHE_DRS_SHIFT_SOLN dss1,
KHE_DRS_SHIFT_SOLN dss2, KHE_DRS_SIGNER dsg,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_COST avail_cost;
avail_cost = 0;
return KheDrsSignerDominates(dsg, dss1->sig, dss2->sig, &avail_cost);

}

After this comes a submodule which implements the part of expansion that is concerned with
shift solutions. For that, see Appendix D.10.

D.9.7. Shift solution tries

For many objects the solver offers a type representing a set of those objects. For example,
KHE_DRS_TASK_SOLN_SET represents a set of KHE_DRS_TASK_SOLN objects.

Type KHE_DRS_SHIFT_SOLN_TRIE represents a set of KHE_DRS_SHIFT_SOLN objects. For
efficient retrieval, a trie data structure is used rather than the usual array. As we saw above, the
main attributes that define a shift solution are a day solution S, a shift s for the day following S’s
day, and a set of open resources R. There is one trie for each combination of S and s, organized
so that R can be used as an index to efficiently retrieve the shift solutions for S, s, and any given
R. This trie is stored in s’s soln_trie field during the expansion of S.

The indexing is straightforward. Given a set of open resources R, sorted by increasing open
resource index, the open resource index of the first resource is used to index into the root of the
trie, producing a child trie which is indexed using the open resource index of the second resource
of R, and so on. When all resources have been used up, the node we are at contains a simple array
of shift solutions (in fact, all undominated ones, as we will see) for the given S, s, and R. Note
that R may be empty, in which case retrieval ends at the root of the trie.

D.9. Solutions 633

Here is the type declaration for KHE_DRS_SHIFT_SOLN_TRIE:

typedef struct khe_drs_shift_soln_trie_rec *KHE_DRS_SHIFT_SOLN_TRIE;
typedef HA_ARRAY(KHE_DRS_SHIFT_SOLN_TRIE) ARRAY_KHE_DRS_SHIFT_SOLN_TRIE;

struct khe_drs_shift_soln_trie_rec {
ARRAY_KHE_DRS_SHIFT_SOLN shift_solns;
ARRAY_KHE_DRS_SHIFT_SOLN_TRIE children;

};

At any level, we may come to the end of R; then the shift_solns field holds the undominated
shift solutions for S, s, and R. Or if we have not exhausted R, the open resource index of the next
resource is used to index into the children field to take the search to the next level down. NULL
is a legal shift solution trie and represents a trie containing no shift solution objects.

Some open resources are forced, for various reasons, to be assigned to particular known
tasks. We call them fixed resources, and we call the remaining open resources free resources. If
a resource is fixed to a task not in s, then it may not appear in an R associated with s. If it is fixed
to a task in s, then it must appear in every R associated with s. We ensure this by storing fixed
resources separately; that is, we store R in the form R = Rfixed ∪ Rfree. Rfixed is represented by a
set of assignments (task solutions). The indexing uses Rfree only.

An arguably more natural data structure would be a binary tree in which the left subtree of
the root handles all subsets R that do not contain the first open resource, while the right subtree
of the root handles all subsets R that do contain the first open resource, and so on recursively. We
prefer the trie because searching the binary tree takes time proportional to the number of open
resources, whereas searching the trie takes time proportional to the cardinality of R.

Operations on shift solution tries include KheDrsShiftSolnTrieMake for making a new
trie node, and KheDrsShiftSolnTrieFree for freeing a trie node along with its shift solutions
and proper descendants:

634 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsShiftSolnTrieFree(KHE_DRS_SHIFT_SOLN_TRIE dsst,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SHIFT_SOLN dss; int i; KHE_DRS_SHIFT_SOLN_TRIE child_dsst;

if(dsst != NULL)
{
/* free the shift solution objects */
HaArrayForEach(dsst->shift_solns, dss, i)
KheDrsShiftSolnFree(dss, drs);

/* free the proper descendant trie objects */
HaArrayForEach(dsst->children, child_dsst, i)
KheDrsShiftSolnTrieFree(child_dsst, drs);

/* free dsst itself */
HaArrayAddLast(drs->shift_soln_trie_free_list, dsst);

}
}

For dominance testing there is

bool KheDrsShiftSolnTrieDominates(KHE_DRS_SHIFT_SOLN_TRIE dsst,
KHE_DRS_SHIFT_SOLN dss, KHE_DRS_SIGNER dsg,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SHIFT_SOLN other_dss; int i;
HaArrayForEach(dsst->shift_solns, other_dss, i)

if(KheDrsShiftSolnDominates(other_dss, dss, dsg, drs))
return true;

return false;
}

which returns true if any of the shift solutions within node dsst dominates new shift solution
dss. For KheDrsShiftSolnDominates, see Appendix D.9.6. The dominance test does not
recurse, because dominance testing is only between shift solutions for the same S, s, and R, and
these are all held in one node of the trie. There are similar functions for removing dominated
shift solutions from dsst and adding a new shift solution to it, and these combine to make

D.9. Solutions 635

void KheDrsShiftSolnTrieMeldShiftSoln(KHE_DRS_SHIFT_SOLN_TRIE dsst,
KHE_DRS_SHIFT_SOLN dss, KHE_DRS_SIGNER dsg,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if(KheDrsShiftSolnTrieDominates(dsst, dss, dsg, drs))
{

/* dss is dominated, so free dss */
KheDrsShiftSolnFree(dss, drs);

}
else
{

/* remove other solns that dss dominates, then add dss to dsst */
KheDrsShiftSolnTrieRemoveDominated(dsst, dss, dsg, drs);
KheDrsShiftSolnTrieAddShiftSoln(dsst, dss);

}
}

which follows the usual algorithm: if any of the existing shift solutions dominates the new one,
free the new one, otherwise remove and free dominated ones and add the new one.

Each trie node will probably contain at most one solution. This is because the signatures
of shift solutions are concerned only with the event resource constraints of the tasks of the shift.
These constraints can in principle also be affected by tasks outside the shift as well, in which case
they will need to add a value to the signature’s states array. But in practice they are not, so all they
contribute to the signature is a cost, and so dominance testing is just cost comparison, and every
dominance test has a winner. But our code supports arbitrary XESTT constraints, so it allows
for any number of shift solutions in each trie node. Nevertheless a major part of the motivation
for expansion by shifts is this expectation of at most one shift solution per trie node.

Given a shift solution trie it is straightforward to index into it. The main challenge is to
build it in the first place, and the remainder of this section is devoted to that challenge. Here is
the function that does it:

void KheDrsShiftBuildShiftSolnTrie(KHE_DRS_SHIFT ds,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day,
KHE_DRS_RESOURCE_SET all_free_resources,
KHE_DRS_TASK_SOLN_SET all_fixed_assts,
KHE_DRS_EXPANDER de, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_RESOURCE_SET included_free_resources;
HnAssert(ds->soln_trie == NULL,

"KheDrsShiftBuildShiftSolnTrie internal error");
included_free_resources = KheDrsResourceSetMake(drs);
ds->soln_trie = KheDrsShiftSolnTrieBuild(ds, prev_soln, prev_day,

next_day, all_free_resources, 0, included_free_resources,
all_fixed_assts, de);

KheDrsResourceSetFree(included_free_resources, drs);
}

636 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Here ds is s, prev_soln is S, prev_day is S’s day, next_day is s’s day (the day after prev_day),
all_free_resources contains all free open resources, and all_fixed_assts contains all
fixed open resources, in the form of assignments to the tasks they are fixed to (task solutions).
KheDrsShiftBuildShiftSolnTrie creates and frees included_free_resources, which will
hold the resource sets Rfree as the operation proceeds, and calls

D.9. Solutions 637

KHE_DRS_SHIFT_SOLN_TRIE KheDrsShiftSolnTrieBuild(KHE_DRS_SHIFT ds,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day,
KHE_DRS_RESOURCE_SET all_free_resources, int all_free_resources_index,
KHE_DRS_RESOURCE_SET included_free_resources,
KHE_DRS_TASK_SOLN_SET all_fixed_assts, KHE_DRS_EXPANDER de)

{
KHE_DRS_SHIFT_SOLN_TRIE res, child_dsst; bool no_non_null_children;
int i, count, included_free_resource_count; KHE_DRS_RESOURCE dr;

/* return NULL immediately if too many included free resources */
included_free_resource_count =

KheDrsResourceSetCount(included_free_resources);
if(included_free_resource_count >

ds->expand_max_included_free_resource_count)
return NULL;

/* make res and add shift solutions for included_free_resources to res */
res = KheDrsShiftSolnTrieMake(de->solver);
... code omitted here, see below ...

/* add a NULL child for every open resource */
count = KheDrsResourceSetCount(de->solver->open_resources);
HaArrayFill(res->children, count, NULL);

/* add a potentially non-NULL child for each possible next resource */
no_non_null_children = true;
count = KheDrsResourceSetCount(all_free_resources);
for(i = all_free_resources_index; i < count; i++)
{

dr = KheDrsResourceSetResource(all_free_resources, i);
KheDrsResourceSetAddLast(included_free_resources, dr);
child_dsst = KheDrsShiftSolnTrieBuild(ds, prev_soln, prev_day,

next_day, all_free_resources, i + 1, included_free_resources,
all_fixed_assts, de);

if(child_dsst != NULL)
{

HaArrayPut(res->children, dr->open_resource_index, child_dsst);
no_non_null_children = false;

}
KheDrsResourceSetDeleteLast(included_free_resources);

}

/* replace by NULL if the tree contains no solutions */
if(no_non_null_children && HaArrayCount(res->shift_solns) == 0)
{

KheDrsShiftSolnTrieFree(res, de->solver);
return NULL;

}
else

return res;
}

638 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Most parameters are as for KheDrsShiftBuildShiftSolnTrie; all_free_resources_index
is an index into all_free_resources used to generate all subsets of the free resources, and
included_free_resources is the current value of Rfree.

Now ds->expand_max_included_free_resource_count is the maximum number of free
resources that can be assigned to ds without leaving too few other free resources for the other
shifts. So the first step is to return immediately if the number of included free resources exceeds
this number. The NULL result represents a shift solution trie containing no shift solutions.

The next step is to create a shift solution trie node, res, and fill its shift_solns array with
the undominated shift solution objects that assign the resources of included_free_resources,
plus any fixed resources which are assigned to tasks from this shift. Most of this code is omitted
above; we return to it below.

The next step is to build the children of the new node res. We want one child for each open
resource, because we intend to index these children using an open resource index. So we start by
filling res->children with one NULL value for each open resource. Then for each free resource
dr whose open resource index we have not used in higher levels of the trie (for each free resource
whose index in all_free_resources is all_free_resources_index or greater), we add dr to
included_free_resources, call this same function recursively to build the child node, add that
child to the children array of dsst, and delete dr from included_free_resources.

Finally, we check whether res contains no shift solutions at all: no non-NULL children, and
an empty res->shift_solns. In that case, we free res and return NULL instead.

Here is the code (omitted above) to build the shift solutions for a given S, s, and R:

if(included_free_resource_count >= ds->expand_must_assign_count)
{
KheDrsExpanderReset(de, true, KheDrsSolnCost(prev_soln),
de->solver->solve_init_cost, included_free_resource_count,
ds->expand_must_assign_count);

KheDrsExpanderMarkBegin(de);
KheDrsExpanderAddTaskSolnSet(de, all_fixed_assts, ds);
if(KheDrsExpanderIsOpen(de))
KheDrsShiftSolnTrieBuildShiftSolns(res, ds, included_free_resources,
0, prev_soln, prev_day, next_day, de);

KheDrsExpanderMarkEnd(de);
}

Here ds->expand_must_assign_count is the number of must-assign tasks within the mtasks
of ds. If the number of included free resources is less than this, then there is no point in
building any shift assignments at this node, because there are too few free resources to cover
the must-assign tasks. Otherwise, we create (in fact, reset) an expander, add the relevant fixed
assignments to it (those fixed assignments from all_fixed_assts whose tasks lie in ds), and
call KheDrsShiftSolnTrieBuildShiftSolns, which builds this node’s shift assignments:

D.9. Solutions 639

void KheDrsShiftSolnTrieBuildShiftSolns(KHE_DRS_SHIFT_SOLN_TRIE dsst,
KHE_DRS_SHIFT ds, KHE_DRS_RESOURCE_SET included_free_resources,
int included_free_resources_index, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de)

{
KHE_DRS_RESOURCE dr; int i, indent; KHE_DRS_MTASK_SOLN dms;

if(included_free_resources_index >=
KheDrsResourceSetCount(included_free_resources))

{
/* all included resources assigned, so build soln and add it now */
KheDrsExpanderMakeAndMeldShiftSoln(de, dsst, ds, prev_soln, prev_day,

next_day);
}
else
{

/* try all assignments of the next included resource */
dr = KheDrsResourceSetResource(included_free_resources,

included_free_resources_index);
HaArrayForEach(dr->expand_mtask_solns, dms, i)

if(KheDrsMTaskSolnShift(dms) == ds)
KheDrsMTaskSolnShiftSolnTrieBuildShiftSolns(dms, dsst, ds,

included_free_resources, included_free_resources_index + 1,
prev_soln, prev_day, next_day, de);

}
}

This is just expansion by resources, only for R instead of all the open resources, for the mtasks
of s instead of for all mtasks, and with the solutions kept in dsat->shift_solns rather than
in next_day’s solution set. If choices have been made for all the resources, it is time to call
KheDrsExpanderMakeAndMeldShiftSoln (Appendix D.10.1). Otherwise, for each assignment
of the next resource within ds we call KheDrsMTaskSolnShiftSolnTrieBuildShiftSolns:

640 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsMTaskSolnShiftSolnTrieBuildShiftSolns(KHE_DRS_MTASK_SOLN dms,
KHE_DRS_SHIFT_SOLN_TRIE dsst, KHE_DRS_SHIFT ds,
KHE_DRS_RESOURCE_SET included_free_resources,
int included_free_resources_index, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de)

{
KHE_DRS_TASK_ON_DAY dtd; KHE_DRS_MTASK dmt;
KHE_DRS_TASK_SOLN dts; int indent;
dmt = dms->mtask;
if(dmt != NULL)
{

/* select a task from dmt and assign it */
if(KheDrsMTaskAcceptResourceBegin(dmt, dms->resource_on_day, &dtd))
{

dts = KheDrsTaskSolnMake(dms, dtd);
KheDrsTaskSolnShiftSolnTrieBuildShiftSolns(dts, dsst, ds,

included_free_resources, included_free_resources_index,
prev_soln, prev_day, next_day, de);

KheDrsMTaskAcceptResourceEnd(dmt, dtd);
}

}
else
{

/* use dms->fixed_task_on_day, possibly NULL meaning a free day */
dts = KheDrsTaskSolnMake(dms, dms->fixed_task_on_day);
KheDrsTaskSolnShiftSolnTrieBuildShiftSolns(dts, dsst, ds,

included_free_resources, included_free_resources_index,
prev_soln, prev_day, next_day, de);

}
}

This finds a specific task to assign, by calling KheDrsMTaskAcceptResourceBegin and
KheDrsMTaskAcceptResourceEnd in the usual way if dcs has an mtask, or directly if the re-
source is already fixed to a specific task. Actually this second case cannot occur here, because
the resources are not fixed and a free day is not an option. The resulting task solution object dts
is then passed to KheDrsTaskSolnShiftSolnTrieBuildShiftSolns:

D.9. Solutions 641

void KheDrsTaskSolnShiftSolnTrieBuildShiftSolns(KHE_DRS_TASK_SOLN dts,
KHE_DRS_SHIFT_SOLN_TRIE dsst, KHE_DRS_SHIFT ds,
KHE_DRS_RESOURCE_SET included_free_resources,
int included_free_resources_index, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de)

{
/* save the expander so it can be restored later */
KheDrsExpanderMarkBegin(de);

/* add dts to the expander */
KheDrsExpanderAddTaskSoln(de, dts);

/* if the expander is still open, recurse */
if(KheDrsExpanderIsOpen(de))

KheDrsShiftSolnTrieBuildShiftSolns(dsst, ds, included_free_resources,
included_free_resources_index, prev_soln, prev_day, next_day, de);

/* restore the expander */
KheDrsExpanderMarkEnd(de);

}

This assigns dts and recurses on the next resource if the expander is still open.

D.9.8. Shift pair solutions

A shift pair solution is a pair of shift solutions. We may write ‘sisj-solution’ for a shift pair
solution whose shifts are si and sj.

The shift pair solution resembles the mtask pair solution (Appendix D.9.3), which
represents a pair of mtask solutions. However this time there is a declared type:

typedef struct khe_drs_shift_pair_soln_rec *KHE_DRS_SHIFT_PAIR_SOLN;
typedef HA_ARRAY(KHE_DRS_SHIFT_PAIR_SOLN) ARRAY_KHE_DRS_SHIFT_PAIR_SOLN;

struct khe_drs_shift_pair_soln_rec {
struct khe_drs_signature_set_rec sig_set;
KHE_DRS_SHIFT_SOLN dss1;
KHE_DRS_SHIFT_SOLN dss2;

};

Also, the dominance testing is more conventional here, because the assignments are to specific
tasks rather than to mtasks.

After the usual KheDrsShiftPairSolnMake and KheDrsShiftPairSolnFree functions for
creating and freeing a shift pair solution, we have two functions that take us to the heart of things.
First is KheDrsShiftPairSolnSignerSetBuild, which builds a signer set suited to comparing
for dominance two shift pair solutions made from two given shift solutions:

642 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KHE_DRS_SIGNER_SET KheDrsShiftPairSolnSignerSetBuild(
KHE_DRS_SHIFT_SOLN dss1, KHE_DRS_SHIFT_SOLN dss2,
KHE_DRS_SHIFT_PAIR dsp, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SIGNER_SET res; KHE_DRS_TASK_SOLN dts; int i;
KHE_DRS_RESOURCE_ON_DAY drd;

/* make a signer set object */
res = KheDrsSignerSetMake(drs);

/* add resource signers of the resources of dss1 */
KheDrsTaskSolnSetForEach(dss1->task_solns, dts, i)
{
drd = dts.mtask_soln->resource_on_day;
KheDrsSignerSetAddSigner(res, drd->signer);

}

/* add resource signers of the resources of dss2 */
KheDrsTaskSolnSetForEach(dss2->task_solns, dts, i)
{
drd = dts.mtask_soln->resource_on_day;
KheDrsSignerSetAddSigner(res, drd->signer);

}

/* add dsp’s shift pair signer */
KheDrsSignerSetAddSigner(res, dsp->signer);
return res;

}

The signer set contains one signer for each resource assigned by dss1, one signer for each
resource assigned by dss2, and one signer, taken from shift pair object dsp, for the event resource
monitors that monitor the tasks of the two shifts. These are all pre-existing signers; only their
packaging into a single signer set is new.

Next we have KheDrsShiftPairSolnBuild, which creates a shift pair solution object and
builds its signature set:

D.9. Solutions 643

KHE_DRS_SHIFT_PAIR_SOLN KheDrsShiftPairSolnBuild(
KHE_DRS_SHIFT_SOLN dss1, KHE_DRS_SHIFT_SOLN dss2,
KHE_DRS_SHIFT_PAIR dsp, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SHIFT_PAIR_SOLN res; int i; KHE_DRS_TASK_SOLN dts;
KHE_DRS_SIGNATURE sig;

/* make a shift soln object */
res = KheDrsShiftPairSolnMake(dss1, dss2, drs);

/* add resource signatures of the resources of dss1 */
KheDrsTaskSolnSetForEach(dss1->task_solns, dts, i)
KheDrsSignatureSetAddSignature(&res->sig_set,
KheDrsMTaskSolnSignature(dts.mtask_soln), true);

/* add resource signatures of the resources of dss2 */
KheDrsTaskSolnSetForEach(dss2->task_solns, dts, i)
KheDrsSignatureSetAddSignature(&res->sig_set,
KheDrsMTaskSolnSignature(dts.mtask_soln), true);

/* evaluate the shift pair solution signature and add it */
/* sig = KheDrsSignatureMake(drs); */
KheDrsTaskSolnSetLeafSet(dss1->task_solns, true);
KheDrsTaskSolnSetLeafSet(dss2->task_solns, true);
sig = KheDrsSignerEvalSignature(dsp->signer, false,
KheDrsSolnEventResourceSignature(prev_soln),
next_day->open_day_index, /* sig, */ drs, false);

KheDrsSignatureSetAddSignature(&res->sig_set, sig, true);
KheDrsTaskSolnSetLeafClear(dss1->task_solns, false);
KheDrsTaskSolnSetLeafClear(dss2->task_solns, false);
return res;

}

The resource signatures already exist, as usual, but the signature of the event resource monitors
that monitor the two shifts has to be built by evaluating expressions.

Now for the function we really want, for testing dominance between shift pair solutions:

bool KheDrsShiftPairSolnDominates(KHE_DRS_SHIFT_PAIR_SOLN dsps1,
KHE_DRS_SHIFT_PAIR_SOLN dsps2, KHE_DRS_SIGNER_SET signer_set,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
return KheDrsSignerSetDominates(signer_set, &dsps1->sig_set,
&dsps2->sig_set, 0, 0, false, drs);

}

It’s trivial given the work already done to build the signer set and signature sets.

644 Appendix D. Dynamic Programming Resource Reassignment: Implementation

We now switch to the submodule of type KHE_DRS_SHIFT_SOLN_TRIE which constructs
shift pair solutions, calls KheDrsShiftPairSolnDominates to test them for dominance, and
marks any dominated shift pairs. We’ll work backwards through the submodule, starting with
KheDrsShiftSolnTrieFindDominatedShiftPairs , which is called directly from the function
for expanding solution prev_soln and does the job for all pairs of shift pair solutions:

void KheDrsShiftSolnTrieFindDominatedShiftPairs(KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_RESOURCE_SET rs1, rs2; int i, j; KHE_DRS_SHIFT ds1;
bool first; KHE_DRS_SHIFT_PAIR dsp;
rs1 = KheDrsResourceSetMake(drs);
rs2 = KheDrsResourceSetMake(drs);
first = true;
HaArrayForEach(next_day->shifts, ds1, i)
if(ds1->soln_trie != NULL)
HaArrayForEach(ds1->shift_pairs, dsp, j)
if(dsp->shift[1]->soln_trie != NULL)
{
KheDrsShiftSolnTrieFindDominatedShiftPairs1(ds1->soln_trie,
dsp, rs1, rs2, prev_soln, next_day, drs);

first = false;
}

KheDrsResourceSetFree(rs1, drs);
KheDrsResourceSetFree(rs2, drs);

}

By iterating over the shifts of next_day and then over the shift pairs for each shift, this code visits
all shift pairs dsp. It skips shift pairs where either shift has no shift solutions. Then

D.9. Solutions 645

void KheDrsShiftSolnTrieFindDominatedShiftPairs1(
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs1_ds1, KHE_DRS_SHIFT_PAIR dsp,
KHE_DRS_RESOURCE_SET rs1, KHE_DRS_RESOURCE_SET rs2,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i; KHE_DRS_RESOURCE dr;
KHE_DRS_SHIFT_SOLN_TRIE child_dsst, dsst_rs1_ds2;

/* pairs for each of dsst_rs1_ds1’s assignments */
if(HaArrayCount(dsst_rs1_ds1->shift_solns) > 0 &&

KheDrsShiftSolnTrieContains(dsp->shift[1]->soln_trie, rs1, 0,
&dsst_rs1_ds2)
&& HaArrayCount(dsst_rs1_ds2->shift_solns) > 0)

{
HnAssert(KheDrsResourceSetCount(rs2) == 0,

"KheDrsShiftSolnTrieFindDominatedShiftPairs1 internal error");
KheDrsShiftSolnTrieFindDominatedShiftPairs2(dsp->shift[0]->soln_trie,

dsst_rs1_ds1, dsst_rs1_ds2,
dsp, rs1, rs2, prev_soln, next_day, drs);

}

/* pairs for children */
HaArrayForEach(dsst_rs1_ds1->children, child_dsst, i)

if(child_dsst != NULL)
{

dr = KheDrsResourceSetResource(drs->open_resources, i);
KheDrsResourceSetAddLast(rs1, dr);
KheDrsShiftSolnTrieFindDominatedShiftPairs1(child_dsst, dsp,

rs1, rs2, prev_soln, next_day, drs, debug);
KheDrsResourceSetDeleteLast(rs1);

}
}

traverses ds1’s shift solution trie. The variable name ‘dsst_rs1_ds1’means ‘a shift solution trie
node for free resources rs1 and shift ds1’.

The second paragraph calls KheDrsShiftSolnTrieFindDominatedShiftPairs1 for
each non-NULL child recursively, updating rs1 before each recursive call. So this proves that
KheDrsShiftSolnTrieFindDominatedShiftPairs1 visits every node of ds1’s shift solution
trie, setting rs1 correctly for each node.

The first paragraph calls

646 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsShiftSolnTrieContains(KHE_DRS_SHIFT_SOLN_TRIE dsst,
KHE_DRS_RESOURCE_SET rs, int rs_index, KHE_DRS_SHIFT_SOLN_TRIE *res)

{
KHE_DRS_RESOURCE dr; KHE_DRS_SHIFT_SOLN_TRIE child_dsst;
if(dsst == NULL)

return *res = NULL, false;
else if(rs_index >= KheDrsResourceSetCount(rs))

return *res = dsst, true;
else
{

dr = KheDrsResourceSetResource(rs, rs_index);
child_dsst = HaArray(dsst->children, dr->open_resource_index);
return KheDrsShiftSolnTrieContains(child_dsst, rs, rs_index + 1, res);

}
}

to work out whether dsp->shift[1]->soln_trie, the shift solution trie of the second shift, has
a node for solutions for resource set rs1, setting dsst_rs1_ds2 to that node if so. Then if both
nodes,dsst_rs1_ds1 and dsst_rs1_ds2, have at least one shift solution, we proceed to the next
step by calling KheDrsShiftSolnTrieFindDominatedShiftPairs2:

D.9. Solutions 647

void KheDrsShiftSolnTrieFindDominatedShiftPairs2(
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs2_ds1,
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs1_ds1,
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs1_ds2, KHE_DRS_SHIFT_PAIR dsp,
KHE_DRS_RESOURCE_SET rs1, KHE_DRS_RESOURCE_SET rs2,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i; KHE_DRS_RESOURCE dr;
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs2_ds2, child_dsst;

/* pairs for each of dsst_rs2_ds1’s assignments */
if(KheDrsResourceSetCount(rs1) + KheDrsResourceSetCount(rs2) > 0 &&

HaArrayCount(dsst_rs2_ds1->shift_solns) > 0 &&
KheDrsShiftSolnTrieContains(dsp->shift[1]->soln_trie, rs2, 0,

&dsst_rs2_ds2)
&& HaArrayCount(dsst_rs2_ds2->shift_solns) > 0)

KheDrsShiftSolnTrieTestShiftPairs(dsst_rs1_ds1, dsst_rs2_ds2,
dsst_rs1_ds2, dsst_rs2_ds1, dsp, rs1, rs2, prev_soln, next_day, drs);

/* pairs for children */
HaArrayForEach(dsst_rs2_ds1->children, child_dsst, i)

if(child_dsst != NULL)
{

dr = KheDrsResourceSetResource(drs->open_resources, i);
if(!KheDrsResourceSetContains(rs1, dr))
{

KheDrsResourceSetAddLast(rs2, dr);
KheDrsShiftSolnTrieFindDominatedShiftPairs2(child_dsst, dsst_rs1_ds1,

dsst_rs1_ds2, dsp, rs1, rs2, prev_soln, next_day, drs);
KheDrsResourceSetDeleteLast(rs2);

}
}

}

This is like KheDrsShiftSolnTrieFindDominatedShiftPairs1 , except that it traverses all
nodes dsst_rs2_ds1, building rs2 as it goes, and finding the corresponding dsst_rs2_ds2.
However, it only accepts what it finds when at least one of rs1 and rs2 is non-empty, and by the
test !KheDrsResourceSetContains(rs1, dr) it ensures that rs1 and rs2 are disjoint.

The ultimate result here is a call to KheDrsShiftSolnTrieTestShiftPairs, passing it
four nodes, dsst_rs1_ds1, dsst_rs2_ds2, dsst_rs1_ds2, and dsst_rs2_ds1, whose shift
solutions are suited to constructing two shift pair solutions:

648 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsShiftSolnTrieTestShiftPairs(
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs1_ds1,
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs2_ds2,
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs1_ds2,
KHE_DRS_SHIFT_SOLN_TRIE dsst_rs2_ds1,
KHE_DRS_SHIFT_PAIR dsp, KHE_DRS_RESOURCE_SET rs1,
KHE_DRS_RESOURCE_SET rs2, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SHIFT_SOLN dss_rs1_ds1, dss_rs2_ds2, dss_rs1_ds2, dss_rs2_ds1;
int i1, i2, i3, i4; KHE_DRS_SHIFT_PAIR_SOLN dsps1, dsps2;
KHE_DRS_SIGNER_SET signer_set;
signer_set = NULL;
HaArrayForEach(dsst_rs1_ds1->shift_solns, dss_rs1_ds1, i1)

HaArrayForEach(dsst_rs2_ds2->shift_solns, dss_rs2_ds2, i2)
{
dsps1 = KheDrsShiftPairSolnBuild(dss_rs1_ds1, dss_rs2_ds2,
dsp, prev_soln, next_day, drs);

HaArrayForEach(dsst_rs1_ds2->shift_solns, dss_rs1_ds2, i3)
HaArrayForEach(dsst_rs2_ds1->shift_solns, dss_rs2_ds1, i4)
{
dsps2 = KheDrsShiftPairSolnBuild(dss_rs1_ds2, dss_rs2_ds1,

dsp, prev_soln, next_day, drs);
if(signer_set == NULL)

signer_set = KheDrsShiftPairSolnSignerSetBuild(dss_rs1_ds1,
dss_rs2_ds2, dsp, drs);

if(KheDrsShiftPairSolnDominates(dsps1, dsps2, signer_set, drs))
{

HaArrayAddLast(dss_rs1_ds2->skip_assts, dss_rs2_ds1);
HaArrayAddLast(dss_rs2_ds1->skip_assts, dss_rs1_ds2);

}
else if(KheDrsShiftPairSolnDominates(dsps2, dsps1, signer_set, drs))
{

HaArrayAddLast(dss_rs1_ds1->skip_assts, dss_rs2_ds2);
HaArrayAddLast(dss_rs2_ds2->skip_assts, dss_rs1_ds1);

}
KheDrsShiftPairSolnFree(dsps2, drs);

}
KheDrsShiftPairSolnFree(dsps1, drs);

}
if(signer_set != NULL)

KheDrsSignerSetFree(signer_set, drs);
}

Most shift solution trie nodes contain just one shift solution (or none, but nodes with none do not
make it this far). So the four loops, although formally correct, serve in practice to retrieve the
one shift solution of the node. Then KheDrsShiftPairSolnBuild is called twice to make two

D.9. Solutions 649

shift pair solution objects out of the four shift solutions, KheDrsShiftPairSolnDominates is
called both ways to test for dominance, and if dominance is found, the skip_assts fields of the
dominated shift solutions are updated appropriately, so that those shift pair solutions will not be
generated during expansion by shifts.

This code is capable of discovering that a particular shift pair solution is dominated,
and recording that fact, more than once. This does not matter: it does not make the algorithm
incorrect, and dominance is uncommon, so there is little wasted time.

D.9.9. Packed solutions

The solver has a solution type, quite separate from the types we have just seen, called the packed
solution. Despite its name, its purpose is not to save space. Rather it is designed to provide
easy access to the solution’s assignment of open resource i on open day j. Packed solutions only
represent complete solutions, and they are never tested for dominance or inserted into tables.

Packed solutions are used in two ways. First, the initial solution, the one that we want to
improve, is stored in a packed solution, so that if we fail to improve on it we can return to it. This
is like using a mark, except that it returns the whole solver data structure to its initial state, not
just the KHE solution. Function KheDrsResourceOpen (Appendix D.4) builds this solution.

Second, the solver offers the option of rerunning a new best solution as an aid to debugging
(Appendix D.12.4). A packed solution holds the new best solution while the rerun is going on.

Type KHE_DRS_PACKED_SOLN_DAY represents one day of a packed solution:

typedef struct khe_drs_packed_soln_day_rec {
KHE_DRS_DAY day;
ARRAY_KHE_DRS_TASK_ON_DAY prev_tasks;

} *KHE_DRS_PACKED_SOLN_DAY;

typedef HA_ARRAY(KHE_DRS_PACKED_SOLN_DAY) ARRAY_KHE_DRS_PACKED_SOLN_DAY;

The prev_tasks field is exactly as in the corresponding KHE_DRS_SOLN object for this day. Type
KHE_DRS_PACKED_SOLN represents a complete packed solution:

typedef struct khe_drs_packed_soln_rec {
KHE_COST cost;
ARRAY_KHE_DRS_PACKED_SOLN_DAY days;

} *KHE_DRS_PACKED_SOLN;

typedef HA_ARRAY(KHE_DRS_PACKED_SOLN) ARRAY_KHE_DRS_PACKED_SOLN;

It holds the cost of the solution, and an array with one element for each open day.

Packed solutions operations include KheDrsPackedSolnBuildFromSoln, which converts
a complete KHE_DRS_SOLN solution into a packed solution; KheDrsPackedSolnDelete, which
deletes a packed solution using free lists in the usual way; and KheDrsPackedSolnTaskOnDay

and KheDrsPackedSolnSetTaskOnDay, which get and set the assignment of open resource i on
open day j. Their implementations are all straightforward, so are not given here.

650 Appendix D. Dynamic Programming Resource Reassignment: Implementation

D.10. Expansion

This section presents the implementation of the key operation on solutions: expansion. Starting
with a given dk-solution S, expansion creates all the dk+1-solution extensions of S and adds
them to Pk+1, the set of all undominated dk+1-solutions. The actual addition to Pk+1, including
dominance testing between the existing solutions and each new solution, is a separate subject;
here we concentrate on creating the new solutions.

Expansion is implemented by function

void KheDrsSolnExpand(KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs);

Given dk-solution prev_soln whose day dk is prev_day, and day dk+1 next_day, this finds all
dk+1-solution extensions of prev_soln, and adds them, with dominance testing, to next_day’s
solution set. Here prev_soln could be the root solution, which is not on any day, and in that
case prev_day is NULL. However, prev_soln will never be a solution for the last open day, so
next_day is always a well-defined open day.

The implementation is spread over several types. Several of these types X have a submodule
called ‘X - expansion’ following their main submodule, containing X’s part of the expansion
code. However, our presentation here often works top-down, ranging across these submodules
as required. This works better than presenting each type’s expansion code separately.

D.10.1. Expanders

Expansion is always about trying certain assignments, then undoing those and trying others.
These steps are supported by an expander object, of type KHE_DRS_EXPANDER:

typedef struct khe_drs_expander_rec *KHE_DRS_EXPANDER;
typedef HA_ARRAY(KHE_DRS_EXPANDER) ARRAY_KHE_DRS_EXPANDER;

struct khe_drs_expander_rec {
KHE_DYNAMIC_RESOURCE_SOLVER solver;
ARRAY_KHE_DRS_TASK_SOLN task_solns;
ARRAY_KHE_DRS_TASK_SOLN tmp_task_solns;
bool whole_tasks;
bool open;
KHE_COST cost;
KHE_COST cost_limit;
int free_resource_count;
int must_assign_count;
HA_ARRAY_INT marks;

};

Each expansion begins by creating an expander, and ends by freeing it.

Field solver is the enclosing solver. It is not often used, and when it is used it is usually
for something fairly trivial, like access to a free list.

Field task_solns holds the current assignments: task solution objects that the expansion

D.10. Expansion 651

wants to include in the next solution it creates. Field tmp_task_solns is a scratch variable used
by function KheDrsExpanderMakeAndMeldSoln below.

Field whole_tasks changes the meaning given to one task solution when there are
multi-day tasks. When it is false, the task solution represents the assignment of one resource
on day to one task on day. When it is true, although the task solution object itself is the same,
it is interpreted to mean that the task on day’s task is assigned the resource on day’s resource on
every day that the task is running.

Field open is true when the expander can see nothing wrong with the current assignments:
it is ‘open’ to adding zero or more additional assignments to them until a complete solution’s
worth of assignments has been made. Otherwise, there is some problem and expansion should
back out of the point it has reached and try something else: the expander is closed (not open).

Field cost is a lower bound on the cost of any solution containing the current assignments.
We’ll see later how the expander keeps this up to date. Field cost_limit is an upper limit on
how much a solution is allowed to cost. If the assignments chosen by the expansion cause cost
to equal or exceed cost_limit, the expander will close.

As defined in Appendix D.10.3, a free resource is an open resource which is not part of a
fixed assignment. Field free_resource_count holds the number of free resources available
to this expansion and not assigned (not even to a free day) by the current assignments. The
expander handles fixed resources as well, they just don’t affect free_resource_count.

As defined in Appendix D.10.4, a must-assign task is an open task, not part of a fixed
assignment, that the current expansion must assign a resource to, otherwise the cost will be too
great. Field must_assign_count holds the number of must-assign tasks that are part of the
current expansion but are not assigned by the current assignments. The expander handles all
kinds of open tasks, but only must-assign tasks affect must_assign_count.

If free_resource_count < must_assign_count, then there are too few unused free
resources to cover the must-assign tasks that are not currently assigned. The expander will close.
This assumes that all the tasks that are part of the expansion are running on the same day, so that
no resource can be assigned to two of them.

Finally, marks is an array of indexes into the task_solns array. It allows the expander
to mark the point that it has reached and to return to that point, as implemented by functions
KheDrsExpanderMarkBegin and KheDrsExpanderMarkEnd below.

At the start of an expansion, KheDrsExpanderMake is called to make a new expander. But
we’ll start with KheDrsExpanderReset, which resets an expander using fresh attributes:

652 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExpanderReset(KHE_DRS_EXPANDER de, bool whole_tasks,
KHE_COST cost, KHE_COST cost_limit, int free_resource_count,
int must_assign_count)

{
de->whole_tasks = whole_tasks;
de->cost = cost;
de->cost_limit = cost_limit;
de->free_resource_count = free_resource_count;
de->must_assign_count = must_assign_count;
KheDrsExpanderSetOpen(de);

}

KheDrsExpanderSetOpen sets the open field:

void KheDrsExpanderSetOpen(KHE_DRS_EXPANDER de)
{
de->open = de->cost < de->cost_limit &&
de->free_resource_count >= de->must_assign_count;

}

The expander is open if its cost has not reached the limit, and there are enough as-yet-unassigned
free resources to cover the as-yet-unassigned must-assign tasks.

Here now is KheDrsExpanderMake:

D.10. Expansion 653

KHE_DRS_EXPANDER KheDrsExpanderMake(bool whole_tasks, KHE_COST cost,
KHE_COST cost_limit, int free_resource_count, int must_assign_count,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_EXPANDER res;

/* get an expander from scratch or from the free list */
if(HaArrayCount(drs->expander_free_list) > 0)
{
res = HaArrayLastAndDelete(drs->expander_free_list);
HaArrayClear(res->task_solns);
HaArrayClear(res->tmp_task_solns);
HaArrayClear(res->marks);

}
else
{
HaMake(res, drs->arena);
HaArrayInit(res->task_solns, drs->arena);
HaArrayInit(res->tmp_task_solns, drs->arena);
HaArrayInit(res->marks, drs->arena);

}

/* initialize its fields and return it */
res->solver = drs;
KheDrsExpanderReset(res, whole_tasks, cost, cost_limit,
free_resource_count, must_assign_count);

return res;
}

It takes the object from a free list, or makes it from scratch, as usual. KheDrsExpanderReset is
also called directly, to make a fresh start with an existing expander.

At the end of expansion, the expander is freed by a call to KheDrsExpanderFree:

void KheDrsExpanderFree(KHE_DRS_EXPANDER de)
{
HnAssert(HaArrayCount(de->task_solns) == 0,
"KheDrsExpanderFree internal error 1");

HnAssert(HaArrayCount(de->marks) == 0,
"KheDrsExpanderFree internal error 2");

HaArrayAddLast(de->solver->expander_free_list, de);
}

It checks that the expansion ended cleanly, then adds the expander to a free list in the solver.

It is not really safe to access the fields of expander objects outside the expander, other than
solver. Instead there are these small and self-explanatory functions:

654 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExpanderAddCost(KHE_DRS_EXPANDER de, KHE_COST cost)
{
de->cost += cost;
KheDrsExpanderSetOpen(de);

}

void KheDrsExpanderReduceCostLimit(KHE_DRS_EXPANDER de,
KHE_COST cost_limit)

{
if(cost_limit < de->cost_limit)
{
de->cost_limit = cost_limit;
KheDrsExpanderSetOpen(de);

}
}

bool KheDrsExpanderOpenToExtraCost(KHE_DRS_EXPANDER de,
KHE_COST extra_cost)

{
return de->cost + extra_cost < de->cost_limit;

}

void KheDrsExpanderAddMustAssign(KHE_DRS_EXPANDER de)
{
de->must_assign_count++;
KheDrsExpanderSetOpen(de);

}

void KheDrsExpanderDeleteFreeResource(KHE_DRS_EXPANDER de)
{
de->free_resource_count--;
KheDrsExpanderSetOpen(de);

}

int KheDrsExpanderExcessResourceCount(KHE_DRS_EXPANDER de)
{
return de->free_resource_count - de->must_assign_count;

}

To add a task solution object to an expander, the call is

D.10. Expansion 655

void KheDrsExpanderAddTaskSoln(KHE_DRS_EXPANDER de,
KHE_DRS_TASK_SOLN dts)

{
KHE_DRS_SIGNATURE sig; KHE_DRS_TASK dt; KHE_DRS_MTASK_SOLN asst;
int i; KHE_COST cost; int must_assign_count, free_resource_count;
KHE_DRS_RESOURCE dr; /* KHE_DRS_TASK_ON_DAY dtd; */

/* if not open, do nothing */
if(!de->open)

return;

/* if there is a skip count problem, close and do nothing */
if(dts.mtask_soln->skip_count > 0)
{

de->open = false;
return;

}

/* find new must_assign_count, free_resource_count, and cost values */
must_assign_count = de->must_assign_count;
free_resource_count = de->free_resource_count;
cost = de->cost;
if(dts.fixed_dtd != NULL)
{

dt = dts.fixed_dtd->encl_dt;
if(dts.fixed_dtd == HaArrayFirst(dt->days))

cost += dt->asst_cost;
if(dt->expand_role == KHE_DRS_TASK_EXPAND_MUST)

must_assign_count--;
}
sig = KheDrsMTaskSolnSignature(dts.mtask_soln);
cost += sig->cost;
dr = KheDrsTaskSolnResource(dts);
if(dr->expand_role == KHE_DRS_RESOURCE_EXPAND_FREE)

free_resource_count--;

/* if there is a problem with the values just found, close and return */
if(cost >= de->cost_limit || free_resource_count < must_assign_count)
{

de->open = false;
return;

}

... code omitted here, see below ...
}

First, if the expander is already closed, it returns immediately. If the new assignment should not

656 Appendix D. Dynamic Programming Resource Reassignment: Implementation

be used, because it has a non-zero skip_count field, the expander closes and returns. Otherwise,
it finds the effect of the new assignment on must_assign_count, free_resource_count,
and cost. If the assignment is to a task (i.e. not to a free day), the cost increases by the cost
of that assignment unless this is not the task’s first day, and if the task is a must-assign task,
must_assign_count decreases by one. Whatever the resource is assigned to, cost increases by
the cost of the assignment’s resource monitors signature, and if the assignment involves a free
resource, then the free resource count decreases by one. If these new values lead to problems,
the expander closes and returns.

If we get past all that, the expander can accept the new assignment and remain open:

/* no problems with the addition; change the state of de */
de->must_assign_count = must_assign_count;
de->free_resource_count = free_resource_count;
de->cost = cost;
HaArrayAddLast(de->task_solns, dts);

/* increment the skip counts of the skip_assts */
HaArrayForEach(dts.mtask_soln->skip_assts, asst, i)
asst->skip_count++;

/* update dtd’s leaf expressions */
KheDrsTaskSolnLeafSet(dts, de->whole_tasks);

It assigns the new values to the must_assign_count, free_resource_count, and cost fields,
and adds dts to de->task_solns. It then increments the skip count fields of dts’s skip list, as
required, and ends by informing the task on day objects affected by dts that dts is now in force,
by a call to KheDrsTaskSolnLeafSet (Appendix D.9.4).

There is also function KheDrsExpanderAddTaskSolnSet, which adds a whole set of task
solutions to the expander by calling KheDrsExpanderAddTaskSoln on each:

void KheDrsExpanderAddTaskSolnSet(KHE_DRS_EXPANDER de,
KHE_DRS_TASK_SOLN_SET dtss, KHE_DRS_SHIFT ds)

{
KHE_DRS_TASK_SOLN dts; int i;
if(ds != NULL)
{
KheDrsTaskSolnSetForEach(dtss, dts, i)
if(KheDrsTaskSolnShift(dts) == ds)
KheDrsExpanderAddTaskSoln(de, dts);

}
else
KheDrsTaskSolnSetForEach(dtss, dts, i)
KheDrsExpanderAddTaskSoln(de, dts);

}

If ds is non-NULL, only those elements of dtss which assign tasks from shift ds are added.

When a task solution is no longer required, the next function removes it, assuming that it

D.10. Expansion 657

has already been removed from de->assts_to_tasks:

void KheDrsExpanderDoDeleteTaskSoln(KHE_DRS_EXPANDER de,
KHE_DRS_TASK_SOLN dts)

{
KHE_DRS_SIGNATURE sig; KHE_DRS_TASK dt; KHE_DRS_RESOURCE dr;
int i; KHE_DRS_MTASK_SOLN asst;

/* update dtd’s leaf expressions */
KheDrsTaskSolnLeafClear(dts, de->whole_tasks);

/* decrement the skip counts of the skip_assts */
HaArrayForEach(dts.mtask_soln->skip_assts, asst, i)
asst->skip_count--;

/* update cost, must_assign_count, and free_resource_count fields */
if(dts.fixed_dtd != NULL)
{
dt = dts.fixed_dtd->encl_dt;
if(dts.fixed_dtd == HaArrayFirst(dt->days))
de->cost -= dt->asst_cost;

if(dt->expand_role == KHE_DRS_TASK_EXPAND_MUST)
de->must_assign_count++;

}
sig = KheDrsMTaskSolnSignature(dts.mtask_soln);
de->cost -= sig->cost;
dr = KheDrsTaskSolnResource(dts);
if(dr->expand_role == KHE_DRS_RESOURCE_EXPAND_FREE)
de->free_resource_count++;

}

This reverses the state changes made by KheDrsExpanderAddTaskSoln. It is called only by
KheDrsExpanderMarkEnd (see below), never directly by any expansion.

Expansion algorithms need to say ‘remember the assignments we have now; we’ll return to
them later’. For this we have KheDrsExpanderMarkBegin and KheDrsExpanderMarkEnd:

void KheDrsExpanderMarkBegin(KHE_DRS_EXPANDER de)
{
HaArrayAddLast(de->marks, HaArrayCount(de->assts_to_tasks));

}

658 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsExpanderMarkEnd(KHE_DRS_EXPANDER de)
{
int prev_count; KHE_DRS_TASK_SOLN dts;
HnAssert(HaArrayCount(de->marks) > 0,
"KheDrsExpanderMarkEnd internal error");

prev_count = HaArrayLastAndDelete(de->marks);
while(HaArrayCount(de->task_solns) > prev_count)
{
dts = HaArrayLastAndDelete(de->task_solns);
KheDrsExpanderDoDeleteTaskSoln(de, dts);

}
KheDrsExpanderSetOpen(de);

}

KheDrsExpanderMarkBegin remembers the number of assignments; KheDrsExpanderMarkEnd
returns the expander to them by popping assignments off the task_solns array and removing
them. The expander does not have to be open when KheDrsExpanderMarkBegin is called, so
KheDrsExpanderSetOpen is called to set the correct value of open.

Expansions can test whether the expander is open:

bool KheDrsExpanderIsOpen(KHE_DRS_EXPANDER de)
{
return de->open;

}

to find out whether they should continue down the current path.

The expander also offers a function which makes a new day solution object and melds it into
a solution set:

D.10. Expansion 659

void KheDrsExpanderMakeAndMeldSoln(KHE_DRS_EXPANDER de,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day)

{
KHE_DRS_SOLN next_soln; KHE_DRS_TASK_SOLN dts, junk; int i, ri;
KHE_DRS_SIGNATURE sig, prev_sig; KHE_DRS_SIGNER dsg;

/* make a soln object */
next_day->soln_made_count++;
next_soln = KheDrsSolnMake(prev_soln, de->cost, de->solver);

/* make sure de->tmp_task_solns has the right length */
if(HaArrayCount(de->tmp_task_solns) != HaArrayCount(de->task_solns))
{

HaArrayClear(de->tmp_task_solns);
junk = KheDrsTaskSolnMake(NULL, NULL);
HaArrayFill(de->tmp_task_solns, HaArrayCount(de->task_solns), junk);

}

/* reorder de->task_solns into de->tmp_task_solns */
HaArrayForEach(de->task_solns, dts, i)
{

ri = KheDrsResourceOnDayIndex(dts.mtask_soln->resource_on_day);
HaArrayPut(de->tmp_task_solns, ri, dts);

}

/* add each dts’s task and signature (but not its cost) to soln */
HaArrayForEach(de->tmp_task_solns, dts, i)
{

HaArrayAddLast(next_soln->prev_tasks, dts.fixed_dtd);
KheDrsSignatureSetAddSignature(&next_soln->sig_set, dts.mtask_soln->sig,
false);

}

/* set the event resource monitor part of next_soln’s signature set */
/* this last signature will be freed when next_soln is freed */
dsg = HaArrayLast(next_day->signer_set->signers);
if(HaArrayCount(prev_soln->sig_set.signatures) > 0)

prev_sig = HaArrayLast(prev_soln->sig_set.signatures);
else

prev_sig = NULL; /* prev_soln is root, so prev_sig won’t be accessed */
sig = KheDrsSignerEvalSignature(dsg, true, prev_sig, next_day->open_day_index,

de->solver, false);
KheDrsSignatureSetAddSignature(&next_soln->sig_set, sig, true);

/* depending on cost, either add next_soln to next_day or free it */
if(KheDrsSolnCost(next_soln) < de->cost_limit)

KheDrsSolnSetMeldSoln(next_day->soln_set, next_soln, next_day, de,
de->solver);

else
KheDrsSolnFree(next_soln, de->solver);

}

660 Appendix D. Dynamic Programming Resource Reassignment: Implementation

The first step here is to make a new KHE_DRS_SOLN object, next_soln. Then, after ensuring that
de->tmp_task_solns has the same length as de->task_solns, the assignment to task objects
are copied into de->tmp_task_solns, reordering them into open resource index order. It is
then easy to copy them into next_soln->prev_tasks, and also to add in their signatures’states.
After that, the signatures of the solution’s event resource monitors are added in, and finally the
new solution is either melded into next_day’s solution set (if its cost is competitive) or freed.

A logically similar but much shorter function makes a new KHE_DRS_SHIFT_SOLN object
and melds it into the set of shift assignment objects held in shift solution trie node dsst:

void KheDrsExpanderMakeAndMeldShiftSoln(KHE_DRS_EXPANDER de,
KHE_DRS_SHIFT_SOLN_TRIE dsst, KHE_DRS_SHIFT ds,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day)

{
KHE_DRS_SHIFT_SOLN dss; int i; KHE_DRS_TASK_SOLN dts;
KHE_DRS_SIGNATURE prev_sig;

/* make dss and add de’s non-fixed assignments to tasks to it */
dss = KheDrsShiftSolnMake(de->solver);
HaArrayForEach(de->task_solns, dts, i)

if(!KheDrsTaskSolnIsFixed(dts))
KheDrsTaskSolnSetAddLast(dss->task_solns, dts);

/* set dss’s signature and cost */
if(prev_soln != NULL)

prev_sig = HaArrayLast(prev_soln->sig_set.signatures);
else

prev_sig = NULL; /* prev_soln is root, so prev_sig won’t be accessed */
dss->sig = KheDrsSignerEvalSignature(ds->signer, false, prev_sig,

next_day->open_day_index, de->solver, DEBUG52(prev_day, ds));
KheDrsSignatureRefer(dss->sig);

/* depending on cost, either add dss to dsst or free it */
if(KheDrsSolnCost(prev_soln) + dss->sig->cost < de->cost_limit)

KheDrsShiftSolnTrieMeldShiftSoln(dsst, dss, ds->signer, de->solver);
else

KheDrsShiftSolnFree(dss, de->solver);
}

The function begins by making a new shift solution object. It just copies the task solutions
into the new object; their order there does not matter. Only non-fixed tasks are stored in shift
solution objects; we’ll defer the reason for this until we come to study expansion by shifts. Then
a signature is calculated for the event resource monitors only, as required in shift solution objects,
and finally the new object is either melded into dsst’s list of shift solution objects (if its cost is
competitive) by KheDrsShiftSolnTrieMeldShiftSoln (Appendix D.9.7). or else it is freed.

D.10. Expansion 661

D.10.2. The main solution expansion function

We begin our top-down presentation at the top, with function KheDrsSolnExpand. We’ll be
examining the functions it calls later; for now the idea is to get an overview.

KheDrsSolnExpand is too big for one page, so we’ve broken it into chunks:

void KheDrsSolnExpand(KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day,
KHE_DRS_DAY next_day, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i, j, k; KHE_DRS_RESOURCE dr; KHE_DRS_EXPANDER de, shift_de;
KHE_DRS_SHIFT ds, ds2; KHE_DRS_RESOURCE_SET free_resources;
KHE_DRS_TASK_SOLN_SET fixed_assts; KHE_DRS_TASK_SOLN asst;

... see the five chunks of code below ...
}

As described previously, given dk-solution prev_soln whose day dk is prev_day, and day dk+1
next_day, this finds all dk+1-solution extensions of prev_soln, and adds them, with dominance
testing, to next_day’s solution set. Here prev_soln could be the root solution, which is not on
any day, and in that case prev_day is NULL. However, prev_soln will never be a solution for
the last open day, so next_day is always a well-defined open day.

Here is the first chunk of code:

/* check on and update the number of expansions from prev_day */
if(prev_day != NULL)
{
if(drs->solve_daily_expand_limit > 0 &&

prev_day->solve_expand_count >= drs->solve_daily_expand_limit)
return;

prev_day->solve_expand_count += 1;
}

/* mark prev_soln as expanded */
KheDrsSolnMarkExpanded(prev_soln);

The solver offers an option to limit the number of expansions carried out on each day. If this
option is in effect (if drs->solve_daily_expand_limit > 0) then KheDrsSolnExpand returns
immediately if the limit has been reached. Then KheDrsSolnMarkExpanded is called to set the
priority queue back index of prev_soln to -1, to indicate that prev_soln has been expanded.

The second chunk of code does some setting up for expansion:

662 Appendix D. Dynamic Programming Resource Reassignment: Implementation

/* make the main expander */
de = KheDrsExpanderMake(false, KheDrsSolnCost(prev_soln),
drs->solve_init_cost, KheDrsResourceSetCount(drs->open_resources),

0, drs);

/* begin expansion in each open resource */
free_resources = KheDrsResourceSetMake(drs);
fixed_assts = KheDrsTaskSolnSetMake(drs);
KheDrsResourceSetForEach(drs->open_resources, dr, i)
KheDrsResourceExpandBegin(dr, prev_soln, next_day, free_resources,
fixed_assts, de);

KheDrsResourceSetForEach(free_resources, dr, i)
KheDrsResourceExpandBeginFree(dr, prev_soln, next_day, de);

/* begin expansion in next_day and its shifts */
KheDrsDayExpandBegin(next_day, prev_soln, prev_day, de);

/* set up for mtask soln and mtask pair soln dominance, if requested */
if(drs->solve_extra_selection)
{
KheDrsMTaskSolnDominanceInit(drs);
KheDrsMTaskPairSolnDominanceInit(drs);

}

The first step here is to create an expander. Its initial cost is KheDrsSolnCost(prev_soln).
Its initial cost_limit is drs->solve_init_cost, the cost of the solution that we are trying
to improve on. Its initial free_resource_count is the number of open resources, but the
following calls to KheDrsResourceExpandBegin will reduce that to the number of free resources
(open resources not subject to fixed assignments). And its initial must_assign_count is 0, but
KheDrsDayExpandBegin will increase that as it discovers must-assign tasks.

The next step is to create two sets: free_resources, which will grow from its initial empty
value to hold the set of all open resources not subject to a fixed assignment on next_day, and
fixed_assts, which will grow from its initial empty value to hold the set of all fixed assignments
of open resources on next_day.

After that, for each open resource dr we call KheDrsResourceExpandBegin to inform dr

that an expansion is beginning. We’ll see this function later. Among other jobs it either adds dr
to free_resources or else it adds dr’s fixed assignment to fixed_assts.

Next we call KheDrsResourceExpandBeginFree for each free resource. We’ll see why
we visit the free resources a second time like this, rather than doing all the work just once in
KheDrsResourceExpandBegin, when we study these two functions in detail.

Next we call KheDrsDayExpandBegin to inform next_day that an expansion is beginning.
Then mtask solution dominance and mtask pair solution dominance are initialized if requested.

The third chunk of code is concerned with setting up for expansion by shifts:

D.10. Expansion 663

if(drs->solve_expand_by_shifts)
{

/* initialize shift solution tries */
shift_de = KheDrsExpanderMake(true, 0, 0, 0, 0, drs);
HaArrayForEach(next_day->shifts, ds, i)

KheDrsShiftBuildShiftSolnTrie(ds, prev_soln, prev_day, next_day,
free_resources, fixed_assts, shift_de, drs);

KheDrsExpanderFree(shift_de);

/* find forced assignments, prune shift solutions invalidated by them */
HaArrayForEach(next_day->shifts, ds, i)

KheDrsResourceSetForEach(drs->open_resources, dr, j)
if(KheDrsShiftSolnTrieResourceIsForced(ds->soln_trie, dr))
{

/* dr is forced in ds, so prune it from the others */
HaArrayForEach(next_day->shifts, ds2, k)

if(ds2 != ds)
KheDrsShiftSolnTriePruneForced(ds2->soln_trie, dr, drs);

}

/* find pairs of dominated shifts on next_day */
KheDrsShiftSolnTrieFindDominatedShiftPairs(prev_soln, next_day, drs);

}

This begins by calling KheDrsShiftBuildShiftSolnTrie for each shift on next_day, to build
the shift solution trie for that shft. Here shift_de is a scratch expander which is reset each time
an expander is needed.

If all assignments to a shift s demand some resource r, then r is not available for assignment
to any other shift. KheDrsShiftSolnTrieResourceIsForced checks this condition for one shift
and one resource, and if it is true, KheDrsShiftSolnTriePruneForced removes all assignments
containing that resource from other shift solution tries.

Then KheDrsShiftSolnTrieFindDominatedShiftPairs is called to initialize for shift
pair dominance. This will prevent pairs of shift solutions being chosen that have previously been
shown to be uncompetitive.

The fourth chunk of code carries out the expansion proper:

664 Appendix D. Dynamic Programming Resource Reassignment: Implementation

/* carry out the main part of the expansion */
KheDrsExpanderMarkBegin(de);
KheDrsExpanderAddTaskSolnSet(de, fixed_assts, NULL);
if(KheDrsExpanderIsOpen(de))
{

if(drs->solve_expand_by_shifts)
KheDrsSolnExpandByShifts(prev_soln, next_day, de, free_resources, 0);

else
KheDrsSolnExpandByResources(prev_soln, prev_day, next_day, de,

free_resources, 0);
}
KheDrsExpanderMarkEnd(de);

The fixed assignments are added to the expander, and then the free ones are assigned by calling
KheDrsSolnExpandByShifts or KheDrsSolnExpandByResources, if the expander is open.

Finally, the fifth and last chunk of code finishes the expansion by ending expansion in
next_day and in the open resources, and freeing the two sets and the expander:

/* end expansion in next_day and in the open resources */
KheDrsDayExpandEnd(next_day, de);
KheDrsResourceSetForEach(drs->open_resources, dr, i)
KheDrsResourceExpandEnd(dr, de);

KheDrsResourceSetFree(free_resources, drs);

/* free fixed_assts and the expander and return */
KheDrsTaskSolnSetForEach(fixed_assts, asst, i)
if(asst.fixed_dtd != NULL)
asst.fixed_dtd->encl_dt->expand_role = KHE_DRS_TASK_EXPAND_NO;

KheDrsTaskSolnSetFree(fixed_assts, drs);
KheDrsExpanderFree(de);

The assignments to expand_role should be encapsulated in some logically defined function.

D.10.3. Initializing resources for expansion

In this section we present the code that sets up each open resource for expansion and clears it back
again at the end. We start with the fields of KHE_DRS_RESOURCE concerned with expansion:

struct khe_drs_resource_rec {
...
KHE_DRS_RESOURCE_EXPAND_ROLE expand_role;
ARRAY_KHE_DRS_SIGNATURE expand_signatures;
ARRAY_KHE_DRS_MTASK_SOLN expand_mtask_solns;
KHE_DRS_MTASK_SOLN expand_free_mtask_soln;
KHE_DRS_DIM2_TABLE expand_dom_test_cache;

};

These fields appear in type KHE_DRS_RESOURCE rather than, say, KHE_DRS_RESOURCE_ON_DAY

D.10. Expansion 665

because the algorithm is single-threaded and there is only one expansion going on at any given
moment, so only one value of these fields is needed for a given resource at any given moment.

Field expand_role has type

typedef enum {
KHE_DRS_RESOURCE_EXPAND_NO,
KHE_DRS_RESOURCE_EXPAND_FIXED,
KHE_DRS_RESOURCE_EXPAND_FREE

} KHE_DRS_RESOURCE_EXPAND_ROLE;

and records the role that this resource (call it r) takes in the current expansion, as follows.

KHE_DRS_RESOURCE_EXPAND_NO: there is no expansion in progress, or there is one but r is
not an open resource, so it does not participate in it.

KHE_DRS_RESOURCE_EXPAND_FIXED: there is an expansion in progress, r is open so it
participates in it, and r must be assigned by it to a specific task. Usually this will be because that
task is a multi-day task and r was assigned to it on its first day. KheDrsResourceOnDayIsFixed
(see below) has the full story. We say that the resource is fixed.

KHE_DRS_RESOURCE_EXPAND_FREE: neither of the other cases applies: an expansion is in
progress, r is open so it participates in it, but r is not fixed to any specific task, and indeed need
not be assigned at all. We say that the resource is free.

By definition, the tasks of one shift have the same busy times and workload. Assigning r to
any one of them has the same effect on r’s resource monitors. For each open resource and each
shift on the next_day of the expansion, there is a single KHE_DRS_SIGNATURE object holding this
common resource signature. There is also one signature for a free day. All these signatures are
kept in the expand_signatures field of the resource, in arbitrary order.

Field expand_mtask_solns contains the mtask solution objects open to dr on next_day.
Typically this will be one per mtask plus one denoting a free day. If dr is fixed there will be just
the one mtask soution. Again, these mtask solutions appear in arbitrary order. As we’ll see, they
get sorted into non-decreasing cost order. This simple heuristic helps expand by resources to find
better solutions earlier, which somewhat reduces running time.

Field expand_free_mtask_soln contains the free day element of expand_mtask_solns.
If a free day is not possible for any reason, expand_free_mtask_soln is NULL.

Finally, expand_dom_test_cache is an optional cache containing the results of dominance
tests between pairs of elements of expand_mtask_solns. The intention is to speed up domi-
nance testing in these cases, but the author has not observed any significant speedup.

Our first function is KheDrsResourceOnDayIsFixed, a helper function, called only by
KheDrsResourceExpandBegin, which finds whether a resource is fixed and if so to what:

666 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsResourceOnDayIsFixed(KHE_DRS_RESOURCE_ON_DAY drd,
KHE_DRS_SOLN soln, KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_DRS_TASK_ON_DAY *dtd)

{
KHE_DRS_TASK_ON_DAY dtd1, dtd2;

/* if this is a rerun, that fixes the assignment */
if(RERUN && drs->rerun != NULL)
return *dtd = KheDrsPackedSolnTaskOnDay(drs->rerun, drd->day,

drd->encl_dr), true;

/* if drd has a closed assignment, it’s fixed to that */
if(drd->closed_dtd != NULL)
return *dtd = drd->closed_dtd, true;

/* if drd’s resource is assigned to a task in soln which is still */
/* running, then drd is fixed to that */
if(KheDrsSolnResourceIsAssigned(soln, drd->encl_dr, &dtd1) &&

KheDrsTaskBusyOnDay(dtd1->encl_dt, drd->day, &dtd2))
return *dtd = dtd2, true;

/* otherwise drd has no fixed assignment */
return *dtd = NULL, false;

}

First, some runs are reruns and for them the resource on day is fixed to a task on day that may
be retrieved from the drs->rerun object (Appendix D.12.4). Second, even if the resource and
day are open, there could still be a closed assignment, usually arising from a multi-day task,
which is only opened if all the days it is running are open. Third, the resource could also have
been assigned to a multi-day task yesterday (in soln); if so it must continue with that task
today. KheDrsSolnResourceIsAssigned returns true if the resource is busy in soln, and
KheDrsTaskBusyOnDay returns true if the task it is busy with then is still running. This is where
the solver fails to handle tasks which run on multiple days but with gaps in the days: it looks for
assignments to multi-day tasks only on the previous day.

KheDrsResourceExpandBegin begins the job of initializing the fields we saw earlier:

D.10. Expansion 667

void KheDrsResourceExpandBegin(KHE_DRS_RESOURCE dr,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day,
KHE_DRS_RESOURCE_SET free_resources,
KHE_DRS_TASK_SOLN_SET fixed_assts, KHE_DRS_EXPANDER de)

{
KHE_DRS_TASK_ON_DAY fixed_dtd; KHE_DRS_RESOURCE_ON_DAY drd;
KHE_DRS_TASK_SOLN dts; KHE_DRS_MTASK_SOLN dms;
KHE_DRS_TASK dt; KHE_DRS_SIGNATURE prev_sig, sig;

/* add signatures, and assignments to mtasks */
drd = KheDrsResourceOnDay(dr, next_day);
if(KheDrsResourceOnDayIsFixed(drd, prev_soln, de->solver, &fixed_dtd))
{

/* mark the resource as fixed, and inform the expander */
dr->expand_role = KHE_DRS_RESOURCE_EXPAND_FIXED;
KheDrsExpanderDeleteFreeResource(de);

/* fixed assignment to fixed_dtd; make and add sasst and dms */
/* NB the optional addition is forced here, so sig is always referred to */
prev_sig = HaArray(prev_soln->sig_set.signatures, dr->open_resource_index);
sig = KheDrsResourceSignatureMake(drd, fixed_dtd, prev_sig, de->solver);
dms = KheDrsResourceOptionallyAddMTaskSoln(sig, drd, NULL, fixed_dtd,
true, de);

KheDrsResourceAddExpandSignature(dr, sig);

/* mark the task as fixed */
if(fixed_dtd != NULL)
{
dt = fixed_dtd->encl_dt;
HnAssert(dt->expand_role == KHE_DRS_TASK_EXPAND_NO,
"KheDrsResourceExpandBegin internal error 4 (role %s)",
KheDrsTaskExpandRoleShow(dt->expand_role));

dt->expand_role = KHE_DRS_TASK_EXPAND_FIXED;
}

/* make dts and add to fixed_assts */
dts = KheDrsTaskSolnMake(dms, fixed_dtd);
KheDrsTaskSolnSetAddLast(fixed_assts, dts);

/* and build dominance cache */
KheDrsResourceBuildDominanceTestCache(dr, drd, de->solver);

}
else
{

/* mark the resource as free */
dr->expand_role = KHE_DRS_RESOURCE_EXPAND_FREE;

/* add dr to free_resources */
KheDrsResourceSetAddLast(free_resources, dr);

}
}

668 Appendix D. Dynamic Programming Resource Reassignment: Implementation

KheDrsResourceOnDayIsFixed says whether dr is subject to a fixed assignment or not. If it is,
then the full initialization of dr is done here; we’ll explain the details in a moment. If it isn’t,
then just the minimum is done here, marking dr as free and adding it to free_resources, the set
of all free resources, leaving the rest to a later call to KheDrsResourceExpandBeginFree.

When dr has a fixed assignment,dr’s role is set to fixed, and the expander is told that there is
one fewer free resource than previously thought. A signature and mtask solution object are made
for the fixed assignment and added to dr; we’ll see the functions that do this in a moment. Then
the enclosing task is marked as fixed, a task solution object is made and added to fixed_assts,
and the dominance test cache (field expand_dom_test_cache) is initialized.

The code goes to some trouble to store only signatures and mtask solution objects
that are actually useful. For a fixed assignment this is not needed, but it is done anyway,
as follows. The call to KheDrsResourceSignatureMake makes a new signature object.
Then KheDrsResourceOptionallyAddMTaskSoln makes and adds an mtask solution to
dr->expand_mtask_solns, and returns it:

KHE_DRS_MTASK_SOLN KheDrsResourceOptionallyAddMTaskSoln(
KHE_DRS_SIGNATURE sig, KHE_DRS_RESOURCE_ON_DAY drd, KHE_DRS_MTASK dmt,
KHE_DRS_TASK_ON_DAY fixed_dtd, bool force, KHE_DRS_EXPANDER de)

{
KHE_DRS_MTASK_SOLN res;
if(force || KheDrsExpanderOpenToExtraCost(de, sig->cost))
{
res = KheDrsMTaskSolnMake(sig, drd, dmt, fixed_dtd, de->solver);
HaArrayAddLast(drd->encl_dr->expand_mtask_solns, res);
return res;

}
else
return NULL;

}

If KheDrsExpanderOpenToExtraCost(de, sig->cost) is false, a solution that uses this
assignment has cost larger than the cost we are trying to improve on, so there is no point in
creating the assignment object. This happens, for example, when the assignment violates a hard
resource constraint. So nothing is created. Otherwise, the assignment is created and added to
dr->expand_mtask_solns.

As an exception, the assignment object is created anyway when force is true. This is for
fixed assignments, which our algorithm needs an assignment for, even if it is not competitive.

For adding the new signature to the resource, the call is

void KheDrsResourceAddExpandSignature(KHE_DRS_RESOURCE dr,
KHE_DRS_SIGNATURE sig)

{
HaArrayAddLast(dr->expand_signatures, sig);
KheDrsSignatureRefer(sig);

}

D.10. Expansion 669

This keeps sig’s reference count up to date, as required.

After KheDrsResourceExpandBegin has been called for each of the open resources,
KheDrsSolnExpand calls this function on each free resource:

void KheDrsResourceExpandBeginFree(KHE_DRS_RESOURCE dr,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de)

{
int i, j; KHE_DRS_RESOURCE_ON_DAY drd; KHE_DRS_TASK_ON_DAY dtd;
KHE_DRS_MTASK dmt; KHE_DRS_SHIFT ds; KHE_DRS_SIGNATURE prev_sig, sig;

/* unfixed assignment; make signatures and mtask solns as required */
HnAssert(dr->expand_role == KHE_DRS_RESOURCE_EXPAND_FREE,

"KheDrsResourceExpandBeginFree internal error");
drd = KheDrsResourceOnDay(dr, next_day);
prev_sig = HaArray(prev_soln->sig_set.signatures, dr->open_resource_index);
HaArrayForEach(next_day->shifts, ds, i)
{

sig = NULL;
HaArrayForEach(ds->open_mtasks, dmt, j)
if(KheDrsMTaskAcceptResourceBegin(dmt, drd, &dtd))
{
if(sig == NULL)
sig = KheDrsResourceSignatureMake(drd, dtd, prev_sig, de->solver);

KheDrsResourceOptionallyAddMTaskSoln(sig, drd, dmt, NULL, false, de);
KheDrsMTaskAcceptResourceEnd(dmt, dtd);

}
if(sig != NULL && !KheDrsSignatureOptionallyFree(sig, de->solver))
KheDrsResourceAddExpandSignature(dr, sig);

}

/* make one signature and mtask soln for a free day */
sig = KheDrsResourceSignatureMake(drd, NULL, prev_sig, de->solver);
dr->expand_free_mtask_soln =

KheDrsResourceOptionallyAddMTaskSoln(sig, drd, NULL, NULL, false, de);
if(!KheDrsSignatureOptionallyFree(sig, de->solver)) /* yes, we need this */

KheDrsResourceAddExpandSignature(dr, sig);

/* sort expand_mtask_solns by increasing cost and keep only the best */
KheDrsSortAndReduceMTaskSolns(dr, de->solver);

/* move any unavoidable cost into the expander */
KheDrsResourceAdjustSignatureCosts(dr, de);

/* add a dominance test cache */
KheDrsResourceBuildDominanceTestCache(dr, drd, de->solver);

}

670 Appendix D. Dynamic Programming Resource Reassignment: Implementation

Since dr is free, any mtask from any shift is a possible assignment, as is a free day. So this code
iterates over all shifts and their mtasks, adding mtask solution objects where they are feasible,
including for a free day, and signature objects where they are used.

At the end come two adjustments to the mtask solution objects. First is

void KheDrsSortAndReduceMTaskSolns(KHE_DRS_RESOURCE dr,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_MTASK_SOLN dms, dms2; KHE_DRS_SIGNATURE sig, sig2;

/* sort the mtask solutions by increasing cost */
HaArraySort(dr->expand_mtask_solns, &KheDrsMTaskSolnCmp);

/* if there is a resource expand limit and it will make a difference here */
if(drs->solve_resource_expand_limit > 0 &&

drs->solve_resource_expand_limit < HaArrayCount(dr->expand_mtask_solns))
{

/* find dms, a signature with the largest cost that we want to keep */
dms = HaArray(dr->expand_mtask_solns, drs->solve_resource_expand_limit-1);
sig = KheDrsMTaskSolnSignature(dms);

/* delete and free all signatures whose cost exceeds dms’s */
dms2 = HaArrayLast(dr->expand_mtask_solns);
sig2 = KheDrsMTaskSolnSignature(dms2);
while(sig2->cost > sig->cost)
{
HaArrayDeleteLast(dr->expand_mtask_solns);
if(dms2 == dr->expand_free_mtask_soln)
dr->expand_free_mtask_soln = NULL;

KheDrsMTaskSolnFree(dms2, drs);
dms2 = HaArrayLast(dr->expand_mtask_solns);
sig2 = KheDrsMTaskSolnSignature(dms2);

}
}

}

This sorts the newly created mtask solution objects by increasing cost (their order does not
matter). This is useful because it means that lower cost solutions are tried first. After that, if the
solve_resource_expand_limit user option is in use (if its value is positive), it removes some
of the assignments, the most costly ones, until the number remaining is approximately equal to
solve_resource_expand_limit. Of course, this destroys the optimality guarantee.

The other function called at the end of KheDrsResourceExpandBeginFree is

D.10. Expansion 671

void KheDrsResourceAdjustSignatureCosts(KHE_DRS_RESOURCE dr,
KHE_DRS_EXPANDER de)

{
KHE_COST movable_cost; int i;
KHE_DRS_MTASK_SOLN dms; KHE_DRS_SIGNATURE sig;
if(HaArrayCount(dr->expand_mtask_solns) > 0)
{
dms = HaArrayFirst(dr->expand_mtask_solns);
movable_cost = dms->sig->cost;
KheDrsExpanderAddCost(de, movable_cost);
HaArrayForEach(dr->expand_signatures, sig, i)
{
sig->cost -= movable_cost;
HnAssert(sig->cost >= 0,
"KheDrsResourceAdjustSignatureCosts internal error");

}
}

}

At least one of dr’s assignments must be used, even when dr is assigned a free day, and so, since
the assignment to mtask objects are now sorted by non-decreasing cost, a cost at least equal
to the cost of the first of them must be incurred. The code finds this cost and moves it out of
the signatures and into the expander. This has zero net effect on cost, but a higher cost in the
expander may lead to more pruning.

So much for starting off an expansion. Here is the function, called at the end of expansion,
for clearing away the fields used by the expansion:

672 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsResourceExpandEnd(KHE_DRS_RESOURCE dr, KHE_DRS_EXPANDER de)
{
KHE_DRS_MTASK_SOLN dms;

/* mark the resource as not involved in any expansion */
dr->expand_role = KHE_DRS_RESOURCE_EXPAND_NO;

/* clear out the dominance test cache */
if(USE_DOM_CACHING)
KheDrsDim2TableClear(dr->expand_dom_test_cache, de->solver);

/* clear signatures */
KheDrsResourceClearExpandSignatures(dr, de->solver);

/* clear assignments to mtasks */
while(HaArrayCount(dr->expand_mtask_solns) > 0)
{
dms = HaArrayLastAndDelete(dr->expand_mtask_solns);
KheDrsMTaskSolnFree(dms, de->solver);

}
dr->expand_free_mtask_soln = NULL;

}

This puts these fields into the state assumed at the start of the next expansion.

D.10.4. Initializing days, shifts, mtasks, and tasks for expansion

This section presents the code for setting up days, shifts, mtasks, and tasks for expansion.

Type KHE_DRS_TASK has one field relevant to expansion:

struct khe_drs_task_rec {
...
KHE_DRS_TASK_EXPAND_ROLE expand_role;

};

Its type is

typedef enum {
KHE_DRS_TASK_EXPAND_NO,
KHE_DRS_TASK_EXPAND_FIXED,
KHE_DRS_TASK_EXPAND_MUST,
KHE_DRS_TASK_EXPAND_FREE

} KHE_DRS_TASK_EXPAND_ROLE;

This defines the role that this task (call it t) has in the current expansion, as follows.

KHE_DRS_TASK_EXPAND_NO: there is no expansion in progress, or there is one but t does not
participate in it.

D.10. Expansion 673

KHE_DRS_TASK_EXPAND_FIXED: there is an expansion in progress, t participates in it,
and t is a fixed task: it must be assigned a specific resource. Usually this will be because t
is a multi-day task and it was assigned that resource on its first day. For the full story, consult
KheDrsResourceOnDayIsFixed (Appendix D.10.3).

KHE_DRS_TASK_EXPAND_MUST: there is an expansion in progress, t participates in it, and t is
a must-assign task: although it is not fixed to any particular resource, it must be assigned some
resource, since the cost of leaving it unassigned is too great. For example, it is common for some
tasks to be subject to hard constraints that require them to be assigned, and those would always
become must-assign tasks in practice, except when they are fixed.

KHE_DRS_TASK_EXPAND_FREE: none of the other cases applies; an expansion is in progress,
t participates in it, but t need not be assigned a resource, specific or otherwise.

Type KHE_DRS_MTASK has two relevant fields:

struct khe_drs_mtask_rec {
...
int expand_must_assign_count;
int expand_prev_unfixed;

};

Here expand_must_assign_count is the number of must-assign tasks in the mtask: the
number of tasks whose expand_role is KHE_DRS_TASK_EXPAND_MUST. The other field works
as follows.

The mtask can be requested to give away one of its unfixed tasks (one whose expand_role
is KHE_DRS_TASK_EXPAND_MUST or KHE_DRS_TASK_EXPAND_FREE) for assignment. This is what
a call to KheDrsMTaskAcceptResourceBegin does:

674 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsMTaskAcceptResourceBegin(KHE_DRS_MTASK dmt,
KHE_DRS_RESOURCE_ON_DAY drd, KHE_DRS_TASK_ON_DAY *dtd)

{
KHE_DRS_TASK dt; int i, count;
if(KheResourceGroupContains(KheMTaskDomain(dmt->orig_mtask),

drd->encl_dr->resource))
{

/* search forwards for next unfixed task */
count = HaArrayCount(dmt->unassigned_tasks);
for(i = dmt->expand_prev_unfixed + 1; i < count; i++)
{

dt = HaArray(dmt->unassigned_tasks, i);
if(dt->expand_role != KHE_DRS_TASK_EXPAND_FIXED)
{

if(!KheDrsTaskBusyOnDay(dt, drd->day, dtd))
HnAbort("KheDrsMTaskAcceptResourceBegin internal error");

dmt->expand_prev_unfixed = i;
return true;

}
}

}

/* if we get here we’ve failed to identify a suitable task */
return *dtd = NULL, false;

}

After checking that the resource is acceptable to the tasks of the mtask, it searches forwards along
its unassigned_tasks array for the next unfixed task, increasing dmt->expand_prev_unfixed

until it reaches that point. If it finds such a task, it sets*dtd to the relevant task on day and returns
true. Otherwise it sets *dtd to NULL and returns false.

When expansion no longer needs a task that it previously successfully requested us-
ing KheDrsMTaskAcceptResourceBegin, it calls KheDrsMTaskAcceptResourceEnd to give
it back:

D.10. Expansion 675

void KheDrsMTaskAcceptResourceEnd(KHE_DRS_MTASK dmt,
KHE_DRS_TASK_ON_DAY dtd)

{
KHE_DRS_TASK dt; int i;
HnAssert(dmt->expand_prev_unfixed < HaArrayCount(dmt->unassigned_tasks) &&
dtd->encl_dt == HaArray(dmt->unassigned_tasks, dmt->expand_prev_unfixed),
"KheDrsMTaskAcceptResourceEnd internal error");

/* search backwards for next unfixed task, or start of array */
for(i = dmt->expand_prev_unfixed - 1; i >= 0; i--)
{

dt = HaArray(dmt->unassigned_tasks, dmt->expand_prev_unfixed);
if(dt->expand_role != KHE_DRS_TASK_EXPAND_FIXED)

break;
}
dmt->expand_prev_unfixed = i;

}

This reduces dmt->expand_prev_unfixed to the index of the previous unfixed task, or to -1

(also the initial value of dmt->expand_prev_unfixed) when there is no previous unfixed task.
The mtask does not need to record which tasks it has given away, because it gives them away in
the order they appear in unassigned_tasks, and receives them back in reverse order.

In KHE_DRS_SHIFT there are two relevant fields:

struct khe_drs_shift_rec {
...
int expand_must_assign_count;
int expand_max_included_free_resource_count;

};

Field expand_must_assign_count holds the total number of must-assign tasks lying within
the shift’s mtasks. Field expand_max_included_free_resource_count holds the maximum
number of free resources (open resources not fixed to a particular task during this expansion)
that can be assigned to tasks of this shift without leaving too few free resources available to cover
the must-assign tasks of other shifts. Importantly, expand_must_assign_count excludes fixed
tasks, and expand_max_included_free_resource_count excludes fixed resources.

All these fields are initialized at the start of expansion by the call to

676 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsDayExpandBegin(KHE_DRS_DAY next_day, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY prev_day, KHE_DRS_EXPANDER de)

{
int i, excess; KHE_DRS_SHIFT ds;

/* begin caching expansions */
KheDrsSolnSetBeginCacheSegment(next_day->soln_set, de->solver);

/* begin expansion in each shift */
HaArrayForEach(next_day->shifts, ds, i)

KheDrsShiftExpandBegin(ds, prev_soln, prev_day, de);

/* set expand_max_included_free_resource_count in each shift */
excess = KheDrsExpanderExcessFreeResourceCount(de);
HaArrayForEach(next_day->shifts, ds, i)

ds->expand_max_included_free_resource_count =
ds->expand_must_assign_count + excess;

}

This tells next_day->soln_set that an expansion is beginning, so that it can initialize its cache
if desired. Then it calls KheDrsShiftExpandBegin (see below) for each shift of next_day.
The last part sets expand_max_included_free_resource_count in each shift ds to hold the
maximum number of free resources that can be assigned to tasks of ds without leaving too few
free resources available for the must-assign tasks of other shifts. The reader can confirm this.

At the end of the expansion the opposite function is called:

void KheDrsDayExpandEnd(KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de)
{
int i; KHE_DRS_SHIFT ds;

/* end expansion in each shift */
HaArrayForEach(next_day->shifts, ds, i)
KheDrsShiftExpandEnd(ds, de);

/* end caching expansions */
KheDrsSolnSetEndCacheSegment(next_day->soln_set, next_day, de, de-

>solver);
}

This tells next_day’s shifts and solution set that the current expansion is ending.

Here is how one shift is initialized for expansion:

D.10. Expansion 677

void KheDrsShiftExpandBegin(KHE_DRS_SHIFT ds, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY prev_day, KHE_DRS_EXPANDER de)

{
KHE_DRS_MTASK dmt; int i;
ds->expand_must_assign_count = 0;
ds->expand_max_included_free_resource_count = 0;
HaArrayForEach(ds->open_mtasks, dmt, i)
KheDrsMTaskExpandBegin(dmt, prev_soln, prev_day, de);

}

This begins by initializing the two expansion fields to placeholder values. We’ll see shortly how
ds->expand_must_assign_count receives its true value, and we have already seen, just above,
how ds->expand_max_included_free_resource_count receives its true value. The function
then tells each mtask that an expansion is beginning. The function for ending expansion is

void KheDrsShiftExpandEnd(KHE_DRS_SHIFT ds, KHE_DRS_EXPANDER de)
{
KHE_DRS_MTASK dmt; int i;
HaArrayForEach(ds->open_mtasks, dmt, i)
KheDrsMTaskExpandEnd(dmt, de);

KheDrsShiftSolnTrieFree(ds->soln_trie, de->solver);
ds->soln_trie = NULL;

}

This tells each mtask that the expansion is ending. Elsewhere we present another function for
initializing shifts for expansion, one which initializes the shift solution tries used by expand by
shifts. KheDrsShiftSolnTrieFree (Appendix D.9.7) removes these tries.

For informing an mtask that expansion is beginning, the code is

678 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsMTaskExpandBegin(KHE_DRS_MTASK dmt,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day, KHE_DRS_EXPANDER de)

{
KHE_DRS_TASK dt; int i;
dmt->expand_must_assign_count = 0;
HaArrayForEach(dmt->unassigned_tasks, dt, i)
if(dt->expand_role != KHE_DRS_TASK_EXPAND_FIXED)
{
if(KheDrsExpanderOpenToExtraCost(de, dt->non_asst_cost))
dt->expand_role = KHE_DRS_TASK_EXPAND_FREE;

else
{
/* dt must be assigned, otherwise cost will be too high */
dt->expand_role = KHE_DRS_TASK_EXPAND_MUST;
dmt->expand_must_assign_count++;
dmt->encl_shift->expand_must_assign_count++;
KheDrsExpanderAddMustAssign(de);

}
}

}

This visits each unassigned unfixed task of dmt, setting its expand_role field, and ensuring that
the expand_must_assign_count fields of the enclosing mtask and shift hold the total number
of must-assign tasks in that mtask and shift, and that de holds the number of must-assign tasks
in all shifts.

This code assumes that KheDrsResourceExpandBegin has already been called for each
open resource, so that fixed tasks have already been discovered and had their expand_role fields
set. It is done this way because the solver’s data structures are much better at deciding whether a
given open resource is fixed, and if so which task it is fixed to, than they are at deciding whether
a given task is fixed, and if so which resource it is fixed to.

After expansion is complete, the opposite function is called:

void KheDrsMTaskExpandEnd(KHE_DRS_MTASK dmt, KHE_DRS_EXPANDER de)
{
KHE_DRS_TASK dt; int i;
HaArrayForEach(dmt->unassigned_tasks, dt, i)
dt->expand_role = KHE_DRS_TASK_EXPAND_NO;

}

There is no expansion now so all roles are KHE_DRS_TASK_EXPAND_NO.

D.10.5. Expansion by resources

Expansion by resources is carried out by function KheDrsSolnExpandByResources, which
expands prev_soln into next_day in all possible ways, assuming that all possibilities have been
explored for the free resources of free_resources whose indexes in free_resources are less
than free_resource_index:

D.10. Expansion 679

void KheDrsSolnExpandByResources(KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de,
KHE_DRS_RESOURCE_SET free_resources, int free_resources_index)

{
KHE_DRS_RESOURCE dr; int i; KHE_DRS_MTASK_SOLN dms;

if(free_resources_index >= KheDrsResourceSetCount(free_resources))
{

/* de has enough mtask solns to make into a soln and evaluate */
KheDrsExpanderMakeAndMeldSoln(de, prev_soln, next_day);

}
else
{

dr = KheDrsResourceSetResource(free_resources, free_resources_index);
HaArrayForEach(dr->expand_mtask_solns, dms, i)

KheDrsMTaskSolnExpandByResources(dms, prev_soln, prev_day,
next_day, de, free_resources, free_resources_index);

}
}

If free_resources_index >= KheDrsResourceSetCount(free_resources), the expander
has a current assignment for each open resource, so we call KheDrsExpanderMakeAndMeldSoln
(Appendix D.10.1) to make a day solution from those assignments and possibly add it to
next_day’s solution set. Otherwise, the code finds the next unassigned free resource dr, and for
each of dr’s mtask solution objects that KheDrsResourceExpandBegin created previously, it
continues the recursion using that assignment:

680 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsMTaskSolnExpandByResources(KHE_DRS_MTASK_SOLN dms,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day,
KHE_DRS_EXPANDER de, KHE_DRS_RESOURCE_SET free_resources,
int free_resources_index)

{
KHE_DRS_TASK_ON_DAY dtd; KHE_DRS_MTASK dmt; KHE_DRS_TASK_SOLN dts;
dmt = dms->mtask;
if(dmt != NULL)
{
/* select a task from dms->mtask and assign it */
if(KheDrsMTaskAcceptResourceBegin(dmt, dms->resource_on_day, &dtd))
{
dts = KheDrsTaskSolnMake(dms, dtd);
KheDrsTaskSolnExpandByResources(dts, prev_soln, prev_day, next_day,
de, free_resources, free_resources_index);

KheDrsMTaskAcceptResourceEnd(dmt, dtd);
}

}
else
{
/* use dms->fixed_task_on_day, possibly NULL meaning a free day */
dts = KheDrsTaskSolnMake(dms, dms->fixed_task_on_day);
KheDrsTaskSolnExpandByResources(dts, prev_soln, prev_day, next_day,
de, free_resources, free_resources_index);

}
}

If dmt != NULL, the assignment is to an unspecified task of mtask dmt. It is time to choose
a specific task, which is done by the calls to KheDrsMTaskAcceptResourceBegin and
KheDrsMTaskAcceptResourceEnd. The call to KheDrsTaskSolnExpandByResources carries
on the recursion using the task solution built from dms and the task on day object returned by a
successful call to KheDrsMTaskAcceptResourceBegin.

If dmt == NULL, the assignment is to dms->fixed_task_on_day, a specific task on day.
KheDrsTaskSolnExpandByResources is called with a task solution for this task on day.

Either way, KheDrsTaskSolnExpandByResources has a specific task solution to add to
the expander:

D.10. Expansion 681

void KheDrsTaskSolnExpandByResources(KHE_DRS_TASK_SOLN dts,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day,
KHE_DRS_EXPANDER de, KHE_DRS_RESOURCE_SET free_resources,
int free_resources_index)

{
/* save the expander so it can be restored later */
KheDrsExpanderMarkBegin(de);

/* add dts to the expander */
KheDrsExpanderAddTaskSoln(de, dts);

/* if the expander is still open, recurse */
if(KheDrsExpanderIsOpen(de))

KheDrsSolnExpandByResources(prev_soln, prev_day, next_day, de,
free_resources, free_resources_index + 1);

/* restore the expander */
KheDrsExpanderMarkEnd(de);

}

It adds dts to the expander, then, if the expander is still open, it makes a recursive call to
KheDrsSolnExpandByResources, moving on to the next free resource. After that the change is
undone by the call to KheDrsExpanderMarkEnd. All very simple, thanks to the expander.

D.10.6. Expansion by shifts

KheDrsSolnExpand carries out expansion by shifts by calling KheDrsSolnExpandByShifts:

682 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsSolnExpandByShifts(KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de,
KHE_DRS_RESOURCE_SET free_resources, int shift_index)

{
KHE_DRS_SHIFT ds; int i; KHE_DRS_RESOURCE dr; KHE_DRS_TASK_SOLN dts;
if(shift_index >= HaArrayCount(next_day->shifts))
{

/* assign a free day to each remaining free resource; first, */
/* abandon this path if any free resource has no free day asst */
KheDrsResourceSetForEach(free_resources, dr, i)

if(dr->expand_free_mtask_soln == NULL)
return;

/* save the expander */
KheDrsExpanderMarkBegin(de);

/* add free day assignments to the expander */
KheDrsResourceSetForEach(free_resources, dr, i)
{

dts = KheDrsTaskSolnMake(dr->expand_free_mtask_soln, NULL);
KheDrsExpanderAddTaskSoln(de, dts);

}

/* if the expander is still open then make the solution */
if(KheDrsExpanderIsOpen(de))

KheDrsExpanderMakeAndMeldSoln(de, prev_soln, next_day);

/* restore the expander */
KheDrsExpanderMarkEnd(de);

}
else
{

ds = HaArray(next_day->shifts, shift_index);
KheDrsShiftExpandByShifts(ds, shift_index, prev_soln, next_day,

de, free_resources);
}

}

Only the free (non-fixed) resources, held in free_resources, need to be assigned; assignments
to all fixed resources have already been added to de by KheDrsSolnExpand.

When shift_index >= HaArrayCount(next_day->shifts), by now each shift has been
assigned a set of resources, and the remaining free resources have to be assigned a free day.

The first step of this case is to check that these resources have free day assignments, held in
their expand_free_mtask_soln fields. If not, one or more of them has to be assigned some task
and this has not happened, so we’ve reached a dead end and the code returns early. If this were
to occur often then a lot of running time would be wasted, but in fact it happens only rarely.

D.10. Expansion 683

The next step is to mark the expander, then update it with the free day assignments. Then,
if the expander is still open, KheDrsExpanderMakeAndMeldSoln (Appendix D.10.1) is called
to make a solution from the current set of assignments and add it, with dominance testing, to
next_day’s solution set. Then the assignments are removed and the expander state is restored.

When shift_index < HaArrayCount(next_day->shifts), we still have shifts to assign
sets of free resources to, beginning with the shift whose index in next_day is shift_index. We
set ds to this shift and call KheDrsShiftExpandByShifts:

void KheDrsShiftExpandByShifts(KHE_DRS_SHIFT ds, int shift_index,
KHE_DRS_SOLN prev_soln, KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de,
KHE_DRS_RESOURCE_SET free_resources)

{
KHE_DRS_RESOURCE_SET omitted_resources;
if(ds->soln_trie != NULL)
{
omitted_resources = KheDrsResourceSetMake(de->solver);
KheDrsShiftSolnTrieExpandByShifts(ds->soln_trie, ds, shift_index,
prev_soln, next_day, de, free_resources, 0, 0, omitted_resources);

KheDrsResourceSetFree(omitted_resources, de->solver);
}

}

This is a wrapper for KheDrsShiftSolnTrieExpandByShifts. It creates a set of resource
objects, omitted_resources, for passing to KheDrsShiftSolnTrieExpandByShifts.

Before we present KheDrsShiftSolnTrieExpandByShifts we’ll examine its header:

void KheDrsShiftSolnTrieExpandByShifts(KHE_DRS_SHIFT_SOLN_TRIE dsst,
KHE_DRS_SHIFT ds, int shift_index, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de,
KHE_DRS_RESOURCE_SET free_resources, int free_index,
int selected_resource_count, KHE_DRS_RESOURCE_SET omitted_resources);

We’ll refer to the available resources, meaning the elements of free_resources, but only those
whose index in free_resources is free_index or larger.

Three conditions restrict the values of the parameters. First, ds is the shift beginning
on next_day whose index in next_day is shift_index. Second, dsst is the subtrie that is
reached using the indexes of the selected resources, that is, the resources selected so far for
this shift. We don’t keep track of those resources explicitly (although we could), because dsst

itself does that sufficiently for our purposes. Third, the available resources as just defined, the
selected resources as just defined, and the omitted resources are pairwise disjoint and their union
contains every free resource. The reader can verify that these conditions hold for the initial call to
KheDrsShiftSolnTrieExpandByShifts, the one from within KheDrsShiftExpandByShifts.

KheDrsShiftSolnTrieExpandByShifts must assign the selected resources to ds, but it is
free to also assign any subset of the available resources to ds as well. It tries assigning to ds each
subset of the set of free resources that satisfies these conditions. For each of these subsets R, for
each of the undominated shift solutions held in the trie node for R, it tries each undominated shift

684 Appendix D. Dynamic Programming Resource Reassignment: Implementation

solution in turn, recursing to assign the remaining shifts:

void KheDrsShiftSolnTrieExpandByShifts(KHE_DRS_SHIFT_SOLN_TRIE dsst,
KHE_DRS_SHIFT ds, int shift_index, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de,
KHE_DRS_RESOURCE_SET free_resources, int free_index,
int selected_resource_count, KHE_DRS_RESOURCE_SET omitted_resources)

{
int i, avail_resource_count; KHE_DRS_SHIFT_SOLN dss;
KHE_DRS_SHIFT_SOLN_TRIE child_dsst; KHE_DRS_RESOURCE dr;
avail_resource_count =

KheDrsResourceSetCount(free_resources) - free_index;
if(avail_resource_count <= 0)
{

/* resources all done, so try each solution in dsst */
HaArrayForEach(dsst->shift_solns, dss, i)

KheDrsShiftSolnExpandByShifts(dss, ds, shift_index, prev_soln,
next_day, de, omitted_resources);

}
else
{

/* try solutions that select dr, the next available resource */
dr = KheDrsResourceSetResource(free_resources, free_index);
child_dsst = HaArray(dsst->children, dr->open_resource_index);
if(child_dsst != NULL)

KheDrsShiftSolnTrieExpandByShifts(child_dsst, ds, shift_index,
prev_soln, next_day, de, free_resources, free_index + 1,
selected_resource_count + 1, omitted_resources);

/* try solutions that do not select dr, staying in dsst */
if(selected_resource_count + avail_resource_count >

ds->expand_must_assign_count)
{

KheDrsResourceSetAddLast(omitted_resources, dr);
KheDrsShiftSolnTrieExpandByShifts(dsst, ds, shift_index,

prev_soln, next_day, de, free_resources, free_index + 1,
selected_resource_count, omitted_resources);

KheDrsResourceSetDeleteLast(omitted_resources);
}

}
}

If avail_resource_count <= 0, then then all available resources are selected or omitted,
and it is time to try the shift assignments of dsst->shift_solns. So for each of them we call
KheDrsShiftSolnExpandByShifts. We’ll return to that shortly.

Otherwise, we need to try subsets R that include the next available resource dr, and also
subsets R that omit it. For the first we have

D.10. Expansion 685

/* try solutions that select dr, the next available resource */
dr = KheDrsResourceSetResource(free_resources, free_index);
child_dsst = HaArray(dsst->children, dr->open_resource_index);
if(child_dsst != NULL)

KheDrsShiftSolnTrieExpandByShifts(child_dsst, ds, shift_index,
prev_soln, next_day, de, free_resources, free_index + 1,
selected_resource_count + 1, omitted_resources);

This accesses the child child_dsst whose index is the next available resource’s open resource
index. If child_dsst != NULL, we recurse, adding dr implicitly to the set of selected resources
by utilizing the child node representing it, and removing dr explicitly from the available
resources by increasing free_index. For omitting dr the code is

/* try solutions that do not select dr, staying in dsst */
if(selected_resource_count + avail_resource_count >

ds->expand_must_assign_count)
{

KheDrsResourceSetAddLast(omitted_resources, dr);
KheDrsShiftSolnTrieExpandByShifts(dsst, ds, shift_index,

prev_soln, next_day, de, free_resources, free_index + 1,
selected_resource_count, omitted_resources);

KheDrsResourceSetDeleteLast(omitted_resources);
}

This adds dr to the set of omitted resources, and again recurses with free_index incremented
to remove dr from the set of available resources. It recurses on the same trie node, dsst.

Next comes KheDrsShiftSolnExpandByShifts, called when all available resources have
either been selected or omitted, and we have reached a specific shift solution dss:

686 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsShiftSolnExpandByShifts(KHE_DRS_SHIFT_SOLN dss,
KHE_DRS_SHIFT ds, int shift_index, KHE_DRS_SOLN prev_soln,
KHE_DRS_DAY next_day, KHE_DRS_EXPANDER de,
KHE_DRS_RESOURCE_SET omitted_resources)

{
KHE_DRS_SHIFT_SOLN dss2; int i;
if(dss->skip_count == 0)
{

/* save the expander */
KheDrsExpanderMarkBegin(de);

/* add the assignments stored in dss to the expander */
KheDrsExpanderAddTaskSolnSet(de, dss->task_solns, NULL);

/* if the expander is still open, recurse */
if(KheDrsExpanderIsOpen(de))
{

HaArrayForEach(dss->skip_assts, dss2, i)
dss2->skip_count++;

KheDrsSolnExpandByShifts(prev_soln, next_day, de, omitted_resources,
shift_index + 1);

HaArrayForEach(dss->skip_assts, dss2, i)
dss2->skip_count--;

}

/* restore the expander */
KheDrsExpanderMarkEnd(de);

}
}

We mark the expander, add dss’s task solutions, recurse on the next shift (with index
shift_index + 1) if the expander is still open, then restore the expander. The free resources for
the next shift are the omitted resources for this shift. We made sure previously that dss contains
no fixed assignments,which is just as well because all fixed assignments have already been added
to the expander, before expand by shifts begins.

This code also implements shift pair dominance by not expanding using shifts for which
skip_count > 0, and by incrementing the approppriate skip_count fields as appropriate when
dss is in use. I should look into whether the expander could take over this work, by offering an
operation to add a shift solution, not just a shift solution’s task solution set.

D.11. Sets of solutions

A solution set is a set of undominated solutions Pk for some day dk. Type KHE_DRS_SOLN_SET

represents a solution set in the implementation.

As mere collections of solutions, solution sets should be very simple. However, there are
three complications. First, the operation for adding a new solution x to a solution set has to check
for dominance relationships between x and the other solutions. This involves three steps:

D.11. Sets of solutions 687

1. Check whether Pk contains a solution y that dominates x. If so, delete x and stop;

2. Remove from Pk and delete all solutions y such that x dominates y;

3. Add x to Pk.

Since this is not a normal add-to-collection operation we call it a meld. Second, because melding
is potentially slow, the solver offers alternative kinds of dominance testing, including alternative
collection data structures. And third, there is the option of caching, which involves having two
collections, the main solution set holding most of the solutions, and a cache solution set holding
a smaller number of recently inserted solutions.

In this section we work bottom-up through a variety of collection data structures that
combine to implement all these variations of the basic idea within type KHE_DRS_SOLN_SET.

D.11.1. Solution lists

Type KHE_DRS_SOLN_LIST defines a simple list of solutions, stored in an array:

typedef struct khe_drs_soln_list_rec *KHE_DRS_SOLN_LIST;
typedef HA_ARRAY(KHE_DRS_SOLN_LIST) ARRAY_KHE_DRS_SOLN_LIST;
typedef HP_TABLE(KHE_DRS_SOLN_LIST) TABLE_KHE_DRS_SOLN_LIST;

struct khe_drs_soln_list_rec {
KHE_DYNAMIC_RESOURCE_SOLVER solver;
ARRAY_KHE_DRS_SOLN solns;

};

This is basically just a simple array of day solution objects.

One type of dominance testing, called medium dominance, requires a hash table whose
elements are solution lists, and that is what TABLE_KHE_DRS_SOLN_LIST provides. It uses the
HP_TABLE type definition macro from Appendix A. This hash table also needs access to a solver
object, or something similar, since its hash function uses a signer to determine which elements
of the signature to hash. If these hash tables were removed from the implementation (as could
easily be done, since they are obsolete now) the solver field could be deleted.

Function KheDrsSolnListMake makes a new, empty solution list; KheDrsSolnListFree

frees a solution list without freeing its solutions; and KheDrsSolnListFreeSolns frees the
solutions of a given solution list, without freeing the solution list object.

A more interesting operation is

void KheDrsSolnListGather(KHE_DRS_SOLN_LIST soln_list,
KHE_DRS_SOLN_LIST res)

{
int i;
HaArrayAppend(res->solns, soln_list->solns, i);

}

Every data structure holding a collection of solutions has such a ‘gather’ operation. It adds the

688 Appendix D. Dynamic Programming Resource Reassignment: Implementation

collection’s solutions (here soln_list) to a given solution list (here res). This is how we extract
the solutions from complex data structures (tries, etc.): we gather them into a solution list.

Here is another operation found in all collection types. It decides whether solution list
soln_list dominates soln, by which we mean contains a solution which dominates soln:

bool KheDrsSolnListDominates(KHE_DRS_SOLN_LIST soln_list,
KHE_DRS_SOLN soln, KHE_DRS_SIGNER_SET signer_set,
int *dom_test_count, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SOLN other_soln; int i;
HaArrayForEach(soln_list->solns, other_soln, i)
if(KheDrsSolnDominates(other_soln, soln, signer_set,

dom_test_count, drs, 0, 0, NULL))
return true;

return false;
}

This implements Step 1 of the meld operation when the collection is a solution list, except for
deleting and freeing soln if it returns true.

For Step 2 of the meld operation we have

void KheDrsSolnListRemoveDominated(KHE_DRS_SOLN_LIST soln_list,
KHE_DRS_SOLN soln, KHE_DRS_SIGNER_SET signer_set,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SOLN other_soln; int i, dom_test_count;
dom_test_count = 0;
HaArrayForEach(soln_list->solns, other_soln, i)
if(KheDrsSolnNotExpanded(other_soln) && KheDrsSolnDominates(soln,

other_soln, signer_set, &dom_test_count, drs, 0, 0, NULL))
{
KheDrsPriQueueDeleteSoln(drs, other_soln);
KheDrsSolnFree(other_soln, drs);
HaArrayDeleteAndPlug(soln_list->solns, i);
i--;

}
}

This deletes and frees all elements of soln_list that are dominated by soln. The calls to
KheDrsSolnNotExpanded and KheDrsPriQueueDeleteSoln will be explained later; they are
needed when the priority queue is in use, and do nothing when it isn’t.

For Step 3 of the meld operation, simply adding a solution to a solution list, we have

D.11. Sets of solutions 689

void KheDrsSolnListAddSoln(KHE_DRS_SOLN_LIST soln_list,
KHE_DRS_SOLN soln, KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
HaArrayAddLast(soln_list->solns, soln);
KheDrsPriQueueAddSoln(drs, soln);

}

Again, KheDrsPriQueueAddSoln does nothing if there is no priority queue.

The next operation sorts a solution list by increasing solution cost, and optionally deletes
and frees the most expensive solutions, depending on an option:

int KheDrsSolnCmp(const void *t1, const void *t2)
{

KHE_DRS_SOLN soln1 = * (KHE_DRS_SOLN *) t1;
KHE_DRS_SOLN soln2 = * (KHE_DRS_SOLN *) t2;
return KheCostCmp(KheDrsSolnCost(soln1), KheDrsSolnCost(soln2));

}

void KheDrsSolnListSortAndReduce(KHE_DRS_SOLN_LIST soln_list,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SOLN soln; int i;
HaArraySort(soln_list->solns, &KheDrsSolnCmp);
if(drs->solve_daily_expand_limit > 0)

while(HaArrayCount(soln_list->solns) > drs->solve_daily_expand_limit)
{

soln = HaArrayLastAndDelete(soln_list->solns);
KheDrsPriQueueDeleteSoln(drs, soln);
KheDrsSolnFree(soln, drs);

}
}

As usual, dropping solutions is a heuristic that gives up any optimality guarantee.

The remaining solution list operations are mostly hash code calculations for the hash table,
and debug functions. There is one exception, however:

void KheDrsSolnListExpand(KHE_DRS_SOLN_LIST soln_list,
KHE_DRS_DAY prev_day, KHE_DRS_DAY next_day,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SOLN prev_soln; int i;
HaArrayForEach(soln_list->solns, prev_soln, i)
KheDrsSolnExpand(prev_soln, prev_day, next_day, drs);

}

To build Pk+1 from Pk, we traverse Pk and expand each of its solutions. KheDrsSolnListExpand
does this when the collection is held in a solution list.

690 Appendix D. Dynamic Programming Resource Reassignment: Implementation

D.11.2. Other collection data structures

In attempting to speed up dominance testing, the author has tried two data structures other than
a simple list for holding solutions. This section is a brief tour through these two data structures.
The interest-to-code ratio is rather low, so we show only one code sample.

The first data structure is a trie. A traditional trie is a kind of tree data structure for holding
objects retrieved by a key which is a string of characters. In the root of the tree is an array of
subtrees indexed by the first character of the key. For example, all objects whose key begins with
’a’ might be in the first subtree, all whose key begins with ’b’ might be in the second subtree,
and so on. The root of each subtree also has an array of subtrees, this time indexed by the second
character of the key, and so on. To retrieve an object by key, use the first character of the key to
find a subtree, then use the second character to find a sub-subtree, and so on.

A solution’s signature is an array of (usually) small integers, ideal for tries. If we store the
solutions in a trie we can easily retrieve by signature. We don’t need to do that, but when testing
for dominance using strong dominance, we may need all the solutions whose first element is no
larger than a given element, or no smaller. Tries are excellent for this.

The implementation has the usual collection operations, for making and freeing tries,
gathering a trie’s solutions into a solution list, and so on. It all works, but tends not to be used,
because tries do not combine well with uniform dominance.

The other non-trivial collection type is the indexed solution set, or just indexed set. It is an
array of solution lists indexed by solution cost. All solutions with a given cost appear in the one
list, and that list is accessed by using their common cost as an index in the array.

It would not be efficient to index using the cost as is. Instead, there is a formula for
converting a cost to an index:

index = (cost - base) / increment;

Here base is the smallest cost that occurs in the set, and increment is the least common divisor
of all the constraint weights. For example, if all constraint weights are multiples of 5, then
increment is 5. Here base is updated whenever a solution whose cost is a new minimum is
added to the set, while increment is calculated once and for all when the solver is created.

Again there are the usual operations for indexed set creating, freeing, gathering, and so on.
Indexed sets work well with tradeoff dominance and uniform dominance, because those tests
need access to all solutions whose cost is at most a given cost, or all solutions whose cost is at
least a given cost. These can be found by traversing the array positions equal to and to the left
of the index of the given cost, or equal to and to the right. As an example, here is the operation
for deciding whether an indexed set iss contains a solution which dominates soln:

D.11. Sets of solutions 691

bool KheDrsIndexedSolnSetDominates(KHE_DRS_INDEXED_SOLN_SET iss,
KHE_DRS_SOLN soln, KHE_DRS_DAY soln_day, int *dom_test_count,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
int i, pos; KHE_DRS_SOLN_LIST soln_list;

*dom_test_count = 0;
if(HaArrayCount(iss->soln_lists) == 0)
return false;

else
{
pos = (KheDrsSolnCost(soln) - iss->base) / iss->increment;
if(pos >= HaArrayCount(iss->soln_lists))
pos = HaArrayCount(iss->soln_lists) - 1;

for(i = 0; i <= pos; i++)
{
soln_list = HaArray(iss->soln_lists, i);
if(soln_list != NULL && KheDrsSolnListDominates(soln_list, soln,

soln_day->signer_set, dom_test_count, drs))
return true;

}
}
return false;

}

It only traverses the array positions up to the index of soln’s cost in the array, because a solution
which dominates soln must have a cost which is no larger than soln->cost.

D.11.3. Solution set parts

A solution set part is yet another collection of solutions, represented by type
KHE_DRS_SOLN_SET_PART. Why this is not the same as KHE_DRS_SOLN_SET is a fair question that
we will have to answer later, given than we are working bottom-up.

Type KHE_DRS_SOLN_SET_PART is an abstract supertype with a rather large number of
concrete subtypes. The type tag that distinguishes these subtypes is no other than public type
KHE_DRS_DOM_KIND, that we have seen before:

692 Appendix D. Dynamic Programming Resource Reassignment: Implementation

typedef enum {
KHE_DRS_DOM_LIST_NONE,
KHE_DRS_DOM_LIST_STRONG,
KHE_DRS_DOM_LIST_TRADEOFF,
KHE_DRS_DOM_LIST_UNIFORM,
KHE_DRS_DOM_HASH_WEAK,
KHE_DRS_DOM_HASH_MEDIUM,
KHE_DRS_DOM_TRIE_STRONG,
KHE_DRS_DOM_TRIE_TRADEOFF,
KHE_DRS_DOM_INDEXED_TRADEOFF,
KHE_DRS_DOM_INDEXED_UNIFORM

} KHE_DRS_DOM_KIND;

Each subtype knows which kind of dominance testing to use, if any (none, strong, tradeoff, or
uniform), and which kind of data structure to use (a simple list, a hash table, a trie, or an indexed
set). The two are mixed together in type KHE_DRS_DOM_KIND because some data structures are
not compatible with some kinds of dominance testing.

Type KHE_DRS_SOLN_SET_PART contains just the type tag:

#define INHERIT_KHE_DRS_SOLN_SET_PART \
KHE_DRS_DOM_KIND dom_kind;

typedef struct khe_drs_soln_set_part_rec {
INHERIT_KHE_DRS_SOLN_SET_PART

} *KHE_DRS_SOLN_SET_PART;

Here are its ten concrete subtypes, one for each value of type KHE_DRS_DOM_KIND:

typedef struct khe_drs_soln_set_part_dom_none_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
KHE_DRS_SOLN_LIST soln_list;

} *KHE_DRS_SOLN_SET_PART_DOM_NONE;

typedef struct khe_drs_soln_set_part_dom_weak_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
TABLE_KHE_DRS_SOLN soln_table;

} *KHE_DRS_SOLN_SET_PART_DOM_WEAK;

typedef struct khe_drs_soln_set_part_dom_medium_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
TABLE_KHE_DRS_SOLN_LIST soln_list_table;

} *KHE_DRS_SOLN_SET_PART_DOM_MEDIUM;

typedef struct khe_drs_soln_set_part_dom_strong_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
KHE_DRS_SOLN_LIST soln_list;

} *KHE_DRS_SOLN_SET_PART_DOM_STRONG;

D.11. Sets of solutions 693

typedef struct khe_drs_soln_set_part_dom_trie_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
KHE_DRS_SOLN_TRIE soln_trie;

} *KHE_DRS_SOLN_SET_PART_DOM_TRIE;

typedef struct khe_drs_soln_set_part_dom_indexed_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
KHE_DRS_INDEXED_SOLN_SET indexed_solns;

} *KHE_DRS_SOLN_SET_PART_DOM_INDEXED;

typedef struct khe_drs_soln_set_part_dom_uniform_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
KHE_DRS_SOLN_LIST soln_list;

} *KHE_DRS_SOLN_SET_PART_DOM_UNIFORM;

typedef struct khe_drs_soln_set_part_dom_indexed_uniform_rec {
INHERIT_KHE_DRS_SOLN_SET_PART
KHE_DRS_INDEXED_SOLN_SET indexed_solns;

} *KHE_DRS_SOLN_SET_PART_DOM_INDEXED_UNIFORM;

Each contains one field holding the data structure appropriate to its type: a solution list, a hash
table of solutions, a hash table of solution lists, a trie of solutions, or an indexed array of solution
lists. Type KHE_DRS_SOLN_SET_PART offers the usual operations on collections, implemented by
large switches on the dom_kind field.

D.11.4. Solution sets

Finally, we reach type KHE_DRS_SOLN_SET, used to hold each set of undominated solutions Pk:

typedef struct khe_drs_soln_set_rec *KHE_DRS_SOLN_SET;

struct khe_drs_soln_set_rec {
KHE_DRS_SOLN_SET_PART cache;
KHE_DRS_SOLN_SET_PART main;

};

This holds an optional cache part, which when non-NULL holds a collection of recently inserted
solutions; and a main part, a non-optional collection holding most of the solutions. The idea
of the cache is that solutions derived from the same predecessor solution are likely to exhibit
dominance relations, so keeping them together might save time.

When caching is used, insertions go into the cache rather than into the main table:

694 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsSolnSetMeldSoln(KHE_DRS_SOLN_SET soln_set, KHE_DRS_SOLN soln,
KHE_DRS_DAY soln_day, KHE_DRS_EXPANDER de,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
if(soln_set->cache != NULL)
KheDrsSolnSetPartMeldSoln(soln_set->cache, soln, soln_day, de, drs);

else
KheDrsSolnSetPartMeldSoln(soln_set->main, soln, soln_day, de, drs);

}

KheDrsSolnSetMeldSoln is called by KheDrsMakeEvaluateAndMeldSoln (Appendix D.9.1)
to add a new solution to soln_set. Functions KheDrsSolnSetBeginCacheSegment and
KheDrsSolnSetEndCacheSegment instruct the solution set to begin and end caching:

void KheDrsSolnSetBeginCacheSegment(KHE_DRS_SOLN_SET soln_set,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
/* actually there is nothing to do here */

}

void KheDrsSolnSetEndCacheSegment(KHE_DRS_SOLN_SET soln_set,
KHE_DYNAMIC_RESOURCE_SOLVER drs)

{
KHE_DRS_SOLN_LIST soln_list; KHE_DRS_SOLN soln; int i;
KHE_DRS_DOM_KIND cache_dom_kind;
if(soln_set->cache != NULL)
{
cache_dom_kind = soln_set->cache->dom_kind;
soln_list = KheDrsSolnListMake(drs);
KheDrsSolnSetPartGather(soln_set->cache, soln_list);
KheDrsSolnSetPartFree(soln_set->cache, drs);
soln_set->cache = NULL;
HaArrayForEach(soln_list->solns, soln, i)
KheDrsSolnSetMeldSoln(soln_set, soln, drs);

soln_set->cache = KheDrsSolnSetPartMake(cache_dom_kind, drs);
KheDrsSolnListFree(soln_list, drs);

}
}

There is nothing to do to begin caching, but to end it we have to move every element from the
cache (if there is one) to the main table. This is rather messy. We make a simple list of solutions,
soln_list, and call KheDrsSolnSetPartGather to gather all the solutions from the cache
into this list, then KheDrsSolnSetPartFree to free the cache. Then without a cache we call
KheDrsSolnSetMeldSoln on each element of soln_list to meld every solution from the cache
into the main part. Finally, we create a new, empty cache and free the solution list.

D.12. Solving 695

D.12. Solving

A solver is represented by an object of public type KHE_DYNAMIC_RESOURCE_SOLVER. It would
be too tedious to show all the fields, but here is a selection:

struct khe_dynamic_resource_solver_rec {

/* fields constant throughout the lifetime of the solver */
HA_ARENA arena;
KHE_SOLN soln;
KHE_RESOURCE_TYPE resource_type;
KHE_OPTIONS options;
KHE_FRAME days_frame;
KHE_EVENT_TIMETABLE_MONITOR etm;
KHE_MTASK_SOLVER mtask_solver;
ARRAY_KHE_DRS_RESOURCE all_resources;
ARRAY_KHE_DRS_DAY all_days;
ARRAY_KHE_DRS_TASK all_root_tasks;
...

/* free list fields */
...

/* priority queue (always initialized, but use is optional) */
KHE_PRIQUEUE priqueue;

/* fields that vary with the solve */
ARRAY_KHE_DRS_DAY_RANGE selected_day_ranges;
KHE_RESOURCE_SET selected_resource_set;
ARRAY_KHE_DRS_DAY open_days;
ARRAY_KHE_DRS_SHIFT open_shifts;
ARRAY_KHE_DRS_RESOURCE open_resources;
ARRAY_KHE_DRS_EXPR open_exprs;
...

};

The first group of fields hold values that remain constant after the solver object is constructed.
The most interesting ones are the last three, holding one DRS resource for each resource of type
rt, one DRS day for each time group of the common frame, and one DRS task for each proper
root task which accepts a resource of type rt.

After that come fields holding free lists for recycling objects between solves, and a field
holding a priority queue of solutions for when that form of solving is requested. Finally, there
are fields that vary with the solve. We’ve shown selected_day_ranges, which holds the
day ranges selected by calls to public function KheDynamicResourceSolverAddDayRange,
and selected_resource_set, which holds the resources selected by calls to public function
KheDynamicResourceSolverAddResource. Then come arrays holding the days, shifts, re-
sources, and expressions that have been opened for a particular solve.

696 Appendix D. Dynamic Programming Resource Reassignment: Implementation

D.12.1. Construction

Here is the public function for creating a new solver, drastically abbreviated:

KHE_DYNAMIC_RESOURCE_SOLVER KheDynamicResourceSolverMake(KHE_SOLN soln,
KHE_RESOURCE_TYPE rt, KHE_OPTIONS options)

{
KHE_DYNAMIC_RESOURCE_SOLVER res;

/* make the basic object */
a = KheSolnArenaBegin(soln, false);
HaMake(res, a);

/* straightforward initializations (omitted) */
/* construct the days (see below) */
/* construct the resources (see below) */
/* construct the tasks, mtasks, and shifts (see below) */
/* construct the expressions (see below) */

return res;
}

It obtains an arena from soln and creates a solver object res. Then it initializes every field of
res, a tedious process that we won’t show. After that it constructs the days, using this code:

/* drs day objects for the days of the frame */
for(i = 0; i < KheFrameTimeGroupCount(days_frame); i++)
{

day = KheDrsDayMake(i, res);
HaArrayAddLast(res->all_days, day);

}

Next come the resources:

/* resources of rt but not their monitors (assumes days done) */
HaArrayInit(res->all_resources, a);
for(i = 0; i < KheResourceTypeResourceCount(rt); i++)
{

r = KheResourceTypeResource(rt, i);
dr = KheDrsResourceMake(r, res);
HaArrayAddLast(res->all_resources, dr);

}

Next come the tasks, mtasks, and shifts:

D.12. Solving 697

/* tasks, mtasks, and shifts (assumes days and resources) */
res->mtask_solver = KheMTaskSolverMake(soln, rt, days_frame, true, a);
incomplete_times = false; /* still to do */
if(incomplete_times)
{

KheDynamicResourceSolverDelete(res);
return NULL; /* second dot point in doc */

}
for(i = 0; i < KheMTaskSolverMTaskCount(res->mtask_solver); i++)
{

mt = KheMTaskSolverMTask(res->mtask_solver, i);
if(!KheMTaskNoGaps(mt) || /* third dot point in doc */

!KheMTaskNoOverlap(mt) || /* fourth dot point in doc */
!KheDrsMTaskMake(mt, res)) /* fourth dot point in doc */

{
KheDynamicResourceSolverDelete(res);
return NULL;

}
}

and then code for initializing shift pair objects:

/* shift pairs */
HaArrayForEach(res->all_days, day, i)
HaArrayForEach(day->shifts, ds1, j)
for(k = j + 1; k < HaArrayCount(day->shifts); k++)
{
ds2 = HaArray(day->shifts, k);
dsp = KheDrsShiftPairMake(ds1, ds2, res);
HaArrayAddLast(ds1->shift_pairs, dsp);

}

After that it constructs the expressions corresponding to soln’s monitors:

698 Appendix D. Dynamic Programming Resource Reassignment: Implementation

/* resource monitors */
HaArrayForEach(res->all_resources, dr, i)

KheDrsResourceAddMonitors(dr, res);

/* event resource monitors of type rt (assumes tasks done) */
HaArrayInit(er_monitors, a);
for(i = 0; i < KheInstanceEventResourceCount(ins); i++)
{

er = KheInstanceEventResource(ins, i);
if(KheEventResourceResourceType(er) == rt)

for(j = 0; j < KheSolnEventResourceMonitorCount(soln, er); j++)
{

m = KheSolnEventResourceMonitor(soln, er, j);
HaArrayAddLast(er_monitors, m);

}
}
HaArraySortUnique(er_monitors, &KheMonitorCmp);
HaArrayForEach(er_monitors, m, i)

KheDrsAddEventResourceMonitor(res, m);
HaArrayFree(er_monitors);

The KHE platform offers no simple way to visit each event resource monitor once, so
this code puts them all into temporary array er_monitors and uniqueifies that array be-
fore making the corresponding expressions. Expression construction is carried out by
KheDrsResourceAddMonitors, which adds expressions for all the monitors of DRS resource dr,
and KheDrsAddEventResourceMonitor, which adds an expression for event resource monitor
m. The following section explains which expressions are constructed for each kind of monitor.

Finally we construct the uniform dominance tables stored within constraint objects:

/* table objects within constraints */
HaArrayForEach(res->all_constraints, dc, i)
if(dc != NULL)
KheDrsConstraintSetTables(dc, res);

The constraints themselves were constructed earlier, while traversing the monitors.

D.12.2. Construction of expression trees

In this section we present expression trees for the XESTT event resource and resource monitors.
These trees are built when the solver is created, by the calls to KheDrsResourceAddMonitors

and KheDrsAddEventResourceMonitor shown above. Only parts of these expressions are open
on any particular solve. We omit the actual construction code, since it can be derived from the
diagrams presented here, using calls to the various functions for creating expression objects.

All non-root expressions have a value (either an int or a float) which is used by their
parent. All root expressions report a cost which is added to the solution cost. However, we do
not consider this cost to be the value of the root expression, because a value becomes available
only on the expression’s last active day, whereas a cost (strictly speaking, an extra cost) is added

D.12. Solving 699

to the solution cost on each active day of the expression.

We start with event resource monitors.

Assign resource monitors. Let the atomic tasks monitored be t1,… ,tk after breaking them
into single-day pieces of duration 1; their total duration is k. The expression tree is

COUNTER

ASSIGNED_TASK(t1,R)

…

ASSIGNED_TASK(tk,R)

where the COUNTER expression has minimum limit k and R is the resource type. Each leaf
contributes 1when its task is assigned, and the deviation is the amount by which the sum of these
values falls short of the total duration, k.

When the cost function is linear, this tree may be divided into one tree per task on day:

COUNTER ASSIGNED_TASK(t1,R)

and so on, where the COUNTER expression has minimum limit 1. An ASSIGNED_TASK
expression has only a single open day, the day that its task on day is running, so these smaller
trees never contribute to signature state arrays, which is why we prefer them.

Assign resource monitors contribute to the non_asst_cost attributes of mtasks. So there
is some danger of double counting their costs. However, a search of the solver’s code shows that
although non_asst_cost attributes are used to rule out some non-assignments as a live option,
the cost itself is never added to any sum of costs. So there is in fact no double counting.

Prefer resources monitors. We use the same terminology as for assign resource monitors,
plus we let g be the set of preferred resources.

If g includes every resource of the resource type concerned, the cost must always be zero
and the monitor is ignored.

If g is empty, meaning that it is preferable to not assign the monitored tasks, the monitor
may contribute to the asst_cost attributes of those tasks’ mtasks. These attributes are added
to the current solution cost when expanding a solution, so again the monitor should be ignored,
but this time to avoid double counting. For the asst_cost attribute to be affected, the monitor
has to either monitor a single task or else have a linear cost function, as an examination of file
khe_sr_mtask_finder.c will show. So we ignore the monitor when g is empty and it either
monitors a single task or has a linear cost function.

If we do not ignore the monitor, in general its expression tree is

700 Appendix D. Dynamic Programming Resource Reassignment: Implementation

COUNTER

ASSIGNED_TASK(t1,R − g)

…

ASSIGNED_TASK(tk,R − g)

where the COUNTER expression has maximum limit 0. Each ti assigned a resource not in g
contributes 1 to the determinant. (An unassigned ti contributes 0, as required.) When the cost
function is linear this can be divided into one tree per task on day, again with maximum limit 0:

COUNTER ASSIGNED_TASK(t1,R − g)

and so on. Again, these smaller trees never contribute to signature states.

Avoid split assignments monitors. These do not occur in nurse rostering, and a solver
is not made when they are present. What needs to be remembered on any day is the set of
distinct resources assigned to the monitored tasks. Without this, one cannot tell whether a later
assignment increases the number of distinct resources or not. There are various ways to encode
this into the signature, although none seem to be ideal. A bit set packed into integers leads to very
large arrays in a trie structure. An unpacked bit set leads to a large number of signature entries.
A set of resource indexes varies in length, although there is an upper limit: the number of tasks
monitored that are running at or before the current day. Perhaps a sequence of resource indexes,
sorted and uniqueified, and padded out to the upper limit on length, would be best. One signature
dominates another when its resources are a subset of the other’s.

Limit resources monitors. Let g be the set of resources of interest. The tree is

COUNTER

ASSIGNED_TASK(t1,g)

…

ASSIGNED_TASK(tk,g)

where the COUNTER expression’s limits are taken from the monitor. This only divides into
separate trees when the cost function is linear and both limits are 0.

A limit resources monitor can mimic a prefer resources monitor. In that case, the mtask
solver treats the limit resources monitor like a prefer resources monitor, including adding a cost
to the asst_cost attribute when appropriate. An examination of file khe_sr_mtask_finder.c
shows that asst_cost is affected when the limit resource monitor’s maximum limit is 0, the
set g (whose complement becomes the set of preferred resources of the corresponding prefer
resources monitor) contains every resource of the given resource type, and the number of tasks
is 1 or the cost function is linear. In this case we ignore the limit resources monitor.

D.12. Solving 701

We turn now to the resource monitors for resource r.

Avoid clashes monitors. No clashes can occur, because tasks with clashes are excluded,
and each resource is assigned to at most one task on each day. So these monitors are ignored.

Avoid unavailable times monitors. If the unavailable times are t1, t2,… ,tk, the tree is

COUNTER

BUSY_TIME(r, t1)

BUSY_TIME(r, t2)

…

BUSY_TIME(r, tk)

The COUNTER expression has maximum limit 0. If the cost function is linear, each time
contributes an independent value to the total cost, and we use multiple trees instead:

COUNTER BUSY_TIME(r, t1)

and so on. We prefer this because these expressions do not store a value in the signature.

Limit idle times monitors. These do not occur in nurse rostering, and a solver is not made
when they are present. Handling them is future work (feasible, but low priority).

Cluster busy times monitors. We have already seen a cluster busy times tree, for limiting
busy weekends, assuming a four-week instance with two shifts per day. Here it is again:

702 Appendix D. Dynamic Programming Resource Reassignment: Implementation

COUNTER

OR

BUSY_TIME(r,1Sat1)

BUSY_TIME(r,1Sat2)

BUSY_TIME(r,1Sun1)

BUSY_TIME(r,1Sun2)

…

OR

BUSY_TIME(r,4Sat1)

BUSY_TIME(r,4Sat2)

BUSY_TIME(r,4Sun1)

BUSY_TIME(r,4Sun2)

Within each OR, if a day’s times are all present, their BUSY_TIME expressions are replaced by
a BUSY_DAY expression, saving time. Negative time groups become

AND

FREE_TIME(r,1Sat1)

FREE_TIME(r,1Sat2)

FREE_TIME(r,1Sun1)

FREE_TIME(r,1Sun2)

Again, FREE_DAY expressions may replace FREE_TIME expressions. And when an OR or
AND expression has exactly one child, the OR or AND expression is omitted.

Limit busy times monitors. A limit busy times monitor may monitor several time groups,
like a cluster busy times monitor, but a deviation is calculated for each time group separately:

D.12. Solving 703

SUM_INT

SUM_INT

BUSY_TIME(r,1Mon1)

…

BUSY_TIME(r,1Mon3)

…

SUM_INT

BUSY_TIME(r,4Mon1)

…

BUSY_TIME(r,4Mon3)

The lower SUM_INT expressions, described earlier as case (4) sum expressions, have deviation
calculations but not cost calculations. The higher SUM_INT, called case (1), includes cost but
only a trivial deviation (maximum limit 0). If any of the time groups contains a full day’s worth
of times, their BUSY_TIME expressions are replaced by one BUSY_DAY expression.

If there is only one time group or the cost function is linear, the tree is broken up into one
tree for each time group. Each of these trees has the form

COUNTER

BUSY_TIME(r,1Mon1)

…

BUSY_TIME(r,1Mon3)

We can replace SUM_INT by COUNTER here because the children all have value 0 or 1, and we
do it because it allows tabulated dominance to be used. This is case (2). As before, a day’s worth
of BUSY_TIME expressions are replaced by a BUSY_DAY expression. If the tree as a whole
requires a maximum of one busy time on one day, it is omitted, since all solutions produced by
this solver have that property.

Limit workload monitors. These are the same as limit busy times monitors, except that
they keep track of a float workload rather than an int number of busy times:

704 Appendix D. Dynamic Programming Resource Reassignment: Implementation

SUM_INT

SUM_FLOAT

WORK_TIME(r,1Mon1)

…

WORK_TIME(r,1Mon3)

…

SUM_FLOAT

WORK_TIME(r,4Mon1)

…

WORK_TIME(r,4Mon3)

The SUM_FLOAT expressions, which are case (4), include deviation calculations but not cost
calculations. The SUM_INT expression, which is case (1), includes the cost calculation, but only
a trivial deviation calculation (maximum limit 0). If any of the time groups contains a full day’s
worth of times, their WORK_TIME expressions are replaced by one WORK_DAY expression.

As for limit busy times monitors, if there is only one time group or the cost function is linear,
the tree is broken up into one tree for each time group. Each of these trees has the form

SUM_FLOAT

WORK_TIME(r,1Mon1)

…

WORK_TIME(r,1Mon3)

The remaining SUM_FLOAT expression, which is case (3), takes over the cost calculation. As
before, a day’s worth of WORK_TIME expressions are replaced by a WORK_DAY expression.

When a time group spans more than one day, its SUM_FLOAT expression needs to store
floating point numbers in signatures. This is done by having each position in each signature have
type KHE_DRS_VALUE, an untagged union of int and float. The context is used to select the
appropriate value from the union.

Limit active intervals monitors. These have the same data as cluster busy times monitors,
without allow zero. Only the root expression is different:

D.12. Solving 705

SEQUENCE

OR

BUSY_TIME(r,1Sat1)

BUSY_TIME(r,1Sat2)

BUSY_TIME(r,1Sun1)

BUSY_TIME(r,1Sun2)

…

OR

BUSY_TIME(r,4Sat1)

BUSY_TIME(r,4Sat2)

BUSY_TIME(r,4Sun1)

BUSY_TIME(r,4Sun2)

As for counter monitors, negative time groups produce AND and FREE_TIME expressions, and
times making up complete days become BUSY_DAY and FREE_DAY expressions. However,
when an OR or AND expression has exactly one child, we do not omit it as we do for cluster busy
times monitors. The two reasons for this are explained in Appendix D.8.11.

D.12.3. Solving

At last, we are ready for the main solving functions. As explained earlier, a solve has three steps:
opening, searching, and closing. Here is the function which opens a solve:

706 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsSolveOpen(KHE_DYNAMIC_RESOURCE_SOLVER drs, bool testing,
bool priqueue, bool extra_selection, bool expand_by_shifts,
bool correlated_exprs, int daily_expand_limit, int daily_prune_trigger,
int resource_expand_limit, int dom_approx,
KHE_DRS_DOM_KIND main_dom_kind, bool cache,
KHE_DRS_DOM_KIND cache_dom_kind, KHE_DRS_PACKED_SOLN *init_soln)

{
KHE_DRS_DAY_RANGE ddr; KHE_DRS_DAY day; int i, j, rcount;
KHE_DRS_EXPR e; KHE_DRS_RESOURCE dr; KHE_RESOURCE r;

/* initialize fields that vary with the solve */
drs->solve_priqueue = priqueue;
drs->solve_extra_selection = extra_selection;
drs->solve_expand_by_shifts = expand_by_shifts;
drs->solve_correlated_exprs = correlated_exprs;
drs->solve_daily_expand_limit = daily_expand_limit;
drs->solve_daily_prune_trigger = daily_prune_trigger;
drs->solve_resource_expand_limit = resource_expand_limit;
drs->solve_dom_approx = dom_approx;
drs->solve_main_dom_kind = main_dom_kind;
drs->solve_cache = cache;
drs->solve_cache_dom_kind = cache_dom_kind;
drs->solve_dom_test_type =

KheDomKindCheckConsistency(main_dom_kind, cache, cache_dom_kind);
drs->solve_init_cost = drs->solve_start_cost = KheSolnCost(drs->soln);
KheDrsResourceSetClear(drs->open_resources);
HaArrayClear(drs->open_days);
HaArrayClear(drs->open_shifts);
HaArrayClear(drs->open_exprs);

/* open selected resources */

*init_soln = KheDrsPackedSolnBuildEmpty(drs);
rcount = KheResourceSetResourceCount(drs->selected_resource_set);
for(i = 0; i < rcount; i++)
{

r = KheResourceSetResource(drs->selected_resource_set, i);
dr = HaArray(drs->all_resources, KheResourceResourceTypeIndex(r));
KheDrsResourceOpen(dr, KheDrsResourceSetCount(drs->open_resources),

*init_soln, drs);
KheDrsResourceSetAddLast(drs->open_resources, dr);

}

... code omitted here (see below) ...
}

First, the solve options are copied into the solver, and the sets of open resources, days,
shifts, and expressions are cleared. Then the selected resources are opened by calls to

D.12. Solving 707

KheDrsResourceOpen, and added to drs->open_resources. Then the code that was omitted
above is run; here it is:

/* open selected days */
HaArrayForEach(drs->selected_day_ranges, ddr, i)
for(j = ddr.first; j <= ddr.last; j++)
{
day = HaArray(drs->all_days, j);
KheDrsDayOpen(day, ddr, HaArrayCount(drs->open_days), main_dom_kind,
cache, cache_dom_kind, drs);

HaArrayAddLast(drs->open_days, day);
}

/* open the shifts and mtasks on selected days */
HaArrayForEach(drs->selected_day_ranges, ddr, i)
for(j = ddr.first; j <= ddr.last; j++)
{
day = HaArray(drs->all_days, j);
KheDrsDayOpenShifts(day, ddr, drs);

}

/* sort drs->open_exprs by postorder index, then open them */
HaArraySort(drs->open_exprs, &KheDrsExprPostorderCmp);
HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprOpen(e, drs);

HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprNotifySigners(e, drs);

It opens the selected days, shifts, mtasks, and expressions. All days must be open before any
mtasks are opened, because opening a task includes assigning open day indexes to its task on
day objects, and only open days have those. The two-stage process for opening expressions is
discussed elsewhere.

After opening comes searching, but we’ll look at closing first:

708 Appendix D. Dynamic Programming Resource Reassignment: Implementation

void KheDrsSolveClose(KHE_DYNAMIC_RESOURCE_SOLVER drs,
KHE_DRS_PACKED_SOLN soln, bool check_rerun_costs)

{
KHE_DRS_DAY day; int i, j; KHE_DRS_EXPR e; KHE_MONITOR m;
KHE_DRS_TASK_ON_DAY dtd; KHE_DRS_PACKED_SOLN_DAY rd;
KHE_DRS_RESOURCE dr; KHE_DRS_MONITOR dm;

/* traverse soln, closing assigned tasks */
HaArrayForEachReverse(soln->days, rd, i)
HaArrayForEach(rd->prev_tasks, dtd, j)
if(dtd != NULL)
{
dr = KheDrsResourceSetResource(drs->open_resources, j);
KheDrsTaskClose(dtd->encl_dt, dr);

}

/* close the open days, including closing unassigned tasks */
HaArrayForEach(drs->open_days, day, i)
KheDrsDayClose(day, drs);

/* close the open expressions */
HaArrayForEach(drs->open_exprs, e, i)
KheDrsExprClose(e, drs);

/* close the open resources */
KheDrsResourceSetForEach(drs->open_resources, dr, i)
KheDrsResourceClose(dr, drs);

/* close drs */
KheDrsResourceSetClear(drs->open_resources);
HaArrayClear(drs->open_days);
HaArrayClear(drs->open_shifts);
HaArrayClear(drs->open_exprs);

/* optionally check rerun costs */
if(check_rerun_costs)
HaArrayForEach(drs->all_monitors, dm, i)
KheDrsMonitorCheckRerunCost(dm);

/* check that DRS soln cost equals KHE soln cost */
HnAssert(KheSolnCost(drs->soln) == soln->cost,
"KheDrsSolveClose internal error: soln %.5f != packed %.5f",
KheCostShow(KheSolnCost(drs->soln)), KheCostShow(soln->cost));

}

This closes everything that was previously opened. Parameter soln says which solution to install
into the KHE platform: a new best solution, or the original. Tasks assigned by soln are closed

D.12. Solving 709

first, more than once if they are multi-day tasks. Open but unassigned tasks are closed later,when
their days are closed. Assigned tasks get closed at least twice, but as we saw in Appendix D.5.1,
KheDrsTaskClose can safely close a task more than once: only the first call does anything.

Here now is the function for carrying out the search:

710 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDrsSolveSearch(KHE_DYNAMIC_RESOURCE_SOLVER drs,
bool testing, KHE_DRS_PACKED_SOLN *final_soln)

{
KHE_DRS_DAY prev_day, next_day; KHE_DRS_SOLN root_soln, soln;
KHE_DRS_SOLN_LIST soln_list, root_soln_list;
int i, made_count, undominated_count, kept_count;

/* priority search is different */
if(drs->solve_priqueue)

return KheDrsSolvePrioritySearch(drs, testing, final_soln);

/* do the search */
root_soln_list = soln_list = KheDrsSolnListMake(drs);
root_soln = KheDrsSolnMake(NULL, drs->solve_start_cost, drs);
KheDrsSolnListAddSoln(soln_list, root_soln, drs);
KheDrsAddStats(drs, testing, soln_list, NULL, 0, 0, 0);
prev_day = NULL;
HaArrayForEach(drs->open_days, next_day, i)
{

KheDrsSolnListExpand(soln_list, prev_day, next_day, drs);
made_count = next_day->soln_made_count;
soln_list = KheDrsDayGatherSolns(next_day, drs);
undominated_count = KheDrsSolnListCount(soln_list);
KheDrsSolnListSortAndReduce(soln_list, drs);
kept_count = KheDrsSolnListCount(soln_list);
KheDrsAddStats(drs, testing, soln_list, next_day, made_count,

undominated_count, kept_count);
prev_day = next_day;

}

/* set *final_soln, to NULL if there isn’t one */
if(KheDrsSolnListCount(soln_list) == 1)
{

soln = KheDrsSolnListFirstSoln(soln_list);
KheDrsPrintSearchStatistics(soln, drs);

*final_soln = KheDrsPackedSolnBuildFromSoln(soln, drs);
}
else

*final_soln = NULL;

/* free root_soln (others later) and return true if have final soln */
KheDrsSolnFree(root_soln, drs);
KheDrsSolnListFree(root_soln_list, drs);
return *final_soln != NULL;

}

First, if the priority queue is in use it passes its job on to a completely different function. Then

D.12. Solving 711

it makes root_soln_list, containing just the root solution, the one not lying in any day.
Then, for each open day next_day, it calls KheDrsSolnListExpand (Appendix D.11) to build
a new solution set, by trying all ways to expand the solutions of soln_list by one day. Then
KheDrsDayGatherSolns traverses this solution set and adds each solution to a new soln_list,
which is then sorted and optionally reduced in size by KheDrsSolnListSortAndReduce, ready
for the next iteration. At the end, if there is a solution in soln_list we have a new best solution,
so it calls KheDrsPackedSolnBuildFromSoln to convert this into a packed solution, and returns
true. Otherwise it returns false.

To complete our presentation of solving, we’ll skip forward in the source file to the function
called by the user to carry out a solve:

bool KheDynamicResourceSolverSolve(KHE_DYNAMIC_RESOURCE_SOLVER drs,
bool priqueue, bool extra_selection, bool expand_by_shifts,
bool correlated_exprs, int daily_expand_limit, int daily_prune_trigger,
int resource_expand_limit, int dom_approx,
KHE_DRS_DOM_KIND main_dom_kind, bool cache,
KHE_DRS_DOM_KIND cache_dom_kind)

{
KHE_COST cost;
return KheDynamicResourceSolverDoSolve(drs, priqueue, extra_selection,

expand_by_shifts, correlated_exprs, daily_expand_limit,
daily_prune_trigger, resource_expand_limit, dom_approx,
main_dom_kind, cache, cache_dom_kind, false, &cost);

}

As shown, this passes its job on to KheDynamicResourceSolverDoSolve, with the extra false

argument to indicate that this is a real solve and not a test:

712 Appendix D. Dynamic Programming Resource Reassignment: Implementation

bool KheDynamicResourceSolverDoSolve(KHE_DYNAMIC_RESOURCE_SOLVER drs,
bool priqueue, bool extra_selection, bool expand_by_shifts,
bool correlated_exprs, int daily_expand_limit, int daily_prune_trigger,
int resource_expand_limit, int dom_approx,
KHE_DRS_DOM_KIND main_dom_kind, bool cache,
KHE_DRS_DOM_KIND cache_dom_kind, bool test_only, KHE_COST *cost)

{
int rcount, i; KHE_RESOURCE r; KHE_DRS_DAY_RANGE ddr;
KHE_DRS_PACKED_SOLN init_soln, new_best_soln, junk;
KHE_COST init_cost;

/* open, search, close, and possibly rerun */
init_cost = KheSolnCost(drs->soln);
KheDrsSolveOpen(drs, true, priqueue, extra_selection, expand_by_shifts,

correlated_exprs, daily_expand_limit, daily_prune_trigger,
resource_expand_limit, dom_approx, main_dom_kind, cache,
cache_dom_kind, &init_soln);

if(!KheDrsSolveSearch(drs, true, &new_best_soln))
{

/* no new best; close using init_soln */
KheDrsSolveClose(drs, init_soln, false);

*cost = KheSolnCost(drs->soln);
}
else if(RERUN)

... omitted ...
se
{

/* have new best solution, close using that */
KheDrsSolveClose(drs, new_best_soln, false);

*cost = KheSolnCost(drs->soln);
}

/* delete init_soln and (if present) new_best_soln */
KheDrsPackedSolnDelete(init_soln, drs);
if(new_best_soln != NULL)

KheDrsPackedSolnDelete(new_best_soln, drs);

/* clear out selections ready for a fresh set of resources and days */
KheResourceSetClear(drs->selected_resource_set);
HaArrayClear(drs->selected_day_ranges);

/* return true if the solution has been improved */
HnAssert(KheSolnCost(drs->soln) <= init_cost,

"KheDynamicResourceSolverDoSolve internal error: new %.5f > old %.5f",
KheCostShow(KheSolnCost(drs->soln)), KheCostShow(init_cost));

return KheSolnCost(drs->soln) < init_cost;
}

D.12. Solving 713

It calls on KheDrsSolveOpen, KheDrsSolveSearch, and KheDrsSolveClose, and manages two
packed solutions, init_soln holding the initial solution, and new_best_soln holding the new
best solution if KheDrsSolveSearch finds one. For the RERUN code see Appendix D.12.4.

D.12.4. Testing

In general it is not possible to compare the cost of a solver solution with a KHE cost, because
incomplete solutions have no KHE cost. But when a new best solution is found, it is complete.
If it is installed into the KHE platform its cost can be compared with the KHE cost and should
be equal to it. This important correctness check is made at the end of every successful solve.

If the check fails, the solver has calculated the cost of one or more constraints incorrectly.
But working out which constraints are wrong is not easy. To help with this, the solver offers a
RERUN compiler flag and a rerun field in the solver holding a packed solution. If the RERUN flag
is 1 and the rerun field of the solver is non-NULL, the solve is a rerun. This means that instead
of trying many different assignments, only the assignments from drs->rerun are tried. This
reduces the amount of debug output, while still executing the code that led to the incorrect cost.

We have already seen the key piece of code here, within KheDrsResourceOnDayIsFixed

(Appendix D.10.3). There, if the current run is a rerun, every resource on day is reported to
have a fixed assignment, which KheDrsResourceOnDayIsFixed retrieves from drs->rerun.
Previously omitted code from KheDynamicResourceSolverDoSolve does the rest:

714 Appendix D. Dynamic Programming Resource Reassignment: Implementation

if(!KheDrsSolveSearch(drs, true, &new_best_soln))
{

/* no new best; close using init_soln */
KheDrsSolveClose(drs, init_soln, false);

*cost = KheSolnCost(drs->soln);
}
else if(RERUN)
{

/* close using init_soln */
KheDrsSolveClose(drs, init_soln, false);

/* rerun new_best_soln (drs is closed on new_best_soln after this) */
KheDrsRerun(drs, priqueue, extra_selection, expand_by_shifts,

correlated_exprs, daily_expand_limit, daily_prune_trigger,
resource_expand_limit, dom_approx, main_dom_kind, cache,
cache_dom_kind, new_best_soln);

*cost = KheSolnCost(drs->soln);

/* if test only, return to init_soln */
if(test_only)
{

KheDrsSolveOpen(drs, false, priqueue, extra_selection, expand_by_shifts,
correlated_exprs, daily_expand_limit, daily_prune_trigger,
resource_expand_limit, dom_approx, main_dom_kind, cache,
cache_dom_kind, &junk);

KheDrsPackedSolnDelete(junk, drs);
KheDrsSolveClose(drs, init_soln, false);

}
}

If a new best solution is found and a rerun is wanted, the solve is closed using init_soln,
returning the solver to the initial state. Then KheDrsRerun is called to carry out the rerun. We’ll
see this function in a moment. It leaves the solver with the new best solution reinstalled. Finally,
if we are only testing, we open for solving and immediately close again with the initial solution.
This returns the solver once again to the initial state, which is what is wanted when testing.

Here is KheDrsRerun:

D.12. Solving 715

void KheDrsRerun(KHE_DYNAMIC_RESOURCE_SOLVER drs, bool priqueue,
bool extra_selection, bool expand_by_shifts, bool correlated_exprs,
int daily_expand_limit, int daily_prune_trigger,
int resource_expand_limit, int dom_approx,
KHE_DRS_DOM_KIND main_dom_kind, bool cache,
KHE_DRS_DOM_KIND cache_dom_kind, KHE_DRS_PACKED_SOLN soln)

{
KHE_DRS_PACKED_SOLN init_soln2, new_best_soln2;
int i; KHE_DRS_MONITOR dm;

/* carry out the open, search, and close of the rerun */
drs->rerun = soln;
HaArrayForEach(drs->all_monitors, dm, i)

KheDrsMonitorInitRerunCost(dm, drs);
KheDrsSolveOpen(drs, false, priqueue, extra_selection, expand_by_shifts,

correlated_exprs, daily_expand_limit, daily_prune_trigger,
resource_expand_limit, dom_approx, main_dom_kind, cache,
cache_dom_kind, &init_soln2);

if(!KheDrsSolveSearch(drs, false, &new_best_soln2))
HnAbort("KheDrsRerun internal error (rerun failed to find a new best)");

HnAssert(soln->cost == new_best_soln2->cost,
"KheDrsRerun internal error (rerun new best has different cost)");

KheDrsSolveClose(drs, new_best_soln2, true);
drs->rerun = NULL;

/* delete the packed solutions made by this function */
KheDrsPackedSolnDelete(init_soln2, drs);
KheDrsPackedSolnDelete(new_best_soln2, drs);

}

This begins by setting drs->rerun to its soln parameter to signal to the rest of the code
that this is a rerun using soln. Then it initializes the rerun cost fields in the monitors; we’ll
come to those shortly. After that we have the usual open-search-close sequence, followed by
drs->rerun = NULL to indicate that the rerun is over. Some tidying up ends the function.

We mentioned earlier the problem of finding out which code has calculated an incorrect
cost. This is simplified by the rerun cost expressions. Each cost expression contains a pointer
to the monitor it is derived from, but not to the monitor alone:

typedef struct khe_drs_expr_int_sum_cost_rec {
INHERIT_KHE_DRS_EXPR
KHE_DRS_MONITOR monitor;
...

} *KHE_DRS_EXPR_INT_SUM_COST;

and similarly for KHE_DRS_EXPR_INT_SEQ_COST. Type KHE_DRS_MONITOR is

716 Appendix D. Dynamic Programming Resource Reassignment: Implementation

typedef struct khe_drs_monitor_rec {
KHE_MONITOR monitor;
KHE_COST rerun_open_and_search_cost;
KHE_COST rerun_open_and_close_cost;

} *KHE_DRS_MONITOR;

as we saw in Appendix D.7.2. It contains the monitor plus two costs used only during reruns.
Whenever an expression containing monitor dm reports a cost when opening or searching, it also
adds the cost it reports to dm->rerun_open_and_search_cost; and whenever it reports a cost
when opening or closing, it also adds the cost it reports to dm->rerun_open_and_close_cost.
These reports are made by calls, which we have omitted in our presentations so far, to
KheDrsMonitorInfoUpdateRerunCost. This happens only during reruns.

At the end of a rerun, when a new best solution is installed, we should have

dm->rerun_open_and_search_cost == KheMonitorCost(dm->monitor)

and

dm->rerun_open_and_close_cost == KheMonitorCost(dm->monitor)

KheDrsSolveClose checks these conditions, by calling KheDrsMonitorInfoCheckRerunCost,
which we omitted before. This prints debug output pointing to the failures, if there are any. In
this way we can track down the misbehaving expressions.

Some monitors give rise to multiple expression trees,when they are broken into independent
parts. That’s fine; the different expression trees share the same monitor object.

The solver also offers debug code to help with working out what is going wrong. We won’t
detail it here, but one can name a particular cost expression (one previously found to be going
wrong) by setting the RERUN_MONITOR_ID compiler flag, and this will produce debug output
during the rerun which shows how the cost of that expression is calculated during opening,
closing, and evaluating on each day. On a regular run this would be incomprehensible, but on a
rerun there is just the one search path to follow.

When testing, the solver will also collect statistics about the current solve. These are stored
in fields of KHE_DYNAMIC_RESOURCE_SOLVER that we omitted before:

#if TESTING
KHE_TIMER timer;
HA_ARRAY_INT solns_made_per_day;
HA_ARRAY_INT table_size_per_day;
HA_ARRAY_FLOAT running_time_per_day;
HA_ARRAY_INT ancestor_freq;
HA_ARRAY_INT dominates_freq;
int max_open_day_index;

#endif

Skipping details, there is a KheDrsAddStats function, whose calls we have omitted, that adds
values to these statistics; and then the public KheDynamicResourceSolverSolveStatsCount

and KheDynamicResourceSolverSolveStats functions return these values to the user.

References

[1] R. Ahuja, Ö. Ergun, J. Orlin, and A. Punnen. A survey of very large-scale neighbourhood
search techniques. Discrete Applied Mathematics 123, 75–102 (2002).

[2] J. Csima and C. C. Gotlieb. Tests on a computer method for constructing school timetables.
Communications of the ACM 7, 160–163 (1964).

[3] Fred Glover. Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Applied Mathematics 65, 223–253 (1996).

[4] C. C. Gotlieb. The construction of class-teacher timetables. In Proc. IFIP Congress, pages
73–77, 1962.

[5] Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar. A case study for
timetabling in a Dutch secondary school. In Practice and Theory of Automated Timetabling
VI (Sixth International Conference, PATAT2006, Czech Republic, August 2006, Selected
Papers), pages 267–279. Springer Lecture Notes in Computer Science 3867, 2007.

[6] Jeffrey H. Kingston. The KTS high school timetabling web site (Version 1.4), September
2006. URL http://www.it.usyd.edu.au/~jeff .

[7] Jeffrey H. Kingston. Hierarchical timetable construction. In Practice and Theory of Auto-
mated Timetabling VI (Sixth International Conference,PATAT2006, Brno, Czech Republic,
August 2006, Selected Papers), pages 294–307. Springer Lecture Notes in Computer Sci-
ence 3867, 2007.

[8] Jeffrey H. Kingston. The KTS high school timetabling system. In Practice and Theory of
Automated Timetabling VI (Sixth International Conference, PATAT2006, Czech Republic,
August 2006, Selected Papers), pages 308–323. Springer Lecture Notes in Computer
Science 3867, 2007.

[9] Jeffrey H. Kingston. Resource assignment in high school timetabling. In PATAT2008
(Seventh international conference on the Practice and Theory of Automated Timetabling,
Montreal,August 2008), 2008.

[10] Jeffrey H. Kingston. Modelling history in nurse rostering. In PATAT 2018 (Twelfth
international conference on the Practice and Theory of Automated Timetabling, Vienna,
August 2018), pages 97–111, 2018.

[11] Jeffrey H. Kingston, Gerhard Post, and Greet Vanden Berghe. A unified nurse rostering
model based on XHSTT. In PATAT 2018 (Twelfth international conference on the Practice
and Theory of Automated Timetabling,Vienna, August 2018), pages 81–96, 2018.

[12] Carol Meyers and James B. Orlin. Very large-scale neighbourhood search techniques in
timetabling problems. In Practice and Theory of Automated Timetabling VI (Sixth Interna-

717

718 References

tional Conference,PATAT2006,Brno,Czech Republic,August 2006,Selected Papers), pages
24–39. Springer Lecture Notes in Computer Science 3867, 2007.

[13] Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngäs, Cimmo Nurmi,
Gerhard Post, David Ranson, and Henri Ruizenaar. An XML format for benchmarks in
high school timetabling. In PATAT08 (Seventh international conference on the Practice and
Theory of Automated Timetabling,Montreal,August 2008), 2008.

[14] D. de Werra. Construction of school timetables by flow methods. INFOR – Canadian
Journal of Operations Research and Information Processing 9, 12–22 (1971).

