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Part A

The Platform



Chapter 1. Introduction

Some instances of high school timetabling problems, taken from institutions in several countries
and specified formally in an XML format called XHSTT, have recently become available [13].
For the first time, the high school timetabling problem can be studied in its full generality.

KHE is an open-source ANSI C library, released under the GNU public licence, which aims
to provide a fast and robust foundation for solving instances of high school timetabling problems
expressed in the XHSTT format. Users of KHE may read and write XML files, create solutions,
and add and change time and resource assignments using any algorithms they wish. The cost of
the current solution is always available, kept up to date by a hand-coded constraint propagation
network. KHE also offers features inherited from the author’s KTS system [6, 8], notably layer
trees and matchings, and solvers for several major sub-tasks.

KHE is intended for production use, but it is also a research vehicle, so new versions will
not be constrained by backward compatibility. Please report bugs tojefé@it.usyd.edu.au
will release a corrected version within a few days of receiving a bug report, wherever possible.

This introductory chapter explains how to install and use KHE, surveys its data types, and
describes some operations common to many types.

1.1. Installation and use

KHE has a home page, at
http://jeffreykingston.id.au/khe/

The current version of KHE is a gzipped tar file in that directory. The current version of this
documentation (a PDF file) is also stored there. The names of these files change with each
release; they are most easily downloaded using links on the home page.

Originally, ‘KHE’ stood for ‘Kingston’s High School Timetabling Engine’, but it now
covers all timetabling software released by me: the platform, the solvers, HSeval (which drives
the HSEval web site), my nurse rostering software, and anything else | release in the future. So
‘KHE’ no longer stands for anything, except possibly ‘Kingston’s Humungous Enterprise’.

| have used different kinds of version numbers over the years, but starting with Version 2.1
| am reverting to the traditional form, of a major release number and minor release number sepa-
rated by a dot. Each KHE release is a release of all my software under a single version number.

A program that incorporates the KHE platform can gain access to the current version
number by calling

char +KheVer si onNunber (voi d) ;
char =KheVersi onBanner (voi d);

For example, if Version 2.1is compiled into the program that calls these functions, their results
willbe"2.1" and"Version 2.1 (May 2018)".
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To install KHE, download a release and unpack it ugimgzi p andt ar xf asusual. The
resulting directorykhe, contains a makefile, sonsec_x directories holding the source files of
KHE, and someloc_x directories holding the source files of this documentation. Consult the
makefile for information about what's what in the distribution, and how to install and use KHE.

Starting with Version 2.1, the KHE source files are divided into three parts: the platform
(whose interface is fil&he_pl at f or m h), the solverskhe_sol vers. h), and a main program.
This allows users to use only the platform, or it and the solvers, or those plus a main program.
The distribution also contains two source directories holding my nurse rostering software.

1.2. The data types of KHE

This section is an overview of KHE’s data types. The following chapters have the details.

TypeKHE_ARCHI VE represents one archive, that is, a collection of instances plus a collection
of solution groups. Typ&HE _SOLN_GROUP represents one solution group, that is, a set of
solutions of the instances of the archive it lies in. The word ‘solution’ is abbreviated to ‘soln’
wherever it appears in the KHE interface. Use of these types is optional: instances do not have
to lie in archives, and solutions do not have to lie in solution groups.

Type KHE_| NSTANCE represents one instance of the high school timetabling problem.
KHE_TI ME_GROUP represents a set of timeé&E_TI MVE represents one timé&HE_RESOURCE_TYPE
represents a resource type (typicalBacher Room Class or Studeny;, KHE_RESOURCE_GROUP
represents a set of resources of one type K&EJRESOURCE represents one resource.

Type KHE_EVENT_GROUP represents a set of event§iE EVENT represents one event,
including all information about its time. Typ€HE_EVENT_RESOURCE represents one resource
element within an event. Typ@iE_CONSTRAI NT represents one constraint. This could have any
of the constraint types of the XML format (it is their abstract supertype).

TypeKHE_SOLN represents one solution, complete or partial, of a given instance, optionally
lying within a solution group. Typ&HE_MEET represents one meet (KHE’'s commendably brief
name for what the XML format calls a solution event, split event, or sub-event: one event as it
appears in a solution), including all information about its time. Tkide TASK represents one
piece of work for a resource to do: one resource element within a meet.

KHE supports multi-threading by ensuring that each instance and its components (of
type KHE_I NSTANCE, KHE_TI ME_GROUP, and so on) is immutable after loading of the instance is
completed, and that operations applied to one solution object do not interfere with operations
applied simultaneously to another. Thus, after instance loading is completed, it is safe to create
multiple threads with differerdHE_SOLN objects in each thread, all referring to the same instance,
and operate on those solutions in parallel. No such guarantees are given for operating on the
same solution from different threads.

1.3. Common operations

This section describes some miscellaneous operations that are common to many data types.

Whenever KHE creates an object, any string-valued attributes of that object passed by the
user are not stored directly; instead, malloced copies are stored. If the object is later deleted, the
malloced copy is deleted along with it. Thus, whatever its origin, a string-valued attribute has
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the same lifetime as the object itself.

Use of KHE often involves creating objects that contain references to KHE entities (objects
of types defined by KHE) alongside other information. Sometimes it is necessary to go back-
wards, from a KHE entity to a user-defined object. Accordingly, each KHE entity conthatka
pointerwhich the user is free to set and retrieve, using calls which look generically like this:

voi d KheEntitySet Back(KHE ENTITY entity, void xback);
voi d »KheEntityBack( KHE ENTITY entity);

All back pointers are initialized t8ULL. In general, KHE itself does not set back pointers. The
exception is that some solvers packaged with KHE set the back pointers of the solution entities
they deal with. This is documented where it occurs.

Timetables often contain symmetries of various kinds. In high school timetabling, the
student group resources of one form are often symmmetrical: they attend the same kinds of
events over the course of the cycle.

Knowledge of similarity can be useful when solving. For example, it might be useful to
timetable similar events attended by student group resources of the same form at the same time.
Accordingly, several KHE entities offer an operation of the form

bool KheEntitySimlar(KHE_ENTITY el, KHE_ENTITY e2);

which returns r ue if KHE considers that the two entities are similar. If they are the exact same
entity, they are always considered similar. In other cases, the definition of similarity varies with
the kind of entity, although it follows a common pattern: evidence both in favour of similarity
and against it is accumulated, and there needs to be a significant amount of evidence in favour,
and more evidence in favour than against. For example, an event containing no event resources
will never be considered similar to any event except itself, since positive evidence, such as
requests for the same kinds of teachers, is lacking.

Similarity is not a transitive relation in general. In other wordslifande2 are similar, and
e2 ande3 are similar, that does not imply that ande3 are similar. There is a heuristic aspect
to it that seems inevitable, although the intention is to stay on the safe side: to declare two entities
to be similar only when they clearly are similar.

Another operation that applies to many entities, albeit a humble one, is printing the current
state of the entity as an aid to debugging. The KHE operations for this mostly take the form

voi d KheEntityDebug(KHE_ENTITY entity, int verbosity,
int indent, FILE *fp);

They produce a debug print efiti ty ontof p.

Thever bosi ty parameter controls how much detail is printed. Any value is acceptable. A
zero or negative value always prints nothing. Every positive value prints something, and as the
value increases, more detail is printed, depending, naturally, on the kind of entity. Value 1 tries
to print the minimum amount of information needed to identify the entity, often just its name.

If i ndent is non-negative, a multi-line format is used in which each line begins with at least
i ndent spaces. If ndent is negative, the print appears on one line with no indent and no con-
cluding newline. Since space is limited, verbosity may be reduced witeEmt is negative.
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Many entities are organized hierarchically. Depending on the verbosity, printing an entity
may include printing its descendants. Their debug functions are passed a vahuefarwhich
is 2 larger than the value received (when non-negative), so that the hierarchy is represented in the
debug output by indenting. The debug print of one entity usually beging vatid ends with a
matching] , making it easy to move around the printed hierarchy using a text editor.

1.4. KHE for employee scheduling

Recent versions of KHE support the employee scheduling data format XESTT as well as the high
school timetabling format XHSTT. XESTT is the same as XHSTT except for a few extensions,
which are documented on the HSEval web site.

KHE knows whether it is dealing with XESTT or XHSTT, but it does not care—it supports
XESTT, which includes supporting XHSTT. When using KHE for high school timetabling,
several parameters of KHE functions have to be given values that indicate that the extensions
available in XESTT are not used. This mainly affects the operations for creating cluster busy
times and limit busy times constraints.



Chapter 2. Archives and Solution Groups

This chapter describes tKeE_ARCHI VE andKHE_SOLN_GROUP data types, representing archives
and solution groups as in the XML format. Their use is optional, since instances are not required
to lie in archives, and solutions are not required to lie in solution groups.

2.1. Archives

An archive is defined in the XML format to be a collection of instances together with groups
of solutions to those instances. There may be any number of instances and solution groups. To
create a new, empty archive, call

KHE ARCHI VE KheAr chi veMake(char =id, KHE MODEL nodel, HA ARENA SET as);

Parameterd is an identifier for the archive. It may b&LL, but only if the archive is not going

to be written. Parametendel says what problem the archive models, for which see just below.
Parametees is the thread arena set used for obtaining memory. Appendix A.1.2 introduces
arena sets, and Appendix B.7 explains why one arena set per thread is good. You can also pass
NULL for as, but there will be some loss of efficiency in memory allocation which could be
critical when handling large archives.

Although created to support the XHSTT high school timetabling model, KHE also supports
an extended version of XHSTT, used for nurse rostering. Accordingly KiypeVODEL is

t ypedef enum {
KHE_MODEL_HI GH_SCHOOL_TI METABLE,
KHE_MODEL_EMPLOYEE_SCHEDULE

} KHE_MODEL;

The model affects the initial tag read KijeAr chi veRead and written bykheAr chi veWi te,

which is <Hi ghSchool Ti net abl eAr chi ve> when it iSKHE_MODEL_HI GH_SCHOOL_TI METABLE
and<Enpl oyeeSchedul eAr chi ve> when it iSKHE_MODEL_EMPLOYEE SCHEDULE. Instances also
have a model, which must agree with the model of any archive they lie in. Thus, itis not possible
to mix instances with different models in one archive. Functions

char *KheArchi vel d( KHE_ARCHI VE ar chi ve);
KHE_MODEL KheAr chi veModel ( KHE_ARCHI VE ar chi ve);

return these attributes of an archive. To set and retrieve the back pointer (Section 1.3), call

voi d KheAr chi veSet Back( KHE_ARCHI VE ar chi ve, void *back);
voi d *KheAr chi veBack( KHE_ARCHI VE archi ve);

Archive metadata may be set and retrieved by calling
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voi d KheAr chi veSet Met aDat a( KHE_ARCHI VE ar chive, char =nane,

char *contributor, char xdate, char =description, char *remarks);
voi d KheAr chi veMet aDat a( KHE_ARCHI VE ar chi ve, char *xnane,

char *=xcontributor, char xxdate, char *xdescription, char =*remarks);

The valuesretrieved are copies of those passed in, as usual. The initial valuesldie alVhen
a metadata value is required when writing an archive,Nuhy or empty values are written as
"No nane","No contributor", etc. Thereis also

char *KheAr chi veMet aDat aText ( KHE_ARCHI VE ar chi ve)
which returns a string containing the metadata as a paragraph of English text, for example
This archive is XHSTT-2014, assenbled by Gerhard Post on 2 March 2014.

The string lies in the archive’s arena and is deleted when the archive is deleted.

Initially an archive contains no instances and no solution groups. Solution groups are added
automatically as they are created, because every solution group lies in exactly one archive. An
instance may be added to an archive by calling

bool KheAr chi veAddl nst ance( KHE_ARCHI VE ar chi ve, KHE | NSTANCE i ns);

KheAr chi veAddl nst ance returnstrue if it succeeds in addingns to ar chive, andf al se
otherwise, which can either be becaasehi ve already contains an instance withs’s Id, or
because the instance and archive models differ. The instance will appear after any instances
already present. An instance may be deleted from an archive (but not destroyed) by calling

voi d KheAr chi veDel et el nst ance( KHE_ARCHI VE ar chive, KHE_I NSTANCE ins);

KheAr chi veDel et el nst ance aborts ifi ns is not inarchi ve. If there are any solutions for
ins inarchi ve, they are deleted too. The gap left by deleting the instance is filled by shuffling
subsequent instances up one place.

To visit the instances of an archive, call

i nt KheArchi vel nst anceCount ( KHE_ARCHI VE archi ve);
KHE_| NSTANCE KheAr chi vel nst ance( KHE_ARCHI VE archive, int i);

The first returns the number of instancesirhi ve, and the second returns thigh of those
instances, counting from 0 as usual in C. There is also

bool KheArchi veRetrievel nstance( KHE ARCHI VE archive, char =xid,
KHE | NSTANCE i ns, int =*index);

If archi ve contains an instance with the given, this function set$ns to that instance and
i ndex to its index inar chi ve and returnsr ue; otherwise it setsi ns to NULL and+i ndex to
-1 and return$al se. And

bool KheArchi veCont ai nsl nst ance( KHE_ARCHI VE ar chi ve,
KHE | NSTANCE ins, int =*index);

is the function to call when the instance is given and just its index is needed.
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For visiting the solution groups of an archive, call

i nt KheAr chi veSol nG oupCount ( KHE_ARCHI VE ar chi ve);
KHE_SOLN_GROUP KheAr chi veSol nG oup( KHE_ARCHI VE archive, int i);

similarly to visiting instances. There is also

bool KheArchiveRetrieveSol nG oup( KHE_ARCHI VE archive, char =id,
KHE_SCOLN_GROUP =*sol n_group);

which retrieves a solution group lbyl.

2.2. Solution groups
A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool KheSol nG oupMake( KHE_ARCHI VE ar chi ve, char =id,
KHE_SOLN_GROUP *sol n_group);

Herear chi ve is compulsory, and the solution group is added to it. Parameltes the Id
attribute from the XML file; it is optional, wittNULL meaning absent, although it is compulsory
if archive is to be written later. If the operation is successful, thene is returned with
xsol n_group set to the new solution group; if not (which can only be becadss already the

Id of a solution group o#r chi ve), thenf al se is returned withrsol n_gr oup set toNULL.

To delete a solution group, including deleting it from its archive, call
voi d KheSol nG oupDel et e( KHE_SOLN_GROUP sol n_group);

The solutions withirsol n_gr oup are not deleted.
To set and retrieve the back pointer (Section 1.3) of a solution group, call

voi d KheSol nG oupSet Back( KHE_SOLN _GROUP sol n_group, void *back);
voi d *KheSol nG oupBack( KHE_SOLN GROUP sol n_group);

as usual. To retrieve the archive and Id, call

KHE_ARCHI VE KheSol nG oupAr chi ve( KHE_SOLN_GROUP sol n_group);
char *KheSol nGroupl d( KHE_SOLN_GROUP sol n_group);

Solution group metadata may be set and retrieved by calling

voi d KheSol nG oupSet Met aDat a( KHE_SCOLN _GROUP sol n_gr oup,
char xcontributor, char +date, char =description,
char =*publication, char xremarks);

voi d KheSol nG oupMet aDat a( KHE_SOLN_GROUP sol n_gr oup,
char *xcontributor, char xxdate, char xxdescription,
char *xpublication, char =*remarks);

As usual, copies of the strings are stored, not the originals. As for archive metadata, any of these
strings may b&ULL or empty. KHE substitutes valuéSo contributor”,"No date", etc.for
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such values when writing an archive, or omits them altogether when XHSTT allows. Also,
char *KheSol nGr oupMet aDat aText ( KHE_SOLN_GROUP sol n_group);

returns a string containing the metadata as a paragraph of terse English text. The string lies in
the solution group’s arena and will be deleted when the solution group is deleted.

Initially a solution group has no solutions. These are added and deleted by calling

voi d KheSol nGr oupAddSol n( KHE_SOLN_GROUP sol n_group, KHE SOLN sol n);
voi d KheSol nGroupDel et eSol n( KHE_SOLN_GROUP sol n_group, KHE_SOLN soln);

A solution can only be added when its instance lies in the solution group’s archive.
To visit the solutions of a solution group, call

i nt KheSol nG oupSol nCount ( KHE_SOLN_GROUP sol n_group);
KHE_SOLN KheSol nGr oupSol n( KHE_SCLN_GRCOUP sol n_group, int i);

Solutions have no lds, so there iski@Sol nG oupRet ri eveSol n function. When solution is
deletedKheSol nG oupSol nCount decreases by 1, solutiorl becomes solution, and so on.
To visit the solutions of a solution group that solve a particular instance, call

KHE_SOLN_SET KheSol nG oupl nst anceSol nSet (KHE_SOLN GROUP sol n_group,
KHE_| NSTANCE i ns);

Or if the index of the instance in trs®l n_gr oup’s archive is known, one can call

KHE SOLN _SET KheSol nG oupl nst anceSol nSet Byl ndex(
KHE SOLN GROUP sol n_group, int index);

As described just beloWHE_SCLN_SET is a set of solutions. The set returned by these functions
holds the solutionsisol n_gr oup for the indicated instance. Itis storedsiol n_gr oup and must

not be modified by the user, except that it may be sorted. KHE updates it as solutions are added
and deleted from its enclosing solution group, and deletes it when its instance is deleted.

2.3. Solution sets

Like a solution group, a solution set contains a set of solutions. But, unlike a solution group, that
is all it contains: it is not considered to lie in any archive, and it has no Id and no metadata.

To create a new, empty solution set, and to delete it (but not its solutions), call
KHE_SOLN_SET KheSol nSet Make( HA ARENA a) ;

As usual it (but not its solutions) will be deleted whers deleted. There is also
voi d KheSol nSet Cl ear (KHE_SOLN_SET ss);

which empties ouss without deleting it. To add a solution, and to delete one, call

voi d KheSol nSet AddSol n( KHE_SCLN_SET ss, KHE_SCLN sol n);
voi d KheSol nSet Del et eSol n( KHE_SCLN_SET ss, KHE_SCLN sol n);



10 Chapter 2. Archives and Solution Groups

To find out if a solution set contains a given solution, call
bool KheSol nSet Cont ai nsSol n( KHE_SCLN_SET ss, KHE_SOLN soln, int xpos);

It returnst r ue if ss containssol n, settingpos to its index inss if so.
To visit the elements of a solution set, call

i nt KheSol nSet Sol nCount ( KHE_SOLN_SET ss);
KHE_SOLN KheSol nSet Sol n( KHE_SOLN_SET ss, int i);

They have the order they were inserted in, unless this has been changed by calling either of

voi d KheSol nSet Sort ( KHE_SOLN_SET ss,

i nt(*conpar)(const void *, const void *));
voi d KheSol nSet Sort Uni que( KHE_SOLN_SET ss,

i nt(*conpar)(const void *, const void *));

KheSol nSet Sort sorts the solutions according to comparison functiompar , which must be
suitable for passing tgsor t . KheSol nSet Sor t Uni que is the same, but afterwards it removes all
but one of each run of solutions for whichnpar returns 0.

One comparison function is already written, in one form that makes sense to people and
another that makes sensejtmrt :

i nt Khel ncreasi ngCost TypedCnp( KHE_SOLN sol n1, KHE SOLN sol n2);
i nt Khel ncreasi ngCost Cnp(const void *t1, const void *t2);

It sorts the solution set so that the solutions have increasing cost. Solutions with equal cost
have increasing running time. Invalid solutions are treated as though they have infinite cost, and
solutions with no running time recorded are treated as though they have infinite running time.

Finally,

voi d KheSol nSet Debug( KHE_SOLN_SET ss, int verbosity,
int indent, FILE *fp);

sends a debug print ek tof p with the given verbosity and indent.

2.4. Reading archives

KHE reads and writes archives in XHSTT, a standard XML format [13], and in XESTT, an
extension of XHSTT for employee scheduling problems [10, 11]. To read an archive, call

bool KheArchi veRead(FI LE *fp, HA ARENA SET as, KHE ARCH VE xarchi ve,
KM._ERROR *ke, bool audit_and fix, bool resource type partitions,
bool infer _resource partitions, bool limt _busy recode,
bool allow.invalid solns, KHE SOLN TYPE soln_type, FILE *echo _fp);

File f p must be open for reading UTF-8, and it remains open after the call returns. If, starting
from its current positiorf,p contains a legal XML archive, the¢meAr chi veRead setstar chi ve
to that archive, passingas as its arena set parameter, akd to NULL and returnsr ue with f p
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moved to the first character after the archive. If there was a problem reading the file, then it sets
xar chi ve to NULL and=+ke to an error object and returhsl se. Any reports in the archive are
discarded without checking.

TypeKM._ERRCR is from the KML module packaged with KHE. A full description of the
KML module appears in Section A.6. Given an object of tipe_ERROR, operations

i nt Kml ErrorLi neNum KM._ERROR ke);
i nt Kl ErrorCol Num KM._ERROR ke);
char =Km ErrorString(KM._ERRCOR ke);

return the line number, the column number, and a string description of the error.

KheAr chi veRead builds the archive using the functions of this guide; there is nothing
special about the archive it builds. The model, for the archive and instances, depends on the
initial tag: KHE_MODEL_H GH_SCHOOL_TI METABLE when itis<H ghSchool Ti net abl eAr chi ve>,
andKHE_MODEL_EMPLOYEE SCHEDULE when it is<Enpl oyeeSchedul eAr chi ve>.

The audit_and_fix, resource_type_partitions,infer_resource_partitions, and
limt_busy_recode parameters are passed on fkbel nstanceMakeEnd (Section 3.1).
KheAr chi veRead builds complete representations of the solutions it reads. To be precise, it
calls functionskheSol nMakeConpl et eRepr esent ati on, KheSol nAssi gnPr eassi gnedTi nes,
andKheSol nAssi gnPr eassi gnedResour ces (Section 4.3), but ndfheSol nMat chi ngBegi n or
KheSol nEvennessBegi n (Chapter 7).

Usually, if there are errors in the filgheAr chi veRead returnsf al se and sets ke to the
firsterror. Butifal I ow_i nval i d_sol ns ist r ue, then some errors lying in solutions are handled
differently: the erroneous solutions are converted to invalid placeholders (Section 4.2.6). Each
invalid placeholder solution contains its first error, and none of its errors dalise to be
returned or ke to be set. Not all errors, not even all errors lying in solutions, can be handled in
this way; those that cannot caugeAr chi veRead to returnf al se and set ke as usual.

Each valid solution is passed to functitgtheSol nTypeReduce along with parameter
sol n_type. If sol n_t ype isKHE_SOLN_ORDI NARY this does nothing, but other values reduce the
solution to a placeholder, freeing up a lot of memory which is re-used for reading other solutions.
The value ofsol n_t ype may not beKHE_SOLN_| NVALI D_PLACEHOLDER. See Section 4.2.6 for
KheSol nTypeReduce and the other choices fepl n_t ype.

KheAr chi veRead callsKm ReadFi | e (Section A.6.3), passiregho_f p toit. The characters
read are echoed twho_f p if it is non-NULL; it would normally beNULL.

2.5. Reading archives incrementally

A large archive may have to be read one solution at a time. For this, call
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bool KheArchiveReadl ncremental (FILE =fp, HA ARENA SET as,
KHE_ARCHI VE *archive, KM._ERROR *ke, bool audit_and fix,
bool resource_type partitions, bool infer _resource partitions,
bool linmit _busy recode, bool allow.invalid solns,
KHE_SCLN TYPE sol n_type, FILE xecho_fp,
KHE_ARCHI VE_FN ar chive_begin_fn, KHE ARCH VE FN archive_end fn,
KHE_SCLN_GROUP_FN sol n_group_begi n_fn,
KHE_SCLN _GROUP_FN sol n_group_end fn, KHE SOLN FN soln_fn, void *inpl);

The return value and the parameters updio_f p inclusive are as fokheAr chi veRead. The
remaining parameters are callback functions, except the lgst, which is not used by KHE

but is instead passed through to the calls on the callback functions. Any or all of the callback
functions may b&ULL, in which case the corresponding callbacks are not made.

Callback functionar chi ve_begi n_f n is called byKheAr chi veReadl ncrenent al at the
start of the archive. It must be written by the user like this:

voi d archive_begi n_fn(KHE ARCH VE archive, void *inpl)
{

}

Its ar chi ve parameter is set to the archive tiaeAr chi veReadl ncrenent al  will eventually
build, the one it returns in itsar chi ve parameter; itsnpl parameter contains the value of the
i npl parameter okheAr chi veReadl ncrement al . At the time of this callar chi ve contains its
Id, metadata, and model attributes, but no instances and no solution groups.

Callback functionarchive_end_fn is called at the end of the archive, just before
KheAr chi veReadl ncrement al itself returns:

voi d archive_end _fn(KHE ARCH VE archive, void *inpl)
{

}

When this function is calledgr chi ve contains all of its instances and solution groups. If
KheAr chi veReadl ncrenent al returng r ue, there has been one callbaclata@hi ve_begi n_fn
and one tar chive_end_fn, if nonNULL.

Callback functiorsol n_gr oup_begi n_f n is called at the start of each solution group:

voi d sol n_group_begi n_f n( KHE_SOLN_GROUP sol n_group, void *inpl)
{

}

Itssol n_gr oup parameter is set to one of the solution groups that the final archive will eventually
contain, and it$ npl parameter is as before. At the time of this csdl, n_gr oup contains its

Id and MetaData, antheSol nG oupAr chi ve(sol n_group) returns the enclosing archive, but
there are no solutions Bol n_gr oup.

Callback functiorsol n_gr oup_end_f n is called at the end of each solution group:
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voi d soln_group_end fn(KHE SOLN GROUP sol n_group, void *inpl)
{

}

At the time of this callsol n_gr oup contains all its solutions.
Finally, callback functiorsol n_f n is called after each solution is read:

voi d sol n_fn(KHE_SCLN sol n, void *inpl)
{

}

The solution is complete, aridieSol nSol nG oup( sol n) returns the enclosing solution group.

The purpose of incremental reading is to process the solutions as they are read, so that
they can be deleted and their memory reclaimed. For example, to replace each solution by a
placeholder, pas$JLL for all callbacks exceptol n_f n, which would be defined like this:

voi d soln_fn(KHE _SOLN sol n, void *inpl)
{
i f( KheSol nType(sol n) == KHE_SCOLN_ORDI NARY )
KheSol nReduceToPl acehol der (sol n, fal se);

}

The test is needed only #l | ow_i nval i d_sol ns is true. KheSol nReduceToPl acehol der

(Section 4.2.6) reclaims most of the memorysof n, leaving just thesol n object itself and a

few attributes, including its cost. In this way, the total memory cost is reduced to not much more
than the memory needed to hold the instances, but enough information is retained to support oper-
ations which (for example) print tables of solutions and their costs. Of cd{nes#&,chi veRead

has thesol n_t ype parameter which can be used to instruct it to do these reductions anyway.

Other applications might processl n in some way (print timetables, for example) before
finishing with a call takheSol nReduceToP!l acehol der , or everkheSol nDel et e.

2.6. Reading archives from the command line

Reading an archive from the command line basically means opening the file named by a
command-line argument and callikgeAr chi veRead. Beyond that, there may be a need to
process the archive before using it, for example to remove its solution groups. Function

KHE_ARCHI VE KheAr chi veReadFr onCommandLi ne(int argc, char xargv[],
int *pos, HA ARENA SET as, bool audit_and_fi x,
bool resource_type_partitions, bool infer_resource_partitions,
bool limt_busy recode, bool allow_invalid_solns,
KHE_SOLN TYPE sol n_type, FILE *echo_fp);

offers a standard way to do that. Hergyc andar gv are exactly as they were passed to the main
program, andpos is an index intar gv, to a point where the name of an archive is expected.
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KheAr chi veReadFr omConmandLi ne first opens the file whose nameaisgv| *pos] , calls
KheAr chi veRead, and incrementspos to inform the caller that the argumentsgtos has been
processed. The name may-haneaning standard input. Then, while command-line arguments
beginning with- x, -i, - X, and- | follow the name, it modifies the in-memory version of the
archive as instructed by those arguments. Finally, it returns the archive,wihmoved to the
index of the first unprocessed argument, aartge if the argument list becomes exhausted.

The-x,-i,-X,and- | arguments have this syntax and meaning:
- x<i d>{, <i d>}
Delete instances (and their solutions) with the given Ids.
-i<id>{, <i d>}
Include only instances (and their solutions) with the given Ids; delete all other instances.
- X<i d>{, <i d>}
Delete solution groups with the given Ids.
-1 <id>{, <i d>}
Include only solution groups with the given Ids; delete all other solution groups.
As a special case X with no ids means to delete all solution groups.

Arguments x and-i may not be used together, and and- | may not be used together.
If there is a problermkheAr chi veReadFr onCommandLi ne prints a message and cadbs t (1) .

At present there is ngheAr chi veReadFr onCommandLi nel ncr ement al function combin-
ing KheAr chi veReadFr omConmandLi ne with KheAr chi veReadl ncrerent al .

2.7. Writing archives and solution groups
To write an archive to a file, call
voi d KheArchi veWite(KHE_ARCHI VE archive, bool with_reports, FILE *fp);

File f p must be open for writing UTF-8 characters, and it remains open after the call returns. If
with_reports istrue, each written solution containsRaport section evaluating the solution.

If the archive’s model iKHE_MODEL_HI GH_SCHOOL_TI METABLE, the initial tag written td p
will be <H ghSchool Ti net abl eAr chi ve>. If the model isKHE_MODEL_EMPLOYEE SCHEDULE,
the initial tag will be<Enpl oyeeSchedul eAr chi ve>.

Ids and names are optional in KHE but compulsory when writing XML: if any are missing,
KheAr chi veW i t e writes an incomplete file and aborts with an error message. They will all be
present whear chi ve was produced bitheAr chi veRead.

If any of ar chi ve’s solutions are invalid or unwritable placeholdgfseAr chi veWite
aborts. Ifwith_reports istrue, any placeholder solution at all causes an abort.

When an event has a preassigned time, there is a problem if one of its meets is not assigned
that time. If the meet is assigned some other time (which is possible in KHE, although not easy),
then writing that time will cause the solution to be declared invalid when itisre-read. If the meet
Is not assigned any time, then, whether or not the preassigned time is written, the meaning is that
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the preassigned time is assigned, which is not the true state of the solution. The same problem
arises with preassigned event resources whose tasks are not assigned the preassigned resource.

Accordingly,KheAr chi veWi te also writes an incomplete file and aborts with an error
message when it encounters a meet (or task) derived from a preassigned event (or event resource)
whose assigned time (or resource) is unequal to the preassigned time (or resource).

When writing solutionsikheAr chi veW i t e writes as little as possible. It does not write an
unassigned or preassigned task. It does not write a meet if its duration equals the duration of the
corresponding event, its time is unassigned or preassigned, and its tasks are not written according
to the rule just given (see also Section 4.3).

Two similar functions are
voi d KheArchiveWiteSol nG oup( KHE_ARCHI VE ar chi ve,

KHE_SOLN_GROUP sol n_group, bool with_reports, FILE *fp);
voi d KheArchiveWiteWthout Sol nG oups(KHE_ARCHI VE archive, FILE *fp);

They also writear chi ve, omitting all its solution groups, or all of them exceguti n_gr oup.
They have been superseded, in practice&si®ar chi veReadFr onCommandLi ne (Section 2.6).
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An instanceis a particular case of the high school timetabling problem, for a particular term
or semester of a particular school. This chapter describeg#hé NSTANCE data type, which
represents instances as defined in the XML format.

3.1. Creating instances
To make a new, empty instance, call

KHE_| NSTANCE Khel nst anceMakeBegi n(char =i d, KHE _MODEL nodel,
HA ARENA SET as);

Parameter d is the Id attribute from the XML file; it is optional, witNULL meaning absent.
Parametemodel isthe model, as fogkheAr chi veMake, andas is the thread arena set, also as for
KheAr chi veMake. Functions

char *Khel nst ancel d( KHE_I NSTANCE i ns) ;
KHE_MODEL Khel nst anceModel ( KHE_| NSTANCE i ns);
retrieve these attributes.

For the convenience of functions that reorganize archives, an instance may lie in any
number of archives. To add an instance to an archive and delete it from an archive, call functions
KheAr chi veAddl nst ance and KheAr chi veDel et el nst ance from Section 2.1. To visit the
archives containing a given instance, call

i nt Khel nst anceAr chi veCount ( KHE | NSTANCE i ns);
KHE ARCHI VE Khel nst anceAr chi ve(KHE I NSTANCE ins, int i);

in the usual way.
To set and retrieve the back pointeriafs, call

voi d Khel nst anceSet Back( KHE_| NSTANCE i ns, void *back);
voi d *Khel nst anceBack( KHE_I NSTANCE i ns) ;

as usual.
After the instance has been completed, using functions still to be defined, call

bool Khel nst anceMakeEnd( KHE | NSTANCE i ns, bool audit_and_fix,
bool resource_type partitions, bool infer_resource partitions,
bool limt _busy recode, char *xerror_nessage);

This must be done, single-threaded, before any solution is created. It checks the instance
and initializes various constant data structures used to speed the solution process. Parameter

16
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audi t _and_fi x is described just belowgsour ce_t ype_parti ti ons is the subject of Section
3.5.5,infer_resource_partitions is the subject of Section 3.5.6, ahdm t _busy_r ecode

affects how limit busy times constraints are handled, so is described in Section 3.7.15.
Khel nst anceMakeEnd sets+error _nessage to NULL and returng rue when it finds no prob-
lems; when there is something wrong it sedsr or _nmessage to an error message describing the
first problem and returrfaal se. In principle the problem could be nearly anything, although at
present the only problems detectediing! nst anceMakeEnd are cases where the time groups
used by limit idle times constraints (Section 3.7.13) are not compact.

Even when an instance is formally valid, it may have features that suggest that something is
wrong, such as resources without avoid clashes constraints. &\tien and_fi x ist rue, KHE
audits the instance and fixes any problemsit finds. At present, it checks for pairs of events joined
by a link events constraint whose event constraints differ, and adds events as points of application
of those constraints to remove the differences. Other checks may be added in future.

Instance metadata may be set and retrieved by calling

voi d Khel nstanceSet Met aDat a( KHE_| NSTANCE i ns, char *nane, char *contributor,
char xdate, char xcountry, char =description, char *remarks);

voi d Khel nst anceMet aDat a( KHE_I NSTANCE i ns, char +*name, char =xcontributor,
char *+date, char *xcountry, char *+description, char **remarks);

Copies of the strings passed in are stored, not the originals. As for archive and solution group
metadata, KHE allows any instance metadata objects or stringsNd_beor empty, and when
writing an instance it substitutes valueé® name","No contri butor", etc., for such values, or
omits them altogether when XHSTT allows. Also,

char =Khel nst anceMet aDat aText ( KHE_I NSTANCE i ns) ;

returns a string containing the metadata as a paragraph of English text. The string lies in the
instance’s arena and will be deleted when the instance is deleted.

3.2. Visiting and retrieving the components of instances

An instance may contain any number of time groups, times, resource types, event groups, events,
and constraints. These are added by the functions that create them, to be given later.

To visit all the time groups of an instance, or retrieve a time grouipbgall

i nt Khel nst anceTi meG oupCount ( KHE_| NSTANCE i ns) ;

KHE_TI ME_GROUP Khel nst anceTi meG oup( KHE | NSTANCE ins, int i);

bool Khel nstanceRet ri eveTi neG oup( KHE | NSTANCE i ns, char =id,
KHE_TI ME_GROUP *tQ);

The first returns the number of time groupsiims. The second returns théth time group,
counting from 0 as usual in C. The third searches for a time groupofvith the giveni d; if
found, it setst g to it and returnsr ue, otherwise it leavest g unchanged and returfsl se.

Only time groups created by user callXteTi nreG oupMake (Section 3.4.1) are found by
Khel nst anceTi neG oupCount , Khel nst anceTi meG oup, and Khel nstanceRetri eveTi meG oup.
Some other time groups are created automatically by KHE, but they are accessed in other ways.
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They include one time group for each time, holding just that time; a time group holding the full
set of times of the instance; and an empty time group. These last two are returned by

KHE_TI ME_GROUP Khel nst anceFul | Ti meG oup( KHE | NSTANCE i ns) ;
KHE_TI ME_GROUP Khel nst anceEnpt yTi meG oup( KHE | NSTANCE i ns);

Time groups may also be created during solving (Section 4.4). Those too are not accessible via
Khel nst anceTi meG oupCount , Khel nst anceTi meG oup, or Khel nst anceRet ri eveTi meG oup.

To visit all the times of an instance, or retrieve a time by Id, call

i nt Khel nst anceTi meCount ( KHE_| NSTANCE i ns);
KHE_TI ME Khel nst anceTi me( KHE | NSTANCE ins, int i);
bool Khel nstanceRetri eveTi me( KHE_| NSTANCE i ns, char *id, KHE TIME *t);

These work in the same way as the functions above for visiting and retrieving time groups.
To visit all the resource types of an instance, or retrieve a resource tyjpk &l

i nt Khel nst anceResour ceTypeCount ( KHE | NSTANCE i ns) ;

KHE RESOURCE_TYPE Khel nst anceResour ceType( KHE | NSTANCE ins, int i);

bool Khel nstanceRetri eveResour ceType( KHE | NSTANCE i ns, char xid,
KHE_RESOURCE_TYPE =*rt);

These work in the same way as the corresponding functions for visiting and retrieving time
groups and times. Resource types have operations which give access to their resource groups and
resources. For convenience there are also operations

bool Khel nst anceRet ri eveResour ceG oup( KHE_I NSTANCE i ns, char =*id,
KHE_RESOURCE_GROUP +*rg);

bool Khel nst anceRet ri eveResour ce( KHE_I NSTANCE i ns, char =*id,
KHE_RESOURCE =*r);

which search all the resource types of for a resource group or resource with the given It
is also possible to bypass resource types and visit all resources directly, by calling

i nt Khel nst anceResour ceCount ( KHE_| NSTANCE i ns) ;
KHE_RESOURCE Khel nst anceResour ce( KHE_I NSTANCE ins, int i);

in the usual way. The resources will be visited in the order they were created.
To visit all the event groups of an instance, or to retrieve an event groug, logll
i nt Khel nstanceEvent G oupCount ( KHE | NSTANCE i ns);
KHE_EVENT _GROUP Khel nst anceEvent Group( KHE_| NSTANCE ins, int i);
bool Khel nstanceRet ri eveEvent Group( KHE | NSTANCE i ns, char =id,
KHE_EVENT_GROUP *eg);
These work in the usual way.

Some event groups are created automatically by KHE, including one event group for each
event, holding just that event; an event group holding the full set of events of the instance; and
an empty event group. These last two are returned by
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KHE EVENT_GROUP Khel nst anceFul | Event G oup( KHE | NSTANCE i ns) ;
KHE EVENT _GROUP Khel nst anceEnpt yEvent G- oup( KHE | NSTANCE i ns) ;

Automatically defined event groups are not visited Kinel nst anceEvent G oupCount and
Khel nst anceEvent Group. Even more event groups may be created during solving. Those also
do not appear in the list of event groups of the original instance.

To visit the events of an instance, or to retrieve an eventbgall
i nt Khel nst anceEvent Count ( KHE | NSTANCE i ns) ;

KHE_EVENT Khel nst anceEvent (KHE_| NSTANCE ins, int i);
bool Khel nstanceRet ri eveEvent (KHE | NSTANCE i ns, char *id, KHE EVENT xe);

Two reasons for visiting all events have already been taken care of, by functions

bool Khel nstanceAl | Event sHavePr eassi gnedTi mes( KHE | NSTANCE i ns) ;
i nt Khel nst anceMaxi munEvent Dur at i on( KHE_| NSTANCE i ns) ;

Khel nst anceAl | Event sHavePr eassi gnedTi mes returnst rue if all events have preassigned
times. Khel nst anceMaxi nunEvent Dur at i on returns the maximum event duration,®when
there are no events. In the usual representation of nurse rostering, their valuesaardl.

To visit the event resources of an instance, call

i nt Khel nst anceEvent Resour ceCount ( KHE_I NSTANCE i ns) ;

KHE_EVENT _RESOURCE Khel nst anceEvent Resour ce( KHE_I NSTANCE ins, int i);
The event resources may also be visited via their events.

To visit all the constraints of an instance, or to retrieve a constraint pgall

i nt Khel nst anceConstrai nt Count (KHE | NSTANCE i ns);

KHE_CONSTRAI NT Khel nst anceConstrai nt (KHE_I NSTANCE ins, int i);

bool Khel nstanceRet ri eveConstrai nt (KHE_| NSTANCE i ns, char «id,
KHE_CONSTRAI NT *c);

These work in the usual way. There is also

i nt Khel nst anceConst rai nt Of TypeCount ( KHE | NSTANCE i ns,
KHE CONSTRAI NT_TAG constraint _tag);

which returns the number of constraints with the givenst r ai nt _t ag. At present there isno
way to visit these constraints, other than to visit all constraints and select the ones with that tag.

3.3. Constraint density

Within a given instance, théensityof a given kind of constraint is the number of applications

of constraints of that kind, divided by the number of places where constraints of that kind could
apply. The density is a floating-point number, usually between 0 and 1, although it can exceed
1, since constraints of the same kind may apply at one place. KHE offers functions
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i nt Khel nstanceConst rai nt Densi t yCount ( KHE_|I NSTANCE i ns,
KHE CONSTRAI NT_TAG constraint_tag);

i nt Khel nstanceConstrai nt Densi tyTot al (KHE_| NSTANCE i ns,
KHE CONSTRAI NT_TAG constraint_tag);

returning the number of applications of constraints of kindist rai nt _t ag ini ns (thedensity

coun), and the number of places where constraints of that kind could apphsitthe density

total). The density is the quotient of these two quantities, unless the density total is 0, in which
case the density is undefined, although it may be reported as 0.0 in that case. Precise definitions
of the density count and density total are given for each kind of constraint in Section 3.7.

The first time either of these functions is called for any valueafst rai nt _t ag, the
results of both functions are calculated for all valuesafst r ai nt _t ag and stored imns. So
multi-threaded calls on these functions are only safe if one single-threaded call is made first.

3.4. Times

3.4.1. Time groups
A time group, representing a set of times, is created and added to an instance by calling

bool KheTi neG oupMake( KHE | NSTANCE ins, KHE TI ME_GROUP_KI ND ki nd,
char *id, char =nanme, KHE TIME GROUP *tgQ);

This works like all creations of named objects do in KHEi ifis nonNULL andi ns already
contains a time group with thig, it returnsf al se and creates nothing; otherwise it creates a
new time group, setd g to point to it, and returnsr ue.

Parameteki nd has type

t ypedef enum {
KHE_TI ME_GROUP_KI ND_ORDI NARY,
KHE_TI ME_GROUP_KI ND_WEEK,
KHE_TI ME_GROUP_KI ND_DAY,
KHE_TI ME_GROUP_KI ND_SOLN,
KHE_TI ME_GROUP_KI ND_AUTO

} KHE_TI ME_GROUP_KI ND;

KHE_TI ME_GROUP_KI ND_ORDI NARY is the usual kind. The XML format allows some time groups

to be referred to as Weeks and Days, although they do not differ from other time groups in any
other way. ValueHE_TI ME_GROUP_KI ND_WEEK and KHE_TI ME_GROUP_KI ND_DAY record this
usage; they matter only when reading and writing XML files, not when solving. The last two
values cannot be passedKheTi neG oupMake, although they may be returned by function
KheTi neG oupKi nd below. KHE_TI ME_GROUP_KI ND_SOLN is the kind of time groups returned

by KheSol nTi meG oupEnd (Section 4.4), andHE_TI ME_GROUP_KI ND_AUTO is the kind of time
groups created automatically by KHE.

Theid andnane parameters may béJLL; they are used only when writing XML, when
they represent the compulsory Id and Name attributes of the time group. Irrespective of the order
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time groups are created in, to conform with the XML rules, when writing time groups KHE writes
days first, then weeks, then ordinary time groups; it does not write any other time groups.

To set and retrieve the back pointertaf, call

voi d KheTi meG oupSet Back( KHE_TI ME_GROUP tg, void *back);
voi d *KheTi meG oupBack( KHE_TI ME_GROUP tgQ);

in the usual way. The other attributes may be retrieved by calling

KHE_| NSTANCE KheTi meG oupl nst ance( KHE_TI ME_GROUP tg);
KHE_TI ME_GROUP_KI ND KheTi meG oupKi nd( KHE_TI ME_GROUP tg)
char *KheTi neG oupl d( KHE_TI ME_GROUP tg);

char *KheTi meG oupName( KHE_TI ME_GROUP tg);

Initially the time group is empty. There are several operations for changing its set of times:

voi d KheTi meG oupAddTi me( KHE_TI ME_GROUP tg, KHE TIME t);

voi d KheTi meG oupSubTi me( KHE_TI ME_GROUP tg, KHE TIME t);

voi d KheTi meG oupUni on( KHE_TI ME_GROUP tg, KHE TI ME_GROUP tg2);

voi d KheTi meG oupl nt ersect (KHE_TI ME_GROUP tg, KHE TIME_GROUP tg2);
voi d KheTi meG oupDi fference( KHE_TI ME_GROUP tg, KHE TI ME_GROUP tg2);

These add a time tog, remove a time, repladey’s set of times with its union or intersecton
with the set of times of g2, and with the difference dfg’s times and g2's times. The first two
operations are treated as set operationghsdi meG oupAddTi ne does nothing it is already
present, an#heTi meG oupSubTi me does nothing it is not already present.

Changes to the time groups of an instance are not allowedkhiéenst anceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct time
groups for their own use (Section 4.4).

In addition to time groups created by the user, many time groups are created automatically
by KHE, with such useful values as the full set of times of the cycle and the empty set of times
(Section 3.2), all singleton sets of times (Section 3.4), and various other values, associated with
constraints. All these time groups are created dukheg nst anceMakeEnd, and in every case,

KHE first checks whether there is a user-defined time group with the desired value, and if so, it
uses that time group instead of creating a new one. When it does create a new time group, that
time group hagHE_TI ME_GROUP_KI ND_AUTOfor kind andNULL for Id and name, except that time
groups returned bigheTi meG oupNei ghbour may have an Id and name, as explained below.

The times of any time group are visited by

i nt KheTi meG oupTi meCount (KHE _TI ME_GROUP tg);
KHE_TI ME KheTi meG oupTi me( KHE_TI ME_GROUP tg, int i);

These work in the same way as the visit functions for instances above. And

bool KheTi neG oupCont ai ns(KHE TIME GROUP tg, KHE TIME t, int =pos);
bool KheTi neG oupEqual (KHE_TI ME_GROUP tgl, KHE TIME GROUP tg2);
bool KheTi neG oupSubset (KHE TI ME_GROUP tgl, KHE TI ME GROUP tg2);
bool KheTi neG oupDi sj oi nt (KHE _TI ME_GROUP tgl, KHE TIME GROUP tg2);
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returnt r ue if t g containg (setting pos to its position in the time group), ifgl andt g2 contain

the same times, if the times ¢f1 are a subset of the times 0§2, and if the times of g1

andt g2 are disjoint. There is nothing to prevent two distinct time groups from containing the
same times.

There are also

i nt KheTi neG oupTypedCnp( KHE_TI ME_GROUP tgl, KHE_TIME_GROUP tg2);
i nt KheTi mneG oupCmp(const void *t1, const void *t2);

which are typed and untyped versions of a comparison function that may be used to sort an array
of time groups into a canonical order. The precise order is not specified other than that a return
value of 0 indicates that the two time groups are equal.

Here are some miscellaneous time group functions. Function
bool KheTi neG oupl sConpact (KHE_TI ME_GROUP tg);

returnst r ue whent g is compact when it is empty or there are no gaps in its times, taken in
chronological order. Function

i nt KheTi meG oupQverl ap(KHE_TIME_GROUP tg, KHE TIME tine, int durn);

returns the number of times that a meet starting ae¢ with durationdur n overlaps with g.
A key function for KHE’s handling of time is

KHE_TI ME_GROUP KheTi neG oupNei ghbour (KHE_TIME GROUP tg, int delta);

It returns a time group containintg’s times shifteddel t a places, whereel t a may be any
integer. KheTi meG oupNei ghbour (tg, 0), for example, is a time group with the same times
ast g, possibly but not necessarily itself; andKheTi neG oupNei ghbour (tg, -1) holds the
times that immediately precedg’s. The time group will be empty iflel t a is such a large
(positive or negative) number that all the times are shifted off the cycle.

Time group neighbours are created automatically by KHE. As explained above, KHE will
use existing user-defined time groups wherever possible, to avoid creating new ones. When
it does create a new one, it assigns it an Id and name. This is useful because, although time
group neighbours are never printed in XML files, names for them are needed when reporting
the calculation made by a monitor for a constraint with a Ndirl- Appl i esToTi neG oup. For
example, given time group with Id " Mon" and namé Mnday" , if

KheTi meG oupNei ghbour (tg, 5)

has to be created it is assigned'lébn+5" and name Mnday+5". It is best to avoid giving
user-defined time groups names like these ones, although there can be no name clashes, strictly
speaking, because time group neighbours are not stored in any table indexed by Id or name.
Khel nst anceRet ri eveTi meG oup, for example, only retrieves user-defined time groups.

KheTi meG oupNei ghbour accepts time groups returned IlsyeTi meG oupNei ghbour ,
but the result can be odd. Suppag@ = KheTi neG oupNei ghbour (tg, 5) is called,and g
has 7 times butg2 has only 4, because 3 0§’s times shifted off the end. A subsequent call
to KheTi meG oupNei ghbour (t g2, -5) may return another time group with 4 times, but it is
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more likely to return a time group equalttg. This s for efficiency: if, every time a time went
off either end, a whole new neighbourhood was constructed, then neighbourhood construction
would go on forever. There are no such peculiarities when times do not shift off either end.

To speed up loading nurse rostering instances with long cycles, the time group returned by
KheAvoi dUnavai | abl eTi mesConst r ai nt Unavai | abl eTi mes usually has no neighbourhood.
The same goes fakheAvoi dUnavai | abl eTi mesConst rai nt Avai | abl eTi mes, and also for
KheLi m t BusyTi mesConst r ai nt Domai n andKheLi mi t Wor k|l oadConst r ai nt Domai n. A callto
KheTi meG oupNei ghbour will abort with an error message if itis given one of these time groups.
The user should not worry about this until it happens; it probably never will.

As an aid to debugging, function

voi d KheTi meG oupDebug( KHE_TI ME_GROUP tg, int verbosity,
int indent, FILE *fp);

printst g ontof p with the given verbosity and indent, as usual (Section 1.3). Verbosity 1 prints
either the Id of the time group, or the first and last time (at most) enclosed in braces.

3.4.2. Times

Atime is created and added to an instance by calling

bool KheTi meMake( KHE | NSTANCE i ns, char *id, char *nane,
bool break after, KHE TIME *t);

Asusual, d al se return value is only possible whed is nonNULL and already in use by another
time object. Parameterg andname may beNULL, and are used only when writing XML.

Parametebr eak_after says that a break occurs after this time, so that, for example,
an event of duration 2 could not begin here. This is not an XML feature; when representing
XML this parameter should always bel se. Within KHE itself it is used only by function
KheSol nSpl i t Cycl eMeet and its associated operations (Section 4.5.3).

To set and retrieve the back pointer of a time, call functions

voi d KheTi meSet Back( KHE_TI ME t, void *back);
voi d *KheTi meBack( KHE_TI ME t);

as usual. The other attributes are retrieved by

KHE_| NSTANCE KheTi nel nstance( KHE_TI ME t);
char +=KheTi nel d(KHE_TI ME t);

char *KheTi neName( KHE_TI ME t);

bool KheTi neBreakAfter (KHE TIME t);

i nt KheTi nel ndex(KHE_TI ME t);

KheTi mel ndex returns an automatically generated index numbet fae: O for the first time

created, 1for the second, and so on. The times of an instance form a sequence, not a set, and must
be created in chronological order. This is unlike resources, events, etc., whose order of creation
does not matter. The XML format requires times to appear in this same order. Function
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bool KheTi meHasNei ghbour (KHE TIME t, int delta);

returng r ue when there is a time whose index is the index glusdel t a, wheredel t a may be
any integer, negative, zero, or positive. Function

KHE TI ME KheTi meNei ghbour (KHE_ TIME t, int delta);

returns this time when it exists, and aborts when it does not.

When calculating with the chronological ordering of time—deciding whether two meets
are adjacent, and so on—it is often best to kiTi mel ndex to obtain the indexes of the times
involved and work with them. However, these functions may help to avoid time indexes:

bool KheTi neLE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neLT(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neGI(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neGE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neEQ KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi mneNE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);

They returrt r ue whenkheTi neNei ghbour (tinel, deltal)’stime index is less than or equal
to KheTi meNei ghbour (tine2, delta2)’s,and soon. The neighbours need not exist; the func-
tions simply convert times into indexes and perform the indicated integer operations. Also,

i nt KheTinel nterval sOverl ap(KHE_TIME tinel, int durnl,
KHE TI ME time2, int durn2);

takes two time intervals, one beginningtainel with durationdur n1, the other beginning at
t i me2 with durationdur n2, and returns the number of timeslying in both intervals. For example,
the result will be 0 when either interval ends before the other begins. Similarly,

bool KheTi mel nterval sOverl aplnterval (KHE_TI ME timel, int durnl,
KHE_TIME tinme2, int durn2, KHE_TIME +overlap_time, int xoverlap_durn);

returnstrue when KheTi nel nt erval sOverl ap is non-zero, and setsoverlap_time and
=over | ap_dur n to the starting time and duration of the overlap; otherwise it retuahse.

For convenience, a time group is available for each time, holding just that time. Function
KHE_TI ME_GROUP KheTi neSi ngl et onTi meG oup( KHE_TI ME t);

returns this time group. It cannot be changed.
The events preassigned a particular time can be visited by

i nt KheTi nePreassi gnedEvent Count (KHE_TI ME t);
KHE_EVENT KheTi nePr eassi gnedEvent (KHE_TIME t, int i);

KheTi nmePr eassi gnedEvent Count (t) returns the number of events preassigned timand
KheTi nePreassi gnedEvent (t, i) returnsthe th of these events, counting from 0 as usual.
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3.5. Resources

3.5.1. Resource types

A resource type, representing one broad category of resources, such as the teachers or rooms, is
created and added to an instance in the usual way by the call

bool KheResour ceTypeMake( KHE | NSTANCE ins, char *id, char =*name,
bool has_partitions, KHE RESOURCE TYPE xrt);

Attributesi d andnane represent the optional XML Id and Name attributes as usual. Its back
pointer may be set and retrieved by

voi d KheResour ceTypeSet Back( KHE_RESOURCE_TYPE rt, void *back);
voi d *KheResour ceTypeBack( KHE_RESOURCE _TYPE rt);

as usual, and its other attributes may be retrieved by

KHE | NSTANCE KheResour ceTypel nst ance( KHE_RESOURCE TYPE rt);
i nt KheResour ceTypel ndex( KHE_ RESOURCE TYPE rt);

char r*KheResour ceTypel d( KHE_RESOURCE TYPE rt);

char r*KheResour ceTypeNanme( KHE_RESOURCE TYPE rt);

bool KheResourceTypeHasPartitions(KHE RESOURCE TYPE rt);

KheResour ceTypel ndex(rt) returnsthe index oft in the enclosing instance, that is, the value
of i for whichKhel nst anceResour ceType returnst .

Attributehas_partitions is not an XML feature, and should be given valué se when
reading an XML instance. It indicates that there is a unique partitioning of the resources of this
resource type, defined by a collection of specially marked resource groupsgatigidns For
example, the resources of a student groups resource type might be partitioned into forms, or the
resources of a teachers resource type might be partitioned into faculties. When a resource type
has partitions, each of its resources must lie in exactly one partition.

Each resource type contains an arbitrary number of resource groups, representing sets
of resources of its type. Resource groups are added to a resource type automatically by the
functions that create them. To visit all the resource groups of a given resource type, or to retrieve
a resource group with a giver from a given resource type, call

i nt KheResour ceTypeResour ceG oupCount ( KHE_ RESOURCE TYPE rt);
KHE_RESOURCE _GROUP KheResour ceTypeResour ceG oup( KHE_ RESOURCE TYPE rt,
int i);
bool KheResour ceTypeRetri eveResour ceG oup( KHE RESOCURCE TYPE rt,
char *id, KHE RESOURCE GROUP xrg);

These work in the usual way. The partitions of a resource type may be visited by

i nt KheResourceTypePartitionCount (KHE RESOURCE TYPE rt);
KHE_RESOQURCE_GROUP KheResour ceTypePartition( KHE RESOURCE TYPE rt, int i);

KheResour ceTypePartiti onCount returns O whemt does not have partitions.
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Some resource groups are made automatically by KHE, including one resource group for
each resource, holding just that resource; a resource group holding the full set of resources of
the resource type; and an empty resource group. These last two are returned by

KHE_RESOURCE_GROUP KheResour ceTypeFul | Resour ceG oup( KHE_RESOURCE_TYPE rt);
KHE_RESOQURCE_GROUP KheResour ceTypeEnpt yResour ceG oup( KHE_RESQURCE TYPE rt);

Automatically made resource groups are not visitedi®Resour ceTypeResour ceG oupCount
and KheResour ceTypeResour ceG oup. Even more resource groups may be created during
solving, but those do not appear in the list of resource groups of the original instance.

To visit all the resources of a given resource type, or to retrieve a resource of a given
resource type byd, call

i nt KheResour ceTypeResour ceCount ( KHE_RESOQURCE TYPE rt);
KHE_RESOURCE KheResour ceTypeResour ce( KHE_RESOURCE TYPE rt, int i);
bool KheResourceTypeRetri eveResour ce( KHE_RESOURCE_TYPE rt,

char *id, KHE_RESOURCE *r);

in the usual way.

Three functions, which should be called only after the instance is complete, are offered
for summarising how complex the task of assigning resources of a given type is. The values of
these functions are calculated as the instance is built and kept, so one call on any of them costs
practically nothing. The firstis

bool KheResour ceTypeDemandl sAl | Preassi gned( KHE_RESQURCE TYPE rt);

It returnst r ue if every event resource of type is preassigned. In practice this is always true
for student group resource types, and often for teachers, but rarely for rooms. The second is

i nt KheResour ceTypeAvoi dSpl it Assi gnment sCount ( KHE_RESCURCE_TYPE rt);

It returns the number of points of application of avoid split assignments constraints that constrain
event resources of thistype. The larger thisnumber is, the more difficult the resource assignment
problem for resources of this type is likely to be. Finally,

i nt KheResour ceTypelLi ni t Resour cesCount ( KHE_RESOURCE TYPE rt);
returns the number of points of application of limit resources constraints that have this resource
type. See Section 12.5.3 for an application of this function.
3.5.2. Resource groups
A resource group is created and added to a resource type by the call

bool KheResourceG oupMake( KHE RESOURCE TYPE rt, char xid, char xnane,
bool is_partition, KHE RESOURCE GROUP *rg)

This function return$al se only wheni d is nonNULL and some other resource group of type
rt hasthis d. The resource group lies in resource typavith the usual d andnane attributes.
Attributei s_partition is not an XML feature, and should be given valase when reading
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an XML instance. It may beérue only if attributehas_partitions of the resource group’s
resource type isr ue, in which case it indicates that this resource group is a partition, that is, one
of those resource groups which define the unique partitioning of the resources of that type.

To set and retrieve the back pointer of a resource group, call

voi d KheResour ceGroupSet Back( KHE_RESOURCE_GROUP rg, void *back);
voi d *»KheResour ceG oupBack( KHE_RESOURCE_GROUP rg);

as usual. The other attributes may be retrieved by calling

KHE_RESOURCE _TYPE KheResour ceG oupResour ceType( KHE_RESOURCE_GROUP rg);
KHE_I NSTANCE KheResour ceG oupl nst ance( KHE_RESOURCE _GROUP rg);

char *KheResour ceG oupl d( KHE_RESOURCE_GROUP rg);

char *KheResour ceG oupName( KHE_RESOURCE_GROUP rg);

bool KheResourceG oupl sPartition( KHE_RESOURCE GROUP rg);

KheResour ceG oupl nst ance returns the resource group’s resource type’s instance.
Initially the resource group is empty. Several operations change its resources:

voi d KheResour ceG oupAddResour ce( KHE_ RESOURCE GROUP rg, KHE RESOURCE r);

voi d KheResour ceG oupSubResour ce( KHE_ RESOURCE GROUP rg, KHE RESOURCE r);

voi d KheResour ceG oupUni on( KHE_RESOURCE_GROUP rg, KHE RESOURCE GROUP rg2);

voi d KheResour ceG oupl nt er sect (KHE_RESOURCE_GROUP rg, KHE RESOURCE GROUP rg2);
voi d KheResour ceG oupDi f f erence( KHE RESOURCE_GROUP rg, KHE RESOURCE GROUP rg2);

These add torg, remover, replacer g's set of resources with its union or intersecton with

the set of resources 0fy2, and with the difference ofg’s resources andg2’s resources. All

the resources and resource groups involved must be of the same type. The first two operations
are treated as set operations KkeResour ceG oupAddResour ce does nothing ifr is already
present, an#heResour ceG oupSubResour ce does nothing if is not already present.

These functions may not be used to alter resource groups which define partitions. When a
resource type has partitions, each of its resources is added to its partition when it is created.

Changes to the resource groups of an instance are not allowedteftest anceMakeEnd
Is called, since instances are immutable after that point. However, solutions may construct
resource groups for their own use (Section 4.4).

There are also several operations for finding the cardinality of unions, intersections, etc.,
without changing anything:

i nt KheResour ceG oupUni onCount ( KHE_RESOURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);

i nt KheResour ceG oupl nt er sect Count ( KHE_RESOURCE_GRQOUP r g,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceG oupDi f f erenceCount ( KHE_RESCURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceG oupSymretricDif f erenceCount ( KHE_RESOURCE GROUP r g,
KHE_RESOURCE_GROUP rg2);
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Building symmetric differences is awkward, so at present there is no operation for it, only this
operation for finding its cardinality.

There are also predefined resource groups, for the complete set of resources of each
resource type and the empty set of resources of each type (see Section 3.5.1 for those), and one
for each resource of the instance, containing just that resource (Section 3.5). The resources in
predefined resource groups may not be changed.

The resources of any resource group are visited by

i nt KheResour ceG oupResour ceCount ( KHE_RESOURCE GROUP rQ);
KHE_RESOURCE KheResour ceG oupResour ce( KHE_ RESOURCE GROUP rg, int i);

These work in the usual way. And

bool KheResour ceG oupCont ai ns( KHE_RESOURCE_GROUP rg, KHE_RESOURCE r);

bool KheResour ceG oupEqual ( KHE_RESOQURCE_GROUP rgl,
KHE_RESOURCE_GROUP rg2);

bool KheResour ceG oupSubset ( KHE_ RESOURCE _GROUP r g1,
KHE_RESOURCE_GROUP rg2);

bool KheResourceG oupDi sj oi nt ( KHE_RESOURCE_GROUP r g1,
KHE_RESOURCE_GROUP rg2);

returnt r ue if r g containg , if rgl andr g2 contain the same resources, if the resourceg bf

form a subset of the resourcesraf2, and if the resources ofgl andr g2 are disjoint. Two
distinct resource groups may contain the same resources, so it is best not to apply the C equality
operator to resource groups.

There are also
i nt KheResour ceG oupTypedCnp( KHE_RESOURCE_GROUP r g1,

KHE_RESOURCE_GROUP rg2);
i nt KheResour ceG oupCmp(const void *t1, const void *t2);

which are typed and untyped versions of a comparison function that may be used to sort an array
of resource groups into a canonical order. The precise order is not specified other than that a
return value of 0 indicates that the two resource groups are equal.

After a resource group is finalized, function
KHE_RESOURCE GROUP KheResour ceG oupPartiti on( KHE RESOURCE GROUP rq);

may be called. If g is non-empty and its resources share a partition, the result is that partition,
otherwise the result iISULL. SincekheResour ceG oupPartition is called when monitoring
evenness, for efficiency the result is precomputed and storggwinen it is finalized.

As an aid to debugging, function

voi d KheResour ceGroupDebug( KHE_RESOURCE_GROUP rg, int verbosity,
int indent, FILE *fp);

printsr g ontof p with the given verbosity and indent, as described for debug functions in general
in Section 1.3. Verbosity 1 prints the Id of the resource group in some cases, and the first and last
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resource (at most) enclosed in braces in others.

3.5.3. Resources

A resource is created and added to its resource type by the call

bool KheResour ceMake( KHE RESOURCE TYPE rt, char *id, char =xnamne,
KHE RESOURCE GROUP partition, KHE RESOURCE *r);

A resource type is compulsoriyg andnane are the usual optional XML Id and Name.

Unlike KheResour ceG oupMake, which returng al se when itsi d parameter is nofNuLL
and some other resource group of the same resource type already hasdieRdshur ceMake
returnd al se and setsr toNULL when its d parameter is noNJLL and some other resouroé
any resource typalready has its Id. This is because predefined event resources are permitted to
identify a resource by its Id alone, and so resource lds must be unique among all the resources of
the instance, not merely among resources of a given type.

Thepartition attribute is not an XML feature, and should be given valukeL when
reading an XML instance. It must be ndbkL if and only ifrt’'s has_partiti ons attribute is
t rue, in which case its value must be a resource group of typehose s_parti ti on attribute
ist rue, anditindicatesthat the new resource lies in the specified partition. The new resource will
be added to the partition by this function, and no separate cBéistaur ceG oupAddResour ce
to do this is necessary or even permitted.

To set and retrieve the back pointer of a resource, call

voi d KheResour ceSet Back( KHE_RESOQURCE r, void *back);
voi d *KheResour ceBack( KHE_RESOURCE r);

as usual. The other attributes may be retrieved by the calls

KHE_| NSTANCE KheResour cel nst ance( KHE_RESOURCE r);

i nt KheResour cel nst ancel ndex( KHE_RESOURCE r);
KHE_RESOURCE TYPE KheResour ceResour ceType( KHE_RESOURCE r);
i nt KheResour ceResour ceTypel ndex( KHE_RESOURCE r);

char *KheResour cel d( KHE_RESOURCE r);

char *KheResour ceName( KHE RESOURCE r);

KHE_RESOURCE GROUP KheResour cePartition( KHE RESOURCE r);

KheResour cel nst ance returnsr’s instance, andkheResour cel nst ancel ndex returnsr’s

index in that instance: the value offor which Khel nst anceResource(ins, i) returnsr.
KheResour ceResour ceType returnsr’s resource type, anigheResour ceResour ceTypel ndex
returnsr’s index in that type: the value of for which KheResour ceTypeResource(rt, i)
returng . Unlike the index numbers of times, which indicate chronological order, resource index
numbers have no semantic significance. They are made available only for convenience.

A resource group is created automatically for each resoyteelding justr. Function
KHE_RESOURCE_GROUP KheResour ceSi ngl et onResour ceG oup( KHE_RESOURCE r);

returns this resource group. This resource group may not be changed. To visit the resource
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groups containing (not including automatically generated ones), call

i nt KheResour ceResour ceG oupCount ( KHE_RESOURCE r);
KHE_RESOURCE GROUP KheResour ceResour ceG oup( KHE RESOURCE r, int i);

in the usual way.
The event resources thats preassigned to are made available by calling

i nt KheResour cePreassi gnedEvent Resour ceCount ( KHE_RESOURCE r) ;
KHE_EVENT RESOURCE KheResour cePr eassi gnedEvent Resour ce( KHE_RESOURCE r,
int i);

Naturally, the entire instance has to be loaded for these to work correctly. At present there is no
way to visit events containing event resource groups containing a given resource.

Some constraints apply to resources. When these constraints are created, they are added to
the resources they apply to. To visit all the constraints applicable to a given resource, call

i nt KheResour ceConst rai nt Count ( KHE_RESOURCE r);
KHE_CONSTRAI NT KheResour ceConst rai nt (KHE_RESOURCE r, int i);

There may be any number of avoid clashes constraints, avoid unavailable times constraints, limit
idle times constraints, cluster busy times constraints, limit busy times constraints, limit workload
constraints, and limit active intervals constraints, in any order. There are also

KHE_TI ME_GROUP KheResour ceHar dUnavai | abl eTi meG oup( KHE_RESOURCE r) ;
KHE_TI ME_GROUP KheResour ceHar dAndSof t Unavai | abl eTi meG oup(
KHE_RESOURCE r) ;

KheResour ceHar dUnavai | abl eTi neG oup returns the union of the domains of the required
unavailable times constraintsiof KheResour ceHar dAndSof t Unavai | abl eTi meGr oup doesthe

same, except that the domains of all unavailable times constraints are included. Both functions
return the empty time group when there are no applicable constraints.

These two public functions are used by KHE when calculating lower bounds:

bool KheResour ceHasAvoi dC ashesConst rai nt ( KHE_RESCURCE r, KHE_COST cost);
i nt KheResour cePreassi gnedEvent sDur at i on( KHE_RESOURCE r, KHE COST cost);

KheResour ceHasAvoi dCl ashesConstrai nt returnst rue if some avoid clashes constraint of
combined weight greater thawst applies tor ; KheResour cePr eassi gnedEvent sDur ati on
returns the total duration of events which are both preassigred either preassigned a time
or subject to an assign time constraint of combined cost greatectisan

As an aid to sorting arrays of resources, functions

i nt KheResour ceTypedCnp( KHE_RESOURCE r1, KHE RESOURCE r2);
i nt KheResourceCnp(const void *t1, const void *t2);

are offered.KheResour ceTypedCnp returns the instance index ol minus the instance index
of r 2. KheResour ceCnp is basically the same, but in the form suited for passingstot , and
hence tdHaArraySort andHaArraySort Uni que.
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As an aid to debugging, function

voi d KheResour ceDebug( KHE_RESOURCE r, int verbosity,
int indent, FILE fp)

produces a debug print of resourcento filef p with the given verbosity and indent, as described
for debug functions in general in Section 1.3.

3.5.4. Resource layers

A resource layeis the set of events containing a preassignment of a given resowlbih is

the subject of a hard avoid clashes constraint. A resource layer’s events may not overlap in time:
they must spread horizontally across the timetable, hence the term ‘layer’. Within a solution, the
meets derived from the events of one resource layer fosolwion layer or justlayer.

Layers are important in high school timetabling, at least for student group resources, since
the total duration of their events is often close to the total duration of the cycle, and hence these
events strongly constrain each other. The following operations are available on the layer of

i nt KheResour celLayer Event Count ( KHE_RESOURCE r) ;
KHE_EVENT KheResour celLayer Event (KHE_RESCURCE r, int i);
i nt KheResour celLayer Durati on( KHE_RESOURCE r);

The first two work together in the usual way to return the events of the resource layer. They
are sorted by increasing event index. If the resource is not preassigned to any events, or
has no required avoid clashes constraint, th&aResour ceLayer Event Count returns O.
KheResour ceLayer Dur at i on returns the total duration of the events of the layer. In the unlike-

ly case that is assigned to the same event twice, the event still appears only once in the list of
events of the layer, and contributes its duration only once to the layer duration.

3.5.5. Resource type partitioning

Suppose that Science laboratories are never used as ordinary classrooms, and ordinary classrooms
are never used as Science laboratories. Then it doesn’t matter whether Science laboratories are
considered to have resource tyg@mor some other type specific to them. The advantage of
giving them their own type is that it makes it clear to solvers that assigning Science laboratories

is a completely separate problem from assigning other rooms.

Resource type partitioning KHE’s name for a radical kind of resource partitioning, in
which each partition becomes a resource type. Under suitable circumstances it will recognize,
for example, that Science laboratories can be given their own resource type, and it will transform
the instance accordingly. It is attempted only when the user explicitly asks for it, by setting the
resource_type_partitions parameter okhel nst anceMakeEnd totr ue.

Consider any resource type (before partitioning). Suppose that there is an event resource
of typert which is not subject to a prefer resources constraint with non-zero hard cost. Then this
event resource could be assigned any resource ofrtyend so partitioning will not succeed
and will not be attempted, even when requested.

So suppose now that there are none of these event resources. Initialize by placing each
resource in its own partition. For each pair of resources referenced (either directly or via a
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resource group) by a prefer resources constraint with non-zero hard cost, merge their partitions.
If, at the end, there are two or more partitions, create new resource types to hold these partitions
and replace each reference tan the instance by a reference to one of these new resource types.
(Actually,rt is retained and used to hold one of its own partitions.)

After this process ends, resource groups may exist that contain resources of two or more
types. These resource groups are arbitrarily assigned the resource type of their first resource;
they are exceptions to the usual rule that all resources of a resource group have the same type.

Resource types for whidtas_partitionistrue are ignored by resource type partitioning.
But Khel nst anceMakeEnd does resource type partitioning before inferring resource partitions
(Section 3.5.6), so a resource type created by resource type partitioning can have partitions.

There is no way to undo resource type partitioning. However, if the instance is written to a
file it will display no trace of it: the resources, resource groups, and event resources all revert to
their original types, and the resource types created by partitioning are not written. Itis done this
way because resource type partitioning is offered to help solvers, not to transform instances.

The implementation of resource type partitioning is incomplete in one respect: although
KheResour ceG oupResour ceType returns a new resource type created by partitioning whenever
its first resource is moved to such a type, the resource types themselves do not know that the re-
source groups have changed their types, so funckieResour ceTypeResour ceG oupCount ,
KheResour ceTypeResour ceG oup, andKheResour ceTypeRet ri eveResour ceG oup behave as
though no partitioning has occurred. FunctighsResour ceTypeDemandl sAl | Preassi gned
andkheResour ceTypeAvoi dSpl i t Assi gnment sCount may also return incorrect values, as may
KheResour ceTypelLi i t Resour cesCount . These problems will be corrected if needed.

3.5.6. Resource similarity and inferring resource partitions
Following the general approach introduced in Section 1.3, KHE offers function
bool KheResourceSim | ar (KHE_RESOURCE r1, KHE_RESOURCE r?2);

which returng rue when resourcesl andr 2 are similar: when they lie in similar resource
groups and are preassigned to similar events. The exact definition is given below.

KheResour ceSi ni | ar often succeeds in recognising that student group resources from the
same form are similar, and that teacher resources from the same faculty are similar. However, it
needs positive evidence to work with. For example, when there are no student or teacher resource
groups, and each event contains one preassigned student group resource, one preassigned teacher
resource, and a request for one ordinary classroom, there is no basis for grouping the resources
and each will be considered similar only to itself.

Resource partitions (Section 3.5.1) are not part of the XML format. But they are useful
when solving, sé&hel nst anceMakeEnd has an nf er _resource_partiti ons parameter which,
whent r ue, causes partitions to be added to each resource tyfigat lacks them. Afterwards,
KheResour ceTypeHasPartitions(rt) will be true, KheResourceG oupl sPartition(rg)
will be true for some of the resource groups of, and KheResour cePartition(r) will
return a nomMULL partition for each resourage All this is exactly as though the partitions had
been entered explicitly, except that any specially created resource groups will not be visited by
KheResour ceTypeResour ceG oupCount andkheResour ceTypeResour ceG oup.
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The algorithm for inferring resource partitions is a simple application of resource similarity.
Build a graph in which each node correspondsto one resource, and an edge joins two nodes when
their resources are similar. The partitions are the connected components of this graph.

To decide whether two resources are similar or not, two non-negative integguesitiee
evidenceand thenegative evidencare calculated as explained below. The two resources are
similar if the positive evidence exceeds the negative evidence by at least two.

Evidence comes from two sources: the resource groups that the resources lie in, and the
events that the resources are preassigned to. A resource gradmissible(i.e. admissible
as evidence) if its number of resources is at least two and at most one third of the number
of resources of its resource type. Inadmissible resource groups are considered to contain no
useful information and are ignored. Each case of an admissible resource group containing both
resources counts as two units of positive evidence, and each case of an admissible resource group
containing one resource but not the other counts as one unit of negative evidence.

A definition of what it means for two events to be similar appears in Section 3.6.2. Each
case of an event preassigned one resource being similar to an event preassigned the other counts
as two units of positive evidence. Each case of an event preassigned one resource for which there
IS no similar event preassigned the other counts as one unit of negative evidence. The cases are
distinct, in the sense that each event participates in at most one case.

3.6. Events

3.6.1. Event groups
An event group, representing a set of events, is created and added to an instance by calling

bool KheEvent G oupMake( KHE_I NSTANCE i ns, KHE_EVENT_GROUP_KI ND ki nd,
char xid, char *name, KHE_EVENT_GROUP *eg);

As usual, it return$al se only wheni d is nonNULL andi ns already contains an event group
with thisi d. To set and retrieve the back pointer, call

voi d KheEvent GroupSet Back( KHE_EVENT _GROUP eg, void xback);
voi d *KheEvent GroupBack( KHE_EVENT _GROUP eg) ;

as usual. The other attributes may be retrieved by the calls

KHE_| NSTANCE KheEvent Groupl nst ance( KHE_EVENT _GROUP eg);
KHE_EVENT _GROUP_KI ND KheEvent Gr oupKi nd( KHE_EVENT _GROUP eg);
char *KheEvent Groupl d( KHE_EVENT _GROUP egq);

char *KheEvent G- oupNanme( KHE_EVENT GROUP eq);

The event group kind is a value of type

t ypedef enum {
KHE_EVENT_GROUP_KI ND_COURSE,
KHE_EVENT _GROUP_KI ND_ORDI NARY

} KHE_EVENT_GROUP_KI ND;
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The XML format allows some event groups to be referred to as Courses, although they do not
differ from other event groups in any other way. Tead attribute records this distinction; it is
only used by KHE when reading and writing XML files, not when solving.

Irrespective of the order event groups are created in, to conform with the XML rules, when
writing event groups KHE writes courses first, then ordinary event groups.

Initially the event group is empty. There are several operations for changing its events:

voi d KheEvent G oupAddEvent (KHE_EVENT _GROUP eg, KHE EVENT e);

voi d KheEvent G oupSubEvent (KHE_EVENT _GROUP eg, KHE EVENT e);

voi d KheEvent GroupUni on( KHE_EVENT _GROUP eg, KHE EVENT_GROUP eg2);

voi d KheEvent G oupl ntersect (KHE EVENT _GROUP eg, KHE EVENT_GROUP eg2);
voi d KheEvent G oupDi f f erence( KHE_EVENT GROUP eg, KHE EVENT GROUP eg2);

These add an eventég, remove an event, replaeg’s set of events with its union or intersecton
with the set of events afg2, and with the difference odg’s events an@g2’'s events. The first
two operations are treated as set operationghsBvent G oupAddEvent does nothing ife is
already present, aritheEvent G oupSubEvent does nothing if is not already present.

Changes to the event groups of an instance are not allowedaétierst anceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct event
groups for their own use (Section 4.4).

There are also predefined event groups, for the complete set of events of the instance and
for the empty set of events (Section 3), and one for each event of the instance, containing just
that event (Section 3.6). The events in predefined event groups may not be changed.

To visit the events of an event group, functions

int KheEvent G oupEvent Count ( KHE_EVENT_GROUP eg);
KHE_EVENT KheEvent G oupEvent (KHE_EVENT_GROUP eg, int i);

are used in the usual way. And

bool KheEvent GroupCont ai ns( KHE_EVENT_GROUP eg, KHE EVENT e);

bool KheEvent G oupEqual ( KHE_EVENT_GROUP egl, KHE_EVENT_GROUP eg2);
bool KheEvent G oupSubset ( KHE_EVENT_GROUP egl, KHE_EVENT_CGROUP eg2);
bool KheEvent G oupDi sj oi nt (KHE_EVENT_GROUP egl, KHE_EVENT_GROUP eg2);

returnt r ue if eg containe, if egl andeg2 contain the same events, if the eventsgf are a
subset of the events @02, and if the events oégl andeg2 are disjoint. There is nothing to
prevent two distinct event groups from containing the same events.

Some constraints apply to event groups. When these are created, they are added to the event
groups they apply to. To visit all the constraints that apply to a given event group, call

i nt KheEvent G oupConst rai nt Count ( KHE_EVENT_GROUP eg);
KHE CONSTRAI NT KheEvent GroupConstrai nt (KHE_EVENT _GROUP eg, int i);

There may be any number of avoid split assignments constraints, spread events constraints, link
events constraints, and limit resources constraints, in any order. Function
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voi d KheEvent G oupDebug( KHE_EVENT GROUP eg, int verbosity,
int indent, FILE *fp);

produces a debug print ef ontof p with the given verbosity and indent, in the usual way.

3.6.2. Events

An event is created and added to an instance by calling

bool KheEvent Make( KHE_| NSTANCE i ns, char =*id, char =name, char =*col or,
int duration, int workload, KHE_TIME preassigned_time, KHE_EVENT xe);

This returnd al se only if i d is nonNULL and is already thed of an event ofi ns. Parameter

col or is an optional color for use when printing timetables. If mbht, its value must be a
legal Web colour"(#7CFC00" for example, or a colour name). A duration and workload are
compulsory (the XML specification states that a missing workload is taken to be equal to the
duration), but the preassigned time mayNokL. The back pointer is set and retrieved by

voi d KheEvent Set Back( KHE_EVENT e, void *back);
voi d *KheEvent Back( KHE_EVENT e);

as usual, and the other attributes may be retrieved by

KHE_| NSTANCE KheEvent | nstance( KHE _EVENT e);
char xKheEvent | d( KHE_EVENT e);

char *KheEvent Nane( KHE_EVENT e);

char *KheEvent Col or (KHE_EVENT e);

i nt KheEvent Durati on( KHE_EVENT e);

i nt KheEvent Wor kl oad( KHE_EVENT e);

KHE_TI ME KheEvent Preassi gnedTi me( KHE_EVENT e);

There are two other useful query functions. First,
int KheEvent | ndex( KHE_EVENT e);

returns the index number ef(0 for the first event inserted, 1 for the next, etc.). This number has
no timetabling significance; it is included merely for convenience. Second,

i nt KheEvent Demand( KHE_EVENT e);

returns thalemandf e, defined to be its duration multiplied by the number of its event resources
(in matching terms, the number of demand tixels). This is included as a measure of the overall
bulk of an event, useful for sorting events by estimated difficulty of timetabling.

Each event also contains any number of event resources. These are added to their events as
they are created. To visit them, call

i nt KheEvent Resour ceCount ( KHE _EVENT e);
KHE_EVENT RESOURCE KheEvent Resource(KHE EVENT e, int i);

in the usual way. There is also
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bool KheEvent Retri eveEvent Resour ce( KHE_EVENT e, char =role,
KHE EVENT RESOURCE =*er);

which retrieves an event resource frerwith the giverr ol e. If there is such an event resource,
it setsxer to it and returnsrue. If not,*er is not changed anical se is returned.

Each event also contains any number of event resource groups. These are added to their
events as they are created. To visit them, call

i nt KheEvent Resour ceG oupCount ( KHE_EVENT e);
KHE_EVENT _RESOURCE_GROUP KheEvent Resour ceG oup(KHE_EVENT e, int i);

as usual.
For convenience, an event group is created for each event, holding just that event. Call

KHE_EVENT_GROUP KheEvent Si ngl et onEvent G oup( KHE_EVENT event);

to retrieve this event group. Other events may not be added to it.

Some constraints apply to events. When these constraints are created, they are added to the
events they apply to. To visit all the constraints applicable to a given event, call

i nt KheEvent Const rai nt Count (KHE_EVENT e);
KHE CONSTRAI NT KheEvent Constraint (KHE EVENT e, int i);

There may be any number of assign time constraints, prefer times constraints, split events
constraints, and distribute split events constraints, in any order, except that an event with a
preassigned time cannot have assign time constraints and prefer times constraints.

Following the general pattern given in Section 1.3, function
bool KheEvent Si mil ar (KHE_EVENT el, KHE_EVENT e2);

returng r ue if el ande2 are similar: if they have the same duration and similar event resources.
The exact definition is as follows. An eveniadmissibléf it has one or more admissible event
resources. An eventresource is admissible if its hard domain (reflecting its prefer resources con-
straints and any preassignment) is an admissible resource group, as defined in Section 3.5.6. An
event is always similar to itself. Two distinct events are similar if they are admissible, have equal
durations, and their admissible event resources (taken in any order) have equal hard domains.

Thereis also

bool KheEvent Mer geabl e( KHE_EVENT el, KHE EVENT e2, int slack);

which returng r ue if el ande2 could reasonably be considered to be split fragments of a single
larger event: if their event resources correspond, ignoring differences in the order in which they
appear in the two events. $f ack is non-zerokheEvent Mer geabl e returnst r ue even if up

tosl ack event resources igil do not correspond with any event resourcedrand vice versa.

Two event resources correspond when they have the same resource type, the same preassigned
resource, equal hard domains as returnedKbgEvent Resour ceHar dDomai n, and equal
hard-and-soft domains as returneddbgEvent Resour ceHar dAndSof t Donai n. Like those two
functions KheEvent Mer geabl e can only be called after the instance is complete.
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A reasonable way to decide whether two events must be disjoint in time is to call

bool KheEvent Shar ePr eassi gnedResour ce( KHE_EVENT el, KHE EVENT e2,
KHE RESOQURCE =*r);

If el ande2 share a preassigned resource which has a required avoid clashes constraint, this
function returng r ue and sets to one such resource; otherwise it returasse and sets to
NULL. It should only be called after the instance is complete.

Function

voi d KheEvent Debug( KHE_EVENT e, int verbosity, int indent, FILE *fp);

produces a debug print efontof p with the given verbosity and indent, in the usual way.

3.6.3. Event resources

An event resource is created and added to an event by the call

bool KheEvent Resour ceMake( KHE_EVENT event, KHE RESOURCE TYPE rt,
KHE_RESOURCE preassi gned_resource, char *role, int workload,
KHE_EVENT_RESCURCE =*er);

This returnd al se only when the optionalol e parameter (used only when writing XML) is
nonNULL and there is already an event resource wighient with this value forr ol e. Parameter
preassi gned_r esour ce is an optional resource preassignment and mayubke.

To set and retrieve the back pointer of an event resource, call

voi d KheEvent Resour ceSet Back( KHE_EVENT_RESOURCE er, void *back);
voi d *KheEvent Resour ceBack( KHE_EVENT_RESOURCE er);

as usual. The other attributes may be retrieved by

KHE_| NSTANCE KheEvent Resour cel nst ance( KHE_EVENT _RESOURCE er);

i nt KheEvent Resour cel nst ancel ndex( KHE_EVENT _RESOURCE er);

KHE_EVENT KheEvent Resour ceEvent ( KHE_EVENT _RESOURCE er);

i nt KheEvent Resour ceEvent | ndex( KHE_EVENT RESOURCE er);

KHE_RESOURCE _TYPE KheEvent Resour ceResour ceType( KHE_EVENT RESOURCE er);
KHE_RESOURCE KheEvent Resour cePreassi gnedResour ce( KHE_EVENT _RESOURCE er);
char *KheEvent Resour ceRol e( KHE_EVENT RESOURCE er);

i nt KheEvent Resour ceWor kl oad( KHE_EVENT _RESOURCE er);

KheEvent Resour cel nst ance is the enclosing instanc&heEvent Resour cel nst ancel ndex is
the index ofer in that instance (the numbersuch thakhel nst anceEvent Resour ce(ins, i)
returnser ). KheEvent Resour ceEvent is the enclosing evenitheEvent Resour ceEvent | ndex
Is the index ofer in that event (the numbérsuch thakheEvent Resour ce(e, i) returnser).

Some constraints apply to event resources. When these are created, they are added to the
event resources they apply to. To visit the constraints that apply to a given event resource, call

i nt KheEvent Resour ceConst rai nt Count ( KHE_EVENT RESOURCE er) ;
KHE_CONSTRAI NT KheEvent Resour ceConstrai nt (KHE_EVENT RESOURCE er, int i);
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There may be any number of assign resource constraints, prefer resources constraints, and avoid
split assignments constraints, in any order, except that an event resource with a preassigned
resource cannot have assign resource constraints and prefer resources constraintsthif the
constraint is an avoid split assignments constraint, function

i nt KheEvent Resour ceConstrai nt Event Groupl ndex( KHE_EVENT RESOURCE er, int i);

may be called to find the event group index within that constraint that cortair(t returns- 1
if the i 'th constraint is not an avoid split assignments constraint.)

After the instance is complete but not before, function
KHE_MAYBE _TYPE KheEvent Resour ceNeedsAssi gnment ( KHE_EVENT RESOURCE er);

may be called to determine whether the constraints anean that it needs assignment (i.e. that
not assigning it would produce a positive hard or soft cost). Its return type is

t ypedef enum {
KHE_NO,
KHE_MAYBE,
KHE_YES

} KHE_MAYBE TYPE;

KHE_YES means that it does need assignment, because at least one assign resource constraint with
positive cost applies to iKHE_MAYBE means that there is no case KE_YES, but at least one

limit resources constraint with positive cost and positive minimum limit applies to iKeadNO

means that there is no case KE_YES or KHE_MAYBE.

Also after the instance is complete, functions

KHE_RESOURCE_GROUP KheEvent Resour ceHar dDomai n( KHE_EVENT RESOURCE er) ;
KHE _RESOURCE_GROUP KheEvent Resour ceHar dAndSof t Domai n( KHE_EVENT RESOURCE er);

return domains suited & . The resource group returned KhyeEvent Resour ceHar dDonai n is

the intersection of the domains of the required prefer resources constraints, with weight greater
than 0, ofer and other event resources that share a required avoid split assignments constraint of
weight greater than O witér , either directly or indirectly via any number of intermediate event
resources. If any of these event resources is preassigned, then the singleton resource groups
containing the preassigned resources are intersected along with the other groups. The same is
true ofKheEvent Resour ceHar dAndSof t Domai n, except that both hard and soft prefer resources

and avoid split assignments constraints are used, producing smaller domains in general.

These functions are not recommended for use when solving,i€iatesk Tr eeMake offers
a more sophisticated way of initializing the domains of tast®Event Resour ceHar dDomai n
is used when deciding whether events are similar.

Also after the instance has ended, function

bool KheEvent Resour ceEqui val ent (KHE _EVENT RESOURCE er 1,
KHE_EVENT _RESOURCE er 2) ;

may be called to decide whetherl ander 2 areequivalent Two event resources are equivalent
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when they lie in the same event, and for every resourassigning toer 1 has the same cost as
assigning toer 2, becauser 1 ander 2 are monitored by equivalent constraints: constraints of
the same kinds with the same weights and other attributes (domains, basically) that affect cost.

The value returned byheEvent Resour ceEqui val ent is based on values computed
duringKhel nst anceMakeEnd, soKheEvent Resour ceEqui val ent is very fast. To ensure that
Khel nst anceMakeEnd itself does not run slowly, only event resources that are adjacent in their
events are tested for equivalence, and for their constraints to be pronounced equivalent they
must appear in the same order. So wKiegEvent Resour ceEqui val ent returnd r ue, the event
resources really are equivalent; but when it retdiais e, they may or may not be equivalent.

Function

voi d KheEvent Resour ceDebug( KHE_EVENT_RESCURCE er, int verbosity,
int indent, FILE *fp);

produces a debug print ef ontof p with the given verbosity and indent, in the usual way.

3.6.4. Event resource groups
An event resource group is created and added to an event by the call

KHE_EVENT_RESOURCE_GROUP KheEvent Resour ceG oupMake( KHE_EVENT event,
KHE_RESOURCE_GROUP rgQ);

Its attributes may be retrieved by calling

KHE_EVENT KheEvent Resour ceG oupEvent ( KHE_EVENT RESOURCE GROUP erg);
KHE_RESOURCE GROUP KheEvent Resour ceG oupResour ceG oup(
KHE_EVENT _RESOURCE_GROUP erg);

In addition to making a new event resource group obj&céEvent Resour ceG oupMake

calls KheEvent Resour ceMake once for each resource ofg, with the resource for its
preassi gned_r esour ce parameter and the obvious valuesfor its other parameters. This satisfies
the semantic requirement that adding a resource group should be just like adding its resources
individually. These added event resources appear on the list of event resources of the event just
like other event resources; they can be distinguished from them only by calling

KHE_EVENT_RESOURCE_GROUP KheEvent Resour ceEvent Resour ceG oup(
KHE_EVENT _RESOURCE er ) ;

which returns the event resource group that caaesdd be created when there is one, &ttL

whener was created directly. For example, when printing XML files, KHE calls this function
once for each event resource, to decide whether it should be printed explicitly or omitted because
it is part of an event resource group. Function

voi d KheEvent Resour ceGr oupDebug( KHE_EVENT RESOURCE GROUP er g,
int verbosity, int indent, FILE *fp);

produces a debug print ef g ontof p with the given verbosity and indent, in the usual way.
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3.7. Constraints

Some attributes of constraints are common to all kinds of constraints; others vary from one kind
of constraint to another. Accordingly, KHE offers tyllE_ CONSTRAI NT, which is the abstract
supertype of all kinds of constraints, and one subtype of this type for each kind of constraint.

To set and retrieve the back pointer of a constraint object, call

voi d KheConst rai nt Set Back( KHE_CONSTRAI NT ¢, void *back);
voi d *KheConst rai nt Back( KHE_CONSTRAI NT c);

as usual. To retrieve the other attributes common to all kinds of constraints, use functions

KHE_| NSTANCE KheConstrai nt | nstance( KHE_CONSTRAINT c¢);

char *KheConstrai nt | d( KHE_CONSTRAI NT c);

char *KheConst rai nt Name( KHE_CONSTRAI NT ¢);

bool KheConst rai nt Requi r ed( KHE_CONSTRAI NT ¢);

i nt KheConstrai nt Wi ght (KHE_CONSTRAI NT ¢);

KHE_COST KheConst rai nt Conbi nedWei ght ( KHE_CONSTRAI NT ¢);
KHE_COST_FUNCTI ON KheConst r ai nt Cost Funct i on( KHE_CONSTRAI NT c¢) ;
i nt KheConstraint | ndex( KHE_CONSTRAI NT c);

KHE_CONSTRAI NT_TAG KheConst r ai nt Tag( KHE_CONSTRAI NT c);

KheConst rai nt | nst ance returns the instancesheConstrai nt1d and KheConstrai nt Nanme
return the constraint’s Id and Name (as usual, these are optional in KHE, needed only when
writing XML). KheConstrai nt Requi red ist rue when the Required attribute is true.

KheConst rai nt i ght is the weight given to violations of the constraint. As explained
in Section 6.1KheConstrai nt Conbi nedWei ght is similar, except that hard constraints are
weighted more heavilykHE_COST is also defined therekheConst r ai nt Cost Functi on is the
cost function used when calculating the cost of deviations, of type

t ypedef enum {
KHE_STEP_COST_FUNCTI ON,
KHE_LI NEAR_COST_FUNCTI ON,
KHE_QUADRATI C_COST_FUNCTI ON

} KHE_COST_FUNCTI ON;

KheConst rai nt | ndex returns an automatically generated index numbercfo® for the first
constraint created, 1 for the second, and so KmeConstrai nt Tag is the type tag which
determines which concrete kind of constraint this is, with type
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t ypedef enum {
KHE_ASSI GN_RESOURCE_CONSTRAI NT_TAG,
KHE_ASSI GN_TI ME_CONSTRAI NT_TAG
KHE_SPLI T_EVENTS_CONSTRAI NT_TAG
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT_TAG
KHE_PREFER_RESOURCES CONSTRAI NT_TAG,
KHE_PREFER_TI MES_CONSTRAI NT_TAG,
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT_TAG,
KHE_SPREAD_EVENTS_CONSTRAI NT_TAG,
KHE LI NK_EVENTS_CONSTRAI NT_TAG,
KHE_ORDER_EVENTS_CONSTRAI NT_TAG,
KHE_AVO D _CLASHES CONSTRAI NT_TAG
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT_TAG,
KHE_LI M T_I DLE_TI MES_CONSTRAI NT_TAG,
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT_TAG
KHE LI M T_BUSY_TI MES_CONSTRAI NT_TAG,
KHE LIM T_WORKLOAD CONSTRAI NT_TAG,
KHE LI M T_ACTI VE_I NTERVALS_CONSTRAI NT_TAG,
KHE_LI M T_RESOURCES_CONSTRAI NT_TAG,
KHE_CONSTRAI NT_TAG_COUNT

} KHE_CONSTRAI NT_TAG,

The last value is not a valid tag; it counts the number of constraints, allowing code of the form

for( tag = 0; tag < KHE CONSTRAI NT_TAG COUNT; tag++ )

to be written which visits every tag, now and in the future.
The number of points of application of a constraint is returned by

i nt KheConstrai nt Appl i esToCount ( KHE_CONSTRAI NT c);

For an assign resource constraint this is the total number of event resources; for a split events
constraint it is the total number of events plus the sizes of the event groups; and so on.

Given a tag, one can obtain a string representation of the constraint name by calling

char xKheConst rai nt TagShow( KHE_CONSTRAI NT_TAG t ag) ;
char xKheConst rai nt TagShowSpaced( KHE_CONSTRAI NT_TAG t ag) ;

The first returns an unspaced forfiA{si gnResour ceConstraint" and so on), the second
returns a spaced formAssi gn Resource Constraint" and soon). Thereis also

KHE_CONSTRAI NT_TAG KheSt ri ngToConstrai nt Tag(char =str);
which implements the inverse function, from unspaced constraint names to constraint tags, and
char *KheCost Functi onShow( KHE_COST_FUNCTI ON cf);

which returns a cost function’s string representation, and
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voi d KheConstrai nt Debug( KHE _CONSTRAINT ¢, int verbosity,
int indent, FILE *fp);

which produces a debug print ofontof p with the given verbosity and indent. This just calls
the appropriate debug function for the downcast valireAssi gnResour ceConst r ai nt Debug,
KheAssi gnTi meConst r ai nt Debug, and so on.

The names of the concrete subtypes themselves are

KHE_ASSI GN_RESOURCE_CONSTRA!I NT
KHE_ASSI GN_TI ME_CONSTRAI NT

KHE_SPLI T_EVENTS_CONSTRAI NT

KHE_Di STRI BUTE_SPLI T_EVENTS_CONSTRAI NT
KHE_PREFER_RESOURCES CONSTRAI NT
KHE_PREFER TI MES_CONSTRAI NT

KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT
KHE_SPREAD EVENTS_CONSTRAI NT

KHE_LI NK_EVENTS_CONSTRAI NT
KHE_ORDER_EVENTS_CONSTRAI NT

KHE_AVOl D_CLASHES CONSTRAI NT

KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT
KHE_LIM T_| DLE_TI MES_CONSTRAI NT
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT
KHE_LI M T_BUSY_TI MES_CONSTRAI NT
KHE_LIM T_WORKLOAD CONSTRAI NT

KHE_LI M T_ACTI VE_| NTERVALS_CONSTRAI NT
KHE_LI M T_RESOURCES_CONSTRAI NT

Downcasting and upcasting betweéit_CONSTRAI NT and each of these subtypes, using C casts,
isa normal part of the use of KHE. Alternatively, since C casts can also be used for unsafe things,
explicit functions are offered for upcasting:
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KHE_CONSTRAI NT KheFr omAssi gnResour ceConst r ai nt (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);

KHE_CONSTRAI NT KheFr omAssi gnTi neConst rai nt (
KHE_ASSI GN_TI ME_CONSTRAI NT c¢)

KHE_CONSTRAI NT KheFr onSpl i t Event sConst rai nt (
KHE_SPLI T_EVENTS_CONSTRAI NT c);

KHE_CONSTRAI NT KheFronDi stri but eSplitEvent sConstraint (
KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢);

KHE_CONSTRAI NT KheFr onPr ef er Resour cesConst rai nt (
KHE_PREFER _RESOURCES_CONSTRAI NT c¢)

KHE_CONSTRAI NT KheFr onPr ef er Ti mesConst r ai nt (
KHE_PREFER _TI MES_CONSTRAI NT c);

KHE_CONSTRAI NT KheFr omAvoi dSpl i t Assi gnment sConst rai nt (
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT ¢) ;

KHE_CONSTRAI NT KheFr onSpr eadEvent sConst r ai nt (
KHE_SPREAD EVENTS_CONSTRAI NT ¢) ;

KHE_CONSTRAI NT KheFr onLi nkEvent sConst r ai nt (
KHE_LI NK_EVENTS_CONSTRAI NT c);

KHE_CONSTRAI NT KheFr onOr der Event sConst r ai nt (
KHE_ORDER_EVENTS_CONSTRAI NT c);

KHE_CONSTRAI NT KheFr omAvoi dCl ashesConst rai nt (
KHE_AVO D_CLASHES CONSTRAINT c¢);

KHE_CONSTRAI NT KheFr omAvoi dUnavai | abl eTi mesConst rai nt (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT ¢);

KHE_CONSTRAI NT KheFronili m t1dl eTi mesConstrai nt (
KHE_LI'M T_I DLE_TI MES_CONSTRAI NT ¢):

KHE_CONSTRAI NT KheFr onCl ust er BusyTi nesConst rai nt (
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

KHE_CONSTRAI NT KheFronLi mi t BusyTi mesConst r ai nt (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢):

KHE_CONSTRAI NT KheFr onli m t Wor kl oadConst r ai nt (
KHE_LI M T_WORKLOAD CONSTRAI NT ¢);

KHE_CONSTRAI NT KheFronLi m t Acti vel nt erval sConstr ai nt (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

KHE_CONSTRAI NT KheFr onli m t Resour cesConst r ai nt (
KHE_LI M T_RESOURCES_CONSTRAI NT ¢);

and for downcasting:
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KHE_ASSI GN_RESOURCE_CONSTRAI NT

KheToAssi gnResour ceConst r ai nt (KHE_CONSTRAI NT c¢);
KHE_ASSI GN_TI ME_CONSTRAI NT

KheToAssi gnTi meConst rai nt (KHE_CONSTRAI NT c);
KHE_SPLI T_EVENTS CONSTRAI NT

KheToSpl i t Event sConst rai nt ( KHE_CONSTRAI NT ¢);
KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT

KheToDi stributeSplitEventsConstraint ( KHE_CONSTRAI NT c);
KHE_PREFER_RESOURCES_CONSTRAI NT

KheToPr ef er Resour cesConst rai nt ( KHE_CONSTRAI NT ¢);
KHE_PREFER_TI MES_CONSTRAI NT

KheToPr ef er Ti mesConst rai nt ( KHE_CONSTRAI NT ¢);
KHE_AVQO D_SPLI T_ASSI GNVENTS_CONSTRAI NT

KheToAvoi dSpl it Assi gnment sConst rai nt ( KHE_CONSTRAI NT ¢);
KHE_SPREAD EVENTS_CONSTRAI NT

KheToSpr eadEvent sConst rai nt ( KHE_CONSTRAI NT c¢);
KHE_LI NK_EVENTS_CONSTRAI NT

KheToLi nkEvent sConst r ai nt (KHE_CONSTRAI NT c);
KHE_ORDER_EVENTS_CONSTRAI NT

KheToOr der Event sConst rai nt ( KHE_CONSTRAI NT ¢);
KHE_AVO D_CLASHES CONSTRAI NT

KheToAvoi dd ashesConst rai nt (KHE_CONSTRAI NT c¢);
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT

KheToAvoi dUnavai | abl eTi mesConstrai nt ( KHE_CONSTRAI NT c);
KHE_LI M T_I DLE_TI MES_CONSTRAI NT

KheToLi ni t1dl eTi mesConst rai nt (KHE_CONSTRAINT c¢);
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT

KheTod ust er BusyTi mesConst r ai nt (KHE_CONSTRAI NT ¢);
KHE LI M T_BUSY_TI MES_CONSTRAI NT

KheToLi ni t BusyTi mesConst r ai nt (KHE_CONSTRAI NT c¢);
KHE_LI M T_WORKLOAD CONSTRAI NT

KheToLi ni t Wor kl oadConst r ai nt (KHE_CONSTRAI NT c¢);
KHE_LI M T_ACTI VE_| NTERVALS_CONSTRAI NT

KheToLi nmi t Acti vel nterval sConstrai nt (KHE_CONSTRAI NT c);
KHE_LI M T_RESOURCES_CONSTRAI NT

KheToLi nmi t Resour cesConst r ai nt (KHE_CONSTRAINT c¢);

The downcasting functions check that their parameter is of the correct type, and abort if not.

3.7.1. Assign resource constraints
An assign resource constraint is created and added to an instance by

bool KheAssi gnResour ceConstrai nt Make( KHE_I NSTANCE ins, char +id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE_ASSI GN_RESOURCE_CONSTRAINT =*c);
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This accepts the attributes common to all constraints, followed by an optioha| which is
specific to this kind of constraint. As usual, if successful it retime, settingsc to the new
constraint; if not (which can only be becauskis nonNULL and equal to the Id of an existing
constraint ofi ns), then it returng al se, settingsc to NULL.

The attributes common to all kinds of constraints may be retrieved by upcasting to
KHE_CONSTRAI NT and calling the relevant operations on that type. The attribute specific to assign
resources constraints may be retrieved by calling

char *KheAssi gnResour ceConst r ai nt Rol e( KHE_ASSI GN_ RESOURCE_CONSTRAI NT ¢);

Initially the constraint has no points of application. There are two ways to add them. The first
IS to giveNULL for r ol e, then add the event resources that this constraint applies to by calling

voi d KheAssi gnResour ceConst r ai nt AddEvent Resour ce(
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT_RESOURCE er);

as often as necessary. Itis an error to call this function vehexontains a preassigned resource,
since assign resource constraints do not apply to event resources with preassigned resources. To
visit the event resources of call

i nt KheAssi gnResour ceConstrai nt Event Resour ceCount (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);

KHE_EVENT_RESOURCE KheAssi gnResour ceConst rai nt Event Resour ce(
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

as usual.

The second way to add event resources, used when reading XML files, is to givéidLhon-
value forr ol e, then add events and event groups. To add events and visit them, the calls are

voi d KheAssi gnResour ceConst r ai nt AddEvent (
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT e);

i nt KheAssi gnResour ceConstrai nt Event Count (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);

KHE_EVENT KheAssi gnResour ceConstrai nt Event (
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

To add event groups and visit them, the calls are

voi d KheAssi gnResour ceConst rai nt AddEvent Gr oup(
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheAssi gnResour ceConst rai nt Event G- oupCount (
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢);
KHE EVENT _GROUP KheAssi gnResour ceConst rai nt Event G- oup(
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

When this is done, KHE stores the events and event groups in the constraint so that they can be
written out again correctly later, but it also works out which event resources the constraint applies
to and callXheAssi gnResour ceConst r ai nt AddEvent Resour ce for each of them, taking due

note of the XML rule that it does not apply when an event does not contain an event resource
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with the specified role, or when such an event resource has a preassigned resource.
Function

voi d KheAssi gnResour ceConst rai nt Debug( KHE_ASSI GN_RESOURCE_CONSTRAI NT c,
int verbosity, int indent, FILE *=fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the assign resources constraints of an instance (Section 3.3) is
their number of their points of application divided by the number of event resources without
preassigned resources.

3.7.2. Assign time constraints
An assign time constraint is created and added to an instance by

bool KheAssi gnTi meConst rai nt Make( KHE_| NSTANCE i ns, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_ASSI GN_TI ME_CONSTRAI NT *c);

As usual, if successful it returns ue, settingsc to the new constraint; if not (which can only
be becaused is nonNULL and equal to the Id of an existing constrainti of), then it returns
fal se, setting:c toNULL. The attributes may be retrieved by upcastingH#® CONSTRAI NT and
calling the relevant operations on that type.

The points of application of an assign time constraint are events, and the XML file allows
them to be given individually and in groups. To add individual events and visit them, call

voi d KheAssi gnTi meConst rai nt AddEvent ( KHE_ASSI GN_TI ME_CONSTRAI NT c,
KHE_EVENT e);

i nt KheAssi gnTi neConst rai nt Event Count ( KHE_ASSI GN_TI ME_CONSTRAI NT ¢) ;

KHE EVENT KheAssi gnTi meConstrai nt Event (KHE_ASSI GN_TI ME_CONSTRAI NT c,
int i);

To add groups of events and visit them, call

voi d KheAssi gnTi meConstrai nt AddEvent G- oup( KHE_ASSI GN_TI ME_CONSTRAI NT c,
KHE_EVENT_GROUP eg) ;

i nt KheAssi gnTi neConst rai nt Event G oupCount (
KHE_ASSI GN_TI ME_CONSTRAI NT c¢);

KHE_EVENT _GROUP KheAssi gnTi meConst r ai nt Event Group(
KHE_ASSI GN_TI ME_CONSTRAINT ¢, int i);

The XML specification states that assign time constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function
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voi d KheAssi gnTi meConst rai nt Debug( KHE_ASSI GN_TI ME_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the assign times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.3. Split events constraints
A split events constraint is created and added to an instance by

bool KheSplitEvent sConstrai nt Make( KHE | NSTANCE i ns, char =id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
int mn_duration, int max_duration, int mn_anmount,
int max_anount, KHE SPLI T _EVENTS CONSTRAI NT *c);

in the usual way. Most of the attributes may be retrieved by upcastiKgetdCONSTRAI NT and
calling the relevant operation on that type. The exceptions are

i nt KheSplitEventsConstraint M nDuration(KHE SPLI T_EVENTS CONSTRAI NT c);
i nt KheSplitEventsConstraint MaxDuration( KHE SPLI T_EVENTS CONSTRAI NT c);
i nt KheSplitEventsConstrai nt M nAmount (KHE_SPLI T_EVENTS CONSTRAI NT c);
i nt KheSplitEventsConstrai nt MaxAmount (KHE_SPLI T_EVENTS CONSTRAI NT c¢);

which return the various attributes specific to split events constraints.

The points of application are events, and, as for assign time constraints, these may be added
and visited individually:

voi d KheSplitEventsConstrai nt AddEvent (KHE _SPLI T_EVENTS CONSTRAI NT c,
KHE_EVENT e);

i nt KheSplitEvent sConstraint Event Count (KHE_SPLI T_EVENTS_CONSTRAINT c¢);

KHE_EVENT KheSpl it Event sConstrai nt Event (KHE _SPLI T_EVENTS CONSTRAI NT c,
int i);

and also in groups:

voi d KheSplitEvent sConstrai nt AddEvent Group(
KHE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheSplitEventsConstraint Event GroupCount (
KHE_SPLI T_EVENTS_CONSTRAI NT c);
KHE_EVENT _GROUP KheSpl it Event sConstrai nt Event G oup(
KHE_SPLI T_EVENTS CONSTRAINT ¢, int i);

All the events are linked to the constraint, unlike for assign time constraints.
Function

voi d KheSplitEvent sConstrai nt Debug( KHE_SPLI T_EVENTS_ CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
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produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the split events constraints of an instance (Section 3.3) is their

number of points of application divided by the total number of events.

3.7.4. Distribute split events constraints
A distribute split events constraint is created and added to an instance by

bool KheDi stributeSplitEventsConstraint Make( KHE_I NSTANCE ins, char *id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
int duration, int mnimm int maximm
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT *c);

in the usual way. Most of the attributes may be retrieved by upcastikgeta®ONSTRAI NT and
calling the relevant operation on that type. The exceptions are

i nt KheDistributeSplitEventsConstraintDuration(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c¢) ;
int KheDistributeSplitEventsConstraintM ni num
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c) ;
int KheDistributeSplitEventsConstraint Maxi num
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c¢) ;

which return the various attributes specific to distribute split events constraints.

The points of application are events, and, as for split events constraints, these may be added

and visited individually:

voi d KheDi stributeSplitEventsConstraint AddEvent (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE_EVENT e);
i nt KheDistributeSplitEventsConstraintEvent Count (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c) ;
KHE_EVENT KheDi stribut eSplitEvent sConstrai nt Event (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAINT ¢, int i);

and also in groups:

voi d KheDi stributeSplitEventsConstraint AddEvent Group(
KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE EVENT_GROUP egq);
i nt KheDistributeSplitEventsConstraint Event GroupCount (
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢)
KHE_EVENT_GROUP KheDi st ri but eSpl it Event sConst rai nt Event Group(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAINT ¢, int i):;

All the events are linked to the constraint.
Function
voi d KheDi stributeSplitEventsConstraint Debug(

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢,
int verbosity, int indent, FILE *fp);
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produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the distribute split events constraints of an instance (Section 3.3)
is their number of points of application divided by the total number of events.

3.7.5. Prefer resources constraints

A prefer resources constraint is created and added to an instance by

bool KhePref er Resour cesConstr ai nt Make( KHE_I NSTANCE i ns, char +id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
char +role, KHE_PREFER RESOURCES CONSTRAINT =*c);

As usual, the only reason for returnimgl se is thati d is nonNULL and there is already a
constraint ini ns with this id. Most of the attributes may be retrieved by upcasting to
KHE_CONSTRAI NT and calling the relevant operations on that type; the exceptiosi &5 which

Is retrieved by calling

char =KhePref er Resour cesConst rai nt Rol e( KHE_PREFER RESOURCES CONSTRAI NT c);

since it is specific to this constraint type.

In the XML specification, the resources that make up the domain of the constraint may be
added in groups or individually. To add them in groups, and to visit the groups, call

bool KhePref er Resour cesConst rai nt AddResour ceG oup(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);

i nt KhePref er Resour cesConst r ai nt Resour ceG oupCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c);

KHE RESOURCE_GROUP KhePr ef er Resour cesConst rai nt Resour ceG oup(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

Thebool result type ofkhePr ef er Resour cesConst r ai nt AddResour ceG oup (and other func-
tions below) is explained at the end of this section. To add and visit resources individually, call

bool KhePref er Resour cesConst r ai nt AddResour ce(
KHE_PREFER RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KhePref er Resour cesConst rai nt Resour ceCount (
KHE_PREFER_RESOURCES CONSTRAI NT c);

KHE_RESOURCE KhePr ef er Resour cesConst rai nt Resour ce(
KHE_PREFER _RESOURCES CONSTRAINT ¢, int i);

After the instance is complete, but not before, function

KHE_RESOURCE GROUP KhePr ef er Resour cesConst r ai nt Domai n(
KHE_PREFER_RESOURCES_CONSTRAI NT c¢) ;

returns the domain af as a single resource group. If exactly one resource group or one resource
was added, this resource group will be that resource group or the automatically created singleton
resource group for that resource; otherwise it will be created by taking the union of everything
added. Thisresource group may be used like any other, except for a problem in one special case:
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when no resource groups or resources are added, the domain is not only an empty resource group
but also has &ULL resource type.

The points of application of prefer resources constraints are event resources, and they
are handled in the same way as for assign resource constraints. That is, one can load the event
resources directly by having\uLL value forr ol e and calling

bool KhePref er Resour cesConst rai nt AddEvent Resour ce(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_RESCURCE er);

i nt KhePref er Resour cesConst rai nt Event Resour ceCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c¢) ;

KHE_EVENT RESOURCE KhePr ef er Resour cesConst r ai nt Event Resour ce(
KHE_PREFER_RESOURCES_CONSTRAINT ¢, int i);

or load them indirectly by loading events:

bool KhePref er Resour cesConstr ai nt AddEvent (
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT e);

i nt KhePref er Resour cesConst rai nt Event Count (
KHE_PREFER_RESOURCES_CONSTRAI NT c);

KHE_EVENT KhePr ef er Resour cesConst r ai nt Event (
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

and event groups:

bool KhePref er Resour cesConst rai nt AddEvent G oup(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_GROUP eg,
KHE _EVENT +pr obl em event);

i nt KhePref er Resour cesConst rai nt Event G oupCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c¢) ;

KHE_EVENT_GROUP KhePr ef er Resour cesConst r ai nt Event Gr oup(
KHE_PREFER_RESOURCES_CONSTRAINT ¢, int i);

WhenKhePr ef er Resour cesConst r ai nt AddEvent Gr oup returnsf al se, pr obl em event is set
to the first event that caused the problem. The rules for skipping inappropriate events are as for
assign resource constraints.

The resources, resource groups, and event resources of a prefer resources constraint all have
a resource type attribute. All these resources types must be equal. This is why the operations
above for adding a resource, resource group, event resource, event, or event group albblave a
result type: they all returhal se and add nothing if the operation would add an entity with a
different resource type from something added previously.

Function

voi d KhePr ef er Resour cesConst r ai nt Debug( KHE_PREFER_RESOURCES CONSTRAI NT c,
int verbosity, int indent, FILE «fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of prefer resources constraints (Section 3.3) is the number of points
of application divided by the number of event resources without preassigned resources.
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3.7.6. Prefer times constraints

A prefer times constraint is created and added to an instance by

bool KhePref er Ti mesConst r ai nt Make( KHE_I NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
int duration, KHE_PREFER TI MES CONSTRAI NT *c);

As usual, the only possible reason for returrfingse is thati d isnonNULL and there is already a
constraintin ns with thisi d. A duration is optional; to not give one (meaning that the constraint
applies for all durations), use the special vatie_ANY_DURATI ON, a synonym for 0.

Most of the attributes may be retrieved by upcastingHe_CONSTRAI NT and calling the
relevant operations on that type; the exceptiatuisat i on, which is retrieved by calling

i nt KhePref er Ti mesConst rai nt Dur ati on( KHE_PREFER_TI MES_CONSTRAI NT ¢);

since it is specific to this constraint type.

In the XML specification, the times that make up the domain of the constraint may be added
in groups or individually. To add them in groups, and to visit the groups, call

voi d KhePref er Ti mesConst rai nt AddTi mneG oup(
KHE_PREFER_TI MES_CONSTRAI NT ¢, KHE_TIME_GROUP tgQ);

i nt KhePref er Ti mesConst rai nt Ti meG oupCount (
KHE_PREFER_TI MES_CONSTRAI NT ¢);

KHE TI ME_GROUP KhePr ef er Ti nesConst rai nt Ti meG oup(
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

To add and visit times individually, call

voi d KhePreferTi mesConst rai nt AddTi me(
KHE_PREFER TI MES_CONSTRAINT ¢, KHE_TIME t);

i nt KhePreferTi mesConstrai nt Ti meCount (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE_TI ME KhePr ef er Ti mesConst r ai nt Ti me(
KHE_PREFER _TI MES_CONSTRAINT ¢, int i);

After the instance is complete, but not before, function

KHE_TI ME_GROUP KhePr ef er Ti mesConst r ai nt Donai n(
KHE_PREFER_TI MES_CONSTRAI NT c);

returns the domain af as a single time group. If exactly one time group or one time was added,
this time group will be that time group or the automatically created singleton time group for that
time; otherwise it will be created by taking the union of everything added. This time group may
be used like any other.

The points of application of prefer times constraints are events, and they can be added and
visited individually:
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voi d KhePref er Ti mesConst rai nt AddEvent (
KHE_PREFER_TI MES_CONSTRAI NT ¢, KHE_EVENT e);

i nt KhePref er Ti nesConst rai nt Event Count (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE EVENT KhePr ef er Ti mesConst rai nt Event (
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

or in groups:

voi d KhePr ef er Ti mesConst r ai nt AddEvent Gr oup(
KHE_PREFER _TI MES_CONSTRAI NT ¢, KHE_EVENT GROUP eg);

i nt KhePreferTi mesConst rai nt Event Gr oupCount (
KHE_PREFER _TI MES_CONSTRAI NT c);

KHE_EVENT_GROUP KhePr ef er Ti mesConst rai nt Event G oup(
KHE_PREFER TI MES CONSTRAINT ¢, int i);

The XML specification states that prefer times constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

Function
voi d KhePref er Ti mesConst rai nt Debug( KHE_PREFER TI MES_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the prefer times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.7. Avoid split assignments constraints
An avoid split assignments constraint is created and added to an instance by

bool KheAvoi dSpl it Assi gnment sConst rai nt Make( KHE | NSTANCE i ns, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
char *role, KHE_AVO D _SPLI T_ASS|I GNMENTS _CONSTRAI NT *c);

As usual, the attributes may be retrieved by upcastingH® CONSTRAI NT and calling the
relevant operation on that type, except that to retrieve ¢the attribute the call is

char =KheAvoi dSpl it Assi gnment sConst r ai nt Rol e(
KHE_AVO D_SPLI T_ASSI GNMENTS_CONSTRAI NT c);

Ther ol e attribute may béULL.

The handling of the points of application of an avoid split assignments constraint is
somewhat complex, because one point of application is fundamentally a set of event resources
(the XML file identifies each set by an event group and a role), so that the points of application
overall form a set of sets of event resources. We will first explain how to add these points of
application when reading an XML file, and then how to do it directly.
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When reading an XML file, a noRULL r ol e is passed, and then each event group is added
in the usual way. To add an event group and to visit the event groups, the calls are

bool KheAvoi dSpl it Assi gnment sConst rai nt AddEvent G oup(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT ¢, KHE_EVENT GROUP eg,
KHE_EVENT +pr obl em event);

int KheAvoi dSpl it Assi gnment sConst rai nt Event G oupCount (
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT c¢) ;

KHE_EVENT_GROUP KheAvoi dSpl it Assi gnnment sConst r ai nt Event Group(
KHE_AVQO D_SPLI T_ASSI GNVENTS_CONSTRAINT ¢, int i);

Behind the scenes, the appropriate event resources are retrieved from the events of each event
group and added automatically, so that nothing further needs to be dori@l sA result
returned byKheAvoi dSpl i t Assi gnnent sConst r ai nt AddEvent G oup indicates that one of the

events ofeg does not contain an event resource with the required\dbh+ ol e. In this case,

*probl em event will contain the first event oég with this problem on return.

When the instance is not derived from an XML file it may be more convenient to add
event resources directly. For the sake of this cages may beNULL, and theeg parameter of
KheAvoi dSpl i t Assi gnment sConst r ai nt AddEvent G oup may also beNULL. If either iSNULL,
event resources are not added automatically.

To add event resources manually, and to visit event resources (whether added automatically
or manually), the calls are

voi d KheAvoi dSpl it Assi gnment sConstrai nt AddEvent Resour ce(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT ¢, int eg_index,
KHE_EVENT _RESOURCE er);
i nt KheAvoi dSpl it Assi gnient sConst r ai nt Event Resour ceCount (
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT ¢, int eg_index);
KHE_EVENT_RESOURCE KheAvoi dSpl it Assi gnnent sConst rai nt Event Resour ce(
KHE_AVO D _SPLI T_ASSI GNMENTS_CONSTRAINT ¢, int eg_index, int er_index);

These functions add an event resource toethé ndex’th point of application ofc, return the
number of event resources at that point, and returertthendex’th event resource at that point.
They define the required set of sets of event resources.

Usually, constraints are added to the instance and to the entities they apply to. For avoid
split assignments constraints this would mean adding the constraint to the instance and the event
groups. This is done, but, for convenience, each avoid split assignments constaint is also added
to each of its event resources.

Function

voi d KheAvoi dSpl it Assi gnment sConst rai nt Debug(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density (Section 3.3) is the number of event resources in all points of
application divided by the number of event resources without preassigned resources.
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3.7.8. Spread events constraints
A spread events constraint is created and added to an instance by

bool KheSpreadEvent sConst rai nt Make( KHE | NSTANCE i ns, char xid,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_TI ME_SPREAD ts, KHE SPREAD EVENTS CONSTRAI NT xc);

where typeKHE_TI ME_SPREAD is explained below. Most of the attributes may be retrieved by
upcasting t&KHE_CONSTRAI NT and calling the relevant operation on that type. The exception is

KHE Tl ME_SPREAD KheSpreadEvent sConstrai nt Ti meSpr ead(
KHE_SPREAD EVENTS_CONSTRAI NT c);

which returns the time spread. TygEE_TI ME_SPREAD is an object which describes the time
groups that the constraint requires the event group to spread through, and the limits on the
number of events that may touch each time group. Time spread objects are immutable, and may
be shared among any number of constraints. To create a time spread object, call

KHE_TI ME_SPREAD KheTi meSpr eadMake( KHE_| NSTANCE i ns) ;
Initially this has no time groups. To add them, call

voi d KheTi meSpr eadAddLi ni t edTi neG oup( KHE_TI ME_SPREAD t s,
KHE_LI M TED_TI ME_GROUP |t Q);

repeatedly. To retrieve the limited time groups of a time spread, call

i nt KheTi meSpreadLi it edTi neG oupCount ( KHE_TI ME_SPREAD | ts);
KHE_LI M TED_TI ME_GROUP KheTi meSpr eadLi it edTi meG oup(
KHE_TI ME_SPREAD I ts, int i);

An object of typeKHE_LI M TED_TI ME_GROUP contains what one element of a time spread needs:
a time group plus a minimum and maximum number of events. It may be created by calling

KHE_LI M TED_TI ME_GROUP KheLi ni t edTi meG oupMake( KHE_TI ME_GROUP t g,
int mnimm int maxinun;
and functions

KHE_TI ME_GROUP KheLi mit edTi meG oupTi meG oup( KHE_LI M TED TI ME_GROUP I tg);

i nt KheLim tedTi meG oupM ni num( KHE LI M TED TI ME_ GROUP It Q);

i nt KheLi mit edTi meG oupMaxi mum( KHE_LI M TED TI ME_GROUP I tg);
retrieve its attributes.

Two other operations on time spreads, available only after the instance is complete, provide
information that may be useful to solvers:

bool KheTi neSpreadTi neG oupsDi sj oi nt (KHE TI ME_SPREAD ts);
bool KheTi neSpreadCover sWol eCycl e( KHE_TI ME_SPREAD ts);

KheTi meSpr eadTi meG oupsDi sj oi nt returnst r ue when the time groups dfs’s limited time



3.7. Constraints 55

groups are pairwise disjoinkheTi meSpr eadCover s\Wol eCycl e returng r ue when every time
of the cycle appears in at least one of the time groups &flimited time groups.

Spread events apply to event groups; the operations for adding and visiting them are
voi d KheSpreadEvent sConstrai nt AddEvent G oup(
KHE_SPREAD_EVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheSpreadEvent sConst rai nt Event Gr oupCount (
KHE_SPREAD_EVENTS_CONSTRAI NT c¢);
KHE EVENT _GROUP KheSpreadEvent sConstrai nt Event Group(
KHE_SPREAD_EVENTS_CONSTRAINT ¢, int i);
as usual.
Function
voi d KheSpreadEvent sConst rai nt Debug( KHE_SPREAD EVENTS CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the spread events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.9. Link events constraints

A link events constraint is created and added to an instance by

bool KheLi nkEvent sConst rai nt Make( KHE_| NSTANCE i ns, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_LI NK_EVENTS_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting-£ CONSTRAI NT and calling the relevant
operation on that type. One point of application of a link events constraint is an event group; one
constraint may contain any number of these. The operations for adding them are

voi d KheLi nkEvent sConstrai nt AddEvent G oup( KHE_LI NK_EVENTS_CONSTRAI NT c,
KHE_EVENT_GROUP eg);
i nt KheLi nkEvent sConst rai nt Event G- oupCount ( KHE_LI NK_EVENTS_CONSTRAI NT c);
KHE_EVENT_GROUP KheLi nkEvent sConst rai nt Event G oup(
KHE_LI NK_EVENTS_CONSTRAINT ¢, int i);

as usual.
Function

voi d KheLi nkEvent sConst rai nt Debug( KHE LI NK_EVENTS CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the link events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.
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3.7.10. Order events constraints

An order events constraint is created and added to an instance by

bool KheOrder Event sConst rai nt Make( KHE_I NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_ORDER_EVENTS_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting-# CONSTRAI NT and calling the relevant
operation on that type.

One point of application of an order events constraint is a pair of instance events, together
with integer minimum and maximum separations. To add one point of application, call

voi d KheOrder Event sConst rai nt AddEvent Pai r (KHE_ORDER_EVENTS_CONSTRAI NT c,
KHE_EVENT first_event, KHE EVENT second _event, int min_separation,
int max_separation);

Both mi n_separ ati on andnax_separ ati on must be non-negative. Infinity, the default value
of max_separati on in the XML format, is implemented by passihtyT_MAX.

To retrieve the number of points of application and the attributes of each, call

i nt KheOrder Event sConst rai nt Event Pai r Count (
KHE_ORDER EVENTS_CONSTRAI NT c);

KHE_EVENT KheOr der Event sConst rai nt Fi r st Event (
KHE_ORDER EVENTS_CONSTRAINT ¢, int i);

KHE_EVENT KheOr der Event sConst r ai nt SecondEvent (
KHE_ORDER EVENTS_CONSTRAINT ¢, int i);

i nt KheOrder Event sConstrai nt M nSepar at i on(
KHE_ORDER EVENTS_CONSTRAINT ¢, int i);

i nt KheOrder Event sConst rai nt MaxSepar at i on(
KHE_ORDER EVENTS_CONSTRAINT ¢, int i);

in the usual way. The value d&heO der Event sConst rai nt Event Pai r Count (¢) is the same
as the value okheConst r ai nt Appl i esToCount ( (KHE_CONSTRAI NT) c).

Function

voi d KheOr der Event sConst rai nt Debug( KHE_ORDER _EVENTS_CONSTRAI NT c,
int verbosity, int indent, FILE *=fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the order events constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events.

3.7.11. Avoid clashes constraints

An avoid clashes constraint is created and added to an instance by
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bool KheAvoi dC ashesConst rai nt Make( KHE_I NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_AVO D_CLASHES CONSTRAI NT *c);

as usual. The attributes may be retrieved by upcastingHEOCONSTRAI NT and calling the
relevant operation on that type.

Avoid clashes constraints apply to resource groups and resources. To add and visit resource
groups, the operations are

voi d KheAvoi dC ashesConst rai nt AddResour ceG oup(
KHE_AVO D_CLASHES CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);
i nt KheAvoi dCl ashesConst rai nt Resour ceG oupCount (
KHE_AVO D_CLASHES CONSTRAI NT c¢);
KHE_RESOURCE _GROUP KheAvoi dCl ashesConst r ai nt Resour ceG oup(
KHE_AVO D_CLASHES CONSTRAINT c, int i);

while to add and visit resources the operations are

voi d KheAvoi dCl ashesConst rai nt AddResour ce(
KHE_AVO D_CLASHES_CONSTRAI NT ¢, KHE RESOURCE r);

i nt KheAvoi dd ashesConst r ai nt Resour ceCount (
KHE_AVO D_CLASHES_CONSTRAI NT c);

KHE RESOURCE KheAvoi dC ashesConst rai nt Resour ce(
KHE_AVO D_CLASHES CONSTRAINT c, int i);

These all work in the usual way. There is also

i nt KheAvoi dCl ashesConst rai nt Resour ceOf TypeCount (
KHE_AVO D_CLASHES_CONSTRAI NT ¢, KHE_RESOURCE TYPE rt);

which returns the number of resources of typevhich are points of application of In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

Function

voi d KheAvoi dd ashesConstrai nt Debug( KHE_AVO D_CLASHES CONSTRAI NT c,
int verbosity, int indent, FILE *=fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the avoid clashes constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.12. Avoid unavailable times constraints

An avoid unavailable times constraint is created and added to an instance by

bool KheAvoi dUnavai | abl eTi nesConst rai nt Make( KHE_I NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_AVO D _UNAVAI LABLE_TI MES_CONSTRAI NT =*c);

in the usual way. To add the resource groups and resources defining the points of application,
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and to visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddResour ceG oup(
KHE_AVO D_UNAVAI LABLE Tl MES_CONSTRAI NT ¢, KHE RESOURCE_GROUP rg);
i nt KheAvoi dUnavai | abl eTi mesConst r ai nt Resour ceG oupCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAINT c¢);
KHE_RESOURCE GROUP KheAvoi dUnavai | abl eTi nesConst r ai nt Resour ceG oup(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAINT ¢, int i);

for resource groups and

voi d KheAvoi dUnavai | abl eTi mesConst r ai nt AddResour ce(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheAvoi dUnavai | abl eTi nesConst r ai nt Resour ceCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢);

KHE_RESOURCE KheAvoi dUnavai | abl eTi mesConst r ai nt Resour ce(
KHE_AVO D_UNAVAI LABLE_TI MES CONSTRAINT ¢, int i);

for individual resources. The XML format allows the unavailable times themselves to be defined
by both time groups and times. To add time groups and visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddTi meG oup(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAINT ¢, KHE TIME_GROUP tQ);
i nt KheAvoi dUnavai | abl eTi mesConst rai nt Ti meG oupCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢);
KHE_TI ME_GROUP KheAvoi dUnavai | abl eTi nesConstrai nt Ti meG oup(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAINT ¢, int i);

To add individual times and visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddTi me(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAINT ¢, KHE TIME t);

i nt KheAvoi dUnavai | abl eTi nesConst rai nt Ti meCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c);

KHE_TI ME KheAvoi dUnavai | abl eTi nesConstrai nt Ti me(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAINT ¢, int i);

These functions all work in the usual way. Function

KHE_TI ME_GROUP KheAvoi dUnavai | abl eTi mesConst rai nt Unavai | abl eTi nes(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢);

returns a time group containing the union of the time groups and timesaoid

KHE TI ME_GROUP KheAvoi dUnavai | abl eTi nesConst rai nt Avai | abl eTi mes(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c);

returns a time group containing the complement of those times. Both functions may be called
only after construction of the instance is complete. The time groups they return will usually not
have neighbourhoods (Section 3.4.1). This is not likely to cause problems.
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Function

voi d KheAvoi dUnavai | abl eTi mesConst r ai nt Debug(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the avoid unavailable times constraints of an instance (Section
3.3) is the number of points of application divided by the number of resources.

3.7.13. Limitidle times constraints

A limit idle times constraint is created and added to an instance by

bool KheLimitldl eTi mesConstrai nt Make( KHE | NSTANCE i ns, char +id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
int mnimm int maxinum KHE LIMT_ | DLE TI MES CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting- CONSTRAI NT and calling the relevant
operation on that type; the exceptions are

int KheLimtldleTinmesConstraintMnimnKHE LIMT_ | DLE TI MES CONSTRAI NT ¢);
i nt KheLimtldleTi mesConstraint Maxi mum{ KHE_LIM T_I DLE_TI MES CONSTRAI NT c¢);

which are specific to this kind of constraint.
A limit idle times constraint requires time groups, which are added and visited by calling

voi d KheLimnitldl eTi nesConstrai nt AddTi meG oup(
KHE_LIM T_| DLE_TI MES_CONSTRAI NT ¢, KHE_TIME_GROUP tg);
int KheLinmtldleTimesConstraintTi meG oupCount (
KHE_LI M T_| DLE_TI MES_CONSTRAI NT c);
KHE_TI ME_GROUP KhelLi mit1dl eTi nesConstraint Ti meG oup(
KHE_LIM T_| DLE_TI MES_CONSTRAINT ¢, int i);

After the instance ends, the following queries are available:

bool KheLimitldl eTi mesConstraint Ti meG oupsDi sj oi nt (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c¢);

bool KheLimitldl eTi mesConstraint Ti meG oupsCover Wol eCycl ¢
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);

They returnt r ue when the time groups af are pairwise disjoint, and when their union covers
the whole cycle.

A limit idle times constraint also requires the resource groups and resources which define
its points of application. Resource groups are added and visited by calling
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voi d KheLim tldleTi nesConstrai nt AddResour ceG oup(
KHE_LIM T_I DLE_TI MES_CONSTRAI NT ¢, KHE RESOURCE_GROUP rQ);
i nt KheLimtldleTi mesConstrai nt Resour ceG oupCount (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);
KHE RESOURCE_GROUP KheLi mitldl eTi mesConstrai nt Resour ceG oup(
KHE_LIM T_I DLE_TI MES_CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLinitldleTi mesConstrai nt AddResour ce(
KHE_LI'M T_I DLE_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheLinitldleTi mesConstraint Resour ceCount (
KHE_LI'M T_I DLE_TI MES_CONSTRAI NT ¢)

KHE_RESOURCE KheLi mi t|dl eTi mesConst rai nt Resour ce(
KHE_LIM T_I DLE_TI MES_CONSTRAINT ¢, int i);

in the usual way.
Function

voi d KheLimitldleTi nesConstrai nt Debug( KHE_LI M T_I DLE_TI MES_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The constraint density of the limit idle times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.14. Cluster busy times constraints
A cluster busy times constraint is created and added to an instance by

bool Khed ust er BusyTi nesConst rai nt Make( KHE_| NSTANCE i ns, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE TI ME_ GROUP applies to tg, int mnimum int maxi num
bool allow zero, KHE CLUSTER BUSY_TI MES CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting-& CONSTRAI NT and calling the relevant
operation on that type; the exceptions are

KHE_TI ME_GROUP Khed ust er BusyTi mesConst r ai nt Appl i esToTi neG oup(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c);
int KheC usterBusyTi mesConst rai nt M ni muny(
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);
int KheC usterBusyTi mesConst rai nt Maxi muny(
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);
bool KheCd usterBusyTi mesConstrai nt Al | owZer o(
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

which are specific to this kind of constraint. In the high school timetabling model,
appl i es_to_tg must beNULL andal | ow_zer o must bef al se. There is also
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bool KheC ust erBusyTi nesConstrai nt Li m t BusyRecode(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

It returnst r ue whenc is a recoded limit busy times constraint, for which see Section 3.7.15.
After the instance is complete, functions

i nt KheC ust erBusyTi nesConstrai nt Appl i esToO f set Count (
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT ¢);

i nt KheC ust erBusyTi nesConstrai nt Appl i esToO f set (
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

may be used to visit the@pplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. ldppl i es_t o_t g isempty, there are no offsets. Otherwiset Ebe the
first time inappl i es_to_t g. There is one offset for each time in appl i es_t o_t g, including

t 0, such that wherheTi mel ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in ¢, the result is a legal time index.

A cluster busy times constraint requires time groups, which are added and visited by

voi d Khed ust er BusyTi mesConst rai nt AddTi meG oup(

KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT ¢, KHE TIME_GROUP tg, KHE POLARITY po);
int Khed ust erBusyTi mesConst rai nt Ti meG oupCount (

KHE_CLUSTER _BUSY_TI MES_CONSTRAINT c¢);
KHE_TI ME_GROUP Khed ust er BusyTi nesConst rai nt Ti meG oup(

KHE_CLUSTER _BUSY_TI MES_CONSTRAINT ¢, int i, int offset, KHE POLARITY *po);

where typeKHE_POLARI TY is

t ypedef enum {
KHE_NEGATI VE,
KHE_PCSI TI VE

} KHE_POLARI TY;

In the high school model, the polarity mustii¢=_PCSI TI VE. When visiting, to get the original
time groups, sebf f set to 0; to get the time groups being monitored by monitpiset it to
KheCl ust er BusyTi mesMoni tor O f set (m) .

Convenience functions

bool KheC usterBusyTi nesConstrai nt Al |l Positive(
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

bool KheC ust erBusyTi nesConstrai nt Al | Negati ve(
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

returnt r ue when all of the time groups added so far have polafity PCSI Tl VE, or all have
polarityKHE_NEGATI VE. In real instances one of these two functions will usually returre. In
nurse rostering the main exceptions are constraints that implement unwanted patterns. Also,
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bool KheC usterBusyTi mesConstrai nt Ti meG oupsDi sj oi nt (
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

bool KheC ust er BusyTi mesConst rai nt Ti meG oupsCover Whol eCycl e(
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

returnt rue when the time groups af are pairwise disjoint, and when their union covers the
whole cycle. These functions should only be called after the instance is complete. Also,

bool KheCd ust er BusyTi nesConst r ai nt Range(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int offset,
KHE TIME «first _time, KHE_TIME x| ast_time);

sets«first_time and «last_tinme to the chronologically first and last times monitored
by c atof fset, and returngrue. Hereof fset must be a legal offset (a value returned by
KheC ust er BusyTi mesConst rai nt Appl i esToCOf f set above). In the unlikely event afhaving
no time groups, the function returhal se with «first_ti me and«l ast _ti me set toNULL.

To add the resource groups and resources defining the points of application, use

voi d Khed ust er BusyTi mesConstrai nt AddResour ceG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);

i nt KheC ust er BusyTi nesConst rai nt Resour ceG oupCount (
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c¢);

KHE_RESOURCE GROUP KheC ust er BusyTi mesConst r ai nt Resour ceG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

for resource groups and

voi d KheC ust erBusyTi nesConst rai nt AddResour ce(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheC ust er BusyTi nesConst rai nt Resour ceCount (
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c);

KHE_RESOURCE KheC ust er BusyTi nesConst r ai nt Resour ce(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

for individual resources. There is also

i nt KheC ust erBusyTi nesConst rai nt Resour ceOf TypeCount (
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE TYPE rt);

which returns the number of resources of typevhich are points of application of In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

For employee scheduling only, to add and retrieve a value representing the number of time
groups preceding this constraint, caledn Jeff Kingston’s paper on history [10], call

voi d Khed ust er BusyTi mesConst rai nt AddHi st or yBef or g(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int val);

i nt KheC ust erBusyTi nesConstrai nt Hi st or yBef or e(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c¢);
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Whenkhed ust er BusyTi mesConst r ai nt AddHi st or yBef or e is not called, the value is 0.

For employee scheduling only, to add and retrieve a value representing the number of time
groups following this constraint, calledin the history paper, call

voi d Khed ust er BusyTi mesConstrai nt AddHi st or yAf t er (
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int val):

i nt KheC usterBusyTi nesConstraint H storyAfter(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

Whenkhed ust er BusyTi mesConst r ai nt AddHi st or yAf t er is not called, the value is O.

For employee scheduling only, to add and retrieve a value for one resource representing the
number of active time groups preceding this constraint, calledthe history paper, call

voi d Khed ust er BusyTi mesConst rai nt AddHi st or y(

KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r, int val);
int KheC usterBusyTi mesConstrai nt H st ory(

KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

WhenKhed ust er BusyTi mesConst r ai nt AddHi st ory is not called for some, the value is 0.

KHE does not check that resources in history calls are points of applicatmnlbéborts
if any conflicting history values are received.

Function

voi d Khed ust er BusyTi nesConst r ai nt Debug(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a cluster busy times constragits total number
of resources multiplied byheC ust er BusyTi mesConstrai nt Appl i esToOf f set Count (c) .
The constraint density of the cluster busy times constraints of an instance (Section 3.3) is their
total number of points of application divided by the number of resources in the instance.

Suppose that a cluster busy times constraint requires some resource to be busy for at most
20 out of 28 days. Thisisthe same as requiring the resource to be free for at least 8 out of the 28
days. Here is a general statement of what is going on here, along with a proof.

Theorem. Suppose cluster busy times constraihis minimum limita, maximum limitb,
andntime groups. Suppose cluster busy times constraims minimum limitn — b, maximum
limit n — &, the same hardness, cost function, and weightasd the same time groups@snly
with their polarities reversed. tfhas history values, x; (one for each resource), angsuppose
thatc’' has the sama, andc, values ag, but that each of itg; values is changed & — x. Then
in every solution¢ andc' have equal cost.

Proof. The proof depends on the fact that when a time group’s polarity is reversed, so is
its activity. If positive time group is active, it is busy, so one of its times is busy.glis made
negative, one of itstimesis still busy, so itis inactive. If positive time gigigpnactive, none of
its times is busy. 1fyis made negative, still none of its times is busy, so it is active. And so on.

Let Sbe an arbitrary solution, and suppose thagask active time groups irs. Then the
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deviation ofcis
d(c) = max0,a-k,k - b)

But ¢’ hasn - k active time groups ifg, because the time groups are the same asint their
polarity, and hence their activity as we have seen, is reversed. So the deviatios of

d(c") = max0, (n—b) - (n-k),(n-K) - (n—a))

which simplifies to mag0,k — b, a - k) which equalsl(c).

When history is present, there asgtime groups preceding the first time group but not
explicitly representeck of which are active; and there azdime groups following the last time
group, again not explicitly represented, whose activity is unknown. When these times groups’
polarities are reversed, there will still letime groups preceding the first time group, but now
a, — x; of them will be active; and there will still be time groups following the last time group,
whose activity remains unknown.

3.7.15. Limit busy times constraints
A limit busy times constraint is created and added to an instance by

bool KheLi m t BusyTi mesConstrai nt Make( KHE | NSTANCE i ns, char +id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE TI ME_GROUP applies_to tg, int minimum int maxi num
bool allow zero, KHE LIM T _BUSY TI MES CONSTRAI NT *c);

Most of these attributes may be retrieved by upcastingHe CONSTRAI NT and calling the
relevant operation on that type. The exceptions are

KHE TI ME_GROUP KheLi m t BusyTi mesConst rai nt Appl i esToTi meG oup(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);
i nt KheLi m t BusyTi mesConstrai nt M ni mun
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);
i nt KheLi m t BusyTi mesConst rai nt Maxi mun
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);
bool KheLi m t BusyTi mesConstrai nt Al | owZer o(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);

which are specific to this kind of constraint. In the high school timetabling model,
applies_to_tg mustbeNULL andal | ow_zer o must bef al se.

After the instance is complete, functions

i nt KheLi m t BusyTi mesConstrai nt Appl i esToOf f set Count (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);

i nt KheLi m t BusyTi mesConstrai nt Appl i esToO f set (
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int i);

may be used to visit tha@pplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. ldppl i es_t o_t g isempty,there are no offsets. Otherwiset, [Ebe the
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first time inappl i es_to_t g. There is one offset for each time in appl i es_t o_t g, including
t 0, such that whekheTi mel ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in ¢, the result is a legal time index.

A limit busy times constraint requires time groups, which are added and visited by

voi d KheLi mi t BusyTi mesConst r ai nt AddTi meG oup(
KHE_LIM T_BUSY_TI MES_CONSTRAI NT ¢, KHE TIME_GROUP tgQ);
int KheLi m t BusyTi mesConstrai nt Ti meG oupCount (
KHE_LI'M T_BUSY_TI MES_CONSTRAI NT c);
KHE_TI ME_GROUP KhelLi nmi t BusyTi nesConstrai nt Ti meG oup(
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int offset, int i);

To get the original time groups, s&tf set to 0; to get the time groups monitored by monitgr
set it toKheLi mi t BusyTi mesMoni tor Of f set () .

After the instance is complete, these two functions may be called:

KHE_TI ME_GROUP KhelLi mi t BusyTi nesConst r ai nt Domai n(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢):

bool KheLi mi t BusyTi mesConstrai ntLi m t sWol eCycl e(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢):

KheLi mi t BusyTi mesConst r ai nt Domai n returns thedomainof c: the union of its time groups.

It may be used like any time group, except that it may have no neighbourhood (Section 3.4.1).
This function should probably not exist; it is irrelevant to solving, because the limits are applied
to each time group separatelithelLi mi t BusyTi nesConstrai nt Li m t sWhol eCycl e returns

t rue whenc contains a time group equal to the whole cycle.

A limit busy times constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

voi d KheLi mi t BusyTi mesConst r ai nt AddResour ceG oup(
KHE_ LI M T_BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rQ);
i nt KheLi m t BusyTi mesConst rai nt Resour ceG oupCount (
KHE_ LI M T_BUSY_TI MES_CONSTRAI NT ¢);
KHE_RESOURCE_GROUP KheLi mi t BusyTi mesConst r ai nt Resour ceG oup(
KHE LI M T_BUSY_TI MES CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLi mi t BusyTi mesConst r ai nt AddResour ce(
KHE_LIM T_BUSY_TI MES_CONSTRAI NT ¢, KHE RESOURCE r);

i nt KheLi m t BusyTi mesConstrai nt Resour ceCount (
KHE_LIM T_BUSY_TI MES_CONSTRAI NT c¢);

KHE_RESOURCE KheLi m t BusyTi mesConst r ai nt Resour ce(
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int i);

in the usual way. There is also
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i nt KheLi m t BusyTi mesConstrai nt Resour ceCf TypeCount (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT ¢, KHE RESOURCE TYPE rt);

which returns the number of resources of typevhich are points of application of In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

Function

voi d KheLi m t BusyTi nesConst rai nt Debug( KHE LI M T_BUSY_TI MES CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit busy times constraiig its total number
of resources multiplied bigheLi mi t BusyTi mesConst r ai nt Appl i esToO f set Count (¢) . The
constraint density of the limit busy times constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

Khel nst anceMakeEnd (Section 3.1) has ki i t _busy_r ecode option which affects limit
busy times constraints. When it is false they are handled in the usual way. When it is true,
some limit busy times constraints are replaced by equivalent cluster busy times constraints when
solving. Their monitors are more flexible in some ways; for example, they accept cutoff limits.

What happens, precisely, is this. For each time group of each limit busy times constraint that
has a minimum limit, a cluster busy times constraint is added to the instance which has the exact
same meaning as the limit busy times constraint does on that time group. (It has a singleton time
group for each time of the time group, and the same limits and cost function.) This constraint
appears on lists of constraints in the usual way, but if the instance is printed out later it is omitted
from the print. Furthermore, when a solution object is created, monitors are created for the
cluster busy times constraints but not for the original limit busy times constraints.

3.7.16. Limit workload constraints

A limit workload constraint is created and added to an instance by

bool KheLi mi t Wor kl oadConst r ai nt Make( KHE_| NSTANCE i ns, char «id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE TI ME_GROUP applies_to tg, int mnimm int maxi num
bool allow zero, KHE LIM T _WORKLOAD _CONSTRAI NT =*c);

Most of these attributes may be retrieved by upcastingHe CONSTRAI NT and calling the
relevant operation on that type. The exceptions are

KHE TI ME_GROUP KheLi m t Wr kl oadConst rai nt Appl i esToTi neG oup(

KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);
i nt KheLi m t Wr kl oadConstrai nt M ni mum( KHE_LI M T_WORKLOAD CONSTRAI NT c);
i nt KheLi m t Wr kl oadConst rai nt Maxi munm( KHE_LI M T_WORKLOAD CONSTRAI NT c);
bool KheLi m t Wr kl oadConstrai nt Al | owZer o(

KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);

which are specific to this kind of constraint. In the high school timetabling model,
appl i es_to_tg must beNULL andal | ow_zer o must bef al se.
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After the instance is complete, functions

i nt KheLi m t Wor kl oadConst r ai nt Appl i esToOf f set Count (
KHE_ LI M T_WORKLOAD_ CONSTRAI NT c¢)

i nt KheLi m t Wor kl oadConst r ai nt Appl i esToOf f set (
KHE LI M T_WORKLOAD CONSTRAINT ¢, int i);

may be used to visit tha@pplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. ldppl i es_t o_t g isempty, there are no offsets. Otherwiset ebe the
first time inappl i es_to_t g. There is one offset for each time in appl i es_t o_t g, including

t 0, such that whekheTi mel ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in ¢, the result is a legal time index.

A limit workload constraint has optional time groups (not permitted in the high school
model), which are added and visited by

voi d KheLi m t Wor kl oadConst rai nt AddTi neG oup(
KHE_LI M T_WORKLOAD_CONSTRAI NT ¢, KHE_TIME_GROUP tQ);
i nt KheLi m t Wr kl oadConst rai nt Ti meG oupCount (
KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);
KHE TI ME_GROUP KheLi m t Wr kl oadConst rai nt Ti meG oup(
KHE_LIM T_WORKLOAD CONSTRAINT ¢, int offset, int i);

To get the original time groups, s#tf set t00;to get the time groups monitored by monitpset

it to KheLi mi t Wor kl oadMoni t or O f set () . Adding no time groups is semantically equivalent

to adding one time group holding all the times of the instance. Sowhen no time groups are added,
after the instance is finalizedheLi m t Wr kl oadConst r ai nt Ti meG oupCount (¢) is 1, and

KheLi m t Wor kl oadConst rai nt Ti neG oup(c, 0, 0) is Khel nstanceFul | Ti meG oup(i ns) .
Nevertheless, in this special cageAr chi veW i t e does not write any time groups.

Also after the instance is complete, these two functions may be called:

KHE_TI ME_GROUP KhelLi ni t Wor kl oadConst r ai nt Dormai n(
KHE_LI M T_WORKLOAD CONSTRAI NT c¢);

bool KheLi m t Wor kl oadConstrai nt Li mi t s\Wol eCycl e(
KHE_LI M T_WORKLOAD CONSTRAI NT c¢);

KheLi mi t Wor kl oadConst r ai nt Donai n returns thedomainof c: the union of its time groups.

If no time groups were added, it returns the set of all the times in the instance. This time group
may be used like any other, except that it might have no neighbourhood (Section 3.4.1). This
function should probably not exist; it is irrelevant to solving, because the limits are applied to
each time group separateligheLi m t Wor kI oadConst r ai nt Li mi t sWhol eCycl e returnstrue

whenc contains a time group equal to the whole cycle.

A limit workload constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling
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voi d KheLi m t Wor kl oadConst r ai nt AddResour ceG oup(
KHE_LI M T_WORKLOAD CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);

i nt KheLi m t Wr kl oadConst r ai nt Resour ceGr oupCount (
KHE_LI M T_WORKLOAD_CONSTRAI NT c¢);

KHE RESOURCE_GROUP KhelLi mi t Wor kl oadConst r ai nt Resour ceG oup(
KHE_LIM T_WORKLOAD CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLi mi t Wor kl oadConst r ai nt AddResour ce(
KHE LIM T_WORKLOAD CONSTRAI NT ¢, KHE_RESOURCE r);
i nt KheLi nm t Wor kl oadConst r ai nt Resour ceCount (
KHE_LI M T_WORKLOAD CONSTRAI NT ¢);
KHE_RESOURCE KheLi mi t Wor kl oadConst r ai nt Resour ce(
KHE_LI M T_WORKLOAD CONSTRAINT ¢, int i);

in the usual way.
Function

voi d KheLi mi t Wr kl oadConst r ai nt Debug( KHE_LI M T_WORKLOAD CONSTRAI NT c,
int verbosity, int indent, FILE *fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit workload constrains its total number
of resources multiplied byheLi m t Wor kl oadConst r ai nt Appl i esToOf f set Count (¢) . The
constraint density of the limit workload constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

3.7.17. Limit active intervals constraints

Limit active intervals constraints are allowed only wiltE_MODEL_EMPLOYEE_SCHEDULE.
Although they have their own semantics, syntactically they are almost the same as cluster busy
times constraints: the only differences are the change of name and the absaricedér o.

A limit active intervals constraint is created and added to an instance by

bool KheLi m t Acti vel nt erval sConstrai nt Make( KHE_| NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_TI ME_GROUP applies_to_tg, int mnimm int maxi num
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcastingHe CONSTRAI NT and calling the relevant
operation on that type; the exceptions are
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KHE_TI ME_GROUP KhelLi mit Acti vel nt erval sConstrai nt Appl i esToTi meG oup(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

i nt KheLinmtActivelnterval sConstraintM ni mun(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

i nt KheLinm tActivel nterval sConstrai nt Maxi mun(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

which are specific to this kind of constraint.
After the instance is complete, functions

i nt KheLim tActivelnterval sConstraintAppliesToO fset Count (
KHE_LI M T_ACTI VE_| NTERVALS _CONSTRAI NT c);

int KheLimtActivelnterval sConstraintAppliesToO fset (
KHE_LI M T_ACTI VE_I NTERVALS _CONSTRAINT c, int i);

may be used to visit thapplies-to offset®r justoffsetsof c. If appl i es_to_t g isNULL, thereis
one offset, with value 0. lippl i es_t o_t g isempty, there are no offsets. Otherwiset [Ebe the
firsttime inappl i es_to_t g. There is one offset for each timhe in appl i es_t o_t g, including

t 0, such that whekheTi mel ndex(ti) - KheTi nel ndex(t0) isadded tothe index of eachtime
in ¢, the result is a legal time index.

A limit active intervals constraint requires time groups, which are added and visited by

voi d KheLim t Activel nterval sConstrai nt AddTi meG oup(
KHE LI M T_ACTI VE_| NTERVALS_CONSTRAI NT ¢, KHE TI ME_GROUP t g,
KHE_POLARI TY po);

i nt KheLinm tActivelnterval sConstraintTi meG oupCount (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;

KHE_TI ME_GROUP KhelLim t Activel nterval sConstrai nt Ti meG oup(
KHE_LI M T_ACTI VE_I NTERVALS CONSTRAINT ¢, int i, int offset,
KHE_POLARI TY *po);

where typeKHE_POLARI TY is as for cluster busy times constraints. When visiting, to get the
original time groups, setf f set to 0; to get the time groups being monitored by monitpset
it to KheLi mi t Activel nterval shonitorOffset(n).

Convenience functions

bool KheLimitActivel nterval sConstraint Al Positive(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT c);

bool KheLi mitActivel nterval sConstraint Al |l Negative(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT c);

returnt r ue when all of the time groups added so far have poldfity POSI Tl VE, or all have
polarity KHE_NEGATI VE. In real instances it is almost certain that one of these will ratuve.

To add the resource groups and resources defining the points of application, use
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voi d KheLim tActivelnterval sConstrai nt AddResour ceG oup(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);
i nt KheLimtActivelnterval sConstraint Resour ceG oupCount (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢);
KHE RESOURCE_GROUP KhelLi mit Acti vel nt erval sConst rai nt Resour ceG oup(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAINT ¢, int i);

for resource groups and

voi d KheLimitActivel nterval sConstrai nt AddResour ce(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢, KHE_RESOURCE r);
i nt KheLintActivelnterval sConstraint Resour ceCount (
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢) ;
KHE_RESOURCE KheLi mi t Acti vel nt erval sConst rai nt Resour ce(
KHE_LI M T_ACTI VE_I NTERVALS _CONSTRAINT ¢, int i);

for individual resources. There is also

i nt KheLimtActivelnterval sConstrai nt Resour ceOf TypeCount (
KHE_LI M T_ACTI VE_| NTERVALS CONSTRAI NT ¢, KHE_RESOURCE TYPE rt);

which returns the number of resources of typsvhich are points of application ef In practice
the resources of one constraint always have the same type, but the rules do not guarantee this.

To add and retrieve a value representing the number of time groups preceding this
constraint, callea, in Jeff Kingston’s paper on history [10], call

voi d KheLim tActivel nterval sConstrai nt AddH st or yBef or g(
KHE_LI M T_ACTI VE_| NTERVALS _CONSTRAINT ¢, int val);

i nt KheLintActivelnterval sConstraintHi storyBefore(
KHE_LI M T_ACTI VE_| NTERVALS_CONSTRAI NT ¢);

WhenkKheLi i t Acti vel nt er val sConst r ai nt AddHi st or yBef or e is not called, the value is 0.

To add and retrieve a value representing the number of time groups following this
constraint, called, in the history paper, call

voi d KheLi m tActivelnterval sConstraint AddHi storyAfter(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAINT ¢, int val);

int KheLimtActivelnterval sConstraintH storyAfter(
KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢);

WhenkKheLi mi t Act i vel nt erval sConst r ai nt AddHi st or yAfter is not called, the value is 0.

To add and retrieve a value for one resource representing the number of active time groups
preceding this constraint, callegin the history paper, call

voi d KheLimtActivel nterval sConstrai nt AddHi st or y(

KHE_LI M T_ACTI VE_I NTERVALS CONSTRAI NT ¢, KHE_RESOURCE r, int val);
i nt KheLinmtActivelnterval sConstraintHi story(

KHE_LI M T_ACTI VE_I NTERVALS _CONSTRAI NT ¢, KHE_RESOURCE r);
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WhenkKheLi mi t Acti vel nt er val sConst rai nt AddHi st ory is not called for , the value is O.
KHE does not check that resources in history calls are points of applicatmnlbéborts
if a history value is given twice in the same constraint.
Function
voi d KheLimt Activel nterval sConstrai nt Debug(

KHE_LI M T_ACTI VE_I NTERVALS_CONSTRAI NT ¢,
int verbosity, int indent, FILE *=fp);

produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit active intervals constrairstits number
of resources timekheLi mi t Acti vel nt erval sConst rai nt Appl i esToOf f set Count (¢) . The
constraint density of the limit active intervals constraints of an instance (Section 3.3) is their total
number of points of application divided by the number of resources in the instance.

3.7.18. Limit resources constraints

Limit resources constraints are allowed only Wit MODEL_EMPLOYEE_SCHEDULE.
A limit resources constraint is created and added to an instance by

bool KheLi mi t Resour cesConst rai nt Make( KHE_| NSTANCE i ns, char +id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
int mnimm int maxi num KHE LI M T_RESOURCES_CONSTRAI NT =*c);

Most of these attributes may be retrieved by upcastingHe CONSTRAI NT and calling the
relevant operation on that type; the exceptions are

int KheLi m t ResourcesConstrai nt M ni mum KHE_LI M T_RESOURCES_CONSTRAI NT c);
int KheLi m t Resour cesConst rai nt Maxi mum KHE_LI M T_RESOURCES_CONSTRAI NT c);

which are specific to this kind of constraint. These values are optional in XESTT files; a missing
minimum is represented by 0, and a missing maximum is represented DiyAX.

To add and visit the resource groups and resources required by this constraint, call

bool KheLi m t Resour cesConstrai nt AddResour ceG oup(
KHE_LI M T_RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);

i nt KheLi m t Resour cesConstrai nt Resour ceG oupCount (
KHE_LI M T_RESOURCES_CONSTRAI NT c);

KHE RESOURCE_GROUP KhelLi mi t Resour cesConst rai nt Resour ceG oup(
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int i);

and
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bool KheLi m t Resour cesConstrai nt AddResour ce(
KHE_LI M T_RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE r);
i nt KheLi m t Resour cesConst r ai nt Resour ceCount (
KHE_LI M T_RESOURCES_CONSTRAI NT c);
KHE RESOURCE KheLi m t Resour cesConst r ai nt Resour ce(
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int i);

After the instance has ended, function

KHE_RESOURCE_GROUP KheLi m t Resour cesConst rai nt Domai n(
KHE_LI M T_RESOURCES_CONSTRAI NT c);

returns a resource group containing the union of all these resource groups and resources (which
must all have the same type). Thereis also

KHE RESOURCE_GROUP KhelLi mi t Resour cesConst rai nt Domai nConpl emrent (
KHE_LI M T_RESOURCES_CONSTRAI NT c);

which returns the complement of the domain, that is, the set of resources of the same type as the
domain that are not in it.

To add and visit the event groups which are this constraint’s points of application, call

voi d KheLi m t Resour cesConst r ai nt AddEvent G oup(
KHE_LI M T_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheLi m t Resour cesConstrai nt Event G oupCount (
KHE_LI M T_RESOURCES_CONSTRAI NT c);
KHE_EVENT_GROUP KhelLi mi t Resour cesConst rai nt Event G oup(
KHE_ LI M T_RESOURCES CONSTRAINT ¢, int i);

XESTT also allows individual events to be given, interpreted as singleton event groups. When
KHE reads an XESTT file, an individual events added by a call to

KheLi m t Resour cesConst rai nt AddEvent Group(c, KheEvent Si ngl et onEvent G oup(e));

When KHE writes an XESTT file, it makes two passes over the list of event groups, first writing
all event groups whose number of events is not 1, then writing all event groups whose number
of eventsis 1, the latter written as individual events rather than as event groups.

To add and visit the roles of the constraint, call

voi d KheLi m t Resour cesConst rai nt AddRol e(

KHE_LI M T_RESOURCES_CONSTRAI NT ¢, char =role);
i nt KheLi m t Resour cesConstrai nt Rol eCount (

KHE_LI M T_RESOURCES CONSTRAI NT ¢);
char *KheLi m t Resour cesConstrai nt Rol e(

KHE_LI M T_RESOURCES CONSTRAINT ¢, int i);

In practice, these should all be distinct, but no-one is checking.

Although the points of application are described as event groups, at the implementation
level they are really sets of event resources. There is a way to bypass event groups and roles
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and create these sets of event resources directly. First, to create one point of application, call
KheLi mi t Resour cesConst rai nt AddEvent G oup with NULL for the event group. Then call

voi d KheLi m t Resour cesConst rai nt AddEvent Resour ce(
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int eg_index, KHE EVENT_ RESCURCE er);

to add an event resources to #e i ndex’th point of application. Instances containing points
of application created in this way cannot be written.

To visit the event resources of thg i ndex’th point of application, call

i nt KheLi m t Resour cesConst rai nt Event Resour ceCount (
KHE_LI M T_RESOURCES_CONSTRAINT ¢, int eg_index);

KHE EVENT RESCURCE KhelLi mi t Resour cesConst rai nt Event Resour ce(
KHE LI M T_RESOURCES CONSTRAINT ¢, int eg_index, int er_index);

Before the instance ends, these functions only visit the event resources added by
KheLi m t Resour cesConst r ai nt AddEvent Resour ce. After the instance ends, they also visit
the event resources defined by the event group (if present) and roles.

Function
voi d KheLi mi t Resour cesConst r ai nt Debug( KHE_LI M T_RESOURCES_CONSTRAI NT c,
int verbosity, int indent, FILE *fp);
produces a debug print ofontof p with the given verbosity and indent, in the usual way.

The number of points of application of a limit resources constraint is its number of event
groups. The constraint density of the limit resources constraints of an instance is the number
of event resources in all points of application divided by the number of event resources without
preassigned resources.
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4.1. Overview

A solution is represented by an object of tygp_SCLN (‘solution’is always abbreviated to ‘soln’

in the KHE interface). Any number of solutions may exist and be operated on simultaneously.
Instances are immutable after creation, and operations that change instances only assemble them,
they do not disassemble them. In contrast, each operation that changes a solution is paired with
one that changes it back. This supports not just the assembly of a fixed solution, such as one read
from a file, but also the changes and testing of alternatives needed when solving an instance.

Within each solution ar&HE_MEET objects representing meets (also called split events or
sub-events), each of which may be assigned a timeKHRdIASK objects representing the re-
source elements of meets, each of which may be assigned a resource. Although most meets are
derived from events and most tasks are derived from event resources, these derivations are op-
tional. Only meets and tasks that are so derived are considered part of the solution to the original
instance, but other meets and tasks may be present to help with solving. Several meets may be
derived from one event; these are the split events or sub-events of that event in the solution.

At all times, the solution (however incomplete it may be) has a definite numeosl
a 64-bit integer measuring the badness of the solution which is always available via function
KheSol nCost (Chapter 6). It may be used to guide the search for good solutions.

A solution must obey a condition called tkelution invariantthroughout its lifetime; this
is an unbreakable constraint. A precise statement of the solution invariant appearsin Section 4.9.
Every operation that changes a solution in a way that could violate the invariant is implemented
with two functions, which look generically like this:

bool KheQperationCheck(...);
bool KheOperation(...);

The two functions accept the same inputs and return the same value in a given solution state. The
first returnd r ue if the change would not violate the invariant, but itself changes nothing. The
second also returrig ue if the change would not violate the invariant, but in that case it also
makes the change. It changes nothing if the change would violate the invariant.

The relationship between the solution invariant and the constraints of the original instance is
rather subtle. Should a constraint be incorporated into the invariant, so that no solution (not even
a partial solution) will ever violate it? KHE leaves this question to the user. Some operations do
incorporate constraints into the solution invariant, but those operations are all optional.

Some aspects of solution entities that may be changed have operations of the form

voi d KheEntityAspect Fi x(ENTITY e);
voi d KheEntityAspect UnFi X(ENTITY e);
bool KheEntityAspect|sFixed(ENTITY e);

74
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The first fixes that aspect of the entity—prevents later operations from changing it; the second
removes the fix; the third returngue when the fix is in place. Initially everything is unfixed.
Fixing a fixed aspect, and unfixing an unfixed aspect, do nothing. When the current value of
some aspect will remain unchanged for a long time, fixing that aspect may have a significant
efficiency payoff. This is because fixing detaches attached monitors (Chapter 6) whose cost is
0 and cannot change while the current fixes are in place, which can save a lot of time. Unfixing
attaches those unattached monitors which could have non-zero cost given the unfix.

There are three levels of operations. At the lowest levellasic operationswhich
carry out basic queries and changes to a solution, such as assigning or unassigning the time of
a meet. Above them areelper functionswhich implement commonly needed sequences of
basic operations, such as swaps. Some helper functions utilize optimizations that make them
significantly more efficient than the equivalent sequences of basic operations.

At the highest level arsolvers which make large-scale changes to solutions. A complete
algorithm for solving an instance is a solver, but so are operations with more modest scope, such
as assigning times to the meetings of one form, assigning rooms, and so on.

KHE supplies many solvers, documented in later chapters, and the user is free to write
others. As a matter of good design, solvers should not have behind-the-scenes access to KHE'’s
data structures; they should use only the operations described in this guide and made available
by header fil&khe_pl at f or m h. They may of course call other solvers. The solvers supplied
by KHE follow this rule.

4.2. Top-level operations
This section presents functions that operate on objects okiypeSOLN. Later sections present
functions that operate on the components of solutions (meets, tasks, and so on).
4.2.1. Creation, deletion, and copy
To create a solution for a given instance, initially with no meets or tasks, call
KHE_SOLN KheSol nMake( KHE_ | NSTANCE ins, HA ARENA SET as);

Khel nst anceMakeEnd(i ns) must have been called and returned befbesSol nMake is called.
Parameteas may beNULL; for the effect of passing a nofiLL value, see Section 4.2.2 below.

To deletesol n and everything in it, and remove it from its solution groups, if any, call
voi d KheSol nDel et e( KHE_SOLN sol n);

The memory consumed Bol n and everything in it will be freed. Each solution lies in its
own memory arena, allowing its deletion to be carried out very efficiently: just delete its arena.
Actually, there are two arenas, one holding sleén object, the other holding everything else.
This is needed in case the user chooses to reduce a solution to a placeholder (Section 4.2.6).

Another way to create a solution is

KHE_SCLN KheSol nCopy( KHE_SOLN sol n, HA ARENA SET as);
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It returns a copy ool n. Parameteas is as forkheSol nMake. The copy is exact except that it
does not lie in any solution groups. Immutable elements, such as anything from the instance, and
time, resource, and event groups created within the solution, are shared, as are back pointers.

Copying is useful when forking a solution process part-way through: the original solution
may continue down one thread, and the copy, which is quite independent, may be given to the
other thread. Care is needed in one respect, however: it is not safe to make two copies of one
solution simultaneously, even though the original solution is unaffected by copying it. This is
because the copy algorithm uses temporary forwarding pointers in the objects of the solution.

Even semantically unimportant things, such as the order of items in sets, are preserved by
KheSol nCopy. If the same solution algorithm is run on the original and the copy, and it does
not depend on anything peculiar such as elapsed time or the memory addresses of its objects,
it should produce the same solution. The author has verified thishfgkener al Sol ve2014
(Section 8.3). Diversity can be obtained by changing the copy’s diversifier (Section 4.2.4).

The specification ofisort states that when two elements compare equal, their order in the
finalresultisundefined. Sothe author hastried to eliminate all such casesin the comparison func-
tions packaged with KHE. Index numbers, returned by functions sughed&et Sol nl ndex
andKheTaskSol nl ndex, are useful for breaking ties consistently as a last resort.

As an aid to debugging, function
voi d KheSol nDebug(KHE_SOLN soln, int verbosity, int indent, FILE *fp);

prints information about the current solution onto filewith the given verbosity and indent,

as described for debug functions in general in Section 1.3. Verbosity 1 prints just the instance

name and current cost, verbosity 2 adds a breakdown of the current cost by constraint type (only
constraint types with non-zero cost are printed), verbosity 3 adds debug prints of the solution’s

defects (Section 6.2), and verbosity 4 prints further details.

4.2.2. Solutions and arenas

Solutions can take up a lot of memory, and memory allocation and deallocation can become a
serious bottleneck. KHE has a strategy for mitigating this problem. The idea is not to delete the
arenas used by solutions and solvers, but rather, within each thread separately, to recycle them.

This is done by creating one arena set(Appendix A.1.2) per thread, and passagyto
each call takheSol nMake made by the thread. Then the arenas needed to construct the solution
are taken fromas when it has them, and only created afresh whernis empty. When the
solution is deleted or made into a placeholder, each axemhich is no longer needed is not
freed. Instead, it is added &s after callingHaAr enaRecycl e(a) . If as is passed to other calls
to KheSol nMake made by the same thread, these arenas will be used to store those solutions.

KHE does not make the mistake of sharing one arena set across threads. That would require
arena sets to be lockable, which they are not. Appendix B.7 has more on these kinds of issues.

Solvers can participate in this efficient form of recycling too. Instead of creating an arena
afresh by a call tblaAr enaMake, a solver can call

HA ARENA KheSol nArenaBegi n( KHE_SOLN sol n, bool |arge);

This will extract an arena frorsol n's arena set if it is noMJLL and non-empty; otherwise it
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will return an arena created IbfaAr enahbke. Either way, it will return an arena whoser ge
attribute equalsar ge.

The right value fott ar ge is almost certain to beal se, because large arenas are intended
only for when a very large amount of memory is expected to be used. By nominating a few
arenas as large, the largest demands for memory are concentrated in a few arenas, reducing the
overall demand for memory. At present there is one large arena for the internals of each solution,
which is recycled when the solution is deleted or converted into a placeholder.

When the arena is no longer required and its memory can be made available for other uses,
the solver can call

voi d KheSol nArenaEnd( KHE_SOLN sol n, HA ARENA a);

If sol n has a noULL arena set, this callseAr enaRecycl e(a) and adds the recycled arena to
that set. Otherwise it calldaAr enaDel et e. This is a convenient interface for solvers to use to
obtain the arenas they need, without having to worry about the details of arena recycling.

For completeness, there are functions to set and retrieve a solution’s arena set:

voi d KheSol nSet ArenaSet (KHE_SCLN sol n, HA ARENA SET as);
HA ARENA SET KheSol nArenaSet (KHE_SOLN sol n);

Hereas may beNULL. Appendix B.7 documents one use for these functions, although the
ordinary user of KHE is unlikely to need them.

4.2.3. Simple attributes

A solution may lie in any number of solution groups. To add it to a solution group and delete
it from a solution group, use functiomseSol nG oupAddSol n andKheSol nG oupDel et eSol n
from Section 2.2. To visit the solution groups containsiogn, call

i nt KheSol nSol nG oupCount (KHE_SOLN sol n);
KHE_SOLN_GROUP KheSol nSol nGr oup( KHE_SOLN sol n, int i);

in the usual way.
A solution is always for a particular instance, fixed when the solution is created. Function

KHE_I NSTANCE KheSol nl nst ance( KHE_SOLN sol n);

returns the instance that the solution is for.
A solution has an optional Description attribute which may contain arbitrary text saying
what is distinctive about the solution. This attribute may be set and retrieved by calling

voi d KheSol nSet Descri pti on( KHE_SOLN sol n, char =description);
char xKheSol nDescri ption( KHE_SOLN sol n);

The default value iSULL, meaning no description.

A solution also has an optional RunningTime attribute giving the wall clock time to produce
the solution, in seconds. This attribute may be set and retrieved by calling
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voi d KheSol nSet Runni ngTi me( KHE_SOLN sol n, float running_tinmne);
bool KheSol nHasRunni ngTi me( KHE_SCLN soln, float *running_tinme);

If KheSol nSet Runni ngTi ne has been called, theédmeSol nHasRunni ngTi ne returnst r ue with
xrunni ng_ti me set to the most recent value passedgSol nSet Runni ngTi ne. Otherwise it
returnd al se with *runni ng_ti me setto- 1. 0. It would be impossible for KHE to ensure that
the value stored in this field is honest, and it does not try to.

There is also a function for comparing two solutions by their running times. It comesin two
versions, one which makes sense to people, and another which makes sgnsé:to

i nt KheSol nl ncreasi ngRunni ngTi neTypedCnp( KHE_SCLN sol n1, KHE SOLN sol n2);
i nt KheSol nl ncreasi ngRunni ngTi neCnp(const void *t1, const void xt2);

Solutions without a running time are treated as though they have a very large running time.
Solution objects and their components have back pointers in the usual way. These may be
changed at any time. To set and retrieve the back pointer of a solution object, call

voi d KheSol nSet Back( KHE_SQOLN sol n, void *back);
voi d *KheSol nBack( KHE_SOLN sol n);

as usual.

4.2.4. Diversification

One strategy for finding good solutions is to find many solutions and choose the best. This only
works when the solutions are diverse, creating a need to find ways to produce diversity.

Each solution contains a non-negative intedjeersifier. Its initial value is 0, but it may be
set and retrieved at any time by

voi d KheSol nSet Di versifier(KHE_SOLN soln, int val);
i nt KheSol nDi versifier(KHE_SOLN sol n);

When solutions are created that need to be diverse, each is given a different diversifier. When an
algorithm reaches a point where it could equally well follow any one of several paths, it consults
the diversifier when making its choice.

Suppose the diversifier has valdiand a point is reached where there @aadternatives, for
somec > 1 A simple approach is to choose thi alternative (counting from 0), where

i =d %c;

We call a functiorD(d, c) which returns an integers.t.0 <i < c adiversification function

How should we choose diversifiers and diversification functions to ensure that we really
do get diversity? One possibility is to start with a random integer and change it using a random
number generator, passing the current value as seed, each time the diversifier is consulted. But
there is no way to analyse the effect of this, so instead we are going to examine what happens
when the diversifiers are fixed successive integers starting from O.

What we want is a little hard to grasp. Suppose that, at some points in the algorithm, it
is offered a choice between 1 alternative; at others, there are 2 alternatives, and so on, with a
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maximum ofn alternatives. For a given diversifier, there araifferent functions of the number
of choices. Ideally we would want all of these functions to turn ug @gries over its range.

It is not obvious, but it is a fact that the modulus function above does turn up every function
whennis 1, 2 or 3, but whem is 4 it produces 12 distinct functions, only half the possible 24
functions, as the following tables, obtained by runrithg - d4, show:

d| 1 2 d|] 1 2 3 d| 1 3 4
B Fommmmmeee oo S
o| 0 O ol 0 0 O 0Ol 0 0 0 O
1] 0 1 1] 0 1 1 1] 0o 1 1 1
S 2] 0 0 2 2] 0 0 2 2
3] 0 1 0 3] 0 1 0 3
4|1 0 0 1 4] 0 0 1 o0
5] 0 1 2 5] 0 1 2 1
R e 6] 0 0 0 2
7] 0 1 1 3
8] 0 0 2 O
9] 0 1 0 1
10| O 0 1 2
11] 0 1 2 3

12| 0O 0O 0O O (sane as 0)

13] 0 1 1 1 (sane as 1)

14| 0O 0 2 2 (sane as 2)

15| 0 1 0 3 (sane as 3)

16| O O 1 O (sane as 4)

171 0 1 2 1 (same as 5)

18] O O 0O 2 (sane as 6)

19| 0 1 1 3 (sane as 7)

20 0 0O 2 0 (sanme as 8)

2] 0 1 0 1 (sanme as 9)

221 0 0 1 2 (same as 10)

23] 0 1 2 3 (same as 11)

Each row is one value af, and each column is one value@fWhat this means is that if, during
the course of one run, no more than 4 choices are offered at any one point, then only 12 distinct
solutions can emerge, no matter how many are begun.

The most natural diversification function which produces distinct outcomes is probably
(d/ fact(c - 1)) %c

wheref act is the factorial function. (To avoid overflow, in practice one stops multiplying as
soon as the value exceeatly Each line is something like the binary representatiod,@nly in
a factorial number system rather than binary:
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and is diverse up to = 8at least. Function
i nt KheSol nDi versifierChoose(KHE_SOLN soln, int c);

implements this function, returning a non-negative integer lesscthan

It is quite reasonable faeveryalgorithm faced with an arbitrary choice to diversify. It is
easy to do, and it provides a continual prodding towards diversity that should drive solutions with
different diversifiers further and further apart as solving continues, always provided that there
are sufficiently many choices.

4.2.5. Visit numbers

Some algorithms, such as tabu search and ejection chains, need to know whether some part of
the solution has changed recently. KHE supports this with a systefsibhumbers

A visit number is just an integer stored at some point in the solution. The KHE platform
initializes visit numbers (to 0) and copies them, but does not otherwise use them. The user is free
to set their values in any way at any time, using operations that look generically like this:

voi d KheSol nEntitySet Vi sitNun{ KHE_SCLN ENTITY e, int num;
int KheSol nEntityVisitNum KHE_SOLN_ENTITY e);

But there is also a conventional way to use visit numbers, as follows.

The solution object containggobal visit numbewhich is used differently from the others.
The following operations are applicable to it:

voi d KheSol nSet G obal Vi si t Nun{ KHE_SCLN sol n, int num;
i nt KheSol nd obal Vi si t Num KHE_SOLN sol n);
voi d KheSol nNewd obal Vi si t (KHE_SOLN sol n);

The first two operations are not usually used directly. The third increases the global visit number
by one. This new value has not previously been assigned to any visit number.

The visit numbers of other solution entities should never exceed the global visit number.
The operations for other solution entities look generically like this:

voi d KheSol nEntitySet Vi si t Num( KHE_SOLN_ENTITY e, int num;
int KheSol nEntityVisitNum KHE_SOLN_ENTITY e);

bool KheSol nEntityVisited(KHE_SOLN_ENTITY e, int slack);
voi d KheSol nEntityVisit(KHE_SOLN_ENTITY e);

voi d KheSol nEntityUnVisit(KHE_SCLN ENTITY e);

TypeSOLN_ENTI TY is fictitious and so are these functions; they just display the standard pattern.
The first two are the standard ones. The third returns the value of the condition

KheSol nVi si t Nun{soln) - KheSol nEntityVisitNume) <= slack

wheresol n is the solution containing. The fourth sets’s visit number to its solution object’s
visit number, and the last sets it to one less than its solution’s visit number.

These operations may be used to implement tabu search efficiently as follows. Suppose for
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example that a change to the assignmemteet is to remain tabu until at leastbu_| en other
changes have been made. The code for this is

i f( !'KheMeetVisited(neet, tabu_len) )

{
KheSol nNewMi si t (KheMeet Sol n( neet) ) ;

KheMeet Vi si t (meet ) ;
change the assignnent of neet

}

To ensure that everything is visitable initially, call
KheSol nSet Vi si t Nun(sol n, tabu_len);

It is easy to generalize this code to other operations.

One form of the ejection chains algorithm requires that once a meet (or other entity) has
been changed during the current visit, it must remain tabu until a new visit is started in the outer
loop of the algorithm. The code for thisis

i f( !'KheMeetVisited(neet, 0) )

{
KheMeet Vi si t (meet ) ;

change the assignnent of neet

}

A variant of this idea makaset tabu to recursive calls, but not tabu for the entire remainder of
the current visit. The code for this is

i f( !'KheMeetVisited(neet, 0) )

{
KheMeet Vi si t (meet ) ;

change the assignnent of meet and recurse ...
KheMeet UnVi sit (neet);

}

Only meets in the direct line of the recursion are tabu.

4.2.6. Placeholder and invalid solutions

A placeholder solution is a solution which is missing most of what an ordinary solution has,
either because it is invalid, or to save memory. Function

KHE_SCOLN_TYPE KheSol nType( KHE_SOLN sol n);

may be used to find out whether a solution is a placeholder. Its return value has type
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t ypedef enum {
KHE_SOLN_| NVALI D_PLACEHOLDER,
KHE_SOLN_BASI C_PLACEHOLDER,
KHE_SOLN_WRI TABLE_PLACEHOLDER,
KHE_SOLN_ORDI NARY

} KHE_SOLN_TYPE;

The first three values indicate thatl n is a placeholder of some kind, as follows.

KHE_SOLN_|I NVALI D_PLACEHOLDER means thasol n is aninvalid placeholder it became
a placeholder because it has some problem. In practice this can only happen when reading a
solution from an archive (Section 2.4). We usually just sayshbt isinvalid. Function

KM._ERROR KheSol nl nval i dErr or (KHE_SOLN sol n);

returns the first error that madel n invalid, orNULL if sol n is not invalid. For type&M._ERRCR,
see Section A.6.2. An invalid solution offers few functions: for example, it has no cost.

KHE_SCOLN_BASI C_PLACEHOLDER means thagol n is abasic placeholderall of the objects
belowsol n (all its meets, tasks, and so on) have been deleted. This frees a great deal of memory,
which is the point of it, but it makesol n unusable except that the following functions remain
available and return their previous values:

char *KheSol nDescri pti on( KHE_SCLN sol n);

voi d *KheSol nBack( KHE_SOLN sol n);

KHE_I NSTANCE KheSol nl nst ance( KHE_SOLN sol n);

bool KheSol nHasRunni ngTi me( KHE_SOLN sol n, float *running_tine);
i nt KheSol nSol nG oupCount ( KHE_SOLN sol n);

KHE_SOLN_GROUP KheSol nSol nG oup( KHE_SOLN soln, int i);

voi d *KheSol nl npl (KHE_SOLN sol n);

i nt KheSol nDi versifier(KHE_SOLN sol n);

i nt KheSol nVi si t Num( KHE_SOLN sol n);

KHE_COST KheSol nCost ( KHE_SOLN sol n);

FunctionkheSol nTypeReduce below is also still available.

KHE_SOLN WRI TABLE_PLACEHOLDER is like KHE_SOLN_BASI C_PLACEHOLDER except that the
solution can also be written §reAr chi veW i t e (Section 2.7), because a brief private record of
who is assigned to what is retaingtheAr chi veW i t e will abort if it is asked to write an invalid
or basic placeholder. Even a writable placeholder cannot be writtgre#r chi veWite has
been asked to write a report along with each solution.

Finally, KHE_SOLN_ORDI NARY indicatesthas¢ol n is an ordinary solution (not a placeholder),
supporting the full range of operations including access to its meets, tasks, and so on. When
a solution is created, it is an ordinary solution. A placeholder solution cannot be created
directly; an ordinary solution must be created and then reduced to a placeholder, using function
KheSol nTypeReduce below. This ensures that the solution cost is correct.

Placeholder solutions may be used to build tables of solutions showing costs and running
times; but they cannot be used to find cost breakdowns by constraint type, or to print timetables,
and so on. Writable placeholder solutions are good when solving, both for solutions produced
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by the solver and for solutions which are already in the archive and just need to be read in and
written out again. Function

voi d KheSol nTypeReduce( KHE SOLN sol n, KHE SOLN TYPE sol n_type,
KM._ERROR ke);

changes the type afol n to sol n_type. If sol n_type is KHE_SOLN_| NVALI D_PLACEHOLDER,
ke must be noNULL, and a copy of it becomes the value returnedbsSol nl nval i dError .
Otherwiseke is not used and should beLL.

KheSol nTypeReduce can only change the type to something equal or lower. For example, it
can reduce an ordinary solution to any kind of placeholder, but it cannot reduce a placeholder to
an ordinary solution, because the dataislost. Changing the type to what it already is does nothing
except replacgheSol nl nval i dError if the type isKHE_SOLN_| NVALI D_PLACEHOLDER.

4.2.7. Traversing the components of solutions
A solution has many components: principally tasks and meets, but also other objects. They can
all be visited, using the functions defined in this section.

To visit the meets of a solution, in an unspecified order, call

i nt KheSol nMeet Count (KHE_SOLN sol n);
KHE_MEET KheSol nMeet (KHE_SOLN soln, int i);

The meets visited include theycle meetslescribed in Section 4.5.3. To visit the meets of a
solution derived from a given event, call

i nt KheEvent Meet Count (KHE_SOLN sol n, KHE_EVENT e);
KHE_MEET KheEvent Meet (KHE_SOLN soln, KHE EVENT e, int i);

The first returns the number of meets derived fo(possibly 0), and the second returnsitha
of these meets, in an unspecified order.
To visit the tasks of a solution, in an unspecified order, call

i nt KheSol nTaskCount (KHE_SOLN sol n);
KHE_TASK KheSol nTask( KHE_SOLN soln, int i);

To visit the tasks derived from a given event resource, call

i nt KheEvent Resour ceTaskCount ( KHE_SOLN sol n, KHE_EVENT_RESOURCE er);
KHE_TASK KheEvent Resour ceTask( KHE_SOLN sol n, KHE_EVENT_RESOURCE er,
int i);

There is one for each meet derived from the event contagiing

A solution may also containodesandtaskings as explained in Chapter 5. To visit the
nodes in an unspecified order, call

i nt KheSol nNodeCount ( KHE_SOLN sol n);
KHE NODE KheSol nNode( KHE_SCLN soln, int i);
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To visit the taskings, call

i nt KheSol nTaski ngCount ( KHE_SOLN sol n);
KHE_TASKI NG KheSol nTaski ng( KHE_SOLN sol n, int i);

in the usual way.

4.3. Complete representation and preassignment conversion

A solution is acomplete representatiomhen it satisfies the following two conditions:

. For each everd of the solution’s instance, the total duration of the meets derived ériam
equal to the duration of;

. For each event resouree of the solution’s instance, each meet derived from the event
containinger contains a task derived froam .

Complete representation does not rule out extra meets or tasks. It has nothing to do with being
a complete solution, in the sense of assigning a time to every meet and a resource to every task.

KHE does not require a solution to be a complete representation, since that would be too
restrictive when building and modifying solutions. However, the cost it reports for a solution is
correct only when that solution is a complete representation. This is because, behind the scenes,
KHE needs to be able to see a meet with no assigned time in order for it to realize that an assign
time constraint is being violated, and similarly for the other constraints.

There is a standard procedure, part of the XML specification, for converting a solution into
a complete representation:

1. Foreach evers of the solution’s instance, if there are no meets derived &pthnen insert
one meet whose duration is the duratiorepfnd whose assigned time is the preassigned
time of e, or is absent it has no preassigned time. Initially, this meet contains no tasks, but
that may be changed by the third rule.

2. If nowthereis an evemtsuch that the total duration of the meets derived feasnot equal
to the duration o, then that is an error and the XML file is rejected.

3. For each event resouree of each evert of the instance, for each meet derived frenf
that meet does not contain a task derived feonthen add one. Its assigned resource is the
preassigned resource @f if there is one, or is absentef has no preassigned resource.

This procedure, minus the conversions from preassignments to assignments, is implemented by

bool KheSol nMakeConpl et eRepr esent ati on( KHE_SOLN sol n,
KHE EVENT =probl em event);

For each everd, it finds the total duration of the meets derived fremlf that is greater than

the duration ofe it returnsf al se with *probl em event set toe. If it is less, then one meet
derived frome is added whose duration makes up the difference. The domain of this meet
has the usual default value: the preassigned timeibfany, or else the largest legal domain,
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KheSol nPacki ngTi meG oup(sol n) (Section 4.5.3). Then, within each meet derived from an
event, just created or not, it adds a task for each event reseuraat already represented. The
domain of this task has the usual default value: the preassigned resoarcé afy, or else the
largest legal domairtheResour ceTypeFul | Resour ceGroup(rt) , wherert iser’s resource type.

KheSol nMakeConpl et eRepresent ati on has two uses. The first is iKheAr chi veRead
(Section 2.4), which applies it to each solution it reads, as the XML specification requires, and
then calls these two public functions to convert preassignments into assignments:

voi d KheSol nAssi gnPr eassi gnedTi mes( KHE_SCLN sol n);
voi d KheSol nAssi gnPr eassi gnedResour ces( KHE_SOLN sol n,
KHE_RESOURCE_TYPE rt);

KheSol nAssi gnPr eassi gnedTi nes assigns the obvious time to each preassigned unassigned
meet.KheSol nAssi gnPr eassi gnedResour ces assignsthe obviousresource to each preassigned
unassigned task of type (any type ifrt isNULL).

The second use fdtheSol nMakeConpl et eRepr esent ati on is to build a solution from
scratch, ready for solving. The solution returnedHineSol nMeke has no meets except for
the initial cycle meet, and it has no taskéeSol nMakeConpl et eRepr esent ati on is a very
convenient way to add both. When solving, it is usually called immediately feSol nvake
andKheSol nSpl it Cycl eMeet (Section 4.5.3). The solution changes as solving proceeds, but it
remains a complete representation throughout, except perhaps during brief reconstructions. A
call toKheSol nAssi gnPr eassi gnedResour ces is also a good idea, since it does no harm and
ensures that resource constraints involving preassigned resources will contribute to the cost of
the solution as soon as the meets they are preassigned to are assigned times. On the other hand,
it may be better not to assign preassigned times at this point; Section 10.4 has the alternatives.

4.4. Solution time, resource, and event groups

Groups are important in solving. A solver needs to be able to construct its own, since the ones
declared in the instance might not be enough. (Conceivably, a solver could need its own times
and resources as well, but that possibility is not currently supported.) Accordingly, the following
functions are provided for constructing a time group while solving:

voi d KheSol nTi meG oupBegi n( KHE_SOLN sol n);

voi d KheSol nTi meG oupAddTi me( KHE_SOLN sol n, KHE_TIME t);

voi d KheSol nTi meG oupSubTi me( KHE_SOLN sol n, KHE_TIME t);

voi d KheSol nTi meG oupUni on( KHE_SOLN sol n, KHE_TI ME_GROUP tg2);

voi d KheSol nTi meG oupl nt er sect (KHE_SOLN sol n, KHE_TI ME_GROUP tg2);
voi d KheSol nTi meG oupDi f f erence( KHE_SOLN sol n, KHE_TI ME_GROUP tg2);
KHE_TI ME_GROUP KheSol nTi mneG oupEnd( KHE_SOLN sol n);

The first operation begins the process; the next five do what the corresponding operations for
instance time groups do, and the last operation returns the finished time group. Its kind will be
KHE_TI ME_GROUP_KI ND_ORDI NARY, and its d andnane attributes will beNULL.

A similar set of operations constructs a resource group:
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voi d KheSol nResour ceG oupBegi n( KHE_SCOLN sol n, KHE RESOURCE TYPE rt);

voi d KheSol nResour ceG oupAddResour ce( KHE_SOLN sol n, KHE RESOURCE r);

voi d KheSol nResour ceG oupSubResour ce( KHE_SOLN sol n, KHE RESOURCE r);

voi d KheSol nResour ceG oupUni on( KHE_SCLN sol n, KHE RESOURCE GROUP rg2);

voi d KheSol nResour ceGr oupl nt er sect (KHE_SOLN sol n, KHE RESCURCE _GROUP rg2);
voi d KheSol nResour ceG oupDi f f erence( KHE_SCLN sol n, KHE RESOURCE GROUP rg2);
KHE_RESOURCE _GROUP KheSol nResour ceG oupEnd( KHE_SCLN sol n);

and an event group:

voi d KheSol nEvent G oupBegi n( KHE_SOLN sol n);

voi d KheSol nEvent Gr oupAddEvent (KHE_SOLN sol n, KHE EVENT e);

voi d KheSol nEvent Gr oupSubEvent (KHE_SOLN sol n, KHE EVENT e);

voi d KheSol nEvent GroupUni on( KHE_SOLN sol n, KHE _EVENT _GROUP eg2);

voi d KheSol nEvent Groupl nt er sect (KHE_SCLN sol n, KHE EVENT GROUP eg2);
voi d KheSol nEvent GroupDi ff erence( KHE_SCLN sol n, KHE EVENT GROUP eg2);
KHE EVENT _GROUP KheSol nEvent G oupEnd( KHE_SCLN sol n);

All the usual operations may be applied to these groups. The functiorsouses a factory

object instead of the group itself, to ensure that groups are complete and immutable (apart from
their back pointers) by the time they are given to the user. Groups are deleted when their solution
is deleted. They know which instance they are for, but the instance, being immutable after
creation, is not aware of their existence.

Within one solution, when calls tgheSol nTi meG oupEnd return groups containing the
same elements, the objects returned are the same too. This is done using a hash table of time
groups. It allows the user to experiment with many time groups, without worrying about their
memory cost. Thisis not being done for resource and event groups yet; it should be.

4.5. Meets

A meet is created by calling
KHE_MEET KheMeet Make( KHE_SCLN sol n, int duration, KHE EVENT e);

This creates and addsgol n a new meet of the given duration, which must be at least &.idf
nondNULL, it indicates that this meet is derived from eventnitially the meet contains no tasks;
they must be added separately. A meet may be deleted from its solution by calling

voi d KheMeet Del et e( KHE_MEET neet) ;

Any tasks withinmeet are also deleted. Heet is assigned to another meet, or any other meets
are assigned to it, all those assignments are removed. The meet is also deleted from any node
(Section 5.2) it may lie in.

The back pointer of a meet may be set and retrieved by

voi d KheMeet Set Back( KHE_MEET neet, void *back);
voi d *KheMeet Back( KHE_MEET neet);
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and the visit number by

voi d KheMeet Set Vi si t Nun{ KHE_MEET neet, int num;
i nt KheMeet Vi si t Num( KHE_MEET neet ) ;

bool KheMeet Vi sited(KHE MEET neet, int slack);
voi d KheMeet Vi sit (KHE MEET neet);

voi d KheMeet UnVi sit (KHE_MEET neet);

as usual. The other attributes of a meet are accessed by

KHE SOLN KheMeet Sol n( KHE_MEET neet) ;

i nt KheMeet Sol nl ndex( KHE_MEET neet) ;

i nt KheMeet Dur ati on( KHE_MEET neet);
KHE EVENT KheMeet Event (KHE_MEET neet) ;

These return the enclosing solutioret 's index in that solution (that is, the valueiofor which

KheSol nMeet (sol n, i) returnsneet), its duration, and the event thetet is derived from
(possiblyNULL). Index numbers change when meets are deleted (the hole left by the deletion of
a meet, if not last, is plugged by the last meet), so care is needed. There is also

bool KheMeet | sPreassi gned( KHE_MEET neet, TIME *tine);

which returns r ue whenkheMeet Event (meet) != NULL and that event has a preassigned time;
meet is called gpreassigned medat that case. Ifime != NULL, then+ti e is set to the event's
preassigned time ifeet is preassigned, and MLL otherwise.

When deciding what order to assign meets in, it is handy to have some measure of how
difficult they are to timetable. Functions

i nt KheMeet Assi gnedDur ati on( KHE_MEET neet) ;
int KheMeet Demand( KHE_MEET neet) ;

attempt to provide thiskneMeet Assi gnedDur at i on is the duration ofreet if itis assigned, or 0
otherwise.KheMeet Demand( neet ) isthe sum, overeet and all meets assignedrteet , directly

or indirectly, of the product of the duration of the meet and the number of tasks it contains. This
value is stored in the meet and kept up to date as solutions change, so aktelMest Demand

costs almost nothing.

Atask is added to its meet when it is created, and removed from its meet when it is deleted.
To visit the tasks of a meet, call

i nt KheMeet TaskCount (KHE_MEET neet);
KHE_TASK KheMeet Task( KHE_MEET neet, int i);
bool KheMeet RetrieveTask(KHE MEET neet, char *role, KHE TASK *task);
bool KheMeet Fi ndTask(KHE _MEET neet, KHE EVENT RESOURCE er,
KHE TASK =t ask);

The first two traverse the tasks. The order of tasks within meets is not significant, and it may
change astasks are created and delétegVeet Ret r i eveTask retrieves a task which is derived
from an event resource with the giveni e, if present.KheMeet Fi ndTask is similar, but it looks

for a task derived from event resoumae rather than for a role. There are also
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bool KheMeet Cont ai nsResour cePr eassi gnment (KHE_MEET neet,
KHE_RESOURCE r, KHE_TASK *task):

bool KheMeet Cont ai nsResour ceAssi gnment ( KHE_MEET neet ,
KHE_RESOURCE r, KHE_TASK *task):

which returnt r ue if meet contains a task preassigned or assignestting+t ask to one if so.
Here a task is considered to be preassigned if it is derived from a preassigned event resource.

A meet contains an optionaksignmentwhich assigns the meet to a particular offset in
another meet, thereby fixing its time relative to the starting time of the other meet,tand a
domainwhich restricts the times it may start at to an arbitrary subset of the times of the cycle.
These attributes are described in detail in later sections.

A meet may optionally be contained in one node (Chapter 5). Functions

KHE_NCODE KheMeet Node( KHE_MEET neet);
i nt KheMeet Nodel ndex( KHE_MEET neet);

return the node containinget , and the index ofreet in that node, oNULL and- 1 if none.
As an aid to debugging, function

voi d KheMeet Debug( KHE MEET neet, int verbosity, int indent, FILE *fp);

printsneet ontof p with the given verbosity and indent (for which see Section 1.3). Verbosity 1
prints just an identifying name; verbosity 2 adds the chain of assignments leadingnesgt of

The name is usually the name et ’s event, between quotes. If there is more than one
meet corresponding to that event, this will be followed by a colon and the nunfoemvhich
KheEvent Meet (sol n, e, i) equalsreet. Alternatively,ifneet isa cycle meet (Section 4.5.3),
the name is its starting time (a time name or else an index) between slashes.

4.5.1. Splitting and merging
A meet may be split into two meets whose durations sum to the duration of the original meet:

bool KheMeet Split Check(KHE_MEET neet, int durationl, bool recursive);
bool KheMeet Split(KHE_MEET neet, int durationl, bool recursive,
KHE_MEET +meet1, KHE_MEET *nmeet 2);

These functions follow the pattern described earlier for operations that might violate the solution
invariant, in that both returnr ue if the split is permitted. The second actually carries out the
split, setting«neet 1 and=+neet 2 to the new meets if the split is permitted, and leaving them
unchanged if not. The original meetet , is undefined after a successful split, unlesst 1

ormeet 2 is set to&meet (this may seem dangerous, but it does what is wanted whether the split
succeeds or not). The split meet may be a cycle meet, in which case so are the two fragments.

The first new meet:neet 1, has duratiordur ati onl, and the second,neet 2, has the
remaining duration. Parametarr at i onl must be such that both meets have duration at least 1,
otherwise both functions abort. Their back pointers are set to the back poimgtofIf neet
is assigned,neet 1 has the same target meet and offseteas , while* meet 2 has the same target
meet, but its offset igur at i onl larger, making the two meets adjacent in time.
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If recursiveistrue, any meets assignedreet that span the split point will also be spilit,
into one meet for the part overlappinrgeet 1 and one for the part overlappingeet 2. This
process proceeds recursively as deeply as required.

The two split functions returtr ue if these two conditions hold:
» Eitherrecursive istrue, or else no meets assignecheet span the split point.

*  The meets resulting from each split have copies of the meet bounds (Section 4.5.4) of the
meets they are fragments of. Nevertheless their domains usually change, owing to meet
bounds with specifidur at i on attributes. This must cause no incompatibilities with the
domains of other meets connected to them by assignments, allowing for offsets. When a
cycle meet (Section 4.5.3) splits, the two fragments have the appropriate singleton domains.
Domain incompatibilities cannot occur in that case.

If these conditions holdeet is said to besplittableatdur ati onl.

When a meet splits, its tasks split too. This produces what is typically required when
assigning rooms: the fragments are free to be assigned different resources. The other possibility,
where the fragments are required to be assigned the same resource, can be obtained by assigning
the fragmentary tasks to each other. This must be done separately.

The next two functions are concerned with merging two meets into one:
bool KheMeet Mer geCheck( KHE_MEET neet 1, KHE_MEET neet 2);

bool KheMeet Merge( KHE_MEET neet 1, KHE MEET neet 2, bool recursive,
KHE MEET =*neet);

Parameterseet 1 andneet 2 become undefined after a successful merge, untessis set to
&nreet 1 or &neet 2.

If recursive istrue, after mergingreet 1 andneet 2, KheMeet Mer ge searches for pairs of
meets, one formerly assigned to the endmedt 1, the other formerly assigned to the beginning
of neet 2, which are mergeable accordingiioeMeet Mer geCheck, and merges each such pair.
This process proceeds recursively as deeply as requihedieet Mer geCheck hasna ecur si ve
parameter because its result does not depend on whether the merge is recursive.

The functions returnr ue if all these conditions hold:
*  The two meets are distinct.
*  The two meets have the same valu&ioéMeet | sCycl eMeet (Section 4.5.3).
*  The two meets have the same valu&ioéMeet Event , possiblyNULL.

e The two meets have the same valu&kioéMeet Node, possiblyNULL.

*  The two meets are both either assigned to the same meet, or not assigned. If assigned, the
offset of one (it may be either) must equal the offset plus duration of the other, ensuring they
are adjacent in time. Cycle meets, although never assigned, must also be adjacent in time.
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*  Thetwo meets have the same number of tasks, and the order of their tasks may be permuted
so that corresponding tasks are compatible. Two tasks are compatible when they have the
same taskings, domains, event resources, and assignments.

* The result meet takes over the meet bounds (Section 4.5.4) of one of the meets being
merged. Nevertheless its domain usually changes, owing to meet bounds with non-zero
dur at i on attributes. This must cause no incompatibilities with the domains of other meets
connected to it by assignments, allowing for offsets. When cycle meets (Section 4.5.3)
merge, the result meet has the singleton domain of the chronologically first meet. Domain
incompatibilities cannot occur in that case.

If all these conditions holdyeet 1 and nmeet 2 are said to bemergeable These conditions
usually hold trivially when merging the results of a previous split. The merged meet’s attributes
(including its meet bounds and the order of its tasks) may come from e#bet or neet 2; the
choice is deliberately left unspecified, and the user must not depend on it.

It is now clear whyKheMeet Mer geCheck does not need eecur si ve parameter. because
none of the conditions just given depend on whether the merge is recursive. Recursive merges
are only attempted whefheMer geCheck says they will succeed. So instead of preventing the
top-level merge, an unacceptable recursive merge simply does not happen.

4.5.2. Assignment

KHE’s basic operations do not include assigning a time to a meet. A meetis either unassigned or
else assigned to another meet at a given offset, fixing the starting times of the two meets relative
to each other, but not assigning a specific time to either. For exampik i$f assigned to?

at offset 2, then whatever tinm® eventually starts atil will start two times later. Of course,
ultimately meets need to be assigned times. This is done by assigning them to special meets
calledcycle meetg§Section 4.5.3).

Assigning one meet to another suppdrsrarchical timetablingin which several meets
are timetabled relative to each other, then the whole group is timetabled into a larger context, and
so on. One simple application is in handling link events constraints. Assigning all the linked
events except one to that exception guarantees that the linked events will be simultaneous; the
time eventually assigned to the exception becomes the time assigned to all.

The fundamental meet assignment operations are

bool KheMeet MoveCheck( KHE_MEET meet, KHE MEET target neet, int offset);
bool KheMeet Move( KHE MEET neet, KHE MEET target meet, int offset);

KheMeet Move changes the assignment méet from whatever it is now td ar get _neet at
of fset. If target _nmeet iSNULL, the move is an unassignment aridiset is ignored.

These functions follow the usual pattern, returriinge if the move can be carried out, with
KheMeet Move actually doing it if so. They returtr ue if all of the following conditions hold:

e KheMeet Assi gnl sFi xed (see below) returnsal se.

* Theneet parameter is not a cycle meet.
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»  The move actually changes the assignment: eitlieget _meet iSNULL andreet 's current
assignment is noNULL, ort ar get _meet is nonNULL andneet 's current assignment is not
totarget neet atoffset.

e Theoffset parameter is in range: ifarget_neet is nonNULL, thenof fset >= 0 and
of fset <= KheMeetDuration(target_neet) - KheMeetDuration(mneet);

. If target_neet is nonNULL, then the time domain (Section 4.5.4) tadr get _neet is a
subset of the time domain oket , allowing for offsets.

*  The node rule (Section 4.9) would not be violated if the move was carried out.

If all these conditions hold, themeet is said to bemoveableto t arget _neet at of f set .
Returningf al se when the move changes nothing reflects the practical reality that no solver
wants to waste time on such moves.

KHE offers several convenience functions basedr@ahtet MoveCheck andKheMeet Move.
For assigning a meet there is

bool KheMeet Assi gnCheck( KHE_MEET meet, KHE MEET target neet, int offset);
bool KheMeet Assi gn( KHE_MEET neet, KHE MEET target neet, int offset);

Assigning is the same as moving except tregtt is expected to be unassigned to begin with, and
KheMeet Assi gnCheck andKheMeet Assi gn returnf al se if not. For unassigning there is

bool KheMeet UnAssi gnCheck( KHE_NMEET neet ) ;
bool KheMeet UnAssi gn( KHE_MEET neet);

Unassigning is the same as moving\tb L. For swapping there is

bool KheMeet SwapCheck( KHE_MEET neet 1, KHE MEET neet 2);
bool KheMeet Swap( KHE MEET neet 1, KHE MEET neet 2);

A swap is two moves, one ofeet 1 to whatevemeet 2 is assigned to, and the othermafet 2 to
whatevemeet 1 is assigned to. It succeeds whenever those two moves succeed.

KheMeet Swap has two useful properties. First, exchanging the order of its parameters never
affects what it does. Second, the code fragment

i f( KheMeet Swap(neetl, neet2) )
KheMeet Swap(meet 1, neet2);

leaves the solution in its original state whether the swap occurs or not.
A variant of the swapping idea callddock swappings offered:

bool KheMeet Bl ockSwapCheck( KHE_MEET neet 1, KHE_MEET neet2);
bool KheMeet Bl ockSwap( KHE_MEET neet 1, KHE_MEET neet 2);

Block swapping is the same as ordinary swapping except that it treats one very special case in
a different way: the case when both meets are initially assigned to the same meet, at different
offsets which cause them to be adjacent, but not overlapping, in time. In this case, both meets
remain assigned to the same meet afterwards, and the later meet is assigned the offset of the
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earlier one, but the earlier one is not necessarily assigned the offset of the later one. Instead, it
is assigned that offset which places it adjacent to the other meet.

For example, when swapping a meet of duration 1assigned to the first time on Monday with
a meet of duration 2 assigned to the second time on Mottlalyket Bl ockSwap would move
the first meet to the third time on Monday, not the second time. Thisis much more likely to work
well when the two meets have preassigned resources in common. It is the same as an ordinary
swap when the meets have the same duration, but it is different when their durations differ. The
two useful properties of ordinary swaps also hold for block swaps.

A meet’s assignment may be retrieved by calling

KHE_MEET KheMeet Asst ( KHE_MEET neet);
i nt KheMeet Asst OF f set (KHE_MEET neet);

These return the meet theet is assigned to, and the offset into that meet. If there is no
assignment, the values returned el and- 1.

Although a meet may only be assigned to one meet, any number of meets may be assigned
to a meet, each with its own offset. Functions

i nt KheMeet Assi gnedToCount ( KHE_MEET tar get _neet);
KHE_MEET KheMeet Assi gnedTo( KHE_MEET target _neet, int i);

visit all the meets that are assigned to a given meet, in an unspecified order which could change
when a meet is assigned to or unassigned franget _neet . (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.)

Given that a meet can be assigned to another meet at some offset, it follows that a chain of
assignments can be built up, from one meet to another and another and so on. Function

KHE MEET KheMeet Root (KHE MEET neet, int xoffset _in_root);

returns theoot of neet : the last meet on the chain of assignments leading oot etf. It also
setsrof f set _i n_root to the offset ofreet in its root meet, which is just the sum of the offsets
along the assignment path. One function which t&estet Root is

bool KheMeet Over| ap( KHE_MEET neet 1, KHE_MEET neet 2);

This returng rue if neet 1 andmeet 2 can be proved to overlap in time, because they have the
same root meet, and their offsets in that root meet and durations make them overlap. Also,

bool KheMeet Adj acent (KHE_MEET neet 1, KHE MEET neet 2, bool *swap);

returnst rue if neet 1 andmeet 2 can be proved to be immediately adjacent in time (but not
overlapping), because they have the same root meet, and their offsets in that root meet and
durations make them adjacent. If so, it also set&p totrue if meet 2 precedeseet 1, and to

fal se otherwise. Again, the meets are required to have the same root meet. This implies that
a meet assigned to the end of one cycle meet (Section 4.5.3) is not reported to be adjacent to a
meet assigned to the start of the next cycle meet. This is usually what is wanted in practice.

Meet assignments may be fixed and unfixed, by calling
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voi d KheMeet Assi gnFi x( KHE_MEET neet) ;
voi d KheMeet Assi gnUnFi x( KHE_MEET neet);
bool KheMeet Assi gnl sFi xed( KHE_MEET neet) ;

Any attempt to change the assignmentreét will fail while the fix is in place. When several
events are linked by a link events constraint, assigning the meets of all but one of them to the
meets of that one and fixing those assignments, or assigning the meets of all of them to some
other set of meets and fixing those assignments, has a significant efficiency payoff.

A call to KheMeet MoveCheck(meet, target_neet, offset) returnsfal se irrespective
of target _meet andof f set whenmeet is a cycle meet or its assignment is fixed. Function

bool KheMeet | sMovabl e( KHE_MEET neet);

returng r ue when neither of these conditions holds, so #ieteet MoveCheck can be expected
to returnt r ue for at least some target meets and offsets.

Two similar functions follow chains of fixed assignments:

KHE MEET KheMeet Fi rst Movabl e( KHE_MEET neet, int *offset _in_result);
KHE MEET KheMeet Last Fi xed( KHE_MEET neet, int xoffset in_result);

KheMeet Fi r st Movabl e returns the first meet on the chain of assignments out mfet such

that KheMeet | shovabl e(m) holds. If there is no such meet it returldLL. It is used when
changing the time assigned teet : this can be done only by changing the assignment of
KheMeet Fi r st Movabl e(meet ) , or of a movable meet further along the chain, and this is only
possible when the result is ndkkL. KheMeet Last Fi xed returns the last meet on the chain of
fixed assignments out afeet ; that is, it follows the chain of assignments outnekt until it
reaches a meet whose target me#tis. or whose assignment is not fixed, and returns that meet.
Its result is always noNULL, and could be a cycle meet. It is used to decide whether two meets
are fixed to the same meet, directly or indirectly. In both functions, the result couttbéself,
and+of fset _i n_resul t is set to the offset ofreet in the result, if norNULL.

4.5.3. Cycle meets and time assignment

Even if most meets are assigned to other meets, there must be a way to associate a particular
starting time with a meet eventually. Rather than having two kinds of assignment, one to a meet
and one to a time, which might conflict, KHE has a special kind of meet calbgydla meet A

cycle meet has typ€HE_MEET as usual, and it has many of the properties of ordinary meets. But

it is also associated with a particular starting time (and its domain is fixed to just that time and
cannot be changed), and so by assigning a meet to a cycle meet one also assigns a time.

A cycle meet cannot be assigned to another meet; its assignment is fikédl tand cannot
be changed. Cycle meets may be split (their offspring are also cycle meets) and merged. They
may even be deleted, but that is not likely to ever be a good idea.

The user cannot create cycle meets directly. Instead, one cycle meetis created automatically
whenever a solution is created. The starting time ofithigl cycle meeis the first time of the
cycle, and its duration is the number of times of the cycle. When solving, it is usual to split the
initial cycle meet into one meet for each block of times not separated by a meal break or the end
of a day, to prevent other meets from being assigned times which cause them to span these breaks.
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A function for this appears below. When evaluating a fixed solution, it is usual to not split the
initial cycle meet, since the other meets already have unchangeable starting times and durations,
and splitting the initial cycle meet might prevent them from being assigned to cycle meets.

To find out whether a given meet is a cycle meet, call
bool KheMeet | sCycl eMeet (KHE_MEET neet) ;

Cycle meets appear on the list of all meets contained in a solution. They are not stored separately
anywhere. So the way to find them all is

for( i =0; i < KheSolnMeetCount(soln); i++)
{
neet KheSol nMeet (sol n, i);
i f( KheMeet|sCycl eMeet (nmeet) )
visit_cycle_meet(nmeet);

}
However, cycle meets are usually near the front of the list, so this can be optimized as follows:

ti me_count = Khel nstanceTi meCount (KheSol nl nstance(sol n));
durn = 0;
for( i =0; i < KheSolnMeetCount(soln) && durn < time_count; i++)

{
nmeet = KheSol nMeet (soln, i);

i f( KheMeetlsCycl eMeet (neet) )
{
visit_cycle_meet(meet);
durn += KheMeet Durati on(meet);
}
}

The loop terminates as soon as the total duration of the cycle meets visited reaches the number
of times in the instance.

Solutions offer several functions whose results depend on cycle meets. They notice when
cycle meets are split, and adjust their results accordingly. Functions

KHE_MEET KheSol nTi meCycl eMeet (KHE _SCOLN soln, KHE TIME t);
i nt KheSol nTi meCycl eMeet O f set (KHE_SOLN soln, KHE TIME t);

return the unique cycle meet running at timend the offset of within that meet. Function
KHE_TI ME_GROUP KheSol nPacki ngTi meG oup( KHE_SOLN sol n, int duration);

returns a time group containing the times at which a meet of the given duration may begin. For
example, if the initial cycle meet has not been sghigSol nPacki ngTi meG oup(sol n, 2) will
contain every time except the last in the cycle; if the initial cycle meet has been split into one
meet for each day, it will contain every time except the last in each day; and so on.

As mentioned earlier, when solving it is usual to split the initial cycle meet into one fragment
for each maximal block of times not spanning a meal break or end of day. The XML format
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does not record this information, but solver

voi d KheSol nSplitCycl eMeet (KHE_SOLN sol n);

is able to infer it, as follows. Say that two eventssof n’s instance are related if they share

a required link events constraint with non-zero weight. Find the equivalence classes of the
reflexive transitive closure of this relation. For each class, examine the required split events
constraints with non-zero weight of the events of the class to determine what durations the meets
derived from the events of this class may have. Also determine whether the starting time of the
class is preassigned, because one of its events has a preassigned time.

For each permitted duration, consult the required prefer times constraints of non-zero
weight of the events of the class to see when its meets of that duration could begin. Ifra meet
with duration 2 can begin at timie there cannot be a break after titméf a meetmwith duration
3 can begin at time, there cannot be a break after titner after the time following , if any;
and so on. Accumulating all this information for all classes determines the set of times which
cannot be followed by a break. All other times can be followed by a break, and the initial cycle
event is split at these times, and also at times where a break is explicitly allowed by function
KheTi meBr eakAf t er from Section 3.4.2.

These functions move a meet to a time, following the familiar pattern:

bool KheMeet MoveTi meCheck( KHE MEET neet, KHE TIME t);
bool KheMeet MoveTi me( KHE_MEET neet, KHE TIME t);

They work by converting into a cycle meet and offset, via functiokigeSol nTi neCycl eMeet
andKheSol nTi meCycl eMeet O f set above, and callingheMeet MoveCheck andKheMeet Move.
Meets may also be assigned to cycle meets directly, ubielget Move and the rest. The direct
route is more convenient in general solving, since time assignment is then not a special case.

The following functions are also offered:

bool KheMeet Assi gnTi meCheck( KHE_MEET meet, KHE TIME t);
bool KheMeet Assi gnTi me( KHE_MEET nmeet, KHE TIME t);

bool KheMeet UnAssi gnTi meCheck( KHE_MEET neet);

bool KheMeet UnAssi gnTi me( KHE_MEET neet) ;
KHE_TI ME KheMeet Asst Ti ne( KHE_MEET neet ) ;

The first four are wrappers fdtheMeet Assi gnCheck, KheMeet Assi gn, KheMeet UnAssi gnCheck,
andkheMeet UnAssi gn. KheMeet Asst Ti ne follows the assignments oket as far as possible, and
if it arrives in a cycle meet, it returns the starting timeneét ; otherwise it returnsiULL.

4.5.4. Meet domains and bounds

Each meet contains a time group calleditenain retrievable by calling
KHE_TI ME_GROUP KheMeet Domai n( KHE_MEET neet)

When a meet is assigned a time, that time must be an element of its domain.

More precisely, the solution invariant says thaét 's domain must be a superset of the
domain of the meet it is assigned to, if any, adjusted for offsets. So, given a chain of assignments
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beginning atreet and ending at a cycle meet, the domaineét must be a superset of the
domain of the cycle meet, adjusted for offsets. Since the domain of a cycle meetis a singleton set
defining a time, the time assignedneget by this chain of assignments liesiiaet 's domain.

Meet domains cannot be set directly. Insteaget boundbjects influence them. This
may seem unnecessarily complicated, but meet bounds have several major advantages over
setting domains directly, including allowing restrictions on domains to be added and removed
independently, and doing the right thing when meets split and merge.

When meets split and merge, their durations change, and this usually requires a change of
domain. For example, a meet of duration 2 cannot be assigned the last time on any day, but if itis
split, the fragments may be. Accordingly, a meet bound object stores a whole set of time groups,
one for each possible duration. Only one time group influences a meet’'s domain at any moment:
the one corresponding to the meet’s current duration. But the others remain in reserve for when
the meet’s duration is changed by a split or merge.

To create a meet bound object, call

KHE_MEET BOUND KheMeet BoundMake( KHE_SOLN sol n,
bool occupancy, KHE TIME GROUP dft _tg);

See below for theccupancy anddft _t g parameters. To delete a meet bound object, call

bool KheMeet BoundDel et eCheck( KHE_MEET _BOUND ) ;
bool KheMeet BoundDel et e( KHE_MEET_BOUND nb) ;

This includes deletingb from each meet it is added to, and is permitted when all of those
deletions are permitted, accordingdweMeet Del et eMeet BoundCheck, defined below.

To retrieve the attributes defined when a meet bound is created, call

KHE_SOLN KheMeet BoundSol n( KHE_MEET BOUND nb) ;
bool KheMeet BoundQccupancy( KHE_MEET BOUND nb) ;
KHE_TI ME_GROUP KheMeet BoundDef aul t Ti meG oup( KHE_MEET_BOUND ) ;

These are rarely accessed in practice.

As mentioned above, a meet bound is supposed to define a time group for each possible
duration. These time groups can be set manually by making any number of calls to

voi d KheMeet BoundAddTi meG oup( KHE_MEET_BOUND nb,
int duration, KHE_TIME_GROUP tg);

Each declares that whe is applied to a meet of the givelur at i on, it restricts its domain to
be a subset dfg. They may be retrieved by

KHE_TI ME_GROUP KheMeet BoundTi neG oup( KHE_MEET _BOUND nb, int duration);

In both functionsgdur at i on may be any positive integer, provided it is not unreasonably large.
Two calls tokheMeet BoundAddTi meG oup with the samedur ati on are pointless, but if they
occur, the second takes effect. There is no need to specify a time group for every possible
duration: durations other than those covered by call&hte\Veet BoundAddTi meG oup are
assigned time groups using thecupancy anddft _t g arguments okheMeet BoundMake. To
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explain them we need to delve deeper.

There are really two kinds of domains. Those we have dealt with so far may be called
starting-time domain®ecause they restrict the starting times of meets. They are appropriate, for
example, when expressing prefer times and spread events constraints (which constrain starting
times) structurally. The others may be caltetupancy domainbecause they restrict the whole
set of times a meet occupies, not just its starting time. For example, a meet of duration 2 should
not start immediately before a time when one of its resources is unavailable: the complement of
a resource’s set of unavailable times is an occupancy domain, not a starting-time domain.

KHE works directly only with starting-time domains, not occupancy domains, so what is
needed is a function to convert an occupancy domain into a starting-time domain:

KHE_TI ME_GROUP KheSol nStarti ngTi meG oup( KHE_SOLN sol n, int duration,
KHE_TI ME_GROUP tQ);

This returns the set of times that a meet of the given duration could start without any part of
it lying outsidet g. In other words, it accepts occupancy domiagrand returns the equivalent
starting-time domain for a meet of the given duration. Wtherat i on is 1, the result is justg.
Asdurati on increases the result shrinks, eventually becoming empty.

To return to meet bounds. Whencupancy is f al se, the time group used by the meet
bound for durations not set explicitlydt _t g. It may be best to set all durations explicitly in
this case. Whenccupancy istrue, the value used for any unspecified duration is

KheSol nStarti ngTi meG oup(soln, duration, dft_tg);

These values could be passed explicitly, but this way they can be (and are) created only when
needed, and there is no need to know the maximum duration. For exama\ej ledbl e_t g be
the set of times that some resource is available. Then the meet bound created by

KheMeet BoundMake(sol n, true, available_ tg);

ensures that a meet lies entirely within this set of times, whatever duration it has.

A meetmmay have any number of meet bounds. Its domain is the intersection, over all
its meet boundsb, of KheMeet BoundTi neG oup( b, KheMeet Duration(m), or the full cycle if
none. A meet bound may be added to any number of meets. To add a meet bound, call

bool KheMeet AddMeet BoundCheck( KHE_MEET neet, KHE_MEET BOUND nb);
bool KheMeet AddMeet Bound( KHE_MEET neet, KHE MEET BOUND nb) ;

These follow the usual form, returningue when the addition is permitted (when the change
in meet 's domain it causes does not violate the solution invariant), iigteet AddMeet Bound
actually carrying out the addition in that case. To delete a meet bound from a meet, call

bool KheMeet Del et eMeet BoundCheck( KHE MEET neet, KHE MEET BOUND nb) ;
bool KheMeet Del et eMeet Bound( KHE_MEET neet, KHE MEET BOUND mb);

This too is not always permitted, because it may increase’s domain, which may violate the
solution invariant with respect to the domains of meets assignezkto

While a meet bound is added to at least one meet, it is not permitted to change its time
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groups (that is, calls tsheMeet BoundAddTi neG oup are prohibited).
To visit the meet bounds added to a given meet, call

i nt KheMeet Meet BoundCount ( KHE_MVEET meet ) ;
KHE_MEET_BOUND KheMeet Meet Bound( KHE_MEET neet, int i);

as usual. To visit the meets to which a given meet bound has been added, call

i nt KheMeet BoundMeet Count (KHE_MEET _BOUND nb) ;
KHE_MEET KheMeet BoundMeet (KHE_MEET BOUND nb, int i);

The relationship between meets and meet bounds is a many-to-many one.

When a meet is split, its meet bounds are added to both fragments; and when two meets
are merged, one (either) of the two sets of meet bounds is used for the merged meet. Although
the meet bounds are the same, the durations change, so the domains may change too. Splits and
merges are only permitted when the new domains do not violate the solution invariant.

Adding a meet bound to a meet has some cost in run time, but is fast enough to use within
solvers. Meet bound objects are obtained from free lists held in the solution object. Time groups
are immutable during solving and may be shared.

WhenKheMeet Make makes a meet derived from an event with a preassigned time, it adds
to the meet a meet bound whose default time group is the singleton time group containing that
time. No other special arrangements are made for meets derived from preassigned events.

4.5.5. Automatic domains

Cycle meets have fixed singleton domains, and meets derived from events can also be assigned
fixed domains, based on their durations and the constraints that apply to them.

When solving hierarchically there may be other meets, lying at intermediate levels, for
which there is no obvious fixed domain. Instead, the domain of such a meet needs to be the
largest domain consistent with the domains of the meets assigned to it: the intersection of those
domains, allowing for offsets, or the full set of times if no meets are assigned to it.

As meets are assigned to and unassigned from such a meet, its domain changes automatical-
ly. Atany moment it does have a domain, however, defined by the rule just given, and this domain
must satisfy the solution invariant as usual.

A newly created meet has a fixed domain. To convert it to the automatic form, call

bool KheMeet Set Aut oDonai nCheck( KHE_MEET neet, bool automatic);
bool KheMeet Set Aut oDonai n( KHE_MEET neet, bool automatic);

Assigningt r ue to aut omat i ¢ gives the meet an automatic domain. This will rettiahse if

meet is a cycle meet, or ifreet is derived from an event or contains tasks, as discussed below.
Assigningf al se returns the meet to a fixed domain. Meet bounds are not affected by automatic
domains; what is affected is whether they are used to construct the domain or not.

KheMeet Domai n returnsNULL when the meet has an automatic domain. It is important not
to mistake this for ‘having no domain, a concept not defined by KHE. Function

KHE_TI ME_GROUP KheMeet Descendant sDomai n( KHE_MEET neet ) ;



100 Chapter 4. Solutions

returns the intersection of the domains of the descendamgofincludingreet itself, adjusted

for offsets, or the full time group if there are no such meets or they all have automatic domains.
It may thus be used to find the true domain of a meet WKheiveet Donai n returnsNULL. It is
relatively slow and not intended for use during solving.

When a meet with an automatic domain is split, its two fragments have automatic domains.
When two meets are joined, they must both either have automatic domains or not; and if both do,
then the joined meet has an automatic domain.

A meet with an automatic domain may not be derived from an event, and it may not have
tasks. These two conditions are naturally satisfied by the kinds of meets that need automatic
domains. They are necessary, since otherwise KHE would be forced to maintain explicit
domains as meets are assigned and unassigned, which would not be efficient. Asitis, automatic
domains are implemented by having the domain test bypass meets whose domains are automatic,
as though each such meet was replaced by the collection of meets assigned to it.

4.6. Tasks

A task is a demand for one resource. lItis created by calling

KHE_TASK KheTaskMake(KHE_SOLN sol n, KHE_RESOURCE TYPE rt,
KHE_MEET neet, KHE_EVENT RESOURCE er):

The task lies irsol n and has resource typé. When parametereet is nonNULL, the task

lies withinneet , representing a demand for one resource, of typat the times wheneet is
running. Whemeet isNULL, the task still demands a resource, but at no times, making it useful
only as a target for the assignment of other tasks, as explained below.

Parameteer may be norNULL only whenneet is nonNULL and derived from some event
e. Inthat caseer must be one oé’s event resources. Its presence causes the task to consider
itself to be derived from event resourae

When first created, a meet has no tasks. They must be created separately by calls to
KheTaskMake. FunctiorkheSol nMakeConpl et eRepr esent at i on (Section 4.3) doesthis. When
a task’s enclosing meet splits, the task splits too. And when two meets merge, their tasks must
be compatible and are merged pairwise, inversely to the split.

A task contains an optionassignmento another task, and sesource domairwhich
restricts the resources it may be assigned to an arbitrary subset of the resources of itstype. These
attributes are described in detail in later sections.

A task may be deleted by calling
voi d KheTaskDel et e( KHE_TASK t ask);

This removes the task from its meet, if any, and unassigns any assignments involving the task.
The back pointer of a task may be set and retrieved by

voi d KheTaskSet Back( KHE_TASK task, void *back);
voi d »KheTaskBack( KHE TASK t ask);

as usual, and the usual visit number operations are available:
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voi d KheTaskSet Vi si t Nun{ KHE_TASK task, int num;
i nt KheTaskVi si t Num( KHE_TASK t ask);

bool KheTaskVisited(KHE TASK task, int slack);
voi d KheTaskVi sit (KHE TASK task);

voi d KheTaskUnVi sit (KHE_TASK task);

The attributes of a task related to its meet may be retrieved by

KHE_MEET KheTaskMeet (KHE_TASK t ask);
i nt KheTaskMeet | ndex( KHE_TASK t ask);
i nt KheTaskDurati on( KHE_TASK t ask);
float KheTaskWorkl oad( KHE _TASK t ask);

If there is no meetkheTaskMeet returnsNULL andKheTaskDur ati on andKheTaskWor kl oad
return 0. If there is a meet and event resoukbeTaskWr kil oad returns the workload of the
task, defined in accord with the XML format’s definition to be

d(meejw(er)
w(task) = ————————=
whered(mee}is the duration of ask’s meetw(er) is the workload of ask’s event resource, and
d(e) is the duration of ask’s meet’s event. See below for the similar and more generally useful
KheTaskTot al Dur ati on andKheTaskTot al Wr kl oad operations. There is also

fl oat KheTaskWor kl oadPer Ti me( KHE_TASK t ask);

which returns the workload per time(er)/d(e). This is used when evaluating limit workload
constraints, so for efficiency it is calculated just once when the task is created, and stored in the
task. Other attributes of a task may be accessed by

KHE_SOLN KheTaskSol n( KHE_TASK t ask) ;

i nt KheTaskSol nl ndex( KHE _TASK t ask);

KHE_RESOURCE TYPE KheTaskResour ceType( KHE_TASK t ask);
KHE_EVENT RESOURCE KheTaskEvent Resour ce( KHE TASK t ask);

These return the solution containingsk, the index oft ask in its solution (the value of for
whichKheSol nTask(sol n, i) returng ask), the task’s resource type, and its event resource (if
any). Index numbers may change when tasks are deleted (what actually happens is that the hole
left by the deletion of a task, if not last, is plugged by the last task), so care is needed. Also,

bool KheTaskl sPreassi gned( KHE_TASK task, KHE_RESOURCE *r);

returnst rue when KheTaskEvent Resource(task) !'= NULL and that event resource has a
preassigned resourdesk is called goreassigned tasik that case. If = NULL, thenxr is set
to the event resource’s preassigned resourcasif is preassigned, and MJLL otherwise.

Two tasks are said to legjuivalentvhen, if they were assigned and those assignments were
swapped, effectively nothing would change. Function

bool KheTaskEqui val ent (KHE_TASK taskl, KHE TASK task2);
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returnstrue whentaskl andtask2 are derived from equivalent event resources according

to KheEvent Resour ceEqui val ent (Section 3.6.3), their enclosing meets must have the same
duration and the same assigned time (which coultiUb¢), their domains are equal, and their
child tasks are pairwise equivalent. What the tasks are currently assigned to, if anything, has no
influence on whether they are equivalent.

Ideally the specification would say that there must be some matching of the two sets of child
tasks such that each matched pair is equivalent. However that would require sorting the child
tasks in some non-trivial way and has not been implementedh&SaskEqui val ent is similar
to KheEvent Resour ceEqui val ent in that when it returnsr ue, the tasks really are equivalent,
but when it returnéal se, they may or may not be equivalent.

A task may lie in aasking which is an arbitrary set of tasks (Section 5.5). Functions

KHE_TASKI NG KheTaskTaski ng( KHE_TASK t ask) ;
i nt KheTaskTaski ngl ndex( KHE_TASK t ask);

return the tasking containingisk and the index of ask in that tasking, oNULL and- 1 if the
task does not lie in a tasking. Finally,

voi d KheTaskDebug(KHE_TASK task, int verbosity, int indent, FILE *fp);

produces the usual debug printtafsk ontof p with the given verbosity and indent.

4.6.1. Assignment

Just as KHE assigns one meet to another meet, not to a time, so it assigns one task to another task,
not to a resource. Accordingly, the assignment operations for tasks parallel those for meets, the
main difference being that there is no offset.

The fundamental task assignment operations are

bool KheTaskMoveCheck( KHE TASK task, KHE TASK target task);
bool KheTaskMove( KHE TASK task, KHE TASK target task);

KheTaskMove changes the assignmenttafsk to target _task. If target _task is NULL, the
move is an unassignment. These operations follow the usual pattern, refuainiegand chang-
ing nothing if they cannot be carried out. Here is the full list of reasons why this could happen:

» task’sassignment is fixed;
» task isacycle task (Section 4.6.2);
e the move changes nothingar get _t ask is the same asask’s current assignment;

» target_task isnonNULL and the resource domain (Section 4.6.3) afget _t ask is not
a subset of the resource domairt abk.

As for meet moves, returnirigil se when the move changes nothing reflects the practical reality
that no solver wants to waste time on such moves.

KHE offers several convenience functions based@mTaskMveCheck andKheTaskMve.
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For assigning a task there is

bool KheTaskAssi gnCheck( KHE TASK task, KHE TASK target task);
bool KheTaskAssi gn( KHE TASK task, KHE TASK target task);

Assigning is the same as moving except thestk is expected to be unassigned to begin with, and
KheTaskAssi gnCheck andKheTaskAssi gn returnf al se if not. For unassigning there is

bool KheTaskUnAssi gnCheck( KHE _TASK t ask);
bool KheTaskUnAssi gn( KHE TASK t ask);

Unassigning is the same as moving\tL. For swapping there is

bool KheTaskSwapCheck( KHE_TASK taskl, KHE TASK task2);
bool KheTaskSwap(KHE_TASK taskl, KHE _TASK task2);

A swap is two moves, one dfaskl to whatevett ask2 is assigned to, and the other todsk?2
to whatevet ask1 is assigned to. It succeeds whenever those two moves succeed. As for meet
swaps, exchanging the parameters changes nothing, and code fragment

i f( KheTaskSwap(taskl, task2) )
KheTaskSwap(taskl, task2);
leaves the solution in its original state whether the swap occurs or not.
A task’s assignment may be retrieved by calling

KHE_TASK KheTaskAsst ( KHE_TASK t ask);

If there is no assignmemiLL is returned. Although a task may only be assigned to one task,
any number of tasks may be assigned to a task. Functions

i nt KheTaskAssi gnedToCount (KHE TASK t arget task);
KHE TASK KheTaskAssi gnedTo( KHE TASK target task, int i);

visit all the tasks that are assigned to get _t ask, in an unspecified order which could change
when a task is assigned or unassigned ftamget _t ask. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.) Functions

i nt KheTaskTot al Durati on( KHE _TASK t ask);
fl oat KheTaskTot al Wor kl oad( KHE_TASK t ask);

return the total duration and workloadtodsk and the tasks assigned to it, directly or indirectly.
These functions are usually more appropriate taTaskDur at i on andKheTaskWr ki oad.

Given that a task can be assigned to another task, a chain of assignments can be built up,
from one task to another and so on. Function

KHE_TASK KheTaskRoot ( KHE_TASK t ask) ;

returns theoot of t ask: the last task on the chain of assignments leading otasit, possibly
task itself. The resultis neveMULL, but it could be a cycle task (Section 4.6.2). Function
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KHE_TASK KheTaskPr oper Root ( KHE_TASK t ask) ;

Is like KheTaskRoot except that it excludes assignments to cycle tasks from the chain of
assignments it follows. The result is a cycle task only whesk itself is a cycle task.

The next function is offered as an aid to solvers, to help them to decide whether they should
try to assign a resource to a given task, or not:

bool KheTaskNeedsAssi gnment (KHE_TASK t ask) ;

Irrespective of whetharask is currently assigned or not, this function returnse whent ask
needs to be assigned a resource in order to avoid a positive cost (hard or soft) among the event
resource constraints that apply to it, taking the rest of the current solution as fixed.

This function is mainly useful when repairing solutions. When constructing initial solutions
it will often be misleading, since when none of the tasks subject to a limit resources constraint
with a positive minimum limit is assigned (as is the case initially), it will say that all of them need
assignment, when in fact only some of them (enough to reach the limit) need assignment.

Although the idea ofkheTaskNeedsAssi gnnent is simple enough, there are several
wrinkles, which we explain now by describing the implementation.

First,KheTaskNeedsAssi gnnent finds the proper root dfask, as defined just above, and
applies itself to that task. This is because the intention is to determine wheitlemeeds
assignment to a resource, not to another task, and assignments to other tasks are taken as fixed.
It's best, on the whole, ifask itself is already a proper root task.

The next step is to check the tasks assignetlatk recursively. If any of them need
assignment, then so doessk. Otherwise, it remains to chetlask itself.

If t ask is not derived from an event resource, then it does not need assignment. Otherwise,
KheTaskNeedsAssi gnnent callskheEvent Resour ceNeedsAssi gnnent (Section 3.6.3). If this
returnsKHE_NO or KHE_YES, KheTaskNeedsAssi gnnent returns al se or t r ue immediately. If
it returnsKHE_MAYBE, thent ask’s monitors are searched for limit resources monitovgith a
positive minimum limit, and each is handled as follows.

If mis below the limit, then irrespective of whether or matk is assigned, clearly it needs
to be assigned. Otherwiseis at or above the limit. If ask is either unassigned or assigned a
resource of no interest tg then it does not need to be assigned, since other tasks are satisfying
m This leaves one awkward cagseis satisfied, butask is assigned in a way that contributes to
that satisfaction, and it may be that if it was not assignaduld not be satisfied.

We need to work out what would happen if the task was unassigned. We do that by finding
the total duration of all descendant tasks of the proper root task that are monitoredrxy
comparing their total duration with the amount by whicexceeds its limit.

Task assignments may be fixed and unfixed as usual, by calling
voi d KheTaskAssi gnFi x( KHE_TASK t ask);

voi d KheTaskAssi gnUnFi x( KHE_TASK t ask) ;
bool KheTaskAssi gnl sFi xed( KHE _TASK t ask);

The assignment ofask cannot be changed while the fix is in place. When several tasks are
linked by an avoid split assignments constraint, assigning all but one of them to that one and fix-
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ing those assignments, or assigning all of them to some other task and fixing those assignments,
has a significant efficiency payoff. Function

KHE_TASK KheTaskFi r st UnFi xed( KHE_TASK t ask);

returns the first task on the chain of assignments otuésf whose assignment is not fixed (pos-
siblyt ask), orNULL if none. A solver can change the resource assigneastoonly by changing
the assignment dfheTaskFi r st UnFi xed(t ask) , or of a task further along the chain.

4.6.2. Cycle tasks and resource assignment

Just as meets are assigned times by assigning them, directly or indirectly, to cycle meets, so tasks
are assigned resources by assigning them, directly or indirecttydie tasks A cycle task

has typeKHE_TASK as usual, and it has many of the properties of ordinary tasks. But it is also
associated with a particular resource (and its domain is fixed to just that resource and cannot be
changed), and so by assigning a task to a cycle task one also assigns a resource.

The user cannot create cycle tasks directly. Instead, one cycle task is created automatically
for each resource whenever a solution is created. Thefiesinst anceResour ceCount tasks
of a solution are its cycle tasks, in the order the resources appear in the instance. Function

bool KheTaskl sCycl eTask( KHE_TASK t ask);
returng r ue whent ask is a cycle task. Function
KHE TASK KheSol nResour ceCycl eTask( KHE_SOLN sol n, KHE RESOURCE r);

returns the cycle task representmm sol n.
These functions move a task to a resource, following the familiar pattern:

bool KheTaskMoveResour ceCheck( KHE _TASK task, KHE RESOURCE r);
bool KheTaskMoveResour ce( KHE TASK task, KHE RESOURCE r);

They first produce a target task. rifis nonNULL this is the cycle task returned by function
KheSol nResour ceCycl eTask above, otherwise it iSULL. Then they calkheTaskMveCheck
andKheTaskMyve. Tasks may also be assigned to cycle tasks directly, ibieitpskMove etc.

The following functions are also offered:

bool KheTaskAssi gnResour ceCheck( KHE TASK task, KHE RESOURCE r);
bool KheTaskAssi gnResour ce( KHE TASK task, KHE RESOURCE r);

bool KheTaskUnAssi gnResour ceCheck( KHE TASK t ask);

bool KheTaskUnAssi gnResour ce( KHE_TASK t ask) ;

KHE_RESOURCE KheTaskAsst Resour ce( KHE_TASK t ask) ;

The first four are wrappers fatheTaskAssi gnCheck, KheTaskAssi gn, KheTaskUnAssi gnCheck,
andkheTaskUnAssi gn. KheTaskAsst Resour ce follows the assignments obsk as far as possible.
If it arrives at a cycle task, it returns the resource represented by that task, else itKeturns

To find the tasks assigned a given resource, either directly or indirectly via other tasks, call
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i nt KheResour ceAssi gnedTaskCount ( KHE SOLN sol n, KHE RESOURCE r);
KHE TASK KheResour ceAssi gnedTask( KHE_SOLN sol n, KHE RESOURCE r, int i);

When aresourceis assigned to a task, the task and all tasks assigned to it, directly or indirectly,
go on the end of 's sequence. Whenis unassigned from a task, the task and all tasks assigned
to it, directly or indirectly, are removed, and the gaps are plugged by tasks taken from the end.
The sequence does not includg cycle task.

In practice, tasks are of three kindsycle taskswhich represent resourcesgnfixed tasks
which require assignment to cycle tasks; &irdd taskswhose assignments are fixed to unfixed
tasks, relinquishing responsibility for assigning a resource to those tasks. Resource assignment
algorithms are concerned with assigning or reassigning unfixed tasks.

4.6.3. Task domains and bounds

Each task contains a resource group calledadtmain retrievable by calling
KHE_RESOURCE_GROUP KheTaskDomai n( KHE_TASK t ask):

When a task is assigned a resource, that resource must be an element of its domain.

More precisely, the solution invariant says thask’s domain must be a superset of the
domain of the task it is assigned to, if any. So, given a chain of assignments beginrasg at
and ending at a cycle task, the domain a§k must be a superset of the domain of the cycle task.
Since the domain of a cycle task is a singleton set defining a resource, the resource assigned to
t ask by this chain of assignments liestiask’s domain.

Task domains cannot be set directly. Instdadk boundobjects influence them. Task
bounds work in the same way as meet bounds, except that the complications introduced by meet
splitting are absent. To create a task bound object, call

KHE_TASK_BOUND KheTaskBoundMake( KHE_SOLN sol n, KHE_RESOURCE_GROUP rg);
To delete a task bound object, call

bool KheTaskBoundDel et eCheck( KHE_TASK BOUND tb);
bool KheTaskBoundDel et e( KHE_TASK BOUND tb);

This includes deletingb from each task it is added to, and is permitted when all of those
deletions are permitted, accordingdweTaskDel et eTaskBoundCheck, defined below.

To retrieve the attributes defined when a task bound is created, call

KHE_SOLN KheTaskBoundSol n( KHE_TASK BOUND t b);

KHE_RESOURCE _GROUP KheTaskBoundResour ceGroup( KHE_TASK BOUND tb);
These are rarely accessed in practice.

A task may have any number of task bounds. Its domain is the intersection, over all its task
bounds b, of KheTaskBoundResour ceG oup(t b) , or the full set of resources of its type if none.
A task bound may be added to any number of tasks. To add a task bound, call
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bool KheTaskAddTaskBoundCheck( KHE TASK task, KHE TASK BOUND tb);
bool KheTaskAddTaskBound( KHE TASK task, KHE TASK BOUND tb);

These follow the usual form, returningue when the addition is permitted (when the change
in t ask’s domain it causes does not violate the solution invariant), Wi#TaskAddTaskBound
actually carrying out the addition in that case. To delete a task bound from a task, call

bool KheTaskDel et eTaskBoundCheck( KHE TASK t ask, KHE TASK BOUND tb);
bool KheTaskDel et eTaskBound( KHE_TASK t ask, KHE TASK BOUND tb);

This too is not always permitted, because it may incréask’s domain, which may violate the
solution invariant with respect to the domains of tasks assigneasta

To visit the task bounds added to a given task, call

i nt KheTaskTaskBoundCount ( KHE_TASK t ask) ;
KHE_TASK _BOUND KheTaskTaskBound( KHE_TASK task, int i);

as usual. To visit the tasks to which a given task bound has been added, call

i nt KheTaskBoundTaskCount (KHE _TASK BOUND tb);
KHE_TASK KheTaskBoundTask( KHE_TASK BOUND th, int i);

The relationship between tasks and task bounds is a many-to-many one.

Adding a task bound to a task has some cost in run time, but is fast enough to use within
solvers. The implementation parallels the one described previously for meet bounds.

WhenkheTaskMake makes a task derived from an event resource which has a preassigned
resource, it adds to the task a task bound whose resource group is the singleton resource group
containing that resource. No other special arrangements are made for tasks derived from
preassigned event resources.

4.7. Resource availability

Evaluators and solvers may wish to know how available a resource is: how much more work it
could do without becoming overloaded. This section presents KHE's functions for this.

4.7.1. Resource availability functions

The maximum loadf a resource is the maximum amount of work thatcould do without
violating any resource constraint of non-zero weight (hard or soft). ctineent loadis the
amount of work that is doing now (in a given solution), and #sailable loadis its maximum
load minus its current load. Available load could be negative, in whichrcesaverloaded In

that case, at least one of its resource constraints of non-zero weight must be violated.

Here ‘load'refersto either of two measures: the total number of times occupied by the tasks
thatr is assigned to, or their total workload.

The maximum load is the maximum, over all timetables fahich do not violate any af's
preassignments or resource constraints, of the load of the timetable. These two functions return
an estimate of the maximum load, which is usually the true value but may be higher:
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bool KheResour ceMaxBusyTi mes(KHE _SOLN sol n, KHE RESOURCE r, int =*res);
bool KheResour ceMaxWor kl oad( KHE_SOLN sol n, KHE RESOURCE r, float =*res);

If they can show that constraints limits maximum load to a non-trivial value, they retunrue
and setr es to that value. Otherwise they retural se with *r es set tol NT_MAX or FLT_MAX.

KheResour ceMaxBusyTi nes andKheResour ceMaxWr kI oad depend only on the instance,
not on the solution. They are presented as they are because their results are cached in the solution
by the first call, ensuring that subsequent calls take almost no time. This is important, because
they are slow. (The other option which supports caching, which is to calculate them for every
resource while finalizing the instance, seems too burdensome for users who do not need them.)

Next come two functions which calculate the current load:

i nt KheResour ceBusyTi mes( KHE_SOLN sol n, KHE_RESOURCE r);
fl oat KheResour ceWor kl oad( KHE_SOLN sol n, KHE_RESOURCE r);

These return the total duration of the tasks currently assignéd sol n, and their total
workload. They could be implemented by traversing the tasks assignedng functions
KheResour ceAssi gnedTaskCount andKheResour ceAssi gnedTask (Section 4.6.2), but in fact
KHE keeps track of their values as tasks are assigned and unassigned, so they are very fast.

Finally come two functions that calculate availability:

bool KheResour ceAvai | abl eBusyTi mes( KHE_SOLN sol n, KHE RESOURCE r, int =*res);
bool KheResour ceAvai | abl eWor kl oad( KHE_SOLN sol n, KHE RESOURCE r, float *res);

These are the sameléteeResour ceMaxBusyTi nes andkheResour ceMax\Wor kI oad, except they
subtract the current load from es when they returmr ue. So+res could be negative here.

4.7.2. How resource availability is calculated

This section explains howheResour ceMaxBusyTi nes and KheResour ceMaxWr ki oad are
implemented. We start witkheResour ceMaxBusyTi mes. Owing to caching it does its work
only once per resource, so it is more concerned with finding a good limit than running quickly.

A resource’s maximum number of busy times depends on its avoid unavailable times, limit
busy times, and cluster busy times constraints of non-zero weight, soft as well as hard. There are
cases where this number is easy to find. For example, it could be the maximum limit of a limit
busy times constraint whose time group is the entire cycle. But there are other, more complicated
possibilities. A cluster busy times constraint might limit the number of busy days, and then limit
busy times constraints might limit the number of busy times on each day. Or there might be limits
on each day or week, which need to be added to give the overall limit.

Possibilities like these explain whsheResour ceMaxBusyTi nes is not always exact. It
proceeds as follows, for each resource separately. The following applies to one resource,

An avail nodeis a set of times plus a non-negative integer limit. Its meaning isrtieat
constrained to be busy for at most the limit number of times from the set.

At various points in the following description, it says that an avail nodéth a given set
of times and limit is created. This statement is to be understood as subject to these rules:
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If atimet is known to lie in an avail node with limit O containing justhent can be omitted
from every other node without changing the node’s limit. All such times are deleted from
X's times beforex is created, and before the following rules are applied.

If X's limitis equal to or larger than its number of times, thesffers no useful information
and itis not created. This includes all avail nodes whose set of times is empty.

If several avail nodes containing the same set of times are createdfdy one of them,
one whose limitis minimal, is kept; the others are either not created at all, or destroyed when
a node with a smaller limit is created.

Here is the algorithm fokheResour ceMaxBusyTi mes. Its first phase usess constraints to
create avail nodes wherever they can be justified, as follows. These four cases are handled first:

1.

Suppose that all events have preassigned times, as occurs in nurse rostering but not high
school timetabling. Suppose that at some tinadl of the event resources o type in the

events running datare preassigned resources other thaihent is unassignable as far as

r is concerned. For each suglereate one avail node containing limit O and

If r is subject to an avoid unavailable times constraint of non-zero weight, then create one
avail node for each time of the constraint, containing limit 0 and that time.

If r is subject to a limit busy times constraint of non-zero weight with maximum limit O,
then create one avail node for each time of the constraint, containing limit 0 and that time.

If r is subject to a cluster busy times constraint of non-zero weight with maximum limit
0, then create one avail node for each time in each positive time group of the constraint,
containing limit 0 and that time.

Next, the algorithm handles these four cases. It makes two passes over the relevant constraints,
because a node derived from one can open the way to nodes derived from others.

5.

If r is subject to a limit busy times constraint of non-zero weight with maximum limit
m > 0, then create one avail node for each time group of the constraint, whose times are the
times of the time group, and whose limitns

Suppose thatis subject to cluster busy times constrasrdf non-zero weight with maxi-

mum limitm > 0. For each positive time groupof c, define a set of times and a limit as
follows. The set of times consists of the timesgpminus any for which there is an avail

node with limit O containing just that time. The limit is the number of times in that set,
unless there is already an avail node whose times are the times of that set, in which case the
limitis that node’s limit. Then define an avail node as follows. Sort the limits of the positive
time groups, as just defined, into decreasing order. The new node’s times are the times of
the positive time groups, and its limit is the sum of the finsaf the sorted limits.

When history is present, the maximum limitis replaced by maf0,m - x) in accordance
with the meaning of history. Iin < x; the resource is overloaded even if every time group
is inactive, but that possibility is not taken into account here.
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7. Suppose that is subject to cluster busy times constraindf non-zero weight with a
non-zero minimum limit (including not allowing zero). This may be the same constraint
as in the previous point. Thenmay be converted into an equivalent cluster busy times
constraintc’ with the same time groups, but with their polarities reversed, and maximum
limit equal to the number of time groups minus the minimum limit. For examptes#ys
thatr must be free on at least 8 out of 28 days, thesays that must be busy on at most
20 out of 28 days. So make this conversion (notionally) and apply the previous point. For
a proof that the conversion is correct in general, see the end of Section 3.7.14.

When history is present, suppose thdtasn time groups, minimum limitn, and history
valuesa, andx;. According to the conversion, the revised history valug isx;, and the
revised limit (how a maximum limit) i;—m. So altogether the maximum limit comes

to max0, (n—m) - (g — X)).

8. Suppose thatis subject to a limit workload constraiabf non-zero weight with maximum
limit m. For each time groug of c, proceed as follows. For each tirhef g, find w(t,r),
the minimum workload per time thatcould incur when it is busy dt Sort thew(t,r) of
ginto increasing order, and lktbe the largest integer such that the sum of theKicgtthe
w(t,r) does not exceeah. Thenk is the largest number of times thatan be busy within
g without violatingc, so create an avail node containing the timeg wfith limit k.

To findw(t,r), proceed as follows. L&k be the set of all event resources whose type is the
type ofr. Make the following definitions:

* W, isthe minimum, over all event resourcel§ Sthat lie in unpreassigned events and
are themselves unpreassigned, of the workload per tinse of

¢ W, (t)isthe minimum, over all event resources Sthat lie in preassigned events that
run during timet, and are themselves unpreassigned, of the workload per tisie of

*  W,(r)is the minimum, over all event resources Sthat lie in unpreassigned events
and are themselves preassigngeof the workload per time oé.

* Wy (t,r)isthe sum, over all event resources Sthat lie in preassigned events that run
during timet, and are themselves preassigngaf the workload per time o.

Definew,, w,(t), W,,(r), andw,(r,t) to bec when their defining sets of event resources

uw 'p
are empty. Sev(r,t) tow,(r,t) if w,(r,t) < co, and to mirfw,, W, (t), w,,(r)) otherwise.

If w(r,t) = oo, thenr cannot be busy at timeso add an avail node containihgnd limit O,
and proceed as thouglis not present ig. Also, if w,(r,t) < e, thenr must be busy &t
so subtracty,(r,t) from mand proceed as thouglis not present irg.

This ends the first phase. Its result is a set of avail nodes.

The second phase uses a graph whose nodes are the first phase’s avail nodes. An edge joins
two nodes when their sets of times have a non-empty intersection. Any independent set in this
graph (any set of nodes such that no two are connected by an edge) defines a larger avail node
whose set of timeSis the union of its nodes’ sets, and whose litis the sum of their limits.

Let the set of times of the whole cycle k= The independent set says that of thigje
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times |S|times are subject to limlt. The remainindC| — [Stimes are not limited. Overall, then,
it places a maximum limit of’ = L + [C| — [§] on the number of times thatcan be busy.

So the second phase finds an independent set for whighas small as possible. This
problem is closely related to the problem of finding a maximum independent set, making it
NP-complete, s&kheResour ceMaxBusyTi nes uses a simple heuristic. It sorts the avail nodes
into decreasing time set size order. Then, for each node in that order, it finds one independent
set, by starting with that node and then examining each following node in order, adding a node
whenever its times do not intersect with the times of the previously added nodes. Itthen chooses,
from these independent sets, one for wHi¢s minimum, and returns that as its result.

KheResour ceMaxWor kl oad is simpler because it is affected only by limit workload
constraints. It works in the same wayk®Resour ceMaxBusyTi mes, finding avail nodes and
building independent sets, but the avail nodes come from just one source:

9. Foreachtime group of each limit workload constraint of non-zero weight with a maximum
limit, build one avail node containing the times of the time group and the maximum limit.

Only independent sets that cover the whole cycle can be used, since the algorithm knows nothing
about workload in the uncovered times. The result is the total limit of the chosen set.

To limit running time on large instances, such as the last few CQ14 instances, the algorithm
exits early when 20 candidate independent sets have been tried since the most recent new best.

KheResour ceMaxWor kIl oad produces an integer despite its return type béimat , because
the maximum limits of limit workload constraints are integekdeResour ceWr kl oad and
KheResour ceAvai | abl eWor kl oad, on the other hand, can return fractional values.

The cases covered here are not the only possibilities. Limit active intervals constraints force
resources to have some free time, for example. Pairs of nodes whose time sets have a non-empty
intersection can still be useful, if the intersection is small. But we have to stop somewhere, and
the independent sets suggest that finding the true limit is likely to be an NP-complete problem.

4.7.3. Detailed querying of resource availability

KHE offers functions for querying in detail how resource availability is calculated. The first step
is to obtain aesource availability solveby calling

KHE_AVAI L_SOLVER KheSol nAvai | Sol ver (KHE_SCLN sol n);

Each solution object has one resource availability solver, which is created the first time it is
needed (e.g. wheftheSol nAvai | Sol ver isfirst called) and stored in the solution object. It uses
sol n’s memory arena, so it will be deleted whewi n is deleted or made into a placeholder. It
uses memory fairly efficiently, recycling what it uses through its own free lists.

To query the availability of a particular resource frent n’s instance, start by calling
voi d KheAvai | Sol ver Set Resour ce( KHE_AVAI L_SOLVER as, KHE RESOURCE r);

This runs the algorithm from the previous sectionrgieeping the resulting best independent
sets, one for busy times and one for workload. It is fairly slow, so it is best if all queriesabout
are made after one call kheAvai | Sol ver Set Resour ce.
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After that, several functions become available. To begin with,

bool KheAvai | Sol ver MaxBusyTi mes( KHE _AVAI L_SOLVER as, int *res);
bool KheAvai | Sol ver Max\Wor kl oad( KHE_AVAI L_SOLVER as, float =*res);

are the same agheResour ceMaxBusyTi nes and KheResour ceMaxWr ki oad except that they
guery the avail solver about the set resource.

The solver recognises these types of avail node:

t ypedef enum {
KHE_AVAI L_NODE_UNASSI GNABLE_TI ME,
KHE_AVAI L_NODE_UNAVAI LABLE_TI ME,
KHE_AVAI L_NODE_LI M T_BUSY_ZEROQ,
KHE_AVAI L_NODE_CLUSTER BUSY_ZERQ,
KHE_AVAI L_NODE_LI M T_BUSY,
KHE_AVAI L_NODE_CLUSTER _BUSY,
KHE_AVAI L_NODE_CLUSTER BUSY_M N,
KHE_AVAI L_NODE_WORKLOAD

} KHE_AVAI L_NODE_TYPE;

These follow the cases given in the previous section, so should be self-explanatory. Function
char *KheAvai | NodeTypeShow( KHE_AVAI L_NODE_TYPE type);

returns a short string in static memory describing in general terms what a node with the given
type was derived from’ Unavai | abl e ti ne",and soon.

To find out how the maximum number of busy times was calculated, call

i nt KheAvai | Sol ver MaxBusyTi mesAvai | NodeCount ( KHE_AVAI L_SOLVER as);
voi d KheAvai | Sol ver MaxBusyTi nmesAvai | Node( KHE_AVAI L_SOLVER as, int i,
KHE_AVAI L_NODE_TYPE *type, int «limt, KHE TIME SET *ts, KHE MONI TOR *m);

KheAvai | Sol ver MaxBusyTi mesAvai | NodeCount returns the number of avail nodes in the
independent set chosen to define the limit, or O if the solver was unable to find a non-trivial limit.
KheAvai | Sol ver MaxBusyTi nesAvai | Node visits thei th avail node of the chosen independent
set, returning its type, its limit, its set of times, and the monitor that gave rise tdifl.brif none.

For typeKHE_TI ME_SET, see Section 5.8.

To do the same job for workload, the calls are

i nt KheAvai | Sol ver MaxWor kl oadAvai | NodeCount ( KHE_AVAI L_SCLVER as);
voi d KheAvai | Sol ver MaxWr kI oadAvai | Node( KHE _AVAI L_SOLVER as, int i,
KHE_AVAI L_NODE_TYPE *type, int *limt, KHE TIME_SET *ts, KHE_MONITOR *mj;

In this case t ype is alwaysKHE_AVAI L_NODE_WORKLOAD and+ mis nevemMULL. Again, the count
is 0 if the solver could not find a non-trivial limit.

The avail solver does not report current or available load. Details of current load may be
found by using functiong&heResour ceAssi gnedTaskCount andKheResour ceAssi gnedTask
(Section 4.6.2) to visit the tasks assigmeandKheTaskDur at i on andkheTaskWr k| oad to find
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their load. Available load is just maximum load minus current load.

4.8. Marks and paths

Suppose you want to make the best time assignment for a meet. You try each assignmentin turn,
remembering the best so far and its solution cost, then finish off by re-doing the best one.

Now suppose the alternative operations are more complicated. For example, they might
be Kempe meet moves (Section 10.2.2), each consisting of an unpredictable number of time
assignments. The same program structure works, but undoing one alternative is much more
complicated. Marks and paths solve these kinds of problems.

A markis like a waymark on a journey: it marks a particular point, or state, that a solution
has reached. Itis created and deleted by

KHE MARK KheMar kBegi n( KHE_SCLN sol n);
voi d KheMar KEnd( KHE_MARK mar k, bool undo);

These operations must be called in matching pairs: for each ¢éiétdr kBegi n there must be
one later call ta&hneMar kEnd with the same mark object. Between these two calls there may be
other calls tdkheMar kBegi n andKheMar kEnd, and those calls must occur in matching pairs.

KheMar KEnd deletes the mark created by the correspondimgvar kBegi n. If its undo
parameter isr ue, it also undoes all operations enl n since the correspondirkhpeMar kBegi n,
returning the solution to its state when that call was made. Another way to undo is

voi d KheMar kUndo( KHE_MARK mar k) ;

It undoes all operations osol n since the call tdheMar kBegi n which returnedar k, only
without removingrar k. It can only be called when it would be legal to déileMar kEnd with the
same value ofrar k: whenmar k is the mark returned most recently by a calkt@Mar kBegi n,
apart from marks already completedfiheMar KEnd.

When undoing by either method, the resulting value of the solution may differ from the
original in its naturally nondeterministic aspects, such as the set of unmatched demand monitors
(but not their number), and the order of elements in arrays representing sets (of meets, etc.). But
as a solution it will be the same as the original. KHE objects deleted while doing and re-created
while undoing are re-created with the same memory addresses as the originals.

At any time betweeKheMar kBegi n and its correspondingheMar kEnd, functions

KHE_SCLN KheMar kSol n( KHE_MARK mar k) ;
KHE_COST KheMar kSol nCost ( KHE_MARK nar k) ;

may be called to obtaimar k’s solution and the solution cost at the tirkeeMar kBegi n was
called. Exploring the result afheMar kSol n will reveal the solution as it is now, not as it was
whenKheMar kBegi n was called.

All mark objects share accessto one sequence, stored in the solution object, of records of the
operations performed on the solution since the first cadhtdvar kBegi n whose corresponding
KheMar kEnd has not occurred yet. When undoing, these operations are undone in reverse order
and removed from the sequence. All changes to solutions, including changes to back pointers,
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are recorded, except changes to visit numbers, since undoing them would be inappropriate. A
mark object holds a pointer to the solution object, its cost wievar kBegi n was called, an
index into the sequence saying where to stop undoing, and a sequence of paths, described next.

A pathis like the route between two waymarks. A path is created by calling
KHE_PATH KheMar kAddPat h( KHE_MARK mar k) ;

and represents the route from the staterwfk’s solution represented byar k to the state of

that solution at the momeitheMar kAddPat h is called. Concretely, a path holds a copy of the
shared sequence of operations, taken at the mokhehtr kAddPat h is called, from its mark’s

index to the end. As well as being returned, a path is stored in its mark and deleted by that mark’s
KheMar KEnd, if it has not been deleted before then. A path is meaningless after its mark ends.

In practice, this helper function may be more useful tkiseivar kAddPat h:
KHE_PATH KheMar kAddBest Pat h( KHE_MARK mark, int Kk);

It is written using the more basic functions given below. Its behaviour is equivalent to calling
KheMar kAddPat h( mar k) , then sortingrar k’s paths into increasing cost order, then deleting paths
from the end as required to ensure that not more khaaths are kept. But rather than following
this description literally, it uses an optimized method that only ddiédvar kAddPat h( mar k)

when the resulting path would be one of those kept; it returns the new path in that cadé,land
otherwise. For exampl&heMar kAddBest Pat h(mark, 1) saves only the best path, and only
creates a path when it would be a new best.

Any number of paths may be stored in a mark, and they may be visited using

i nt KheMar kPat hCount ( KHE_MARK mar k) ;
KHE_PATH KheMar kPat h( KHE_MARK nmark, int i);

as usual, and sorted by calling

voi d KheMar kPat hSort ( KHE_MARK nar k,
i nt(*conpar)(const void *, const void *));

whereconpar is a function suited to passingdeor t when sorting an array ¢fHE_PATH objects.
One such functiorkhePat hl ncr easi ngSol nCost Cnp, is provided, such that after calling

KheMar kPat hSort (mar k, &KhePat hl ncr easi ngSol nCost Cnp) ;

the paths will be sorted into increasing solution cost order, so that the path with the smallest
solution cost comes first. The following operations on paths are also available:

KHE_SOLN KhePat hSol n( KHE_PATH pat h) ;
KHE_COST KhePat hSol nCost ( KHE_PATH pat h) ;
KHE_MARK KhePat hMar k( KHE_PATH pat h) ;

voi d KhePat hDel et e( KHE_PATH pat h);

voi d KhePat hRedo( KHE_PATH pat h) ;

KhePat hSol n returnspat h’s solution, andkhePat hSol nCost returns the solution cost at
the moment the path was created KheMar kAddPat h. KhePat hMark returnspat h’s mark.
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KhePat hDel et e deletespath, including removing it from its mark.KheMar kEnd calls
KhePat hDel et e for each of its paths; once a mark is deleted, its paths have no meaning.

WhenKhePat hRedo( pat h) is called, the solution must be in the state it was in wierh’s
mark was created. It redopst h, without deleting or otherwise disturbing its mark, so that the
state after it returnsis the state at the enpladvh. Thisisthe only way to redo a path, and because
it checks that it starts from the same state that the path started from originally, it guarantees that
the operations executed while redoing the path cannot fail. KHE objects created along the path
and deleted during the undo (which must have occurred in order to return the solution to its
original state) are re-created during the redo with the same memory addresses as the originals.

One application of marks and paths is the conversion of a sequence of operations into an
atomic sequengene which is either carried out completely or not at all:

mar k = KheMar kBegi n(sol n);
success = SonmeSequenceCf Cperations(...);
KheMar KEnd( mar k, !success);

If the sequence of operations is successful, it remains in place; otherwise the unsuccessful
sequence, or whatever part if it was completed before failure occurred, is undone. Similarly,

mar k = KheMar kBegi n(sol n);
SomeSequenceC Qperations(...);
KheMar KEnd( mar k, KheSol nCost (sol n) >= KheMar kSol nCost (nmark) ) ;

keeps the sequence of operations if it reduces the cost of the solution, but not otherwise.

Another application is the coordination of complex searches, such as tree searches, which
try many alternatives and keep the best. Before the search begins, create a mark, and pass it
to the search function, so that whenever it finds a worthwhile state it can record it in the mark
by calling KheMar kAddPat h or KheMar kAddBest Pat h. (If the initial state is a valid solution,
one that the rest of the search is trying to improve on,edMar kAddPat h immediately after
KheMar kBegi n.) Within the search function, create other marks as required so that subtrees can
be undone by callingheMar kEnd( sub_nark, true). Atthe end,all worthwhile states are paths
in the original mark, where they can be examined, sorted, or whatever—Ilike this, perhaps:

i f( KheMarkPat hCount (nmark) > 0 )
KhePat hRedo( KheMar kPat h(mark, 0));
KheMar KEnd( mar k, fal se);

when only the best path is kept. If it is safe to redo that path, there can be nothing to undo.

Marks and paths have been implemented carefully, and their running time is small. Indeed,
it is usually faster to use marks and undoing to return a solution to a previous state, than to
use operations opposite to the originals. This is bec#skar kBegi n andKheMar kEnd call
KheSol nMat chi ngMar kBegi n andKheSol nMat chi ngMar KEnd (Section 7.2), and because there
Is no need to check that an undo is safe, as there is when carrying out an opposite operation.
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4.9. The solution invariant

Here is the condition, called the solution invariant, that every solution always satisfies. The last
three rules relate to data types introduced in Chapter 5.

1. Themeetrule if meet is assigned tbar get _neet at offsetof f set , then:

(&) The value obf f set is at least 0 and at most the durationtaf get _neet minus the
duration ofneet ;

(b) The time domain of ar get _neet , shifted rightof f set places, is a subset of the time
domain ofneet ;

2. Thetask rule if task is assigned ta arget _task, then the resource domain of
target _task is a subset of the resource domairt a$k.

3. Thecycle rule the parent links of nodes may not form a cycle.

4. Thenoderule if meetneet is assigned to meetr get _neet and liesin node, thenn has
a parent node artchr get _neet lies in that parent node.

5. Thelayer rule every node of a layer has the same parent node as the layer.

No sequence of operations can bring a solution to a state that violates this invariant.
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This chapter introduces several types of objects that help with solving. Four of tlogiesay-

ers zonesandtasking3are integral to solutions, being copied when they are copied, for example.
But they are not part of the XML model, so their use is optional. Nodes and layerstogether define
thelayer tree a data structure invented by the author [7] for use in time assignment. Zones help
to make time assignments regular, and taskings are used in resource assignment.

5.1. Layer trees

The layer tree is a data structure for organizing solutions during time assignment. It supports
hierarchical timetablingin which meets are timetabled together into small timetables called
tiles, the tiles are timetabled together, and so on until a complete timetable is produced. Layer
trees are recommended when solving general instances, since they gracefully handle awkward
cases, such as linked events whose durations differ.

Layer trees are made ofodes which form a tree (actually, a forest). Each node has an
optionalparent node The nodes with a given parent aredtsldren

Within each node lie any number of meets. Tiaale rule part of the solution invariant
(Section 4.9), imposes a structure on how the meets of nodes may be assigneet i§
assigned tovar get _nmeet and lies in node, thenn has a parent node amdr get _neet liesin
that parent node. A layer tree usually has a single root node containing the cycle meets, called the
cycle node If there is a cycle node, the node rule guarantees that if every non-cycle meet lying
in a node is assigned to some meet, then every such meet is assigned a time.

A meet may lie in at most one node. When using layer trees, it is conventional for every
meet to lie in a node except when it has received its final assignment. Omitting meets from nodes
hides them from time assignment algorithms, which typically access meets via nodes.

When a meet splits, it is replaced in its node (if any) by the two fragments. When two meets
merge, they must lie in the same node (or none), and they are replaced by the merged meet.

A layeris a subset of the children of some node with the property that none of the meetsin
the nodes of the layer may overlap in time. This could be for any reason, but it is usually because
their meets all share a preassigned resource which possesses a required avoid clashes constraint.
The property is not enforced by KHE; it is merely a convention.

Here are some examples of layer trees. The first has four nhdag,n,, andn,. Then,
share a layer and are children f so their meets must be assigned to meets aihd should
not overlap in time:

N
n

1 n, N

The nodes are shown as rectangles. The horizontal direction represents time. Thah#re

117



118 Chapter 5. Extra Types for Solving

a layer is indicated by placing them alongside each other, and that they are childxers of
indicated by placing them vertically beldw

In the next example\ has five children, lying in two layer§n,, n,, n;} and{m,, m.}:

N
n n, N

m, m,

This could arise when one group of students attends tivile another group attends thg
Finally, here is an example where a node lies in two layers (but still has only one parent):

N
nm, n, ks

m, m;

The two layer§ nm, n,,n;} and{nm, m,, m;} both contain nodem,. This case arises naturally
when an event (or a set of linked events) is attended by two groups of students, so that their
timetables coincide at that event but may differ elsewhere.

The key operation in hierarchical timetabling is the assignment of the meets of the children
of a node to the meets of the node, so that meets that share a layer do not overlap. One way to
construct a timetable is to build a layer tree containing every meet, whose root node contains the
cycle meets, and apply this operation at each node, visiting the nodes in postorder (bottom up).

5.2. Nodes

To create a layer tree node, initially with no meets, no parent, and no children, call
KHE_NODE KheNodeMake( KHE_SCLN sol n);

Its back pointer may be accessed by

voi d KheNodeSet Back( KHE_NCDE node, void *back);
voi d *KheNodeBack( KHE_NODE node);

and its visit number by

voi d KheNodeSet Vi si t Nunm{ KHE_NCDE n, int nunj;
i nt KheNodeVi si t Num( KHE_NODE n) ;

bool KheNodeVi sited(KHE_NODE n, int slack);
voi d KheNodeVi si t (KHE_NODE n);

voi d KheNodeUnVi si t ( KHE_NCDE n);

as usual, and its other attributes may be retrieved by calling

KHE_SOLN KheNodeSol n( KHE_NCDE node) ;
i nt KheNodeSol nl ndex( KHE_NODE node) ;
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KheNodeSol nl ndex returns thendexof node: the value of for whichKheSol nNode(sol n, i)
(Section 4.2.7) returnsode. The index may change when nodes are deleted (what actually
happens is that the hole left by the deletion of a node, if not last, is plugged by the last node) so
care is needed if indexes are stored. To visit the nodes of a solution in increasing index order,
use functiongheSol nNodeCount andKheSol nNode from Section 4.2.7. To delete a node, call

bool KheNodeDel et eCheck( KHE_NODE node);
bool KheNodeDel et e( KHE_NODE node);

This deletes all parent-child links involvimgde, and deletes all meets fromde (but does not
delete them). It is permitted only when no meets assignedde’'s meets lie in a node.
To make one node the parent of another, call

bool KheNodeAddPar ent Check( KHE_NCDE chi | d_node, KHE_NODE parent _node);
bool KheNodeAddPar ent (KHE_NCDE chi | d_node, KHE_NCDE parent _node);

These abort ithi | d_node already has a parent; they retdiat se and do nothing when adding
the link would cause a cycle. To delete a parent-child link, call

bool KheNodeDel et ePar ent Check( KHE_NODE chi | d_node);
bool KheNodeDel et ePar ent ( KHE_NODE chi | d_node);

Deletion is permitted only when none of the meetslufl d_node is assigned. The gap created
in the list of child nodes of the parent node by the deletiophofl d_node is filled by shuffling
the following nodes down one place. To retrieve the parent of a node, call

KHE_NCDE KheNodePar ent ( KHE_NODE node) ;

ThisreturndULL whennode has no parent. Children are added and deleted, obviously, by adding
and deleting parents. Functions

i nt KheNodeChi | dCount ( KHE_NCDE node);
KHE_NCODE KheNodeChi | d( KHE_NODE node, int i);

visit a node’s children in the usual way. There are also

bool KheNodel sDescendant (KHE_NODE node, KHE NODE ancestor _node);
bool KheNodel sProper Descendant (KHE_NODE node, KHE NODE ancestor _node);

KheNodel sDescendant returnst r ue whennode is a descendant afncest or _node, possibly
ancest or _node itself; KheNodel sProper Descendant returnstrue whennode is a proper
descendant oéncest or _node, that is, a descendant other thamcest or _node itself. They
work in the obvious way, searching upwards froode for ancest or _node.

Several helper functions for rearranging nodes appear in Section 9.5. They are often more
useful tharkheNodeAddPar ent andkKheNodeDel et ePar ent . Some of them call

voi d KheNodeSwapChi | dNodesAndLayer s( KHE_NCDE nodel, KHE_NCDE node2);

This function makes all the child nodes and child layersafel into child nodes and child
layers ofnode2 and vice versa. The child nodes and layers are the exact same objects as before,
stored in the same order as before; only their parent node is changed. Any assigned meets lying
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in child nodes of either node are unassigned (otherwise the node rule would be violated).

A meet may lie in at most one node, and functiteMeet Node (Section 4.5) returns the
node containing a given meet, if any. To add a meet to a node and delete it, the operations are

bool KheNodeAddMeet Check( KHE_NODE node, KHE_MEET neet);
bool KheNodeAddMeet ( KHE_NODE node, KHE MEET neet);

bool KheNodeDel et eMeet Check( KHE_NODE node, KHE MEET neet);
bool KheNodeDel et eMeet ( KHE_NCDE node, KHE MEET neet);

KheNodeAddMeet Check andKheNodeAddMeet abort if neet already lies in a node, and return
fal se if it is already assigned to a meet not in the pareniafe. KheNodeDel et eMeet Check
andKheNodeDel et eMeet abort if neet does not lie imode, and returrf al se if a meet from a
child of node is assigned taeet . Functions

i nt KheNodeMeet Count ( KHE_NODE node) ;
KHE MEET KheNodeMeet (KHE _NCDE node, int i);

visit the meets of a node in the usual way. The order that meets are stored in nodes and returned
by these functions is arbitrary, and the user can change it by calling

voi d KheNodeMeet Sort ( KHE_NODE node,
i nt(*conpar)(const void *, const void *))

whereconpar is a comparison function suitable for passingisort. Two such comparison
functions are supplied. One sorts the meets into decreasing duration order:

i nt KheMeet Decr easi ngburati onCnp(const void *pl, const void *p2);
Here is the implementation:

i nt KheMeet Decr easi ngburati onCmp(const void *pl, const void *p2)
{
KHE_MEET neetl = x (KHE_MEET *) pl;
KHE_MEET neet2 = x (KHE_MEET *) p2;
i f( KheMeetDuration(neetl) != KheMeetDuration(neet2) )
return KheMeet Duration(meet2) - KheMeetDuration(neetl);
el se
return KheMeet | ndex(neetl) - KheMeet | ndex(neet?2);

}

Ties are broken by referring to the meet index. The other sorts meets by increasing value of the
index of the target meet, breaking ties by increasing value of the target offset:

i nt KheMeet | ncreasi ngAsst Cnp(const void *pl, const void *p2)

This brings together meets whose assignments place them adjacent in time. Unassigned meets
appear after assigned ones, but are not themselves sorted into any particular order.

Unlike cycle meets, which are different behind the scenes from other meets, cycle nodes are
just ordinary nodes whose meets happen to be cycle meets. Accordingly, function
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bool KheNodel sCycl eNode( KHE_NODE node) ;

merely returngr ue if node contains at least one meet, and its first meet is a cycle meet.
The total duration, assigned duration, and demand of the meetsl®fare returned by
i nt KheNodeDur at i on( KHE_NODE node) ;

i nt KheNodeAssi gnedDur at i on( KHE_NODE node) ;
i nt KheNodeDenmand( KHE_NODE node) ;

The duration is kept up to date and stored in the nodg)algodeDur at i on costs almost nothing.
The other two have to sum values stored in the meets, which is slower but still fast.
Following the pattern laid down in Section 1.3, function

bool KheNodeSi mi | ar (KHE_NODE nodel, KHE_NODE node2);

returnst r ue whennodel andnode2 are similar: when they contain similar events. The exact

rule is as follows. Ifnodel andnode?2 are the same node, they are similar. A nodsdisiissible

if all of its meets are derived from events, and for each event found among those meets, all of the
meets of that event lie in the node. Thus, an admissible node can be considered as a set of events.
Two distinct nodes are similar if they are admissible and each event in one can be matched up
with a similar event in the other. The definition of similarity for events is as in Section 3.6.2.

A similar property igegularity (Section 5.4). Two nodes are regular when they are the same
node or contain meets of equal durations and equal time domains. Function
bool KheNodeRegul ar (KHE_NODE nodel, KHE NODE node2, int =*regular_count);

returng r ue whennodel andnode?2 are regular, antlal se otherwise. Either way, it reordersthe

meets of both nodes so that corresponding meets have equal durations and equal time domains,
as far as possibley egul ar _count is the number of such pairs. ($oue is returned when

xregul ar _count equals the number of meets in both nodes.)

Another function useful to solvers is

i nt KheNodeResour ceDur ati on( KHE_NCDE node, KHE RESOURCE r);

This returns the total duration of meetswie and its descendants that contain a preassignment
of r. If a meet contains two such preassignments, its duration is only counted once.

To make a debug print afode onto filef p with a given verbosity and indent, call
voi d KheNodeDebug( KHE _NODE node, int verbosity, int indent, FILE *fp);

Verbosity 1 prints just the node index number, verbosity 2 adds the duration and meets, verbosity
3 adds the node’s children, and verbosity 4 adds its segments. There is also

voi d KheNodePri nt Ti met abl e( KHE_NODE node, int cell _width,
int indent, FILE *fp);

which prints a timetable showing the meetsiofle across the top, and the assigned meets lying
in child nodes ohode on subsequent lines, one line per child layer. (&t needs to have child
layers when it is called.) Parametet | _wi dt h is the width of each cell, in characters.
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5.3. Layers

A layer (not to be confused with the resource layer of Section 3.5.4) is a subset of the child
nodes of some node. The intention is that the meets of a layer's nodes should not overlap in time,
although this condition is not enforced.

For a given node there are two sets of layers of interest: the npalkeat layerswhich are
the layersit liesin (it may lie in several), anddsild layerswhich are subsets of its child nodes.
A node is a member of all of its parent layers and none of its child layers.

To create a layer of children of a given parent node, initially with no nodes, call
KHE LAYER KhelLayer Make( KHE_NCDE parent _node);
It has a back pointer and a visit number, accessed by

voi d KhelLayer Set Back( KHE_LAYER | ayer, void *back);
voi d ~KhelLayer Back( KHE_LAYER | ayer);

voi d KheLayer Set Vi si t Nun{ KHE_LAYER | ayer, int nunj;
i nt KheLayer Vi si t Nun{ KHE_LAYER | ayer);

bool KhelLayer Visited(KHE LAYER | ayer, int slack);
voi d KheLayer Vi sit (KHE_LAYER | ayer);

voi d KheLayer UnVi sit (KHE _LAYER | ayer);

as usual. Functions

KHE_NCDE KhelLayer Par ent Node( KHE_LAYER | ayer);
i nt KheLayer Par ent Nodel ndex( KHE_LAYER | ayer);

return the parent node of layer and the value of i for  which
KheNodeChi | dLayer ( KheLayer Par ent Node( | ayer), i) returnd ayer. For convenience the
solution containing it can be found by

KHE_SOLN KhelLayer Sol n( KHE_LAYER | ayer);
To delete the layer (but not its nodes), call
voi d KheLayer Del et e( KHE_LAYER | ayer);
To add and delete a child nodemdr ent _node from a layer, call

voi d KhelLayer AddChi | dNode( KHE_LAYER | ayer, KHE_NCDE node);
voi d KheLayer Del et eChi | dNode( KHE_LAYER | ayer, KHE NCDE node);

KheLayer AddChi | dNode aborts if node’s parent node andayer’s parent node are different,
andKheLayer Del et eChi | dNode aborts ifnode does not lie if ayer ; otherwise, both succeed.
When a child node is deleted from a layer, all later nodes are shuffled up one place to fill the gap.
To visit the child nodes of a layer, call

i nt KheLayer Chi | dNodeCount ( KHE_LAYER | ayer);
KHE_NCDE KheLayer Chi | dNode( KHE_LAYER | ayer, int i);
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To sort the child nodes of a layer, call

voi d KheLayer Chi | dNodesSort ( KHE_LAYER | ayer,
i nt(*conpar)(const void *, const void *));
whereconpar is a function suited to passinggeort when it sorts an array of nodes.

Although much about layers is taken on trust, lyeer ruleis enforced: the parent node of
each node of a layer equals the parent node of the layer. When the parent of a node is changed,
the node is deleted from all the layersiit lies in.

The usual reason why nodes are placed into a layer together is because their meets have one
or more preassigned resources in common, and the resources have hard avoid clashes constraints,
preventing the meets from overlapping in time. To document this reason when it applies, a layer
contains a set of resources. To add and delete a resource from this set, the functions are

voi d KhelLayer AddResour ce( KHE_LAYER | ayer, KHE_RESOURCE r);
voi d KhelLayer Del et eResour ce( KHE_LAYER | ayer, KHE RESOURCE r);

To visit this set of resources, the functions are

i nt KheLayer Resour ceCount ( KHE_LAYER | ayer);
KHE_RESOURCE KhelLayer Resour ce( KHE_LAYER | ayer, int i);
There is no check that these resources are actually preassigned to the layer's meets.
WhenKheLayer Make( par ent _node) is called, the resulting layer becomesald layerof
par ent _node. To visit the child layers of a given node, call

i nt KheNodeChi | dLayer Count ( KHE_NCDE par ent _node) ;
KHE_LAYER KheNodeChi | dLayer (KHE_NODE parent _node, int i);

Also,

voi d KheNodeChi | dLayer sSort ( KHE_NODE par ent _node,
i nt(*conpar)(const void *, const void *));

sorts the child layers gfar ent _node, usingconpar (a function suited to passing {gort) as
the comparison function, and

voi d KheNodeChi | dLayer sDel et e( KHE_NCDE par ent _node) ;

deletes all the child layers ofar ent _node, without deleting any nodes.

WhenKheLayer AddChi | dNode( | ayer, node) is called) ayer becomes @arent layerof
node. To visit a node’s parent layers, call

i nt KheNodePar ent Layer Count ( KHE_NODE chi | d_node);
KHE_LAYER KheNodePar ent Layer (KHE_NODE child_node, int i);

It is important to allow multiple parent layers in this way. For example, suppose there is one
layer for the meets attended by Year 12 students and another for the meets attended by Year
11 students. If one of the Year 11 events is linked to one of the Year 12 events by a link events
constraint, then there will usually be a single node whose subtree contains the meets of both
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events, and this node will appear in both layers. Function
bool KheNodeSanePar ent Layer s( KHE_NODE nodel, KHE NODE node2);

returng r ue whennodel andnode2 have the same parent layers.
Functions

i nt KheLayer Dur ati on( KHE_LAYER | ayer);
i nt KheLayer Meet Count (KHE_LAYER | ayer);

return the total duration dfayer ’s child nodes and the number of meets in them. These values
are stored in the layer and kept up to date as it changes, in the expectation that they will be used
when sorting layers. Similarly,

i nt KheLayer Assi gnedDur ati on( KHE_LAYER | ayer);
i nt KheLayer Demand( KHE_LAYER | ayer);

return the total duration of the assigned meetsayfer 's child nodes, and their total demand.
These values are calculated on demand, not stored, so the functions are a bit slower. There are
also set operations, implemented efficiently using bit vectors of node indexes:

bool KheLayer Equal (KHE_LAYER | ayer1, KHE_LAYER | ayer?2);
bool KheLayer Subset (KHE_LAYER | ayer1, KHE_LAYER | ayer2);
bool KheLayerDi sj oi nt (KHE_LAYER | ayer1, KHE_LAYER | ayer?2);
bool KheLayer Cont ai ns( KHE_LAYER | ayer, KHE_NODE node);

These returnir ue if | ayer 1 andl ayer 2 contain the same nodes, if every node afer 1 is a
node ofl ayer 2, if | ayer 1 andl ayer 2 contain no nodes in common, anchifde liesinl ayer .

Three functions offer more complex comparisons between layers:

bool KheLayer Sane( KHE_LAYER | ayer1, KHE LAYER | ayer2, int xsame_count);
bool KheLayer Si m | ar (KHE_LAYER | ayer1, KHE LAYER | ayer 2,

int *simlar_count);
bool KheLayer Regul ar (KHE_LAYER | ayer1l, KHE_LAYER | ayer 2,

int *regular_count);

These work in the same general way: they reorder the nodes in the two layers so that the first
xsame_count (etc.) nodes imayer 1 are equivalent in some way to the corresponding nodes in

| ayer 2, returningt r ue if this accounts for all the nodes in both layerhelLayer Sane aligns
nodesthat are the identical same ndadiel-ayer Si i | ar aligns nodes that are similar, according

to KheNodeSi m | ar from Section 5.2; andheLayer Regul ar aligns nodes that are regular,
according tkheNodeRegul ar from Section 5.2. If ayer 1 andl ayer 2 are the same layer, all

three functions returhr ue and set their count variable to the number of nodes in the layer. If
some nodes are shared between the two layers, these are always considered equivalent and they
always appear first after the layers are ordered.

These functions are implemented by calls to a more general function:

bool KheLayer Al'i gn( KHE LAYER | ayer1, KHE LAYER | ayer 2,
bool (*node_equi v) ( KHE NODE nodel, KHE NODE node2), int xcount);
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which does the same kind of alignment, first bringing identical nodes to the front of both layers,
then ordering the other nodes, callimgle_equi v to decide whether two nodes are equivalent.

Two layers that share a common parent node may be merged:
voi d KhelLayer Mer ge( KHE_LAYER | ayer1, KHE_LAYER | ayer2, KHE_LAYER *res);

The layers are deleted and replaced by layes, containing the nodes and resourcesayfer 1
andl ayer 2. It makes sense to merge, for example, when one layer is a subset of the other.

As an aid to debugging, KHE offers function
voi d KhelLayer Debug( KHE_LAYER | ayer, int verbosity, int indent, FILE *fp);

It sends a debug print dfayer tof p in the usual way.

5.4. Zones

A regulartimetable is one which has a pattern that makes it easy to understand. For example, if
a train comes every 15 minutes, then that is a regular train timetable.

In high school timetabling, two forms of regularity are importaMeet regularityis
achieved when meets which overlap in time have the same starting times and durations. It is
automatic when all meets have duration 1, but not otherwise. For example, if there are two meets
of duration 2, and one starts at the first time on Mondays while the second starts at the second
time, that is not regular. Most instances seem to have meets of durations 1 and 2, with just a few
meets of higher durations, and under those circumstances meet regularity is easy to achieve.

Node regularityis achieved when the meets of two nodes which overlap in time have the
same starting times and durations. Node regularity makes a timetable easy to understand, and
simplifies resource assignment by reducing the number of pairs of events whose meets overlap
in time, by ensuring that they generally either overlap completely or not at all.

There seems to be little value in measuring regularity formally; the important thing is to
encourage it. Thisis what zones are for.

For any node, consider the set of all pairs of the forim, 0), wheremis a meet lying im,
ando s a legal offset oim: if mhas duration 19 may only be 0; ifm has duration 20 may be
0 or 1; and so on. Such a pair is callethaet-offset of .nFor example, iin contains the cycle
meets, then there is a meet-offsetdbr each time of the cycle.

A zoneof noden s a subset of the meet-offsetsmof A zone may be created by calling
KHE_ZONE KheZoneMake( KHE_NCDE node) ;
Initially it contains no meet-offsets. Functions

KHE_NODE KheZoneNode( KHE_ZONE zone);
i nt KheZoneNodel ndex( KHE_ZONE zone);

returnzone’s node, which never changes, and the value fufr whichKheNodeZone( node, i)
returnszone. When a zone is deleted, the indexes of other zones in its node may change. (As
usual, the gap left by the deletion of the zone is plugged by moving the last zone into it, unless
the deleted zone was the last zone.) For convenience there is also
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KHE_SOLN KheZoneSol n( KHE_ZONE zone);

which returns the solution containiagne’s node.
A zone has has the usual back pointer and visit number:

voi d KheZoneSet Back( KHE_ZONE zone, void *back);
voi d *KheZoneBack( KHE_ZONE zone);

voi d KheZoneSet Vi si t Nun{ KHE_ZONE zone, int nunj;
i nt KheZoneVi si t Num KHE_ZONE zone);

bool KheZoneVi sited(KHE_ZONE zone, int slack);
voi d KheZoneVi sit (KHE_ZONE zone);

voi d KheZoneUnVi sit (KHE_ZONE zone);

A zone may be deleted by calling
voi d KheZoneDel et e( KHE_ZONE zone);

and all the zones of a node may be deleted by calling
voi d KheNodeDel et eZones( KHE_NODE node) ;

Each meet-offset may lie in at most one zone. To add a meet-offset to a zone, and to delete a
meet-offset from a zone, the operations are

voi d KheZoneAddMeet O f set (KHE_ZONE zone, KHE MEET neet, int offset);
voi d KheZoneDel et eMeet O f set (KHE_ZONE zone, KHE_MEET neet, int offset);

To retrieve the zone of a meet-offset, call
KHE_ZONE KheMeet O f set Zone( KHE_MEET neet, int offset);

All these functions abort ibf f set is not a legal offset ofreet . KheZoneAddMeet Of f set also
aborts if the meet-offset already lies in a zonezare is NULL, or neet does not lie in a node,
or zone is not a zone of the node containimget . KheMeet Of f set Zone returnsNULL if the
meet-offset does not lie in any zone, as is the case by default.

The zones of a node may be accessed from the node in the usual way:

i nt KheNodeZoneCount ( KHE_NODE node) ;
KHE_ZONE KheNodeZone( KHE_NCODE node, int i);

They are returned in an arbitrary order. The meet-offsets of a zone may be accessed by calling

i nt KheZoneMeet O f set Count (KHE_ZONE zone) ;
voi d KheZoneMeet O f set (KHE_ZONE zone, int i, KHE MEET *neet, int *offset);

They are returned in an arbitrary order. Function
voi d KheZoneDebug( KHE ZONE zone, int verbosity, int indent, FILE *fp);

produces a debug print @abne ontof p in the usual way.
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When a meet is deleted from a node or deleted altogether, all the meet-offsetsinvolving that
meet are removed from their zones. When a meet is split or merged, the meet-offsets mutate in
the appropriate way, but preserve their zones. For example, when aroéduration 3 is split
into a meem, of duration 1 and a meet, of duration 2, the meet-offsets mutate as follows:

(m’ O)’ (m7 l)’ (m! 2) - (rnl’ O)’ (rnZ’ 0)7 (rnZ’ l)

Nothing constrains a zone to hold any particular meet-offsets, and indeed nothing requires zones
to be created at all. The basic operations of KHE are not restricted in any way by zones. By
convention only, some solvers use zones to encourage meet and node regularity. See Section 9.6
for solvers that install zones.

A useful helper function when using zones is

bool KheMeet MovePreservesZones(KHE _MEET neet 1, int offsetl,
KHE_MEET neet2, int offset2, int durn);

Assuming that a meet of duratieilor n may be assigned teet 1 atof f set 1 and toneet 2 at
of f set 2, this function returnsr ue if that meet would be assigned to the same zones either way.
It treats theNULL value returned at times b$heMeet Of f set Zone as though it was a zone.

Another useful function is

i nt KheNodel rregul arity( KHE_NODE node);

It returns thdrregularity of node: 0 if none of its meets is assigned, else the number of distinct
zones ofn’s parent node that the assigned meets afe assigned to (countidyLL as a zone),

minus one. For example, wheis parent node has no zones, or all of the meetsarke assigned

to the same zone,’s irregularity is 0. One reasonable way to preserve existing regularity is

to measure the irregularity of the nodes affected by an operation beforehand, measure it again
afterwards, and undo the operation if irregularity has increased.

5.5. Taskings

A taskingis an object of typ&HE_TASKI NGrepresenting a set of tasks. A task may lie in at most

one tasking at any one time. Taskings make useful parameters to resource solvers: the solver’s
job can be to assign resources to the tasks of the tasking—any subset of the tasks of a solution.
For a deeper analysis of the role of taskings, see Section 11.2.

To create a tasking, initially with no tasks, call
KHE_TASKI NG KheTaski ngvake( KHE_SOLN sol n, KHE_RESOURCE_TYPE rt);

Whenrt is nonNULL, it signifies that all the tasks of the tasking have that type; but it may also
beNULL, in which case there is no restriction. To retrieve the two attributes, call

KHE SOLN KheTaski ngSol n( KHE_TASKI NG t aski ng) ;
KHE RESOURCE_TYPE KheTaski ngResour ceType( KHE_TASKI NG t aski ng) ;

To visit the taskings of a solution, call functiokiseSol nTaski ngCount andKheSol nTaski ng
from Section 4.2.7. To delete a tasking, without deleting its tasks, call
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voi d KheTaski ngDel et e( KHE_TASKI NG t aski ng) ;
To add a task to a tasking, and to delete it from a tasking, call

voi d KheTaski ngAddTask( KHE_TASKI NG t aski ng, KHE TASK task);
voi d KheTaski ngDel et eTask( KHE _TASKI NG t aski ng, KHE TASK t ask);

KheTaski ngAddTask aborts ift ask already lies in a tasking, or if the resource type aski ng
Is nonNULL andt ask does not have that resource typéeTaski ngDel et eTask aborts ift ask
does not lie irt aski ng. Functions

i nt KheTaski ngTaskCount ( KHE_TASKI NG t aski ng) ;
KHE_TASK KheTaski ngTask( KHE_TASKI NG tasking, int i);

visit the tasks of a tasking in the usual way, and

voi d KheTaski ngDebug( KHE_TASKI NG t aski ng, int verbosity,
int indent, FILE *fp);

produces a debug print ofski ng.

5.6. Task sets

A task seis like a tasking in that it represents a set of tasks. It is differentin that a task may lie
in any number of task sets, but it does not know which task setsiit lies in.

To create a new, empty task set for holding tasks fsoim, call
KHE_TASK SET KheTaskSet Make( KHE _SOLN sol n);
Thesol n attribute is stored in the task set and may be accessed by calling
KHE_SOLN KheTaskSet Sol n( KHE_TASK_SET ts);
To delete a task set (but not its tasks), call
voi d KheTaskSet Del et e( KHE_TASK_SET ts);

This places the task set object on a free list in its solution object, where it is available for use by
subsequent calls KheTaskSet Make on the same solution object.

To clear a task set back to the empty set of tasks, call
voi d KheTaskSet Cl ear (KHE_TASK SET ts);
To clear a task set from the end back to a point where it contaumg elements, call
voi d KheTaskSet Cl ear Fr omeEnd( KHE_TASK SET ts, int count);
To remove the last tasks from a task set, call
voi d KheTaskSet Dr opFr onEnd( KHE_TASK_SET ts, int n);

To add a task to a task set, call
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voi d KheTaskSet AddTask( KHE TASK SET ts, KHE TASK task);
To add the tasks dfs2 tot s, call

voi d KheTaskSet AddTaskSet (KHE_TASK _SET ts, KHE _TASK SET ts2);
To delete a task, call

voi d KheTaskSet Del et eTask( KHE TASK SET ts, KHE TASK task);

KheTaskSet Del et eTask aborts ift ask is not ints. If the tasks oft s are equivalent, the best
way to extract one task is

KHE_TASK KheTaskSet Last AndDel et e( KHE_TASK_SET ts);

This deletes and returns the last task gfit aborts ift s is empty.
To search a task set for a given task, call

bool KheTaskSet Cont ai nsTask( KHE_TASK _SET ts, KHE_TASK task, int *pos);
If this returng r ue, it sets+pos to the index oft ask ints. To visit the tasks of a task set, call

i nt KheTaskSet TaskCount ( KHE_TASK_SET ts);
KHE_TASK KheTaskSet Task( KHE_TASK SET ts, int i);

as usual. There are also

KHE_TASK KheTaskSet Fi r st (KHE_TASK_SET ts);
KHE_TASK KheTaskSet Last (KHE_TASK_SET ts);

which return the first and last tasks. To sort the tasks, call

voi d KheTaskSet Sort ( KHE_TASK SET ts,
i nt(*conpar)(const void *, const void *));
voi d KheTaskSet Sort Uni que( KHE_TASK SET ts,
i nt(*conpar)(const void *, const void *));
KheTaskSet Sor t Uni que callsHaAr r aySor t Uni que (Section A.1.3).
Functions

i nt KheTaskSet Tot al Durati on( KHE TASK SET ts);
float KheTaskSet Tot al Wor kl oad( KHE_TASK SET ts);

return the total duration or total workload of the task set: the sum, over alltaskshe total
duration or total workload of . Function

voi d KheTaskSet UnG oup( KHE_TASK _SET ts);

is useful whert s is being used to record a set of tasks which were assigned to other tasksin order
to ensure that they would be assigned the same resource. It removes the assignments of the tasks
of t's, but then assigns the tasks directly to the resources (cycle tasks) that they were previously

indirectly assigned to, if any, or unassigns them otherwise.
There is another possible specificationfbeTaskSet UnGr oup, saying that the assignment
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in each task ofts is changed to the grandparent task (whatever the current assignment is
assigned to). This was rejected because it misbehaves in some cases when groupings are made
in stages, with one task assigned to another and then that task assigned to a third. The preferred
specification cuts the knot by ungrouping the tasks from all groupings.

There are functions for visiting the tasks of a task set, following the usual pattern:

voi d KheTaskSet Set Vi sit Num( KHE_TASK SET ts, int num;
i nt KheTaskSet Get Vi si t Num( KHE _TASK SET ts);

bool KheTaskSet Al'l Visited(KHE TASK SET ts, int slack);
bool KheTaskSet AnyVisited(KHE TASK SET ts, int slack);
voi d KheTaskSet Al | Vi sit(KHE TASK SET ts);

voi d KheTaskSet Al | UnVi sit (KHE TASK SET ts);

These just call the corresponding task visit operation on each tasks,obexcept that
KheTaskSet Cet Vi si t Numreturns the visit number afs’s first task, aborting ift s is empty.
KheTaskSet Al | Vi si t ed returnst rue when all the calls on individual tasks returnue, and
KheTaskSet AnyVi si t ed returnst rue when any of the calls on individual tasks return true.
Which of these two truly represents the conditios1has been visited’is a matter of opinion.

There are also functions for moving, assigning, and unassigning all the tasks of a task set:

bool KheTaskSet MoveResour ceCheck( KHE TASK SET ts, KHE RESOURCE r);
bool KheTaskSet MoveResour ce( KHE_TASK SET ts, KHE RESOURCE r);

bool KheTaskSet Assi gnResour ceCheck( KHE TASK SET ts, KHE RESOURCE r);
bool KheTaskSet Assi gnResour ce( KHE_ TASK SET ts, KHE RESOURCE r);

bool KheTaskSet UnAssi gnResour ceCheck( KHE TASK SET ts);

bool KheTaskSet UnAssi gnResour ce( KHE TASK SET ts);

These are lik&kheTaskMoveResour ceCheck and so on, except that they apply to all the tasks

of ts: KheTaskSet MoveResour ceCheck checks that all the tasks ofs can be moved to,
KheTaskSet MoveResour ce checks and moves, and so on. fHl se is returned, some tasks

may have been changed and others not. If that does not suit, check first before trying to change
anything. There are also

bool KheTaskSet Part MoveResour ceCheck( KHE _TASK _SET ts,
int first_index, int |ast_index, KHE RESCURCE r);
bool KheTaskSet Part MoveResour ce( KHE_TASK SET ts,
int first_index, int |ast_index, KHE RESCURCE r);

which are likeKheTaskSet MoveResour ceCheck andKheTaskSet MoveResour ce, but applied
only to the tasks with indexes betwefen st _i ndex andl ast _i ndex (inclusive).

KHE'’s policy is for operations to returial se when they change nothing, on the grounds
that no solver wants to waste time on operations that do nothing. However this policy does not
seem to work very well here, because very often the task set move or assignment is just one
part of a larger operation. Certainly, we do not want to waste time on the larger operation if it
does nothing, but that does not prevent one part of it from doing nothing. Accordingly, these
operations all succeed (returnue) whent s is empty.

Finally,
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voi d KheTaskSet Debug( KHE TASK SET ts, int verbosity, int indent, FILE =fp);

produces a debug print 66 ontof p with the given verbosity and indent.

5.7. Meet sets

A meet sets like a node in that it represents a set of meets. It is different in that a meet may lie
in any number of meet sets, but it does not know which. Meet sets correspond closely with task
sets, so we will be brief. To create a new, empty meet set for holding meetsétomcall

KHE_MEET SET KheMeet Set Make( KHE_SOLN sol n);
To delete a meet set (but not its meets), call
voi d KheMeet Set Del et e( KHE_MEET_SET mrs) ;
A deleted meet set goes on a free list in the solution object and becomes available for re-use.
voi d KheMeet Set Cl ear (KHE_MEET_SET ns) ;
clearsts back to the empty set of meets, and
voi d KheMeet Set Dr opFr onEnd( KHE_MEET _SET ms, int n);
removes the last meets fronms. To add and delete a meet, call

voi d KheMeet Set AddMeet (KHE MEET _SET ns, KHE MEET neet);
voi d KheMeet Set Del et eMeet (KHE MEET _SET ns, KHE MEET neet);

KheMeet Set Del et eMeet aborts ifreet is not present. To search a meet set, call
bool KheMeet Set Cont ai nsMeet (KHE_MEET _SET ns, KHE_MEET neet, int *pos);
If this returng r ue, it sets+pos to the index ofreet in ns. To visit the meets, call

i nt KheMeet Set Meet Count ( KHE_MEET_SET ns) ;
KHE_MEET KheMeet Set Meet (KHE_MEET_SET ms, int i);

as usual. To sort the meets, call

voi d KheMeet Set Sort ( KHE_MEET _SET ns,

i nt(*conpar)(const void *, const void *));
voi d KheMeet Set Sort Uni que( KHE_MEET SET ns,

i nt(*conpar)(const void *, const void *));

KheMeet Set Sort Uni que callsHaAr r aySor t Uni que (Section A.1.3). Function
i nt KheMeet Set Tot al Dur ati on( KHE_MEET _SET ns) ;

the sum, over all meetsin ns, of the duration oin
There are functions for visiting the meets of a meet set, following the usual pattern:
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voi d KheMeet Set Set Vi si t Num( KHE_MEET _SET ms, int num;
i nt KheMeet Set Get Vi si t Num( KHE_MVEET_SET ) ;

bool KheMeet Set Vi sited( KHE_ MEET _SET ns, int slack);
voi d KheMeet Set Vi sit (KHE_MEET _SET ns);

voi d KheMeet Set UnVi si t (KHE_MEET _SET ns) ;

These just call the corresponding meet visit operation on each meeat,oéxcept that
KheMeet Set Get Vi si t Numreturns the visit number afs’s first meet, aborting ifrs is empty.
KheMeet Set Vi si t ed returng r ue when all the calls on individual meets retunmrue. Finally,

voi d KheMeet Set Debug( KHE_MEET_SET ms, int verbosity, int indent, FILE *fp);

produces a debug print of ontof p with the given verbosity and indent.

5.8. Time sets

A time seits like a time group in that it represents a set of times. However, it carries less baggage:
it has no name, and there is nothing equivalerdhtri meG oupNei ghbour . It is a convenient

type to use when a set of times is needed during solving. Internally, a time set holds the instance
that the times come from and a sorted array of time indexes, nothing more.

To create a new, empty time set, call
KHE_TI ME_SET KheTi meSet Make( KHE_I NSTANCE i ns, HA ARENA a);
Another way to make a time set is
KHE_TI ME_SET KheTi neSet Copy(KHE_TI ME_SET ts, HA ARENA a);
This makes a fresh copy o6 in arenaa. There is also
voi d KheTi meSet CopyEl ement s(KHE_TI ME_SET dst _ts, KHE TIME _SET src_ts);

which replaces the times of time sist _t s, whatever they are, with the timesefc_t s.
To retrieve a time set’s instance, call

KHE_| NSTANCE KheTi meSet | nst ance( KHE_TI ME_SET ts);

There is no function to delete a time set; it is deleted when its arena is deleted. But a time set can
be cleared back to the empty set of times, by calling

voi d KheTi meSet Cl ear (KHE_TI ME_SET ts);
To add times to a time set, the following operations are available:

voi d KheTi meSet AddTi me( KHE_TI ME_SET ts, KHE TIME t);
voi d KheTi meSet AddTi meG oup( KHE_TI ME_SET ts, KHE TIME_GROUP tg);
voi d KheTi meSet AddTaskTi mes( KHE_TI ME_SET ts, KHE TASK task);

These add a time, or the times of a time group, or the times a task is running (including tasks as-
signed, directly or indirectly, to that task). To add the times of a time seKtoall meSet Uni on
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below. Here and elsewhere, adding a time that is already present does nothing.
For deleting times there are

voi d KheTi meSet Del et eTi me( KHE_TI ME_SET ts, KHE TIME t);
voi d KheTi neSet Del et eLast Ti ne( KHE_TI ME_SET ts);

KheTi meSet Del et eTi ne deletest from ts, or does nothing if it is not present.
KheTi meSet Del et eLast Ti me deletes the last time froms; it must be present.
To visit the times of a time set, call

i nt KheTi meSet Ti meCount (KHE_TI ME_SET ts);
KHE_TI ME KheTi meSet Ti ne( KHE_TI ME_SET ts, int i);

in the usual way. There is also
i nt KheTi meSet Ti mel ndex(KHE_TI ME_SET ts, int i);

which returns the index of thiegh time, rather than the time itself. Irrespective of the order in
which the times were added, they are stored and visited in order of increasing index.

There are also set operations on time sets:

voi d KheTi meSet Uni on( KHE_TI ME_SET tsl, KHE_TIME_SET ts2);
voi d KheTi meSet I ntersect (KHE_TI ME_SET tsl1, KHE TIME_SET ts2);
voi d KheTimeSet bi fference( KHE_TI ME_SET tsl, KHE TIME_SET ts2);

These updates1 to hold its union, intersection, or difference witb2. Also,

i nt KheTi neSet Uni onCount (KHE_TI ME_SET tsl, KHE TIME SET ts2);
i nt KheTi neSet | ntersect Count (KHE TI ME_SET tsl, KHE TIME SET ts2);
int KheTineSetDi f ferenceCount (KHE _TI ME_SET tsl, KHE TIME SET ts2);

return the cardinality of the union, intersection, and difference without building the actual set.
KheTi neSet | nt er sect Count is optimized for the case of intersecting a small (and presumably
localized) set with a large one: it uses binary search to retrieve the indexes of the first and last
elements of the smaller set in the larger one, then only traversesthe larger one in that range. This
idea could be applied to other operations, but so far it has not been.

Several set queries are available:

bool KheTi meSet Enpt y( KHE_TI ME_SET ts);

bool KheTi meSet Equal (KHE_TI ME_SET ts1, KHE TIME_SET ts2):
bool KheTi meSet Subset (KHE_TI ME_SET ts1, KHE TIME_SET ts2);

bool KheTi meSet Di sj oi nt (KHE TI ME_SET tsl1l, KHE TIME SET ts2);
bool KheTi meSet Contai nsTi me(KHE TIME SET ts, KHE TIME t);

These returnr ue whent s isempty, when sl isequal td s2, whent s1 is a subset of s2, when
t sl is disjoint fromt s2, and whert s containg .

For applications in which a time set is used as the key into a hash table, there is

int KheTi meSet Hash( KHE_TI ME_SET ts);
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At present the value returned is the sum of the indexes of the first, middle, and last times, after
shifting left 16, 8, and O places respectively, or 0dfis empty.

Four other comparison functions are available:

i nt KheTi neSet Cnp(const void =t1l, const void *t2);
i nt KheTi neSet TypedCnp( KHE_TI ME_SET tsl, KHE TIME SET ts2);

KheTi meSet Cnp is suitable for passing télaArraySort, to bring equal time sets together.
KheTi meSet TypedCnp is the typed equivalent d¢heTi mneSet Cnp. And

i nt KheTi neSet ChpReverse(const void *t1, const void *t2);
i nt KheTi neSet TypedCnpReverse( KHE_TI ME_SET tsl, KHE TIME SET ts2);
are likekheTi neSet Cnp andKheTi neSet TypedCnp, except that they sort in the reverse order.

Unlike time groups, time sets alloMJLL to be a member. It is handled like any other time:
it can be added and deleted, and it participates in set operations. It has indéxich means
that, if present, it is the result ¢heTi meSet Ti ne(ts, 0).

Finally,
voi d KheTi meSet Debug( KHE_TI ME_SET ts, int verbosity, int indent, FILE *fp);

produces a debug print b§ ontof p with the given verbosity and indent, as usual. Since the time
set has no name, this can only be done by printing its elements. V€hbeosi ty is 1 ori ndent
is negative, only the first and last elements (at most) are printed.

5.9. Resource sets

A resource seis like a resource group in that it represents a set of resources of a particular type.
However, it carries less baggage: it has no name, for example. Itis a convenient type to use when
a set of resourcesis needed during solving. Internally, a resource set holds the resource type that
the resources must share, and a sorted array of resource indexes in that resource type.

Resource sets are virtually clones of time sets, with some extra operations that might find
their way into time sets eventually. To create a new, empty resource set of a given type, call

KHE_RESOURCE SET KheResour ceSet Make( KHE_RESOURCE TYPE rt, HA ARENA a);
Another way to make a resource set is

KHE_RESOURCE SET KheResour ceSet Copy( KHE_RESOURCE SET rs, HA ARENA a);
It makes a fresh copy ofs in arenaa. Either way, it will be deleted wheais deleted. Also,

voi d KheResour ceSet CopyEl ement s( KHE_ RESOURCE_SET dst _rs,
KHE RESOURCE SET src_rs);

replaces the resources of resourcelset r s, whatever they are, with the resourcesof_rs.
To retrieve a resource set’s resource type, call

KHE_RESOURCE TYPE KheResour ceSet Resour ceType( KHE_RESOURCE_SET rs);
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To clear a resource set back to the empty set of resources, call
voi d KheResour ceSet O ear ( KHE_RESOQURCE_SET rs);
To add resources to a resource set, the following operations are available:

voi d KheResour ceSet AddResour ce( KHE_RESOURCE SET rs, KHE RESOURCE r);
voi d KheResour ceSet AddResour ceG oup( KHE_ RESOURCE _SET r s,
KHE_RESOURCE_GROUP rg);

These add a resource, or the resources of a resource group. To add the resources of a resource
set, callkheResour ceSet Uni on below. Here and elsewhere, adding a resource that is already
present does nothing.

For deleting resources there are

voi d KheResour ceSet Del et eResour ce( KHE_RESOURCE_SET rs, KHE RESOURCE r);
voi d KheResour ceSet Del et eLast Resour ce( KHE_RESOURCE_SET rs);

KheResour ceSet Del et eResour ce deletesr from rs, or does nothing if it is not present.
KheResour ceSet Del et eLast Resour ce deletes the last resource fram; it must be present.

To visit the resources of a resource set, call

i nt KheResour ceSet Resour ceCount ( KHE_RESOURCE_SET rs);
KHE_RESOURCE KheResour ceSet Resour ce( KHE RESOURCE SET rs, int i);

in the usual way. There is also
i nt KheResour ceSet Resour cel ndex( KHE_RESOURCE_SET rs, int i);

which returns the index in the resource set’s resource type dfttheesource, rather than the
resource itself. Irrespective of the order in which the resources were added, they are stored and
visited in order of increasing index.

There are also set operations on resource sets:

voi d KheResour ceSet Uni on( KHE_RESCURCE SET rsl, KHE RESOURCE SET rs2);
voi d KheResourceSet | ntersect (KHE_ RESOURCE SET rsl, KHE RESOURCE SET rs2);
voi d KheResourceSet Di fference( KHE_RESOURCE_SET rsl1, KHE RESOURCE SET rs2);

These updates1 to hold its union, intersection, or difference with2. And functions

voi d KheResour ceSet Uni onG oup( KHE_RESOQURCE SET rsl,
KHE_RESOURCE_GROUP rg2);

voi d KheResour ceSet I ntersect G oup( KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

voi d KheResour ceSet Di f f erenceG oup( KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

do the same, but with a resource group rather than a resource set. A resource group does actually
hold a resource set, but it would not be safe to make that set available directly, because resource
groups are supposed to be immutable after their creation ends. A copy of it is easily made, by
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starting with an empty resource set and calkhgResour ceSet Uni onG oup.

Occasionally one needs the cardinality of the results of these set operations, but not the
actual sets. For thisthere is

i nt KheResour ceSet Uni onCount ( KHE_RESOURCE_SET rsl,
KHE_RESOURCE_SET rs2);

i nt KheResourceSet | nt ersect Count ( KHE_RESOURCE _SET rsl,
KHE_RESOURCE_SET rs2);

i nt KheResourceSetDi f f er enceCount ( KHE_RESOURCE_SET rsl,
KHE_RESOURCE_SET rs2);

i nt KheResourceSet SymmetricDifferenceCount (KHE _RESOURCE_SET rs1,
KHE_RESOURCE_SET rs2);

Building the symmetric difference is awkward, so at present there is an operation to find its size,
but no operation to find the set itself. And functions

i nt KheResour ceSet Uni onCount Gr oup( KHE_RESOURCE SET rsl,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceSet | ntersect Count G oup( KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceSet Di f f erenceCount Gr oup( KHE_RESOURCE _SET rsl,
KHE_RESOURCE_GROUP rg2);

i nt KheResourceSet SymmetricDi fferenceCount G oup( KHE_RESOURCE_SET rs1,
KHE_RESOURCE_GROUP rg2);

do the same, but with a resource group rather than a resource set.
Several set queries are available:
bool KheResour ceSet Equal (KHE_RESOURCE_SET rsl1, KHE_RESOURCE_SET rs2);
bool KheResour ceSet Subset ( KHE_RESOURCE_SET rsl1, KHE RESCURCE SET rs2);

bool KheResour ceSet Di sj oi nt (KHE_RESOURCE_SET rsl1, KHE _RESOURCE_SET rs2);
bool KheResour ceSet Cont ai nsResour ce( KHE_RESOURCE_SET rs, KHE RESOURCE r);

These returnir ue whenr sl is equal tas2, whenrs1 is a subset of s2, whenr s1 is disjoint
fromrs2, and whern's containg .
Two other comparison functions are available:

i nt KheResourceSet Cnp(const void *t1, const void *t2);
i nt KheResour ceSet TypedCnp( KHE_RESOURCE_SET rsl, KHE RESQURCE SET rs2);

KheResour ceSet Cnp is suitable for passing télaArraySort, to bring equal resource sets
together.KheResour ceSet TypedCnp is the typed equivalent dfheResour ceSet Cp.

Unlike resource groups, resource sets aldvl to be a member. It is handled like any
other resource: it can be added and deleted, and it participates in set operations. It hak index
which means that, if present, it is the resultkbEResour ceSet Resour ce(rs, 0).

Finally,
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voi d KheResour ceSet Debug( KHE_RESOURCE _SET rs, int verbosity,
int indent, FILE *fp);

produces a debug print ok ontof p with the given verbosity and indent, as usual. Since the
resource set has no name, this can only be done by printing its elements.vévhesi ty is 1
orindent is negative, only the first and last elements (at most) are printed.

5.10. Time frames
A time frameor justframe is a sequence of time groups. Frames satisfy a practical need during
solving; they help to bridge the gap between the high school and nurse rostering time models.

A frame has typ&HE_FRAME, the usual pointer to a private struct, lying in heap memory and
holding the enclosing solution, the time groups, and some other things.

Frames are immutable after creation. To help enforce this, they are created indirectly via
another typeKHE_FRAME_MAKE. The operations for creating a frame are

KHE_FRAME_MAKE KheFr aneMakeBegi n( KHE_SOLN sol n);
voi d KheFranmeMakeAddTi meG oup( KHE_FRAME_MAKE fm KHE_TI ME_GROUP tQ);
KHE_FRAVE KheFr ameMakeEnd( KHE_FRAVE_MAKE fm bool sort_tine_groups);

KheFr ameMakeBegi n starts the creation of the frame by creatingi._FRAME_MAKE object. This
is followed by any number of calls theFr ameMakeAddTi meG oup, which add the time groups.
The creation ends with a call kheFr aneMakeEnd, which returns the actual frame.

If the sort_tine_groups parameter ofkneFr aneMakeEnd is true, KheFrameMakeEnd
sorts the time groups into increasing first time order.

To delete a frame returned ByeFr ameMakeEnd, call
voi d KheFraneDel et e( KHE_FRAME frane);

This frees the memory consumedflyane; it goes on a free list ifr ane’s solution object, where
it can be re-used by a later callkbeFr ameMakeBegi n.
The usual operations are available for retrieving the attributes of a frame. To retrieve the
enclosing solution, call
KHE SOLN KheFrameSol n( KHE_FRAME frane) ;
To visit the time groups, call

i nt KheFraneTi meG oupCount (KHE_FRAME frane) ;
KHE_TI ME_GROUP KheFraneTi neG oup( KHE_FRAME frame, int i);

KheFr ameTi meG oup returns the th time group off r ane.

A frame isdisjointwhen its time groups are pairwise disjoint, ammnpletavhen every time
in the cycle lies in at least one of its time groups. Frames do not have to satisfy these conditions,
but some applications of frames require them. They are returned by functions
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bool KheFranel shi sj oi nt (KHE_FRAME frame, int xproblem.indexl,
int xproblem.index2);
bool KheFranel sConpl et e( KHE_FRAME frame, KHE TIME *problemtime);

If the frame is disjoint,KheFranel sDi sj oi nt returnstrue with *probl em.indexl and
*probl em index2 set to -1; otherwise it returnsfal se with *probl emindexl and
«probl em i ndex2 set to the indexes of two overlapping time groups. If the frame is complete,
KheFr anel sConpl et e returng r ue with »probl em ti me set toNULL; otherwise it returnal se

with «probl em ti me set to a time of the instance which is not in anyf oane’s time groups.

KheFr anel sDi sj oi nt and KheFr anel sConpl et e are typically called at most once per
frame, afterkheFr aneMakeEnd. An efficient implementation has not been thought necessary.
But this function is implemented efficiently:

i nt KheFraneTi nel ndex(KHE_FRAME frame, KHE TIME t);

It returns the index ifir ane of the time group containing tinte If there is no such time group
(implying that the frame is not complete), is returned. If there is more than one such time
group (implying that the frame is not disjoint), the index of one of the time groups is returned.
The time group itself can then be retrieved udthgFr ameTi neG oup. There is also

KHE_TI ME_GROUP KheFrameTi neTi neG oup( KHE_FRAVE frame, KHE_TIME t);

which combines the two steps, returning the time groufrafe that containg, or aborting if
there is no such time group.

Frames arise naturally in employee scheduling when each employee can work at most one
shift per day (evidenced by a hard limit busy times constraint with non-zero cost, maximum limit
1, and one time group for each day). When this is true of all resources, function

KHE_FRAME KheFr ameMakeCommon( KHE_SOLN sol n);

returns a frame with one time group per day, each with positive polarity. The time groups do
not have to actually represent days, they merely need to be the same for all resources and to be
disjoint and complete. When there is no common frabkel. is returned.

WhenKheFr ameMakeCommon returnsNULL, as a fallback there is
KHE_FRAME KheFr ameMakeSi ngl et ons( KHE_SOLN sol n);

This returns a frame with one time group for each time, containing just that single time.

Once created, frames of this kind do not change. So it makes sense to share a single one
between solvers, by storing it in the solvers’shared options object. A convenient way do this is

KHE FRAVE KheOpti onsFranme( KHE_OPTI ONS options, char x*key, KHE SOLN soln);

from Section 8.2. This returns the frame storedomi ons under the giverkey. If there

IS no object inopt i ons under that key, it first creates one, by callikigeFr ameMakeConmon,
followed by KheFr ameMakeSi ngl et ons if necessary, and storing the resultapt i ons under

key. Thus, if all solvers that need a frame call this function to obtain it, they will all share the
same frame, the one created the first time this function is called. By convention, the key to use
is"gs_comon_franme", and so
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frame = KheOptionsFrame(options, "gs_conmon_frame", soln);

is the recommended way to obtain this kind of frame.
Function

bool KheFranel ntersectsTi neG oup( KHE FRAME frame, KHE TIME GROUP tQ);

returns r ue whent g shares at least one time with at least one of the time groujpsaot.
There is the usual debug function:

voi d KheFrameDebug( KHE FRAME frame, int verbosity, int indent, FILE =fp);

This printsf r ame ontof p with the given verbosity and indent. Hereane may beNULL.
Finally, here are three related miscellaneous functions:

bool KheFrameResour ceHasC ashes( KHE_FRAME frame, KHE_RESOURCE r);
voi d KheFrameResour ceAssert Nod ashes( KHE_FRAVE frame, KHE_RESOURCE r);
voi d KheFrameAssert NoCl ashes( KHE_FRAME frane);

These help to debug solvers that preserve an invariant stating that each resource attends at most
one task during each time group fofane. KheFr aneResour ceHasC ashes returnst rue if r

violates this conditiorkheFr ameResour ceAsser t NoC ashes aborts the run if it is violated for
resource , after printing out information about which resource and time group is involved; and
KheFrameAssert NoC ashes callskheFr aneResour ceAssert Nod ashes for all resources.
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As a solution changes, it is continuoustypnitoredby a hand-tuned constraint network.

6.1. Measuring cost

KHE measures the badness of a solution as a single integral value caltabstioer sometimes

the combined cosbecause it includes the cost of both hard and soft constraint deviations.
Storing costs in this way is convenient, because it allows costs to be assigned, asidgd using

+, and compared usingand so on in the usual way. The hard cost is shifted left by 32 bits, to
ensure that it is more significant than any reasonable total soft cost, then added to the soft cost.

The type of a combined costh8E_COST, a synonym for the standard C 64-bit integer type
int64_t (afact best forgotten). To find the current combined cost of a solution, call
KHE_COST KheSol nCost ( KHE_SCOLN sol n);
This value is stored explicitly imol n, so this function takes virtually no time to execute. Call
KHE COST KheCost (int hard _cost, int soft _cost);

to create a combined cost. The two components of a combined cost may be accessed by

i nt KheHar dCost (KHE_COST combi ned_cost);
i nt KheSoft Cost (KHE_COST combi ned_cost);

There is also the constaiteCost Max, which returns the maximum value storable in a variable
of typeKHE_COST (a synonym fott NT64_MAX) and the function

i nt KheCost Cnp( KHE _COST cost1, KHE COST cost2);

which returns an nt which is less than, equal to, or greater than zero if the first argument is
respectively less than, equal to, or greater than the second, as needed when sorting items by cost.
The implementation does not make the mistake of merely subtramigi@ from cost 1; the

result then would be BHE_COST which will usually overflow the nt result.

The suggested way to display a combined cost is as a decimal number with the hard cost
before the decimal point and the soft cost after. Five decimal places are displayed, allowing for
soft costs up to 99999. Larger soft costs are displayed as 99999. To assist with this, function

doubl e KheCost Show( KHE_COST conbi ned_cost);

returns a value which, when printed withi nt f format" % 5f ", prints the cost in this format.

These functions assume that both components of the cost are non-negative. There is no
problem with negative combined costs in themselves, but when a hard and soft cost are combined
together, if either is negative they may be different if they are separated again.

140
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6.2. Monitors

A monitoris an object, of typ&HE_MONI TOR, that monitors one part of a solution: typically, one
point of application of one constraint. It contains the usual back pointer and visit number:

voi d KheMoni t or Set Back( KHE_MONI TOR m voi d *back);
voi d *KheMoni t or Back( KHE_MONI TOR ) ;

voi d KheMonitorSetVisit Num KHE MONITOR m int num;
i nt KheMonitorVisitNum( KHE_MONITOR ) ;

bool KheMnitorVisited(KHE MONITOR m int slack);
voi d KheMoni torVisit(KHE_MONI TOR m;

voi d KheMoni torUnVisit (KHE_MONI TOR m);

Operations

KHE_SOLN KheMoni t or Sol n( KHE_MONI TOR m) ;
i nt KheMoni t or Sol nl ndex( KHE_MONI TOR ) ;
KHE_COST KheMoni t or Cost (KHE_MONI TOR m) ;
KHE_COST KheMoni t or Lower Bound( KHE_MONI TOR m) ;

return the enclosing solution, the indexaf that solution, the cost of whatis monitoring (kept
up to date by KHE as the solution changes), and a constant lower bouiedmi t or Cost ,
which is usually 0 but will be non-zero when KHE can prove the lower bound easily.

TypeKHE_MONI TOR is the abstract supertype of many concrete subtypes, with these tags:

t ypedef enum {
KHE_ASSI GN_RESOURCE_MONI TOR_TAG,
KHE_ASSI GN_TI ME_MONI TOR_TAG,
KHE_SPLI T_EVENTS_MONI TOR_TAG,
KHE DI STRI BUTE _SPLI T_EVENTS MONI TOR_TAG,
KHE_PREFER_RESOURCES_MONI TOR_TAG,
KHE_PREFER_TI MES_MONI TOR_TAG,
KHE_AVOl D_SPLI T_ASSI GNVENTS_MONI TOR_TAG,
KHE_SPREAD EVENTS_MONI TOR _TAG,
KHE_LI NK_EVENTS_MONI TOR_TAG
KHE_ORDER_EVENTS_MONI TOR_TAG,
KHE_AVO D_CLASHES MONI TOR TAG,
KHE_AVO D_UNAVAI LABLE_TI MES_MONI TOR_TAG,
KHE_LIM T_I DLE_TI MES_MONI TOR_TAG,
KHE_CLUSTER BUSY_TI MES_MONI TOR_TAG
KHE_LI M T_BUSY_TI MES_ MONI TOR TAG,
KHE LI M T_WORKLOAD MONI TOR_TAG,
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR_TAG,
KHE_LI M T_RESOURCES_MONI TOR_TAG,
KHE_EVENT_TI METABLE_MONI TOR_TAG,
KHE RESOURCE TI METABLE MONI TOR _TAG
KHE_ORDI NARY_DEMAND_MONI TOR_TAG,
KHE_WORKLOAD DEMAND MONI TOR_TAG,
KHE_EVENNESS_MONI TOR TAG,
KHE_GROUP_MONI TOR_TAG,
KHE_MONI TOR_TAG_COUNT

} KHE_MONI TOR_TAG,
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Each monitor object contains a tag identifying its subtype, returned by
KHE_MONI TOR_TAG KheMbni t or Tag( KHE_MONI TOR m) ;

Monitors of the first eighteen types monitor one point of application of one constraint; their cost
Is the total cost of deviations at that point. They are described in detail in later sections of this
chapter. Monitors of the last six types (frafide_EVENT_TI METABLE_MONI TOR_TAG onwards) do

not monitor constraints. Timetable monitors hold the timetables of events and resources (Section
6.7) Ordinary and workload demand monitors monitor matchings, and evenness monitors
monitor evenness (Chapter 7). Group monitors group together other monitors (Section 6.8). The
last value is not a tag; it is a count of the number of monitor types, allowing code of the form

for( tag = 0; tag < KHE_MONI TOR_TAG COUNT; tag++ )
do something for nonitors of type tag ...

For those monitors that monitor a point of application of a constraint, functions

KHE_CONSTRAI NT KheMoni t or Const r ai nt (KHE_MONI TOR m) ;
char *KheMoni t or Appl i esToNanme( KHE_MONI TOR ) ;

return the constraint and the name of the point of application (if this point is an event re-
source, the name of the enclosing event is returned). For other monitors they Neturn
KheMoni t or Appl i esToNane is more or less obsolete; the author prefers now to call

char *KheMoni t or Poi nt Of Appl i cati on( KHE_MONI TOR m) ;

which returns a more precise indication of the point of application. Each constraint monitor also
has functions which return the specific constraint and point of application.

The result ofkheMoni t or Poi nt Of Appl i cati on(n) is created afresh on each call. Thisis
not very efficient, but if the function is called only when generating evaluation tables, as is the
intention, that will not matter.

A similar function toKheMoni t or Poi nt Of Appl i cation is
char *KheMonitorld( KHE_MONI TOR n ;

It returns a string composed of two or three fields separatéddmaracters. Each field isan Id

from the instance or aninteger. The fields are supposed to uniquely identify the monitor, although
in a few cases this is doubtful. The first field is always a constraint Id, identifying the constraint
that the monitor is derived from, and the second is usually an event, event group, or resource Id,
identifying the point of application. There may be a third field, holding a second event Id (for
order events monitors) or an offset (for resource constraints witkpgiri esToTi meG oup at-
tribute). When the offset is O the offset field and precediage omitted.

The result ofkheMoni torld(m is created wherkheMnitorld(n is first called, and
stored inmso that it does not have to be created over and over. If it is used only for debugging,
asis the intention, there is virtually no cost in running time or memory when debugging is off.

The cost of a monitor is a function of itkeviation a non-negative integer:

i nt KheMonitorDeviation(KHE_ MONI TOR ) ;
char xKheMonitor Devi ati onDescri ption(KHE_ MONI TOR m) ;
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These functions are intended for reporting, not solvikgeMoni t or Devi ati on returns the
deviation, andkheMbni t or Devi at i onDescri pti on returns a description of it: an expression,
augmented with brief text, showing how it is calculated. The result string does not necessarily
lie in heap memory, and should not be freed.

For limit active intervals monitor&heMoni t or Devi at i on returnsthe sum of the deviations
of the active intervals. Exceptionally, the cost of the monitor is not a function of this deviation;
instead, it is the sum of the costs of the deviations of the active intervals taken separately.

To visit the full set of monitors monitoringpl n, call

i nt KheSol nMoni t or Count (KHE_SCLN sol n);
KHE_MONI TOR KheSol nMoni t or (KHE_SCLN sol n, int i);

Although KHE does not fully specify the order in which these monitors appear, it does guarantee
that the monitors which monitor constraints will appear together in the list in the order that their
constraints appear in the input. Itis best to select these monitors by testing whether the result of
KheMbni t or Const rai nt above is norNULL.

There is also
bool KheSol nRetri eveMnitor (KHE_SOLN sol n, char xid, KHE MONI TOR *nj;

This function searches for a monitor whose Id, as returnédiéybni t or | d (see above), is equal
toi d. If it finds one, it returnsr ue with » mset to that monitor; otherwise it returha se with
*mset toNULL.

Although every monitor has an Id, at pres&hé¢Sol nRet ri eveMoni t or does not retrieve
all monitors. It retrieves resource monitors, and event monitors that monitor a single event.

KheSol nRet ri eveMoni t or is intended for debugging and is not very efficient. It works
by finding the entity (event, event group, or resource) identified by the second fietdasfd
searching that entity’s list of monitors for one for whigieMni t or | d returns d.

To debug a monitomwith a given verbosity and indent, call
voi d KheMoni t or Debug(KHE_MONITOR m int verbosity, int indent, FILE =fp);

There are also versions of this function for each of the specific monitor types. These all work
in the same way. The output starts witlaA or D indicating whether the monitor is a group
monitor, an attached non-group monitor, or a detached non-group monitor. This is followed by
the number of paths up from the monitor to the solution (Section 6.8), usually O or 1. Then comes
the monitor’s tag and cost, then other information depending on the monitor type and verbosity.
There is also

char xKheMoni t or TagShow KHE_MONI TOR _TAG t ag) ;
which returns a string representationt@f. In practice a more useful function is
char *KheMoni t or Label (KHE_MONI TOR m) ;

This returnskheMoni t or TagShow( KheMoni t or Tag(n) ) if mis not a group monitor, andis
subtag label ifnis a group monitor.
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6.3. Attaching, detaching, and provably zero fixed cost

For a monitor to be updated when the solution changes, there must be links from the appropriate
points within the solution to the monitor. When these links are present, the monitor is said to be
attached to the solutiqor justattached Most monitors are attached to begin with, but they can

be detached at any time, and even reattached later, by calling

voi d KheMoni t or Det achFr onSol n( KHE_MONI TOR ) ;
voi d KheMbnitorAttachToSol n( KHE MONI TOR m) ;

Even when detached, a monitor remembers which parts of the solution it is supposed to monitor,
so the attach operation does not have to tell the monitor where to attach itself. To find out whether
a monitor is currently attached or detached, call

bool KheMonitorAttachedToSol n( KHE_MONI TOR m) ;
Another function, highly recommended for calling at the end of a solve, is
voi d KheSol nEnsureOifi ci al Cost (KHE_SOLN sol n);

This ensures that all constraint monitors are both attached to the solution and reporting their
cost to the solution, directly or indirectly via group monitors, and that all demand and evenness
monitors are detached from the solution, guaranteeing that the solution cost is the official cost.

While a monitor is detached, it receives no information about changes to the solution, and,
by definition, its deviation and cost are 0. Detaching a monitor may therefore change its cost. If
there isa change in cost, it is reported to the monitor’s parents (if it has any) as usual. Conversely,
attaching a monitor brings it up to date with the current state of the solution, which again may
change its cost; and again, if there is a change in cost it is reported to its parents (if it has any).

There are two main reasons for detaching a monitor. First, the user might make a deliberate
choice to ignore some constraints. For example, a solver that works in two phases, first finding
a solution that satisfies the hard constraints, and then attacking the soft ones, might detach the
monitors for the soft constraints during its first phase. An example of this kind of deliberate
choice is KHE’s matching feature (Chapter 7), which is implemented with monitors. Unlike
other monitors, matching monitors are detached initially. KHE makes this choice deliberately,
on the grounds that the cost of the matching is not officially part of the cost function.

The second reason for detaching a monitor is that it may be clear that its cost will be zero
for a long time. In that case, detaching it means that no time is spent keeping it up to date, yet it
still reports the correct cost. For example, if the meets of one point of application of a link events
constraint are assigned to each other and those assignments will not be removed, then it is safe
to save time by detaching the corresponding monitor.

This reasoning was formerly embodied in a function cak&dMoni t or At t achCheck,
which assumed that certain elements of the solution were unlikely to change, and detached mon-
itors accordingly.KheMni t or At t achCheck has been withdrawn; the equivalent functionality is
now obtained, more reliably, by calling tRkex andUnFi x functions, as follows.

A monitor hagrovably zero fixed costenough of the solution is currently fixed (by calls to
KheMeet Assi gnFi x andkheTaskAssi gnFi x) to allow KHE to prove that the monitor must have
cost 0 while those fixes remain. For each kind of monitor, either a specific definition of when it
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has provably zero fixed cost is given below, or else it never has provably zero fixed cost.

When one of the fixing operations just listed is called, after doing the actual fixing KHE
ensures that all monitors which did not have provably zero fixed cost before but now do are
detached. When one of the corresponding unfix operations is called, after doing the actual
unfixing it ensures that all monitors which had provably zero fixed cost before but now do not
are attached. So there is no risk that detaching these monitors could lead to cost errors; as soon
as unfixes make a non-zero cost possible, they are attached again.

6.4. Event monitors

An event monitormonitors one or more events. The set of monitors (attached or unattached)
which monitor a given event may be found by calling

i nt KheSol nEvent Moni t or Count (KHE_SOLN sol n, KHE_EVENT e);
KHE_MONI TOR KheSol nEvent Moni t or (KHE_SCLN sol n, KHE EVENT e, int i);

These return the number of monitors that monétam sol n, and the th of these, as usual. The
timetable monitor for everd (Section 6.7) is not visited by these functions; it may be retrieved
by callingkheEvent Ti met abl eMbni t or .

The total cost of these monitors measures how wiltimetabled. Functions

KHE_COST KheSol nEvent Cost (KHE_SCOLN sol n, KHE EVENT e);
KHE_COST KheSol nEvent Moni t or Cost (KHE_SOLN sol n, KHE_EVENT e,
KHE_MONI TOR _TAG tag);

return the total cost of all the monitors monitorieygnd the total cost of all monitors monitoring
e of a specific type, defined kbyag. KheSol nEvent Moni t or Cost returns O whenag does not
specify one of the monitor types in the following subsections.

Each point of application of a spread events constraint or link events constraint is one event
group, and a monitor of these kinds appears on the list of monitors of each of the events in its
event group. Similarly, an order events monitor appears on the list of monitors of both of the
events it monitors. IKheSol nEvent Cost (sol n, e) issummed over all events, the cost of such
monitors is counted repeatedly, and the total may exceed the total cost of all event monitors.

The following subsections list the various kinds of event monitors and the details specific
to each of them. Their type&HE_SPLI T_EVENTS_MONI TOR and so on) may be obtained by
downcasting fronKHE_MONI TOR after checking the type tag.

6.4.1. Split events monitors

A split events monitor has tagHE_SPLI T_EVENTS_MONI TOR_TAG and monitors an event which
IS one point of application of one split events constraint. Functions

KHE SPLI T_EVENTS CONSTRAI NT KheSpl it Event shoni t or Const rai nt (
KHE_SPLI T_EVENTS_MONI TOR m) ;
KHE_EVENT KheSpl it Event shonit or Event (KHE_SPLI T_EVENTS_MONI TOR m) ;

return the split events constraint and event being monitored, and
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voi d KheSplitEvent shonitorLimts(KHE SPLIT_EVENTS MONI TOR m
int *mn_duration, int *max_duration, int *mn_amunt, int *max_anount);

sets the four last variables to the corresponding attributes of the monitor’s constraint. Function

voi d KheSplitEvent shonitor Debug( KHE_SPLI T_EVENTS MONI TOR m
int verbosity, int indent, FILE *=fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.4.2. Distribute split events monitors

A distribute split events monitor has t&yE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR_TAG and
monitors one point of application of a distribute split events constraint (one event). Functions

KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT
KheDi stri but eSplitEvent shonitor Constraint (
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR ) ;
KHE_EVENT KheDi stri but eSplitEvent shonitorEvent (
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR ) ;

return the constraint and event being monitored, and

voi d KheDi stributeEvent shonitorLimts(
KHE DI STRI BUTE_SPLI T_EVENTS MONI TOR m
int *duration, int *mnimum int *maximum int xneet _count);

sets+duration, *m ni num and *maxi num to the corresponding attributes of the monitor’s
constraint, and meet _count to the number of meets derived from the monitored event whose
duration isxdur ati on (or to the total number of meetsifdur ati on is KHE_ANY_DURATI ON).
Function

voi d KheDi stributeSplitEventshbnitorDebug(
KHE_DI STRI BUTE_SPLI T_EVENTS_ MONI TOR m int verbosity,
int indent, FILE *fp);

Is like KheMbni t or Debug, only specific to this type of monitor.

6.4.3. Assign time monitors

An assign time monitor has ta@iE_ASSI GN_TI ME_MONI TOR_TAG and monitors an event which
is one point of application of one assign time constraint. Functions

KHE_ASSI GN_TI ME_CONSTRAI NT KheAssi gnTi meMoni t or Constrai nt (
KHE_ASSI GN_TI ME_MONI TOR ) ;
KHE_EVENT KheAssi gnTi meMoni t or Event ( KHE_ASSI GN_TI ME_MONI TOR ) ;

return the assign time constraint and event being monitored. Function

voi d KheAssi gnTi meMoni t or Debug( KHE_ASSI GN_TI ME_MONI TOR m
int verbosity, int indent, FILE *fp);
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is like KheMbni t or Debug, only specific to this type of monitor.

An assign time monitor does not have provably zero fixed cost whelket Assi gnFi x
has been called for each of the meets derived from the event it monitors and the monitor has
cost 0 when attached, because the assignments may be to other meets whose assignments are not
fixed. The full assignment paths leading out of the monitored meets would need to be fixed; but
that would be awkward to implement and give no efficiency payoff, because then the monitor
would never be updated anyway. So an assign time monitor never has provably zero cost.

6.4.4. Prefer times monitors

A prefer times monitor has taiHE_PREFER_TI MES_MONI TOR_TAG and monitors an event which
is one point of application of one prefer times constraint. Functions

KHE_PREFER_TI MES_CONSTRAI NT KhePr ef er Ti mesMoni t or Const rai nt (
KHE_PREFER_TI MES_MONI TOR m) ;
KHE_EVENT KhePr ef er Ti mesMoni t or Event ( KHE_PREFER_TI MES_MONI TOR ) ;

return the prefer times constraint and event being monitored. Function

voi d KhePr ef er Ti meshoni t or Debug( KHE_PREFER TI MES MONI TOR m
int verbosity, int indent, FILE *fp);

Is like KheMoni t or Debug, only specific to this type of monitor.

6.4.5. Spread events monitors

A spread events monitor has t&fE_SPREAD EVENTS_MONI TOR_TAG and monitors an event
group which is one point of application of a spread events constraint. It appears in the list of
monitors of all the events in its event group. Functions

KHE_SPREAD _EVENTS_CONSTRAI NT KheSpr eadEvent shoni t or Const r ai nt (
KHE_SPREAD EVENTS_MONI TOR m) ;

KHE_EVENT_GROUP KheSpr eadEvent shoni t or Event G oup(
KHE_SPREAD EVENTS_MONI TOR m) ;

return the spread events constraint and event group being monitored. There are also

i nt KheSpreadEvent shoni t or Ti meGr oupCount ( KHE_SPREAD _EVENTS MONI TOR m) ;
voi d KheSpreadEvent shoni t or Ti meG oup( KHE_SPREAD EVENTS MONITOR m int i,
KHE TI ME_ GROUP «time_group, int *mininmum int =maxi num int *incidences);

The first returns the number of time groups (as in the corresponding constraint). The second
returns the 'th time group and the minimum and maximum number of meets wanted there
(again, as in the constraint), plus the current number of meets incident on that time group. If
«i nci dences is less thamm ni mumor more than mexi mum a cost is incurred. Function

voi d KheSpreadEvent shoni t or Debug( KHE_SPREAD EVENTS MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.
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6.4.6. Link events monitors

A link events monitor has tagHE_LI NK_EVENTS_MONI TOR_TAG and monitors an event group
which is one point of application of a link events constraint. It appears in the list of monitors of
all the events in its event group. Functions

KHE LI NK_EVENTS CONSTRAI NT KheLi nkEvent shoni t or Const rai nt (
KHE_LI NK_EVENTS_MONI TOR ) ;

KHE EVENT _GROUP KheLi nkEvent shoni t or Event G oup(
KHE_LI NK_EVENTS_MONI TOR ) ;

return the link events constraint and event group being monitored. Function

voi d KheLi nkEvent sMoni t or Debug( KHE_LI NK_EVENTS_MONI TOR m
int verbosity, int indent, FILE *=fp);

is like KheMbni t or Debug, only specific to this type of monitor.

A link events monitor has provably zero fixed cost when following to the end the chains of
fixed assignments out of the meets of the events it monitors produces the same result for each
event: the same offsets and durations within the same final mileddket Assi gnFi x and
KheMeet Assi gnUnFi x may detach and attach link events monitors.

Detaching link events monitors is the most important service provided by fixing. Keeping
these monitors up to date is slow, despite the author’s best efforts to optimize. When the times of
a set of linked events change together, an attached link events monitor receives the changes one
by one, forcing it through a tedious sequence of cost changes beginning and ending with 0.

6.4.7. Order events monitors

An order events monitor has ta¢E_ORDER_EVENTS_MONI TOR_TAG and monitors two events
which together constitute one point of application of an order events constraint. It appears in
the list of monitors of both events. Functions

KHE_ORDER_EVENTS_CONSTRAI NT KheOr der Event shoni t or Const rai nt (
KHE_ORDER_EVENTS_MONI TOR m) ;

KHE_EVENT KheOr der Event sMoni t or Fi r st Event (KHE_ORDER _EVENTS_MONI TOR nj ;

KHE_EVENT KheOr der Event sMoni t or SecondEvent ( KHE_ORDER_EVENTS_MONI TOR m) ;

i nt KheOrder Event shoni t or M nSepar at i on( KHE_ORDER_EVENTS_MONI TOR m) ;

i nt KheOrder Event shoni t or MaxSepar at i on( KHE_ORDER_EVENTS_MONI TOR m) ;

return the constraint being monitored and the four attributes of the monitor: the two events
monitored, and the minimum and maximum separations. Function

voi d KheCQr der Event shoni t or Debug( KHE_ORDER_EVENTS MONI TOR m
int verbosity, int indent, FILE *fp);

IS like KheMoni t or Debug, only specific to this type of monitor.

An order events monitor has provably zero fixed cost when both of its events are broken
into a single meet, following to the end the chains of fixed assignments out of those two meets
leads to the same final meet, and their separation (the offset into the final meet of the second
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meet, minus the duration plus offset into the final meet of the first meet) is in the legal range.
KheMeet Assi gnFi x andKheMeet Assi gnUnFi x may detach and attach order events monitors.

6.5. Event resource monitors

An event resource monitanonitors one or more event resources. The monitors (attached or
unattached) which monitor a given event resource may be visited by

i nt KheSol nEvent Resour ceMoni t or Count (KHE_SOLN sol n, KHE EVENT RESOURCE er);
KHE_MONI TOR KheSol nEvent Resour ceMbni t or (KHE_SCLN sol n,
KHE_EVENT _RESOURCE er, int i);

The total cost of these monitors measures how ereits timetabled. Functions

KHE_COST KheSol nEvent Resour ceCost (KHE_SOLN sol n, KHE_EVENT_RESOURCE er);
KHE_COST KheSol nEvent Resour ceMbni t or Cost (KHE_SOLN sol n,
KHE_EVENT_RESOURCE er, KHE_MONI TOR_TAG tag);

return the total cost of all the monitors monitorieg, and the total cost of all monitors
monitoringer of a specific type, defined yag. KheSol nEvent Resour ceMoni t or Cost returns
0 whent ag does not specify one of the monitor types in the following subsections.

Each point of application of an avoid split assignments constraint is a whole set of event
resources, and a monitor of this kind is attached to each of the event resources in its set. If
KheSol nEvent Resour ceCost (sol n, er) is summed over all event resources, such a monitor
Is counted repeatedly, so the total may exceed the total cost of all event resource monitors.

The following subsections list the various kinds of event resource monitors and the details

specific to each of them. Their typesHE_ASSI GN_RESOURCE_MONI TOR and so on) may be
obtained by downcasting frofHE_MONI TOR after checking the type tag.

6.5.1. Assign resource monitors

An assign resource monitor has tdgE_ASSI GN_RESOURCE_MONI TOR_TAG and monitors an
event resource which is one point of application of one assign resource constraint. Functions

KHE_ASSI GN_RESOURCE_CONSTRAI NT KheAssi gnResour ceMoni t or Const rai nt (
KHE_ASSI GN_RESOURCE_MONI TOR m) ;

KHE EVENT RESOURCE KheAssi gnResour ceMoni t or Event Resour ce(
KHE_ASSI GN_RESOURCE_MONI TOR m)

return the assign resource constraint and event resource being monitored. Like assign time mon-
itors, assign resource monitors are never considered to have provably zero fixed cost. Function

voi d KheAssi gnResour ceMoni t or Debug( KHE_ASSI GN_RESOURCE_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.
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6.5.2. Prefer resources monitors

A prefer resources monitor has t&fE_PREFER_RESOURCES_MONI TOR_TAG and monitors an
event resource which is one point of application of one prefer resources constraint. Functions

KHE PREFER RESOURCES CONSTRAI NT KhePr ef er Resour cesMni t or Const rai nt (
KHE_PREFER_RESOURCES_MONI TOR m) ;

KHE_EVENT _RESOURCE KhePr ef er Resour cesMoni t or Event Resour ce(
KHE_PREFER _RESOURCES_MONI TOR m) ;

return the prefer resources constraint and event resource being monitored. Function

voi d KhePr ef er Resour ceshoni t or Debug( KHE_PREFER_RESCURCES MONI TOR m
int verbosity, int indent, FILE *fp);

IS like KheMoni t or Debug, only specific to this type of monitor.

6.5.3. Avoid split assignments monitors

The operations for building avoid split assignments constraints accept a role and event groups,
as required when reading XML. However, they also accept a set of event resources, and these
are what are actually used. Accordingly, one avoid split assignments monitor monitors a set of
event resources, and appears in the list of monitors of each of those event resources. Functions

KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT
KheAvoi dSpl i t Assi gnnment sMoni t or Const rai nt (
KHE_AVO D_SPLI T_ASSI GNVENTS_NMONI TOR m)

i nt KheAvoi dSpl it Assi gnment sMoni t or Event G oupl ndex(
KHE_AVO D_SPLI T_ASSI GNVENTS_MONI TOR m)

return the constraint and the index of the set of event resources being monitored, suitable
for passing to functiongheAvoi dSpl it Assi gnment sConst r ai nt Event Resour ceCount and
KheAvoi dSpl i t Assi gnnent sConst r ai nt Event Resour ce (Section 3.7.7). There are also

i nt KheAvoi dSpl it Assi gnment shMoni t or Resour ceCount (
KHE_AVO D_SPLI T_ASSI GNVENTS_NMONI TOR ) ;

KHE_RESOURCE KheAvoi dSpl it Assi gnment sMoni t or Resour ce(
KHE_AVO D _SPLI T_ASSI GNVENTS MONNTOR m int i);

i nt KheAvoi dSpl it Assi gnment shMoni t or ResourceMul tiplicity(
KHE_AVO D _SPLI T_ASSI GNVENTS MONITOR m int i);

The first returns the number of distinct resources currently assigned to tasks monitoreld by
mis a defect this number will be at least 2. The second and third retuirtiteé these distinct
resources (in an arbitrary order) and the number of tasks monitoraddoyhich that resource
is currently assigned. The monitor does not record which tasks those are. Function

voi d KheAvoi dSpl it Assi gnment shoni t or Debug(
KHE_AVO D _SPLI T_ASSI GNMENTS_MONI TOR m i nt verbosity,
int indent, FILE *fp);

IS like KheMoni t or Debug, only specific to this type of monitor.
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An avoid split assignments monitor has provably zero fixed cost when the paths of fixed
assignments leading out of the tasks it monitors have the same endigaiméskAssi gnFi x
andKheTaskAssi gnUnFi x may detach and attach avoid split assignments monitors. Similarly
to link events monitors, the efficiency payoff is significant.

6.5.4. Limit resources monitors

The operations for building limit resources constraints accept event groups and roles, as needed
when reading XML. However, what one limit resources monitor actually monitors is a set of
event resources, and it appears in the lists of monitors of those event resources. Functions

KHE_LI M T_RESOURCES_CONSTRAI NT KheLi mi t Resour cesMoni t or Const r ai nt (
KHE_LI M T_RESOURCES _MONI TOR 1) ;

i nt KheLi m t Resour ceshoni t or Event G oupl ndex(
KHE_LIM T_RESOURCES_MONI TOR m) ;

return the constraint, and the index within it of the set of event resources being monitored,
suitable for passing to functiori¢heLi mi t Resour cesConst r ai nt Event Resour ceCount and

KheLi mi t Resour cesConst r ai nt Event Resour ce (Section 3.7.18). These allow the user to
visit the monitored event resources, and thence, ughefvent Resour ceTaskCount and
KheEvent Resour ceTask, the monitored tasks. There is also

voi d KheLi ni t Resour cesMoni t or Acti veDuration(KHE_LIM T_RESCURCES_MONI TOR m
int *mininum int «maximum int xactive_durn);

It returnsms minimum limit (taken from the constraint; it will be 0 when there is no minimum
limit), its maximum limit (also from the constraint; it will beNT_MAX when there is no maxi-

mum limit), and theactive durationwhich is the total duration of the tasks derived from the
event resources being monitored which are assigned resources from the constraint. The deviation
is the amount (if any) by whickact i ve_dur n exceeds maxi numor falls short ofxni ni mum
Function

voi d KheLi mi t Resour cesMoni t or Debug( KHE_LI M T_RESOQURCES_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.6. Resource monitors

A resource monitomonitors a resource. The set of monitors (attached or unattached) which
monitor a given resource may be visited by calling

i nt KheSol nResour cehMbni t or Count ( KHE_SCLN sol n, KHE_RESOURCE r);
KHE_MONI TOR KheSol nResour ceMoni t or (KHE_SOLN sol n, KHE RESOURCE r, int i);

The total cost of these monitors measures how waltimetabled. Functions

KHE_COST KheSol nResour ceCost ( KHE_SOLN sol n, KHE_RESOURCE r);
KHE_COST KheSol nResour ceMoni t or Cost (KHE_SOLN sol n, KHE_RESOURCE r,
KHE_MONI TOR_TAG tag) ;
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return the total cost of all the monitors monitoringnd the total cost of all monitors monitoring
r of a specific type, defined hyag. KheSol nResour ceMoni t or Cost returns O whenag does
not specify one of the monitor types in the following subsections.

The following subsections list the kinds of resource monitors and their features. Their types
(KHE_AVO D_CLASHES_MONI TOR etc.) may be obtained by downcasting fréREE_MONI TOR after
checking the type tag. Monitors of typéE_WORKLOAD_DEMAND_MONI TCR, defined in Section
7.4, are also visited byheSol nResour ceMoni t or Count and KheSol nResour ceMbni t or .
However, the timetable monitor for a resource is not visited by these functions; as explained in
Section 6.7, it is retrieved by calliffheResour ceTi met abl eMoni t or .

6.6.1. Avoid clashes monitors

An avoid clashes monitor has t&gE_AVO D_CLASHES_MONI TOR_TAG and monitors a resource
which is one point of application of one avoid clashes constraint. Functions

KHE_AVO D CLASHES CONSTRAI NT KheAvoi dC ashesMoni t or Const rai nt (
KHE_AVO D_CLASHES MONI TOR ) ;

KHE_RESOURCE KheAvoi dCl ashesMoni t or Resour ce(
KHE_AVO D_CLASHES_MONI TOR m) ;

return the avoid clashes constraint and resource being monitored. Function

voi d KheAvoi dC ashesMoni t or Debug( KHE_AVO D_CLASHES MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

An avoid clashes monitanmay have non-zerisheMbni t or Lower Bound(n) . Lett be the
total duration of the events to whicls resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greatemthaveight. Then ift
exceeds the number of times in the cycle, the excess is a lower bound on the number of defects
that m must have in any reasonable solution (one in which violationsrafe preferred to
violations of the more expensive assign time constraints). Converting this number of defectsinto
a cost usingyis cost function in the usual way gives the lower bound.

6.6.2. Avoid unavailable times monitors

This monitor has tagHE_AVO D_UNAVAI LABLE_TI MES_MONI TOR_TAG and monitors a resource
which is one point of application of one avoid unavailable times constraint. Functions

KHE_AVO D_UNAVAI LABLE Tl MES_CONSTRAI NT
KheAvoi dUnavai | abl eTi mesMoni t or Const rai nt (
KHE_AVO D_UNAVAI LABLE TI MES_MONI TOR ) ;
KHE_RESOURCE KheAvoi dUnavai | abl eTi mesMoni t or Resour ce(
KHE_AVO D_UNAVAI LABLE_TI MES_MONI TOR ) ;

return the avoid unavailable times constraint and resource being monitored. Function
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voi d KheAvoi dUnavai | abl eTi meshoni t or Debug(
KHE_AVO D_UNAVAI LABLE TI MES MONI TOR m int verbosity,
int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

An avoid unavailable times monitan may have non-zer&hehbni t or Lower Bound( ) .
Supposers resource is subject to an avoid clashes constraint of weight greaterishaeight.
Lett, be the total duration of the events to whidb resource is preassigned which either have
preassigned times or are subject to an assign time constraint of weight greateés tivaight.
Lett, be the number of times to be avoided according tdhen ift, + t, exceeds the number of
times in the cycle, the excess is a lower bound on the number of defectsthest have in any
reasonable solution (one in which every meet is assigned a time, and violatroassgfreferred
to violations of the more expensive assign time and avoid clashes constraints). Converting this
number of defects into a cost usimg cost function in the usual way gives the lower bound.

6.6.3. Limit idle times monitors

A limit idle times monitor has tagcHE_LI M T_I DLE_TI MES_MONI TOR_TAG and monitors a
resource which is one point of application of one limit idle times constraint. Functions

KHE LIM T _I DLE _TI MES_CONSTRAI NT KheLimi t1dl eTi mesMonitor Constrai nt (
KHE_LIM T_I DLE_TI MES_MONI TOR 1) ;

KHE_RESOURCE KheLim t1dl eTi mesMonit or Resour ce(
KHE_LIM T_IDLE_TI MES_MONI TOR m) ;

return the limit idle times constraint and resource being monitored, and

i nt KheLinitldl eTi meshonitorTi neG oupCount (
KHE_LIM T_I DLE_TI MES_MONI TOR ) ;

KHE_TI ME_GROUP KhelLi mit1dl eTi nesMonit or Ti meG oup(
KHE LIMT_IDLE_ TIMES MONNTOR m int i);

visit the time groups thatmonitors, that is, the time groups from the constraint. There is also

KHE TI ME_GROUP KheLim t1dl eTi meshonitorTi meG oupSt at e
KHE LIMT_IDLE TIMES MONNTOR m int i, int xbusy count, int *idle_count,
KHE TI ME extrenme_busy times[2], int xextrene_busy times_count);

which, in addition to returning thieth time group, also reports its state, by settihgsy_count

to its number of busy timesj dl e_count to its number of idle times, and placing its first and
last busy times intoextreme_busy_times[0 .. =extrenme_busy_tinmes_count - 1]. If
there are no busy timesext rene_busy_ti mes_count is O; if there isone itis 1; otherwise itis
2. Function

voi d KheLinitldleTi mesMonitorDebug(KHE_LIM T_I DLE_TI MES_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.
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6.6.4. Cluster busy times monitors

A cluster busy times monitor (tagHE_CLUSTER BUSY_TI MES_MONI TOR_TAG) monitors a re-
source and offset making one point of application of a cluster busy times constraint. Functions

KHE_CLUSTER BUSY_TI MES CONSTRAI NT KheCl ust er BusyTi mesMoni t or Const r ai nt (
KHE_CLUSTER_BUSY_TI MES_MONI TOR 1) ;

KHE_RESOURCE Khed ust er BusyTi mesMoni t or Resour ce(
KHE_CLUSTER _BUSY_TI MES_MONI TOR ) ;

return the cluster busy times constraint and the resource being monitored. Functions

i nt KheC ust er BusyTi nesMoni t or Hi st or yBef or e(
KHE_CLUSTER_BUSY_TI MES_MONI TOR 1) ;

i nt KheC ust er BusyTi mesMoni t or Hi st or yAfter(
KHE_CLUSTER_BUSY_TI MES_MONI TOR ) ;

i nt KheCl ust er BusyTi nesMoni t or Hi st ory(
KHE_CLUSTER_BUSY_TI MES_MONI TOR ) ;

return the history before, history after, and history values frtsxconstraint, or O if not present.
In the high school model, these are always 0. Function

i nt KheC usterBusyTi neshoni t or O f set (KHE_CLUSTER _BUSY_TI MES_MONI TOR ) ;

returns the offset being monitored. In the high school model, and when the constraibt has
forappl i es_t o_t g, the offset is always 0, otherwise the offset is the difference in index between
one useful time irappl i es_t o_t g and the first time irappl i es_t o_t g. Functions

i nt KheC ust er BusyTi nesMoni t or Ti mneG oupCount (
KHE_CLUSTER BUSY_TI MES_MONI TOR m) ;

KHE_TI ME_GROUP Khed ust er BusyTi mesMoni t or Ti meG oup(
KHE_CLUSTER BUSY_TIMES MONITOR m int i, KHE POLARITY xpo);

return the time groups thatmonitors (one for each time group in the cluster busy times con-
straint, adjusted usingheTi meG oupNei ghbour by the offset), and their associated polarities.
A rough idea of the times monitored byis given by function

voi d Khed ust er BusyTi meshbni t or Range( KHE_CLUSTER BUSY_TI MES MONI TOR m
KHE TIME «first _time, KHE TIME x|l ast_time);

It sets«first_time and«l ast_tine to the first and last times monitored by In the unlikely
event thatnmonitors no times at all, they will be set¥oLL. These values are calculated the first
time that the function is called, and cachedhso that subsequent calls take almost no time.

There are also two functions which report the current state of the monitor, as it varies during
the solve. Function

voi d Khed ust erBusyTi meshoni tor Acti veTi neG oupCount (
KHE CLUSTER BUSY_TIMES MONITOR m int xactive_group_count,
*0pen_group_count, int *mninmm int *maxi mum bool =xallow zero);

setsractive_group_count tothe number of active time groups (busy positive time groups plus
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non-busy negative time groupsdpen_gr oup_count tothe number of time groups not known to
be either active or inactive (becauset ory_af t er is non-zero, or because there is a non-trivial
cutoff index), and m ni mum * maxi mum and=al | ow_zer o to the values from the constraint. If
mhas non-zero cost, then eitheact i ve_group_count + xopen_group_count < *m ni mum
orxactive_group_count > xmaxi mum Function

bool Khed ust erBusyTi meshboni tor Ti meG oupl sActi ve(
KHE_CLUSTER BUSY_TIMES MONITOR m int i, KHE_TIME_GROUP *tg,
KHE_PCOLARI TY *po, int =busy_count);

returnst r ue when the time group at indexis currently active. It also set$ g and+po to the
time group and polarity at index, and+busy_count to the number of busy times in the time
group. ltsreturn value is the value of the condition

(*po == KHE_NEGATIVE) == (*busy_count == 0)

as the definition of the constraint specifies.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function

int KheC usterBusyTi mesMoni t or At MaxLi m t Count (
KHE_CLUSTER BUSY_TI MES MONI TOR ) ;

It returns 1if the monitor is not detecting a violation but the number of active time groups equals
the maximum limit, and O otherwise. It returns an integer rather than a boolean for consistency
with KheLi mi t Acti vel nt er val sMoni t or At MaxLi mi t Count .

For the benefit of time sweep algorithms, which may perform better if cluster busy times
monitors understand that there is no point in complaining about problems beyond the point that
the time sweep has reached, there are functions

voi d Khed ust er BusyTi meshbni t or Set Cut of f | ndex(
KHE CLUSTER BUSY_TIMES MONITOR m int cutoff_index);
i nt KheC ust er BusyTi nesMoni t or Cut of f | ndex(
KHE_CLUSTER BUSY_TI MES_MONI TOR m) ;

These functions set and retrieve the monitarigtoff index an integer between 0 and
KheC ust er BusyTi meshoni t or Ti neG oupCount inclusive, whose effect is explained be-
low. If no cutoff index has been seédhed ust er BusyTi mesMoni t or Cut of f I ndex(n) returns
Khed ust er BusyTi meshbni t or Ti neG oupCount () . This value cuts off nothing, and should
be passed when the aim is to remove a previously set cutoff index.

In practice it will often be easier to call this function:

voi d Khed ust er BusyTi mesMoni t or Set Cut of f Ti me(
KHE_CLUSTER BUSY_TI MES MONI TOR m KHE_TIME cutoff _tine);

It works out the appropriate cutoff index for ignoring all time groups that contain any time later
thancut of f _ti me, and call&khed ust er BusyTi mesMoni t or Set Cut of f | ndex with that cutoff
index. PassingULL for cut of f _t i me removes any cutoff index.

KheC ust er BusyTi neshoni t or Set Cut of f Ti e examinesnis time groups from first
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to last, stopping at the first time group that contains a time whose index exceeds the index of
cutof f _ti me. The index of that time group is the cutoff index; or if there is no such time group,
the cutoff index iskheC ust er BusyTi mesMoni t or Ti mreG oupCount (n) . The function runs

much faster than just described when the cutoff times are increasing, as they usually are.

This procedure may seem dubious, given that there is no requirement for the time groups
of nis constraint to be added in chronological order. However, cluster busy times monitors sort
their time groups into increasing order of the maximum time index in each group.

Khed ust er BusyTi meshoni t or Set Cut of f | ndex returnst rue when a non-zero number
of time groups is being cut offkhed ust er BusyTi mesMoni t or Set Cut of f Ti me does the same.
For example, passingLL for cut of f _t i me always returns valuieal se. But other cutoff times
also returrf al se, when they come after the last time in the last time group.

The general idea is that if a solve is attempting to assign times only up to a certain point
in the cycle, then a cutoff index should be set to inform the monitor that there is no point in
complaining about things at or beyond that point. This improves the value of the monitor as an
influencer of the solve actually under way.

For the record, however, we need to be specific about the effect of a cutoff index. The
monitor understands that time groups whose indexes are equal to or larger than the cutoff
index are beyond the scope of the current solve. This does not affect busy time groups, which
are considered to be active or inactive as usual (depending on their polarity), but it does affect
non-busy ones, which are considered to be inpenstate, that is, not known to be either active
or inactive. The monitor then acts conservatively: it considers an open time group to be active
when comparing with a minimum limit, and inactive when comparing with a maximum limit.
Either way, this makes a violation less likely.

There is also

KHE TI ME Khed ust er BusyTi meshoni torlnitial Cutof f Ti me(
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;

This returns the smallest timesuch that cutting off at is not the same as cutting off at index
0, orNULL if there is no such time.

Suppose the aim is to successively oudff att1,t2, and so on tan, the last time. Let
ti = Khed usterBusyTi meshnitorlnitial CutoffTime(m,andletj be the firsttime such
that KheQ ust er BusyTi meshbni t or Set Cutof f Time(m tj) returnsfal se. Then the only
calls to set cutoffs that actually need to be made are

KheC ust er BusyTi mesMoni t or Set Cut of f I ndex(m 0);
KheC ust er BusyTi mesMoni t or Set Cutof f Time(m ti);

Khed ust er BusyTi mesMoni tor Set Cut of f Ti me(m tj);

Calls betweenl andti - 1 change nothing, and calls aftgr also change nothing. If there is no
ti,then cutting off at index 0 is all that is needed.

There is a peculiar but apparently unavoidable asymmetry in the handling of time groups at
or after the cutoff index: if they are busy they have a definite state, either active or inactive, but
if they are not busy they are open. This can be mitigated by calling
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voi d Khed ust er BusyTi meshoni t or Set Not BusySt at e(
KHE CLUSTER BUSY TIMES MONITOR m int i, bool active);

wherei isthe index of one ofiis time groups, call it g. Thisinformanthat whert g is at or after

the cutoff index and is not busy, it should be considered either active or inactive (depending on
theact i ve parameter) rather than open. No other cases are affected. There are no restrictions
on when this function can be called, relative to setting the cutoff index or anything else. It may
change the cost afi Function

voi d Khed ust er BusyTi meshoni t or Cl ear Not Busy St at e(
KHE_CLUSTER BUSY_TIMES MONITOR m int i);

returng g to its default state. (In practice, there is no reason to call this function, because as the
cutoff index increases these effects become irrelevant anyway.)

Finally, function

voi d Khed ust er BusyTi meshbni t or Debug( KHE_CLUSTER _BUSY_TI MES_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

6.6.5. Limit busy times monitors

A limit busy times monitor (tagkHE_LI M T_BUSY_TI MES_MONI TOR_TAG) monitors a resource
and offset which make up one point of application of a limit busy times constraint. Functions

KHE LIM T _BUSY_TI MES _CONSTRAI NT KhelLi mi t BusyTi mesMoni t or Const rai nt (
KHE_LIM T_BUSY_TI MES_ MONI TOR n) ;

KHE_RESOURCE KheLi m t BusyTi mesMbni t or Resour ce(
KHE_LIM T_BUSY_TI MES_ MONI TOR n) ;

i nt KheLi m t BusyTi meshonitorOffset (KHE LIM T_BUSY_TI MES MONI TOR ) ;

return the limit busy times constraint and the resource and offset being monitored. In the high
school model, and when the constraint haksL for appl i es_to_t g, the offset is always O,
otherwise the offset is the difference in index between one useful tiragpiri es_to_t g and

the first time inappl i es_to_tg.

The monitored time groups (after applying the offset) are returned by

i nt KheLi m t BusyTi meshbni t or Ti neG oupCount (
KHE_LIM T_BUSY_TI MES_ MONI TOR ) ;

KHE_TI ME_GROUP KhelLi mi t BusyTi nesMoni t or Ti meGroup(
KHE LIM T_BUSY_TIMES MONNITOR m int i);

A rough idea of the times monitored bys given by function

voi d KheLi m t BusyTi mesMni t or Range( KHE_LI M T_BUSY_TI MES_MONI TOR m
KHE TIME «first_time, KHE_TIME | ast_time);

It sets+first_time and+l ast_ti ne to the first and last times monitored by In the unlikely
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event thatnmonitors no times at all, they will be setNoLL. These values are calculated the first
time that the function is called, and cachedhiso that subsequent calls take almost no time.

Functions

i nt KheLi nm t BusyTi meshoni t or Def ecti veTi meG oupCount (
KHE_LIM T_BUSY_TI NES_MONI TOR m) ;
voi d KheLi mi t BusyTi mesMoni t or Def ecti veTi neG oup(
KHE_LIM T _BUSY TINMES MONNTOR m int i, KHE TIME_GROUP *tg,
int *busy_count, int *nmininum int *maximum bool xallow zero);

visit the time groups monitored lmythat are currently defective, in any order. For eagtt g is
set to one defective time growdusy_count is set to the number of timeds resource is busy
during+t g, and«m ni mum * maxi num andxal | ow_zer o are set to the corresponding values from
the constraint; so either the resource is underloaded duringnd+busy_count < *ni ni mum

or the resource is overloaded durirtgg and+*busy_count > *maxi mum The time groups are
the time groups of the constraint, adjusted usimgi neG oupNei ghbour by the offset.

Limit busy times monitors containeei | i ng attribute, set and retrieved by

voi d KheLi m t BusyTi mesMbni t or Set Cei | i ng( KHE_LI M T_BUSY_TI MES_MONI TOR m
int ceiling);
i nt KheLi m t BusyTi meshoni torCeiling(KHE LIM T_BUSY_TI MES MONI TOR ) ;

Whenbusy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 13.7.3. The default valu=eofi ng is | NT_MAX, which
effectively turnsit off. Ifmis attached whekheLi m t BusyTi mesMoni t or Set Cei | i ng is called,

it will be detached and reattached by the call.

Function

voi d KheLi mi t BusyTi mesMoni t or Debug( KHE_LI M T_BUSY_TI MES_MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

A limit busy times monitommay have non-zerigheMoni t or Lower Bound(m . Supposeis
resource is subject to an avoid clashes constraint of weight greaterishagight. Lett, be the
total duration of the events to whicts resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greatenthaseight. Lett, be the
number of times in the cycle minus the number of timegsiconstraint’'s domain. Then at least
t, - t, of the times of the events preassignedisresource must occur in time groups limited by
m If this exceeds the number of time groupsisiconstraint times itsaxi mum then the excess,
converted into a cost in the usual way, gives the lower bound. Monitors are only created for
offsets applicable to all times in the constraint, so this lower bound is the same for all offsets.

6.6.6. Limit workload monitors

A limit workload monitor has tagHE_LI M T_WORKLOAD_MONI TOR and monitors a resource
which is one point of application of one limit workload constraint. Functions
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KHE LIM T_WORKLQAD CONSTRAI NT KheLi mi t Wor kl oadMoni t or Const rai nt (
KHE LIM T_WORKLOAD MONI TOR n) ;

KHE_RESOURCE KheLi m t Wr kIl oadMbni t or Resour ce(
KHE LIM T_WORKLOAD MONI TOR ) ;

i nt KheLi m t Wor kl oadMoni tor O f set (KHE_LIM T_WORKLOAD MONI TOR m) ;

return the limit workload constraint and the resource and offset being monitored. In the high
school model, and when the constraint kL for appl i es_to_t g, the offset is always O,
otherwise the offset is the difference in index between one useful tiragpin es_to_tg and

the first time inappl i es_to_t g. Functions

i nt KheLi m t Wor kl oadMoni t or Def ect i veTi meG oupCount (
KHE_LIM T_WORKLOAD MONI TOR ) ;
voi d KheLi m t Wor kl oadMoni t or Def ecti veTi neG oup(
KHE_LIM T_WORKLOAD MONITOR m int i, KHE TIME_GROUP *tg,
float *workload, int *mnimm int *maxi num bool =+allow zero);

visit the time groups monitored lmythat are currently defective, in any order. For eagtt g is

set to one defective time grouwor ki oad is set to the workload afis resource duringt g, and

*m ni mum +naxi mum and+al | ow_zer o are set to the corresponding values from the constraint;
so either the resource is underloaded dufinggand+wor kl oad < *mi ni num or the resource is
overloaded duringt g and+wor kl oad > *maxi num The time groups are the time groups of the
constraint, adjusted usirkheTi meG oupNei ghbour by the offset.

Limit workload monitors contain eei | i ng attribute, set and retrieved by

voi d KheLi mi t Wor kl oadMoni t or Set Cei | i ng( KHE_LIM T_WORKLOAD _MONI TOR m
int ceiling);
i nt KheLi m t Wr kl oadMoni t or Cei | i ng( KHE_LI M T_WORKLOAD_MONI TOR ) ;

Whenwor kl oad > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 13.7.3. The default valuseofi ng is | NT_MAX, which
effectively turns it off. Ifmis attached whekhelLi mi t Wr k| oadMoni t or Set Cei | i ng is called,

it will be detached and reattached by the call.

Function

voi d KheLi mi t Wor kI oadMoni t or Debug( KHE LIM T_WORKLOAD MONI TOR m
int verbosity, int indent, FILE *fp);

Is like KheMbni t or Debug, only specific to this type of monitor.

A limit workload monitormmay have non-zerheMni t or Lower Bound( ) . This is true
in all cases, but at present KHE only calculates a potentially non-zero lower boundnwhen
monitors the whole cycle. In that case, add up the workloads of the tasks to mrelsource
Is preassigned. If this exceeds the maximum of the corresponding limit workload constraint,
converting the excess into a cost usmigjcost function in the usual way gives the lower bound.
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6.6.7. Limit active intervals monitors

A limit active intervals monitor has tagHE LI M T_ACTI VE_| NTERVALS_MONI TOR_TAG and
monitors a resource and offset which together make one point of application of one limit active
intervals constraint. Limit active intervals constraints occur only in the employee scheduling
model, so limit active intervals monitors also occur only in that model. Functions

KHE_LI M T_ACTI VE_| NTERVALS_CONSTRAI NT
KheLi mi t Acti vel nt erval shoni t or Const r ai nt (
KHE LI M T_ACTI VE_| NTERVALS MONI TOR ) ;
KHE_RESOURCE KheLi mi t Acti vel nt erval shoni t or Resour ce(
KHE LI M T_ACTI VE_| NTERVALS MONI TOR ) ;

return the limit active intervals constraint and the resource being monitored. Functions

i nt KheLi mtActivelnterval shonitorM ni nun{
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;

i nt KheLi mtActivel nterval shonit or Maxi nun{
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;

return the minimum and maximum limits from the constraint.

i nt KheLim tActivelnterval sMonitorHi storyBefore(
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;

i nt KheLimtActivelnterval shonitorH storyAfter(
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;

i nt KheLimtActivelnterval shonitorHi story(
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;

return the history before, history after, and history values frdsnconstraint, or O if not
present. Function

i nt KheLinmtActivelnterval shnitorOfset(
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR ) ;

returns the offset being monitored. When the constrainhbliasfor appl i es_t o_t g, the offset
is 0, otherwise it is the difference in index between one useful tina@phi es_t o_t g and the
first time inappl i es_to_tg. Functions

i nt KheLimtActivelnterval shnitorTi neG oupCount (
KHE LI M T_ACTI VE_| NTERVALS MONI TOR ) ;
KHE_TI ME_GROUP KhelLim t Activel nterval sMonitorTi meG oup(
KHE LIM T_ACTI VE_I NTERVALS MONITOR m int i, KHE POLARI TY *po);

return the time groups thatmonitors (one for each time group in the limit active intervals con-
straint, adjusted usingheTi meG oupNei ghbour by the offset), and their associated polarities.

There are also functions which report the state of the monitor during the solve. Function
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bool KheLi mitActivel nterval shonitorTi neG oupl sActi ve(
KHE_LIM T_ACTI VE_I NTERVALS MONITOR m int i, KHE TIME_GROUP =*tg,
KHE PCLARITY *po, int xbusy count);

returnst r ue when the time group at indexis currently active. It setst g and+po to the time
group and polarity at indeix, and+busy_count to the number of busy times in the time group.
It returns the value of the conditigmpo == KHE_NEGATI VE) == (*busy_count == 0),asthe
definition of the constraint specifies.

For visiting defective active intervals (active intervals whose length is less than the
minimum limit or greater than the maximum limit from the constraint), functions

int KheLinitActivelnterval shbonitorDefectivelnterval Count (
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR ) ;
voi d KheLinitActivelnterval shonitorDefectivelnterval(
KHE LI M T_ACTI VE | NTERVALS MONITOR m int i, int ~history before,
int »first_index, int xlast_index, int xhistory after, bool *too_|ong);

return the number of defective active intervals and attributes dftthdefective active interval:

«hi story_bef ore. If the interval includes the first time group, the part of its length from
before there (i.ekhelLi mi t Acti vel nt er val shbni t or Hi st ory(m ), otherwise O.

«first_index. The index of the first time group in the interval, not including any history
part, so always at lea8t

x| ast _i ndex. The index of the last time group in the interval, not including any history
part, so always at mo&heLi mi t Acti vel nt erval shoni t or Ti meG oupCount (m) - 1.

«hi story_after. If the interval includes the last time group, the part of its length from
after the last time group. This must be 0 when the the interval violates a maximum limit.

*t 00_| ong. Since this is a defective interval, its length must either be too long or too short.
This value ig r ue if it is too long, andf al se if it is too short.

The value compared with the limits is
»history before + (*last_index - *first _index + 1) + xhistory after

See Jeff Kingston’s paper on history for the rationale for this. All these definitions hold good
(although their consequences are not quite obvious) when there is a cutoff index (see below).

In rare casegkheli m t Acti vel nt erval shoni t or Def ecti vel nterval sets|ast _index
to- 1. This indicates that there is a defective interval lying entirely within the history range. A
solver can do nothing about this; it must check this condition and do nothing when it occurs.

KheLi mi t Acti vel nt erval shoni t or Def ecti vel nterval visits the defective intervals
in increasing order offirst_i ndex. This ensures that if, between calls to this function, the
solution is changed, then changed back again to its previous state, a partially completed traversal
of defective intervals using this function is not invalidated.

There may be value in obtaining advance warning that a constraint is close to being violated.
For that there is function
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i nt KheLimtActivelnterval shonitorAt MaxLi m t Count (
KHE_LI M T_ACTI VE_I NTERVALS_MONI TOR m) ;

It returns the number of active intervals which do not violate any limits, but whose length equals
the maximum limit. It has been considered most efficient to not maintain this value incremen-
tally; instead, the list of non-violating intervals is scanned when this function is called.

For the benefit of time sweep algorithms, which may perform better if active intervals
monitors understand that there is no point in complaining about problems beyond the point that
the time sweep has reached, there are functions

bool KheLi mi tActivel nterval shnitor Set Cut of f I ndex(

KHE_LI M T_ACTI VE_I NTERVALS MONITOR m int cutoff i ndex);
i nt KheLim tActivelnterval shonitorCutof fl ndex(

KHE_LI M T_ACTI VE_| NTERVALS_MONI TOR nj ;

These functions set and retrieve the monitarigtoff index an integer between 0 and
KheLi mi t Act i vel nt er val shoni t or Ti meG oupCount () inclusive, whose effect is explained
below. If no cutoff index has been s&heLi mi t Acti vel nt erval shbni t or Cut of f | ndex(m)
returnskheLi mi t Act i vel nt er val shMoni t or Ti meG oupCount () . This value cuts off nothing,
and should be passed when the aim is to remove a previously set cutoff index.

In practice it will often be easier to call this function:

bool KheLi mitActivel nt erval shonit or Set Cut of f Ti me(
KHE_LI M T_ACTI VE_I NTERVALS MONI TOR m KHE_TI ME cutof f _time);

It works out the appropriate cutoff index for ignoring all time groups that contain any time later
thancut of f _time, and callskheLi nmit Acti vel nt er val shoni t or Set Cut of f I ndex with that
cutoff index. PassinuLL for cut of f _ti ne removes any cutoff index.

KheLi mi t Acti vel nt er val sMoni t or Set Cut of f Ti me examinesis time groups from first
to last, stopping at the first time group that contains a time whose index exceeds the index of
cutof f _ti me. The index of that time group is the cutoff index; or if there is no such time group,
the cutoff index isKheLi mit Acti vel nt erval sMoni tor Ti meG oupCount () . The function
runs much faster than just described when the cutoff times are increasing, as they usually are.

KheLi mi t Acti vel nt erval sMoni t or Set Cut of f I ndex returnstrue when a non-zero
number of time groups is being cut offheLi i t Act i vel nt er val shbni t or Set Cut of f Ti me
does the same. For example, pas$idg. for cut of f _ti ne always returns valukal se. But
other cutoff times also retuifral se, when they come after the last time in the last time group.

The general idea is that if a solve is attempting to assign times only up to a certain point
in the cycle, then a cutoff index should be set to inform the monitor that there is no point in
complaining about things at or beyond that point. This improves the value of the monitor as an
influencer of the solve actually under way.

For the record, however, we need to be specific about the effect of a cutoff index. It
influences its monitor in two ways. First, and most simply, active intervals that begin at or after
the cutoff index do not attract a cost, no matter how short or long they are. Active intervals that
begin before the cutoff index and extend beyond it are not truncated, however, except where the
second effect (which we are about to explain) changes the state of some of their time groups.
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Second, and more subtly, the monitor understands that time groups whose indexes are equal
to or larger than the cutoff index are beyond the scope of the current solve. This does not affect
busy time groups, which are considered to be active or inactive as usual (depending on their
polarity), but it does affect non-busy ones, which are considered to beojpeanstate, that is, not
known to be either active or inactive. The monitor then acts conservatively: it considers an open
time group to be active when comparing with a minimum limit, and inactive when comparing
with a maximum limit. Either way, this makes a violation less likely.

Thereis also

KHE_TI ME KheLi mit Acti vel nterval shonitorlnitial CutoffTime(
KHE LI M T_ACTI VE_I NTERVALS_MONI TOR ) ;

This returns the smallest timesuch that cutting off at is not the same as cutting off at index
0, orNULL if there is no such time.

Suppose the aim is to successively oudff att 1, t2, and so on tan, the last time. Let
ti = KheLimitActivelnterval shnitorlnitialCutoffTime(m,andletj be the firsttime
such thatkheLi mi t Acti vel nt erval sMonitorSet Cutof f Time(m tj) returnsfal se. Then
the only calls to set cutoffs that actually need to be made are

KheLi mi t Acti vel nt erval sMoni t or Set Cut of f I ndex(m 0);
KheLi mi t Activel nterval sMonitorSetCutof fTine(m ti);

KheLi mi t Activel nterval sMonitorSetCutof fTine(m tj);

Calls betweemnl andti - 1 change nothing, and calls aftgr also change nothing. If there is no
ti,then cutting off at index 0 is all that is needed.

There is a peculiar but apparently unavoidable asymmetry in the handling of time groups at
or after the cutoff index: if they are busy they have a definite state, either active or inactive, but
if they are not busy they are open. This can be mitigated by calling

voi d KheLim t Activel nterval shonit or Set Not BusySt at e(
KHE_ LI M T_ACTI VE_| NTERVALS MONITOR m int i, bool active);

where isthe index of one ofis time groups, call it g. Thisinformsmthat when g is at or after

the cutoff index and is not busy, it should be considered either active or inactive (depending on
theact i ve parameter) rather than open. No other cases are affected. There are no restrictions
on when this function can be called, relative to setting the cutoff index or anything else. It may
change the cost ot Function

voi d KheLi mt Activel nterval sMonitorC ear Not BusySt at e(
KHE_LI M T_ACTI VE_I NTERVALS MONITOR m int i);

returng g to its default state. (In practice, there is no reason to call this function, because as the
cutoff index increases these effects become irrelevant anyway.)

For example, suppose that some resourdes requested that a certain time grogp
be kept free. Suppose thatis subject to a limit active intervals monitor whosei th time
group is a subset dfg. Then we can expect that time group to be free, and hence active if it
IS negative and inactive if it is positive. This expectation can be conveyedby calling
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KheLi mi t Acti vel nt er val sMoni t or Set Not BusySt at e. This can make a significant difference
to time sweep solvers whemhas a non-trivial minimum limit (2 or more), by penalizing them
for starting a new sequence of busy days just before a resource is due for some free time.

Finally, function

voi d KheLi m t Activel nterval shonit or Debug(
KHE_LIM T_ACTI VE_I NTERVALS MONITOR m int verbosity,
int indent, FILE *fp);

Is like KheMoni t or Debug, only specific to this type of monitor.

6.7. Timetable monitors

A timetableis a record of what is going on at each time. As part of monitoring cost, KHE
monitors the timetable of each event and each resource.

6.7.1. Event timetable monitors
Function

KHE EVENT Tl METABLE _MONI TOR KheEvent Ti net abl eMoni t or (KHE_SOLN sol n,
KHE_EVENT e);

returns the event timetable monitor of event Type KHE_EVENT_TI METABLE_MONI TOR is a
subtype ofKHE_MONI TOR with tagKHE_EVENT_TI METABLE_MONI TOR_TAG.

An event timetable monitor always has cost 0. When it is attached, a particular set of meets
is known to it at any moment: the set of meets derived feothat are assigned a time. The
monitor offers these operations, which report which meets are running at each time:

i nt KheEvent Ti met abl eMoni t or Ti meMeet Count (

KHE_EVENT _TI METABLE_MONI TOR etm KHE_TIME tine);
KHE_MEET KheEvent Ti net abl eMoni t or Ti meMeet (

KHE_EVENT _TI METABLE_MONI TOR etm KHE TIME tine, int i);

KheEvent Ti net abl eMoni t or Ti meMeet Count returns the number of meets running atre, and
KheEvent Ti net abl eMoni t or Ti neMeet returns the th of these meets. Closely related is

bool KheEvent Ti net abl eMoni t or Ti neAvai | abl e(
KHE_EVENT_TI METABLE_MONI TOR et m KHE_MEET neet, KHE TIME tine);

which returng r ue if moving meet within et m or adding it toet m so that its starting time is
ti me, would neither placeeet partly off the end of the timetable nor cause clashes.

An event timetable monitor offers no operations which report its set of meets directly. For
that, call functionheEvent Meet Count andKheEvent Meet from Section 4.2.7 to obtain the
meets derived from a particular event; the timetabled meets are those with an assigned time.

As usual, event timetable monitors are createdi®sol nMake and exist for as long as the
solution does. Thereisone for each event. Link events monitors (but not spread events monitors)
depend on event timetable monitors.
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Unlike most monitors, event timetable monitors are not attached initially. The event
timetable monitor returned bgheEvent Ti net abl eMoni t or may be unattached and so not up
to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some event
timetable monitor is detached, that event timetable monitor is detached. Thus, unless the user
chooses to attach an event timetable monitor explicitly, it will be attached only as needed by
other monitors. Detaching an event timetable monitor does nothing unless no attached monitors
depend on it. In practice, when using an event timetable moetitgrit is best to call

i f( !KheMonitorAttachedToSol n( (KHE_ MONI TOR) etnj )
KheMoni t or Att achToSol n( (KHE_MONI TOR) etm);

beforehand, and
KheMoni t or Det achFr onfol n( ( KHE_MONI TOR) et m);

afterwards, unless mmust be attached, because some monitor that depends on it is attached.

Although it would make sense to treat an event timetable monitor as a group monitor
(Section 6.8), that option is not offered. The user who wants all the problems associated with a
given event to be channelled through a single monitor must create a group monitor, separate from
the event timetable monitor, and add the appropriate monitors to it in the usual way.

Event timetable monitors may be debugged by calimgEvent Ti met abl eMbni t or Debug
(defined below) as usual. And

voi d KheEvent Ti et abl eMoni t or Pri nt Ti net abl e(
KHE_EVENT_TI METABLE_MONI TOR etm int cell_width, int indent, FILE =fp);

prints a conventional tabular timetable, usibays and possiblyéeks time groups from the
instance to determine its shape. Paramater_wi dt h is the width of each cell, in characters.
The user may create an event timetable monitor by calling

KHE_EVENT_TI METABLE_MONI TOR KheEvent Ti et abl eMbni t or Make( KHE_SOLN sol n,
KHE_EVENT_GROUP eg) ;

The result monitors the meetssidl n derived from the events efj, and thus offers a way to keep
track of which events oég are running at each time, something which is not otherwise available
in KHE. It can be attached and detached at will in the usual way. Initially, it is detached, so in
practice its creation would always be followed by a caKiteMni t or At t achToSol n.

To delete an event timetable monitor made in this way, call
KheEvent Ti et abl eMoni t or Del et e( KHE_EVENT _TI METABLE MONI TOR et nj ;
This function begins by detachirgymif it is attached. Function

voi d KheEvent Ti met abl eMoni t or Debug( KHE_EVENT_TI METABLE_MONI TOR et m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.
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6.7.2. Resource timetable monitors
Function

KHE_RESOURCE Tl METABLE _MONI TOR KheResour ceTi et abl eMbni t or (
KHE_SOLN sol n, KHE RESOQURCE r);

returns the resource timetable monitor of resourcBypeKHE_RESCURCE_TI METABLE_MONI TOR
Is a subtype oKHE_MONI TOR with tagKHE_RESOURCE_TI METABLE_MONI TOR_TAG. Functions

KHE SOLN KheResour ceTi net abl eMoni t or Sol n(
KHE_RESOURCE_TI METABLE_MONI TOR rtm);

KHE RESOURCE KheResour ceTi met abl eMoni t or Resour ce(
KHE_RESOURCE_TI METABLE_MONI TOR rtm);

returnrt mis solution and resource attributes.

A resource timetable monitor always has cost 0. Whenitis attached, a particular set of tasks
is known to it at any moment: those assigned the resource (either directly, or indirectly via other
tasks) whose enclosing meet is assigned a time (either directly, or indirectly via other meets).
The monitor offers these operations, which report which tasks are running at each time:

i nt KheResour ceTi et abl eMoni t or Ti meTaskCount (
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TIME tine);

KHE_TASK KheResour ceTi met abl eMoni t or Ti meTask(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE TIME tine, int i);

KheResour ceTi net abl eMoni t or Ti meTaskCount returns the number of tasks running atre;
KheResour ceTi met abl eMoni t or Ti neTask returns the th of these tasks.

Other functions are offered which may be more convenient in some cases. Function

bool KheResour ceTi et abl eMoni t or Ti meAvai | abl e(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_MEET neet, KHE_TIME tine);

returnst r ue if moving nmeet within rt m or adding it tort m so that its starting time isi ne,
would neither placeeet partly off the end of the timetable nor cause clashes. And

bool KheResour ceTi met abl eMoni t or Ti meG oupAvai | abl e(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TI ME_GROUP t g,
bool ignore_nocost, bool certain);

returnstrue when the resource monitored by mis free at all of the times otg. If
i gnore_nocost istrue, tasks for whichKheTaskNonAssi gnment HasCost (t, certain) re-
turnsf al se are ignored. Function

bool KheResour ceTi et abl eMbni t or TaskAvai | abl el nFr ame(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TASK task, KHE FRAME frane,
KHE TASK ignore_task);

is similar but more elaborate. For each time thagk and its descendants is running, it finds
the time group containing that timeimane. It returnst r ue when all of those time groups are
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available. Ifi gnore_t ask is nonNULL, it ignores any task whose proper root ghor e_t ask.
This is useful, for example, when checking whether a swap of the assignmerdskofind
i gnor e_t ask would create no cases of two tasks running in the same time grdummé.

Next come some operations concerned with finding sets of tasks that overlap things:

voi d KheResour ceTi net abl eMoni t or AddPr oper Root Tasks(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE_TI ME_GROUP tg,
bool include_preassigned, KHE TASK SET ts);

adds to existing task ses the proper root tasks of the tasksroimthat overlap with time group

tg. Itdoes not add tasks that are already presemntdfude_pr eassi gned ist r ue, preassigned

tasks are included, otherwise they aren’t. Omitting them makes sense when the tasks will be
reassigned. And

KHE_BUSY_TYPE KheResour ceTi et abl eMoni t or TaskBusy Ty pe(
KHE_RESOURCE_TI METABLE_MONI TOR rtm KHE _TASK t ask,

KHE_FRAMVE days_frame, KHE TASK SET r_ts, bool ignore_nocost,
bool certain);

KHE_BUSY_TYPE KheResour ceTi et abl eMoni t or TaskSet BusyType(
KHE_RESOQURCE_TI METABLE_MONI TOR rtm KHE TASK SET task_set,
KHE_FRAMVE days_frame, KHE TASK SET r_ts, bool ignore_nocost,
bool certain);

add to existing task set t s the proper roots of the tasksiafmthat are running on the same days
ast ask or the tasks of ask_set , including descendant tasks, usitays_f r ane to determine
what the days are. They do not add tasks tcs that are already present. Both functions return
a value of type

t ypedef enum {
KHE_BUSY_NONE = O,
KHE_BUSY_SOME = 1,
KHE_BUSY_ALL = 2

} KHE_BUSY_TYPE;

saying whethert mis busy on no day thatask or t ask_set is running, or one some but not
all days, or on all days. lfgnore_nocost , the calculation of this return value considers tasks
for whichKheTaskNonAssi gnment HasCost (t, certain) returns al se to be the same as free
time. However such tasks are still added tos.

A resource timetable monitor offers no operations which report its set of tasks directly.
For that, one can uséheResour ceAssi gnedTaskCount andKheResour ceAssi gnedTask from
Section 4.6.1 to obtain all the tasks assigned the resource; the timetabled ones are just those
whose enclosing meet has an assigned time.

As usual, resource timetable monitors are createkhbgol nVake and exist for as long as
the solution does. There is one for each resource. All resource monitors (except possibly limit
workload monitors) depend on resource timetable monitors.

Unlike most monitors, resource timetable monitors are not attached initially. The resource
timetable monitor returned heResour ceTi net abl eMoni t or may be unattached and so not
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up to date (it will be empty in that case). When a monitor is attached, any unattached timetable
monitor(s) it depends on are also attached. When the last monitor that depends on some resource
timetable monitor is detached, that resource timetable monitor is detached. Thus, unless the
user chooses to attach a resource timetable monitor explicitly, it will be attached only as needed
by other monitors. Detaching a resource timetable monitor does nothing unless no attached
monitors depend on it. So when using a resource timetable monitpit is best to call

i f( !KheMonitorAttachedToSol n((KHE MONI TOR) rtn) )
KheMoni t or Att achToSol n( (KHE_ MONI TOR) rtm;

beforehand, and
KheMoni t or Det achFr ontol n( ( KHE_MONI TOR) rtm);

afterwards, unless mmust be attached, because some monitor that depends on it is attached.

Although it would make sense to treat a resource timetable monitor as a group monitor
(Section 6.8), that option is not offered. The user who wants all the problems associated with a
given resource to be channelled through a single monitor must create a group monitor, separate
from the resource timetable monitor, and add the appropriate monitors to it in the usual way.

Here are two functions created to support the needs of particular solvers. First,

i nt KheResour ceTi et abl eMoni t or At MaxLi mi t Count (
KHE_RESOURCE_TI METABLE MONITOR rtm KHE TIME t);

returns the sum, over all cluster busy times and limit active intervals monitors that mamier
resource at time, of the values returned by those monit@ts¥axLi ni t Count functions. Itisan
efficient way to find out, during time sweep resource assignment, whether assignments at time
have brought any of these monitors to their maximum limits. Second,

voi d KheResour ceTi net abl eMoni t or AddRange(
KHE RESOURCE TI METABLE MONITOR rtm int first_time_index,
int last_time_index, KHE GROUP_MONI TOR gm);

adds togm all cluster and limit busy times monitors which monitarm are derived from
constraints which apply to every resource of the typetofis resource, and whose range (as
given byKhed ust er BusyTi nesMoni t or Range and KheLi mi t BusyTi nesMbni t or Range) lies
between the times indexed biyr st _ti me_i ndex andl ast _ti me_i ndex inclusive. A monitor
isnot added iKheG oupMoni t or HasChi | dMVoni t or reportsthatitis already there. Thisfunction
Is used by combinatorial grouping.

At present, all resource timetable monitors are created automatically when the solution is
created. The KHE user is offered nothing equivalerihteEvent Ti met abl eMoni t or Make.

Function

voi d KheResour ceTi net abl eMoni t or Debug(
KHE_RESOURCE_TI METABLE_MONI TOR rtm int verbosity,
int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor. There is also
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voi d KheResour ceTi met abl eMoni t or Pri nt Ti met abl e(
KHE RESOURCE TI METABLE MONITOR rtm int cell _width, int indent, FILE =fp);

which prints a tabular timetable, usibgys and possiblyéeks time groups from the instance
to determine its shape. Paramatelrl _wi dt h is the width of each cell, in characters.

6.8. Group monitors

Sometimes the cost ofanglemonitor is needed: for example, when reporting problems to the
user. And the total cost @ll monitors is always needed, since that is the cost of the solution.

Sometimes something in between these two extremes is needed: the cost of a set of related
monitors. To support this, the monitors of a solution are organized into a directed acyclic graph,
or dagfor short, of arbitrary depth. Each monitor reports its cost to its parent monitors. The dag
is often a tree, in which case the picture looks like this:
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The leaves are theon-group monitorghe various monitors described previously which monitor
the solution directly. The internal nodes are caligdup monitorsbecause they monitor a set
of monitors (their children). The cost of a group monitor is the sum of the costs of its children.

The solution object itself is a group monitor (initially, the only one). It supports all the
group monitor operations, plus the many other operations described earlier.

Group monitors have typeHE_GROUP_MONI TOR, a concrete subtype ¢HE_MONI TCR, like
KHE_ASSI GN_TI ME_MONI TCR etc. KHE_GROUP_MONI TCR is a supertype okHE_SOLN, so upcast

( KHE_GROUP_MONI TOR) sol n

Is safe, although often unnecessary, since many operations oKHp8R0UP_MONI TOR have
KHE_SCOLNversions. For example, sinkHE_GROUP_MONI TOR is itself a subtype ofHE_MONI TOR,
the total cost of all monitors could be found by calling

KheMoni t or Cost (( KHE_MONI TOR) sol n)

but of course the equivalelHE_SOLN version KheSol nCost , is easier to use.
When the solution changes at some point, the change is reported to the non-group monitors
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that monitor that point. Each updates its cost and reports any change to its parents, which update
their cost and report to their parents, and so on until there are no parents. The dag usually has
a single root, the solution object itself, but it does not have to be that way, because the links that
join non-group and group monitors to their parent monitors can be added and deleted at will.

6.8.1. Basic operations on group monitors

Unlike other types of monitors, group monitors other than the solution object can be freely
created and deleted. Function

KHE GROUP_MONI TOR KheGr oupMoni t or Make( KHE_SOLN sol n, int sub_tag,
char *sub_tag | abel);

creates a new group monitor with no parents and no children. It is passed the solution as a
parameter, and it remembers it, but it is not made a child of it. Functions

i nt KheG oupMonit or SubTag( KHE_GROUP_MONI TOR gm) ;
char *KheG ouphbni t or SubTagLabel ( KHE _GROUP_MONI TOR g ;

return thesub_t ag andsub_t ag_| abel attributes ofgm These are used to distinguish kinds of

group monitors. Ifsub_tag_| abel is nonNULL, it is printed when debugging. The values of

these attributes in solution objects afeand” Sol n". The term ‘sub-tag’is used because group
monitors already have a tag attribute, whose valiéits GROUP_MONI TOR_TAG.

A group monitor other than the solution object may be deleted by calling
voi d KheG ouphbni t or Del et e( KHE_GROUP_MONI TOR gm) ;

Its children will no longer have it as a parent, and its parents will no longer have it as a child. For
each parent ofm the hole in the parent’s list of child monitors is plugged by moving the last
child monitor tognis position. For each child afm the hole in the child’s list of parent monitors

is plugged by moving the last parent monitogtds position.

Every group monitor can have any number of child monitors, and every monitor (group or
non-group) can have any number of parent monitors. Even the solution object can have parents,
allowing monitoring of the total cost of a set of solutions. The operations for adding children to
a group monitor and removing them are

voi d KheG oupMoni t or AddChi | dvoni t or (KHE_GROUP_MONI TOR gm  KHE_MONI TOR nj ;
voi d KheG oupMoni t or Del et eChi | dMoni t or ( KHE_GROUP_MONI TOR gm KHE_MONI TOR ) ;

Heremcould be a non-group monitor or a group monitireG oupMoni t or AddChi | dMoni t or
makesna child ofgm andgma parent ofm It aborts if this would create a cycle in the dag (only
possible whemis a group monitor)KheG oupMoni t or Del et eChi | dMbni t or removesnfrom

gm leavingmwith one less parent arginwith one less child. The resulting holes are plugged as
described above for deleting group monitors. It abortsigf not a child ofgm There is also

bool KheG oupMoni t or HasChi | divoni t or ( KHE_GROUP_MONI TOR gm  KHE_MONI TOR ) ;

which returng r ue whenmis a child ofgm It is useful whermmay already be a child a@fm
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i f( !'KheG ouphbnitorHasChildMonitor(gm m )
KheG oupMoni t or AddChi | dMonitor(gm m;

No-one is checking that one monitor does not become the child of another twice over; and if it
does, its cost will be counted twice in the cost of its parent.

For group monitom KheMoni t or Lower Bound(n) sums the lower bounds afs children.
It may increase when a descendant is added, and decrease when a descendant is removed.

Initially, all non-group monitors are made children of the solution object, and all of them
except demand monitors are attached to the solution, sé&ttb&dl nCost is the total cost of all
non-demand monitors, which is indeed the cost of the solution. Care is needed when grouping
not to inadvertently disconnect monitors from the solution, since then their costs will not be
counted, or to connect them via multiple paths, since then their costs will be counted multiple
times. It is usually best to make a new group monitor a child of the solution immediately:

gm = KheG ouphoni t or Make(sol n, sub _tag, sub _tag_|abel);
KheG oupMoni t or AddChi | dMoni t or (( KHE_GROUP_MONI TOR) sol n,
(KHE_MONI TOR) gm);

And when deleting a group monitor, the best option may be helper function
voi d KheG oupMbni t or BypassAndDel et e( KHE_ GROUP_MONI TOR gm ;

It callsKheG oupMoni t or Del et e, but first it makegnis children into children ofynis parents,
if any, thus keeping them linked in. There is also

voi d KheSol nBypassAndDel et eAl | G ouphboni t or s( KHE_SOLN sol n);

which appliekheG oupMbni t or BypassAndDel et e to every group monitor ofol n.
Functions

i nt KheG oupMoni t or Chi | dMoni t or Count ( KHE_GROUP_MONI TOR gm) ;
KHE_MONI TOR KheGr oupMoni t or Chi | dMoni t or (KHE_GROUP_MONI TOR gm int i);

visit the child monitors of group monit@min the usual way. Igmis the solution object, these
versions of the functions allow the user to avoid the upcast:

i nt KheSol nChi | dvoni t or Count ( KHE_SOLN sol n) ;
KHE_MONI TOR KheSol nChi | dMoni t or (KHE_SOLN soln, int i);

Functions

i nt KheMoni t or Par ent Moni t or Count (KHE_MONI TOR m) ;
KHE_GROUP_MONI TOR KheMoni t or Par ent Moni t or (KHE MONITOR m int i);

visit the parent monitors ah There is also
bool KheMoni t or Descendant (KHE_MONI TOR ml, KHE _MONI TOR nR);

which returng rue if n is a descendant of2, including when the two are equal. And
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voi d KheG oupMoni t or Debug( KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

IS like KheMbni t or Debug, only specific to this type of monitor.

A group monitor has the usual attach and detach operations, but they do nothing substantial;
in particular, they do not change its cost. They just mark the monitor as attached or detached.
They should attach and detach it from its children, but that has not yet been implemented.

6.8.2. Defects

Informally, a defect is a specific problem with a solution. In KHE, the word has a formal meaning
as well: adefectis a monitor whose cost is nhon-zero.

It can be helpful to target defects directly, rather than wasting time changing parts of the
solution where there are no defects. This is especially the case near the end of the solve process,
when there may be thousands of monitors but only a handful of defects. To support this, KHE
offers fast access to those child monitors of a group monitor which are defects:

i nt KheG oupMoni t or Def ect Count ( KHE_GROUP_MONI TOR gnj ;
KHE_MONI TOR KheG oupMbni t or Def ect (KHE_GROUP_MONI TOR gm int i);

When a monitor’s cost changes from zero to non-zero, the monitor is added to its parents’ defect
lists; and when its cost changes from non-zero to zero it is removed. This takes a negligible
amount of time. When the group monitor is the solution there are convenience versions:

i nt KheSol nDef ect Count ( KHE_SQOLN sol n);
KHE_MONI TOR KheSol nDef ect (KHE_SCLN sol n, int i);

Thereis also

voi d KheG oupMbni t or Def ect Debug( KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

which is like KheG oupMoni t or Debug applied togm except that it prints only defective
children, and

voi d KheG oupMbni t or Def ect TypeDebug( KHE_GROUP_MONI TOR gm
KHE_MONI TOR_TAG tag, int verbosity, int indent, FILE xfp);

which is likeKheG oupMbni t or Def ect Debug except that it prints only children of typeyg.

If a solution is changed and then changed back again to its original state, its cost returns
to its original value, but there are two ways in which its defects can be different. First, they may
appear in a different order. Second, although the number of defects which are demand monitors
(Chapter 7) must return to its original value, the demand monitors that make up that number
may change. Thisis because there are many maximum matchings in general, and KHE does not
guarantee to find any particular one of them.

In practice, one wants to traverse a list of defects and try to repair them. Quite commonly,
an attempt to repair a defect will remove it temporarily and then reinstate it if the repair was
not successful. This will cause the defect to be shifted to the end of the defect list. A simple
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traversal of the defects from first to last will visit some defects more than once, and others not at
all. To handle this problem, it is necessary to make a copy of the defects and traverse the copy.
Although every defect will have non-zero cost at the time it is copied, as the list is traversed,
after the solution changes or if the list includes demand monitors, one cannot assume that every
monitor on the copy list will have non-zero cost.

To find the total cost of all monitors of a given type in the descendargs\afall

KHE_CCST KheG oupMoni t or Cost By Type( KHE_GROUP_MONI TOR gm
KHE MONI TOR _TAG tag, int =defect count);

It returns the number of defects,idef ect _count , as well as the cost. It traverses the whole
sub-dag of monitors ofm (actually, just the defects), so it is slow: it is intended for reporting,
not for solving. It return® whent ag is KHE_GROUP_MONI TOR_TAG, because it attributes cost to
the monitors that originally generated it. Version

KHE_COST KheSol nCost By Type( KHE_SOLN sol n, KHE_MONI TOR_TAG t ag,
int xdefect _count);

may be called when the group monitor is the solution object. The values returned by these
functions are displayed in a convenient tabular form by functions

voi d KheG oupMoni t or Cost By TypeDebug( KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

voi d KheSol nCost By TypeDebug( KHE_SOLN sol n,
int verbosity, int indent, FILE *fp);

which print one line for each kind of monitor undgnor sol n for which there are defects.

6.8.3. Tracing

Sometimes a solver needs to know which monitors have experienced a change in cost recently.
Ejection chain solvers, for example, need this information randitor tracingprovides it.

Tracing involves objects of typéHE_TRACE. To create one, call
KHE_TRACE KheTr aceMake( KHE_GROUP_NMONI TOR g ;
wheregmis the group monitor to be traced. The solution may be traced by upcasting it:
t = KheTraceMake( ( KHE_GROUP_MONI TOR) sol n);
The group monitor that a trace object is for can be found by calling
KHE GROUP_MONI TOR KheTr aceG ouphoni t or (KHE TRACE t);
To delete a trace object, call
voi d KheTraceDel et e( KHE_TRACE t);

This will call KheTraceEnd(t) below if needed. KHE keeps a free list of trace objects in the
solution object, so many trace objects can be created and deleted at virtually no cost.
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Actual tracing is initiated and ended by calling

voi d KheTraceBegi n(KHE_TRACE t);
voi d KheTraceEnd(KHE TRACE t);

These must be called in matching pairheTr aceBegi n removes any information left over
from any preceding trace, and attaches its group monitor so that it can record what happens.
KheTraceEnd detaches from its group monitor. Different trace objects may be attached and
detached quite independently of each other, even when they have the same group monitor.

After the trace ends, the following functions may be called:

KHE_COST KheTr acel ni t Cost (KHE_TRACE t);

int KheTraceMonitor Count (KHE_TRACE t);

KHE_MONI TOR KheTraceMonitor (KHE_TRACE t, int i);
KHE_COST KheTraceMnitorlnitCost(KHE_ TRACE t, int i);

KheTracel ni t Cost returns the initial cost of’'s group monitor (at the time the trace began);
KheTraceMoni t or Count returns the number of child monitors ofs group monitor whose
cost changed during the tradéieTr aceMoni t or returns the th of these child monitors; and
KheTraceMoni torlnitCost(t, i) returnsthe initial cost okheTraceMonitor(t, i). Also,

KHE_COST KheTraceloni t or Cost | ncrease(KHE TRACE t, int i);

returns KheMoni t or Cost (KheTraceMmitor(t, i)) - KheTraceMnitorlnitCost(t, i).
It will be negative when the monitor’s cost decreased.

The list of child monitors whose cost has changed never contains the same mmbwitte,
no matter how many timeds cost changes during the trace. This is desirable, but it means that
whennis cost changes, this list has to be searched to se&siflready present. So it is best to
use tracing on group monitors that group only a small number of monitors; or if a large group
monitor like the solution object is traced, to trace it for only small sequences of operations that
are not likely to change the cost of a large number of monitors.

These functions may be called during a trace as well as after it, returning values as though
the trace had just ended. While it is not an error to KB#G oupMoni t or AddChi | dMoni t or
or KheGr oupMoni t or Del et eChi | dMoni t or while tracing the group monitor concerned, it is not
recommended. A solution cannot be copied while one of its group monitors is being traced.

For the convenience of ejection chain algorithms, function
voi d KheTraceReduceByCost | ncrease( KHE_TRACE t, int max_num;

sorts the monitors by decreasikteTr aceMbni t or Cost | ncr ease, removes all monitors whose

cost increase is zero or negative, then keeps removing monitors from the end until at most
max_numremain. These may be accessed WiteiTr aceMoni t or Count ,KheTr aceMoni t or ,and
KheTraceMoni torlnit Cost as usual. The other monitors are gone and cannot be got back.

Finally, function
voi d KheTraceDebug( KHE_TRACE t, int verbosity, int indent, FILE *fp);

printst ontof p with the given verbosity and indent, showing monitors whose cost changed.
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Suppose a decision is made to run five Music meets simultaneously, when the school has only two
Music teachers and two Music rooms. Clearly, when teachers and rooms are assigned later, there
will be major problems, but until then the usual cost function will not reveal any problems.

More subtly, suppose there are eight teachers, and that three of them teach English only,
three teach History only, and two teach both. Suppose a decision is make to run five English
meets and five History meets simultaneously. Then there are enough English teachers to teach
the five English meets, and there are enough History teachers to teach the five History meets, but
there are not enough English and History teachers, taken together, to teach the ten meets.

Matchinggofficially, unweighted bipartite matchinpgetect such problems. Although not
compulsory, they are often helpful. This chapter describes them in general, how they apply to
timetabling, and how to use them in KHE. Getting started can be as simple as calling

KheSol nMat chi ngBegi n(sol n) ;

KheSol nMat chi ngSet Wi ght (sol n, KheCost (1, 0));

KheSol nMat chi ngAddAl | Wor kI oadRequi renent s(sol n);
KheSol nMat chi ngAtt achAl | Or di nar yDemandMoni t or s(sol n);

after the solution is made a complete representation.

7.1. The bipartite matching problem

A bipartite graphis an undirected graph whose nodes are divided into two sets, such that every
edge connects a node of one set to a node of the othenatghingis a subset of the edges
such that no two edges touch the same nodenakimum matching a matching containing as
many edges as possible. Tiipartite matching problens the problem of finding a maximum
matching in a bipartite graph. For example, here is a bipartite graph (at left), and the same graph
with a maximum matching shown in bold (at right):

There is a standard polynomial-time algorithm for this problem.

In timetabling, where bipartite matching has been used for many years [2, 4, 14], it is usual
for one of the two sets of nodes to represent variables (slots, events, etc.) demanding something
to be assigned to them, while the other set represents values (times, resources, etc.) which are
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available to supply these demands. So these sets are callddrttemd nodeand thesupply
nodeshere. A maximum matching assigns supply nodes to as many demand nodes as possible,
given that each demand node requires any one of the supply nodes it is connected to, and each
supply node may be assigned to at most one demand node. Although the problem is formally
symmetrical between the two kinds of nodes, in timetabling it is not symmetrical: it does not
matter if some supply nodes are not matched, but it does matter if some demand nodes are
not matched.

One does not usually want to make the assignments indicated by a maximum matching,
because there are other constraints not modelled by it, and the aim is to find, not just any
maximum matching, but one satisfying these other constraints. Instead, the matching helps to
evaluate the current state. Because itis maximum, it indicates that there must be at least a certain
number of problems, in the form of unassigned demand nodes, in any solution incorporating the
decisions already made, and that is valuable information when evaluating those decisions.

Some applications of matching to timetabling utilize the ideatofed, the author’s term for
one resource at one time (the name recallptkel of computer graphics). For example, teacher
Smith during the first time on Mondays is one tixel; it may be represented by the ordered pair

(SmithMon1)

This is also called aupply tixe] because it can supply the demands of events for teachers. The
events are said to contaffemand tixels For example, an event of duration 2 which requests
student grou@A, one English teacher, and one room, is said to contain six demand tixels. This
is shorthand for saying that it demands six supply tixels.

Underlying the high school timetabling problem is a matching that we will calgtbbeal
tixel matching Its supply nodes are the supply tixels, one for each resource of the instance at
each time. Its demand nodes are the demand tixels of the events of the instance. Edges connect
demand tixels to those supply tixels that suit them. For example, a demand for student group 8A
would be connected to supply tixels whose resource is 8A; a demand for an English teacher at
time Monlwould be connected to those supply tixels whose resource is an English teacher and
whose time isvilonl Each demand tixel wants to be assigned one supply tixel, and each supply
tixel may only be assigned to one demand tixel (otherwise there would be a timetable clash). So
a matching is indeed required, and a maximum matching will have the fewest problems.

As decisions are made, in the form of assignments of times to meets or resources to tasks
(or domain reductions, for example from all qualified resources to a smaller set of preferred
resources), the demand tixels affected by these decisions become connected to fewer supply
tixels. When the maximum matching is recalculated (there is an efficient algorithm for doing this
incrementally as the graph changes) there may be more unmatched nodes than before, suggesting
that the decisions made may have been poor ones, and that alternatives should be explored.

The global tixel matching is useful for evaluating instances before solving begins. It can
reveal, for example, that the supply of computer laboratories is insufficient to cover the demand,
and other problems of that kind. It turns out to be very powerful late in the solve process, when
resources are being assigned after times have been assigned, provided it is enhanced with tixels
expressing resource unavailabilities and workload limits (Section 7.4). However, itis quite weak
before times are assigned, because it does not understand that the supply tixels assigned to events
must be correlated in time: it does not perceive the contradiction in assigning, say, the two supply
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tixels (SmithMon1) and(Lab6,Wed35 to an event of duration 1.

An example given earlier, of scheduling five Music events simultaneously when there are
only two Music teachers and two Music rooms, shows that useful checks can be made when
deciding to run events simultaneously, even though their actual time is not fixed. Whatever time
is ultimately assigned to such events, each resource can supply at most one tixel to satisfy their
demands. So the demand tixels for one time of the events concerned may be matched with a set
of supply nodes, one for each resource. This will be cdtedl tixel matching The tixels are
rather different: they share a common generic time rather than holding a variety of true times.

7.2. Setting up
By default, a solution contains no matching. To add one, and later to take it away, call

voi d KheSol nivat chi ngBegi n( KHE_SOLN sol n) ;
voi d KheSol nivat chi ngend( KHE_SCLN sol n);

KheSol nMat chi ngEnd can be omitted if the matching is needed for the lifetime of the solution,
since the matching is deleted when its solution is deleted. There is also

bool KheSol nHasMat chi ng( KHE_SOLN sol n);

which returng r ue whensol n has a matching. Most of the other operations of this chapter are
undefined when no matching is present. Some may abort, others may do nothing.

KheSol nMat chi ngBegi n adds exactly one matching to the solution. It is kept up to date
thereafter as the solution changes, ufitdSol nMat chi ngEnd is called or the solution is deleted.
Adding a matching includes adding its demand nodes, each of which is represented by a monitor
called ademand monitar Removing a matching includes removing all demand monitors. A
demand monitor contributes a cost to the solution just like other monitors do. The costis 0 when
the node is matched, and some non-negative value, set by the user, when it is unmatched.

Demand monitors may be attached and detached individually as usual. Detachinga demand
monitor removes its node from the matching graph. Immediately iS00l nMat chi ngBegi n
returns, the demand monitors it makes are all detached, so the matching graph has no demand
nodes. Convenience functions defined below may be used to attach the demand monitors.

Rather than fiddling around calliieSol nHasMat chi ng, it is conventional to assume that
a matching is present when KHE is being used for solving, but not when it is being used only to
evaluate solutions. The rationale for this is that by comparison with the overall cost of a solve, it
costs virtually nothing, and helps to make the solve environment uniform, if a matching is always
present. If it isn’t actually wanted, its demand monitors can be detached. On the other hand,
when evaluating solutions, at least when just their cost is required, matchings have no use, and
if there are many solutions it is best to avoid the memory cost of the demand and supply nodes.

Behind the scenes, a lazy implementation is used: no matching is done until a query
operation (for example, a request for the current cost of a demand monitor, or a debug print)
occurs, allowing the time spent matching to be amortized over all operations carried out since
the previous query. There is no way for the user to observe the laziness. The key operation, of
bringing the matching up to date (making it maximum) runs in time roughly proportional to the
number of unmatched nodes in the graph when it is called.
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The cost of one unmatched node is set and retrieved by

voi d KheSol nivat chi ngSet Wi ght (KHE_SCLN sol n, KHE COST wei ght);
KHE_COST KheSol nMat chi ng\Wei ght (KHE_SCLN sol n);

For example, a call to
KheSol nMat chi ngSet Wi ght (sol n, KheCost (1, 0));

gives each unmatched node a hard cost of 1. The initial weight is 0. A change of weight is
reflected immediately in the cost reported by all demand monitors.

Although it would be trivial to allow the user to set the cost of each demand monitor
individually, this has not been done, because it might suggest that the matching algorithm is
capable of finding the matching which minimizes the total cost of unmatched nodes. In reality,
there is no way to make the cost depend on which nodes are unmatched, nor on how appropriate
the matching’s assignments are. Those would be useful features, since then the cost of assign
resources and prefer resources constraints could be reflected in the matching cost, but then a
different problem, calledeighted bipartite matchingvould have to be solved, whose algorithm
the author considers to be too slow for solving.

In the absence of weighted matching, choosimigght is not easy. The simple choice is
KheCost (1, 0), and it may well be the best. Another choice is one which guarantees that the
weighted cost of the matching is a lower bound on the ultimate total cost of the violations of
all relevant constraints, assuming that more assignments are added without changing the current
ones. Each unassigned tixel in the matching must ultimately correspond with either a missing
resource assignment at one time, or a resource clash at one time. So a suitable weight is the
minimum of the following quantities: for each event resource, the sum of the combined weights
of the assign resource constraints that apply to it; and for each resource, the sum of the combined
weights of the avoid clashes constraints that apply to it. (Fortunately, both of these constraints
incur a cost for each violating tixel.) Function

KHE_COST KheSol nM nMat chi ng\Wei ght ( KHE_SOLN sol n);

works out this value. If there are no event resources and no resources, it returns 0.
The matching has gpethat may be changed at any moment:

KHE_MATCHI NG_TYPE KheSol nMat chi ngType( KHE_SOLN sol n);
voi d KheSol nMat chi ngSet Type( KHE_SOLN sol n, KHE_MATCHI NG TYPE nt);

KHE_MATCHI NG_TYPE is the enumerated type

t ypedef enum {
KHE_MATCHI NG_TYPE_EVAL_| NI TI AL,
KHE_MATCHI NG _TYPE_EVAL_TI MES,
KHE_MATCHI NG_TYPE_EVAL_RESOURCES,
KHE_MATCHI NG_TYPE_SOLVE

} KHE_MATCHI NG_TYPE;

A full explanation of these values is given in the following section. Just briefly, however,
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KHE_MATCHI NG_TYPE_SOLVE implements an enhanced local tixel matching and is the best choice
when solving; it is also the default value. The others are variants of global tixel matching. A
change of type is reflected immediately in the cost reported by all attached demand monitors.

For the most part, matchings work quietly behind the scenes without attention from the user.
However, there is an important optimization that only the user can invoke. Suppose that some
changes are made to the solution as an experiment, then either retained or undone. Then KHE
will run faster if that part of the program is bracketed by calls to these functions:

voi d KheSol nMat chi ngMar kBegi n( KHE_SCLN sol n) ;
voi d KheSol nMat chi ngMar KEnd( KHE_SOLN sol n, bool undo);

Calls to these operations must occur in matching pairs, possibly nesteadolis t r ue, then

KheSol nMat chi ngMar kEnd assumes without checking that all changesdbn since the cor-
responding call té&cheSol nMat chi ngMar kBegi n have been undone. It uses this information to
bring the matching up to date more quickly than could be done withoutit. To encourage their use,
both functions are well-defined even when there is no matching: in that case, they do nothing.

As an aid to debugging, function

voi d KheSol nMvat chi ngDebug( KHE_SOLN sol n, int verbosity,
int indent, FILE *fp);

ensures that the matching is up to date, then prints its current stateponterbosity 1 prints just
the number of unmatched demand monitors, verbosity 2 prints those monitors, and verbosity 3
prints all demand monitors and the supply nodes they are matched with.

7.3. Ordinary supply and demand nodes

This section explains how most of the supply and demand nodes of the matching, the ones
associated with meets, are defined. Since they are linked together with edges that depend on the
type of the matching, this section also expladHE_MATCHI NG_TYPE in detail.

For each offset of a meetet (for each integer between 0 inclusive and the duration of
meet exclusive), the matching contaiRsordinary supply nodesvhereR is the total number of
resourcesin the instance.niet has duratioml, thisisdRsupply nodes altogether. Each models
the supply of one resource at one offset. These supply nodes cannot be accessed by the user.

Each task ofreet containkheMeet Dur ati on(meet) demand nodes, which will be called
ordinary demand nodet® distinguish them from the workload demand nodes to be defined
later. Each models the demand made by its task at one offset. Ordinary demand nodes have type
KHE_ORDI NARY_DEMAND_MONI TOR and may be accessed in the usual way by

i nt KheTaskDemandMoni t or Count ( KHE_TASK t ask);
KHE_ORDI NARY_DEMAND MONI TOR KheTaskDemandMoni t or (KHE_TASK task, int i);

The first function’s value is equal to the duration of the enclosing meet. Like most monitors,these
ones cannot be created or deleted by the user. They are created when the task is created, split and
merged when it is split and merged, and deleted when it is deleted. Unlike other monitors, they
are detached initially. This is so that, by default, KHE monitors only the official cost.
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In addition to the operations applicable to all monitors, ordinary demand monitors offer

KHE_TASK KheOr di nar yDemandMoni t or Task( KHE_ORDI NARY_DEMAND MONI TOR ) ;
i nt KheOrdi nar yDemandMoni t or O f set ( KHE_ORDI NARY_DEMAND MONI TOR ) ;

returning the task thawmonitors, and its offset within that task. Helper functions

voi d KheSol nivat chi ngAttachAl | Or di nar yDemandMoni t or s( KHE_SOLN sol n) ;
voi d KheSol nivat chi ngDet achAl | Or di nar yDemandMoni t or s( KHE_SOLN sol n) ;

ensure that all ordinary demand monitors are attached or detached; they visit every ordinary
demand monitor of every task of every meesof n, check whether it is currently attached, then
attach or detach it if required. Function

voi d KheCOr di nar yDemandMoni t or Debug( KHE_ORDI NARY_DEMAND MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

Although the list of monitorsin atask is fixed, each may be attached or detached individual-
ly, and they may be linked by edges to supply nodes in different ways, depending on the matching
type, as will now be explained.

An ordinary demand node®wvn meets the meet its task lies in. Iteot meets the meet
reached by following the chain of assignments (possibly empty) out of its own meet to a meet
that contains no assignment. &&n offsets its offset in its own meet, and iteot offsetis its
offset in its root meet (the sum of its own offset and the offsets along the assignment path).

When linking an ordinary demand node to ordinary supply nodes, there are at least two ways
to take time into account:

A. Linkitonly to ordinary supply nodes lying in cycle meets at offsets that represent the times
of the time domain of its own meet, shifted by its own offset.

B. Linkit only to ordinary supply nodes lying in its root meet at its root offset.

Informally, (A) evaluates the initial state of time assignment, whereas (B) evaluates its current
state in a way that ensures that simultaneous demands compete for the same supply nodes, as in
local tixel matching. And there are at least two ways to take resources into account:

1. Link it to supply nodes representing the resources of its task’s domain.

2. Link it to supply nodes representing the resources of its task’s root task’'s domain. If the
root task is a cycle task, this will link only to supply nodes representing that resource.

Informally, (1) evaluates the initial state of resource assignment, whereas (2) evaluates the current
state. The four non-empty matching types produce the four conjunctions of these conditions:

A B
1 KHE_MATCHI NG _TYPE EVAL_I NI TI AL KHE_MATCHI NG _TYPE_EVAL_TI MES
2 KHE_MATCH NG TYPE_EVAL_RESOURCES KHE_MATCHI NG TYPE_SOLVE
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Type (B2) is suited to solving; the others are suited to evaluation before or after solving.

7.4. Workload demand nodes

In addition to ordinary demand nodes, matchings may comtanmkload demand nodgessed to

take account of avoid unavailable times constraints, limit busy times constraints, and limit work-
load constraints, collectively calledorkload demand constraintere. For example, suppose
the cycle contains 40 times, and teacBerithhas a required workload limit of 30 times and is
unavailable at tim&onl Then ten workload demand nodes should be created, one demanding
supply tixel(SmithMon1), and the other nine demandiBgnithat one unrestricted time.

Itisimportant to include workload demand nodes, since otherwise the problems reported by
the matching will be unrealistically few. They are the same for all matching types, and in most
casesi it is enough to call helper function

voi d KheSol nMat chi ngAddAl | Wor kI oadRequi r enent s( KHE_SCLN sol n);

This may be done at any time, and does what is usually wanted. However, it is partly heuristic,
so KHE offers the option of controlling the details.

For the purposes of matchings onlywarkload requiremenis a requirement imposed on
a resource that it be occupied attending meets for at most a given number of the times of some
time group. There are no operations for creating workload demand nodes directly; instead, there
are operations for defining workload requirements, and the workload demand nodes are derived
from them by KHE behind the scenes, as explained below (Section 7.4.2).

Within a solution at any moment, a sequence of workload requirements is associated with
each resource. They may be visited in order by calling

i nt KheSol nMat chi ngWor kl oadRequi r ement Count ( KHE_SOLN sol n,
KHE_RESQURCE r) ;

voi d KheSol nMat chi ngWor kl oadRequi r ement ( KHE_SCLN sol n, KHE_RESOURCE r,
int i, int *num KHE TIME_GROUP *tg, KHE MONI TOR *mj);

The first returns the number of workload requirements associated wt$ol n, and the second
returns the 'th requirement, in the form of a number of times and a time group. If the third
return parameterm is nonNULL, it is the originating monitor the monitor that gave rise to

this requirement. The originating monitor is stored in workload demand monitors created as a
consequence of this requirement, to assist in analysing defects; it is not otherwise used.

Each resource has no workload requirements initially. To change the requirements of
resource , begin with a call to

voi d KheSol nMat chi ngBegi nWr kl oadRequi r ement s( KHE_SOLN sol n, KHE RESOURCE r);
continue with any number of calls to

voi d KheSol nvat chi ngAddWer kl oadRequi r emrent ( KHE_SCLN sol n,
KHE_RESOURCE r, int num KHE TIME_GROUP tg, KHE_MONITOR m);

wheremmay beNULL, and end with a call to
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voi d KheSol nMat chi ngEndWr kl oadRequi r ement s( KHE_SOLN sol n,
KHE_RESOURCE r);

All three functions must be called, in order. The first clegssworkload requirements, the
second appends a requirement thattend events for at mostmof the times oft g (hummay

not exceed the number of timestig), and the third replaces any existing workload demand
nodes forr with new ones derived from the workload requirements. The new monitors are
attached as they are createédieMat chi nghbni t or Set Al | Wor kI oadRequi r enent s calls these
functions. The sections below describe the calls it makes, and how workload requirements are
converted into workload demand nodes.

To delete the workload requirementsrgfalong with their workload demand nodes, call

voi d KheSol nMat chi ngDel et eWor kl oadRequi r ement s( KHE_SOLN sol n,
KHE_RESOURCE r);

KheSol nMat chi ngBegi nWor kl oadRequi renents does this, as doegheSol nMat chi ngEnd
when deleting the whole matching.

The workload demand nodes createdHingSol nvat chi ngEndWr ki oadRequi r ement s
are monitors of typeKHE_WORKLOAD DEMAND MONI TOR. Like other monitors of resources,
they appear on the list of monitors visited by functidfieResour ceMoni t or Count and
KheResour ceMoni t or from Section 6.6.

In addition to the operations applicable to all monitors, workload demand monitors offer

KHE_RESOURCE KheWor kl oadDermandMoni t or Resour ce(
KHE_WORKLOAD _DEMAND MONI TOR m) ;

KHE_TI ME_GROUP KheWor kI oadDermandMoni t or Ti meGr oup(
KHE_WORKLQOAD _DEMAND MONI TOR m) ;

KHE_MONI TOR KheWor kl oadDemandMoni t or Ori gi nati nghbni t or (
KHE_WORKLQOAD _DEMAND MONI TOR m) ;

These return the resource that the workload demand monitor is for, the time group of the
workload requirement that led tp and the originating monitor (possibiLL) of the workload
requirement that led tm Finally, function

voi d KheWr kl oadDemandMoni t or Debug( KHE_ WORKLOAD DEMAND _MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMbni t or Debug, only specific to this type of monitor.

7.4.1. Constructing workload requirements

This section explains hokheSol nMat chi ngAddAl | Wor kI oadRequi r enent s works. For each
resource , it first callskheSol nMat chi ngBegi nWr kl oadRequi rement s(sol n, r), and then
visits each required workload demand monitof weight greater than 0 applicablertdn order

of decreasing weight. What it does with each monitor is explained below. It then finishes its
work onr with a call tokheSol nMat chi ngEndWr kil oadRequi renent s(soln, r).

If mis an avoid unavailable times monitor, or a limit busy times monitor wiagsenum
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attribute is 0, then for each tintein nis constraint’s domain it calls

KheSol nMat chi ngAddWor kI oadRequi renment (soln, r, O,
KheTi meSi ngl et onTi meG oup(t), mM;

If mis a limit busy times monitor witlvaxi numgreater than 0, then for each time gragan nis
constraint it calls

KheSol nMat chi ngAddWor kl oadRequi rement (sol n, r, k, tg);

wherek is theMaxi mumattribute. TheM ni numattribute is ignored.

A limit workload monitor is like a limit busy times monitor whose time group contains all
the times of the cycle, S¢éheSol nMat chi ngAddWr ki oadRequi r enent is called once with this
time group. The number passed to this call requires careful calculation, involving the workloads
of all events. The remainder of this section explains this calculation.

Let k be the integer eventually passeditmeSol nMat chi ngAddWr kl oadRequi r enent .
Initialize k to theMaxi numattribute of the limit workload constraint. For each event resoerce
let d(er) be its duration anev(er) be its workload. The basic idea is that ifs assigned ter,
thend(er) — w(er) should be added ta For example, a resource with workload limit 30 that is
assigned to an event resource with duration 3 and workload 2 needs a workload requirement of
31, not 30. And ifr is assigned to an event with duration 6 but workload 12, theeeds to be
decreased by 6.

In some cases, preassignments or domain restrictions make it certaimihidte assigned
to some event, and in those cases the adjustment can be done safely in advance. For example,
if every staff member attends a weekly meeting with duration 1 and workload O, then their
workload requirements can all be increased by 1 to compensate. Similarhyilif definitely
not be assigned to some event, then the event’s duration and workload have no eftect on

The residual problem cases are those event resoarcetose workload and duration
differ, whichr may be assigned to but not necessarily. In these cases, an inexact model is used
which preserves the guarantee that the number of unmatched nodes is a lower bound on the final
number, but the number is weaker (that is, smaller) than the ideal.

If w(er)>d(er), thener is ignored. This case can only make the problem harder, so
ignoring it means that the number returned will be smaller than the ideadel) < d(er), then
d(er) —w(er) is added td, just as though was assigned ter. If r is ultimately assigned to
er, then this will be exact; if it is not, then again it will weaken the bound, by overestimasng
available workload.

These tests are actually applied to clusters of events known to be running simultaneously,
because of required link events constraints or preassignments and other time domain restrictions.
Each resource can be assigned to at most one of the event resources of the events of a cluster, so
only one of the events, the one whose modelling is least exact, needs to be taken account of.

7.4.2. From workload requirements to workload demand nodes

KHE converts workload requirements to workload demand nodes automatically, during the call
to KheSol nMat chi ngEndWr ki oadRequi rement s (defined above). The following explanation
of how this is done, adapted from [9], is included for completeness.
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When converting workload requirements into workload demand nodes, the relationships
between the requirements’ sets of times affect the outcome. In general, an exact conversion
seems to be possible only when these sets of times satisfyliset tree conditioreach pair of
sets of times is either disjoint, or else one is a subset of the other.

For example, suppose the cycle has five days of eight times each, and ressuecpiired
to be occupied for at most thirty times altogether and at most seven on any one day, and to be
unavailable at timeBri6, Fri7, andFri8. These requirements form a tree (in general, a forest):

30Time

|7Tuer/T;;;;i//|7Thu\\\\\\\\\\\T7Eﬁ1

|0Fri6| |OFri7| |OFri8

| 7 Mon

A postorder traversal of this tree may be used to deduce that workload demand nadasefor
needed for ondontime, oneTuetime, oneWedtime, oneThutime, oneFri6 time, oneFri7

time, oneFri8 time, and three arbitrary times. In general, each tree node contributes a number of
demand nodes equal to the size of its set of times minus its number minus the number of demand
nodes contributed by its descendants, or none if this number is negative.

The tree is built by inserting the workload requirements in order, ignoring requirements
that fail the subset tree condition. For example, a failure would occur if, in addition to the above
requirements, there were limits on the number of morning and afternoon times. The constraints
which give rise to such requirements are still monitored by other monitors, but their omission
from the matching causes it to report fewer unmatchable nodes than the ideal. Fortunately, such
overlapping requirements do not seem to occur in practice, at least, not as required constraints.

7.5. Diagnosing failure to match

KHE’s usual methods of organizing monitors, such as grouping and tracing, may be applied to
demand monitors. This section offers three other ways to visit unmatched demand monitors.

7.5.1. Visiting unmatched demand nodes
The unmatched demand nodes may be visited by functions

i nt KheSol nMat chi ngDef ect Count ( KHE_SOLN sol n);
KHE _MONI TOR KheSol nMat chi ngDef ect (KHE_SCOLN soln, int i);

Each monitor is either an ordinary demand monitor or a workload demand monitor; a call to
KheMoni t or Tag followed by a downcast will produce the specific type. Then functions defined
earlier give access to the part of the solution being monitored by these monitors.

Unmatched demand nodes with higher indexes tend to have become unmatched more
recently than demand nodes with lower indexes. When the number of unmatched demand nodes
increases, it is reasonable to take the last unmatched demand node as an indication of what went
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wrong. However, it will usually be better to use grouping and tracing to localize problems.

7.5.2. Hall sets

Hall setsare the definitive method of diagnosing failure to match. They are fine for occasional
use, such as for generating a report to the user, but too slow for repeated use during solving.

Suppose there is a detof demand nodes, whose outgoing edges all lead to nodes in some
setSof supply nodes. Then every nodddrmust be matched with a node$hor not matched at
all. If ID| > |S|then at leagD| - |S|nodes ofD will be unmatched in any maximum matching.

It turns out that every case of an unmatched node can be explained in this way, often
utilizing setsD andSthat are small enough to understand in user terms: they might represent
the demand and supply of Science laboratories, for example. ShamdS, with every edge
out of D leading toS, and|D| > |S| is called aHall setafter the mathematician P. Hall. Given a
maximum matching, every unmatched demand node lies in a Hall set.

The following functions examine the Hall sets of a matching. They all begin by building
the Hall sets if the ones currently stored are not up to date. This means that any change to the
solution invalidates everything returned by all previous calls to these functions.

The number of Hall sets is returned by
i nt KheSol nMat chi ngHal | Set Count ( KHE_SOLN sol n) ;

This is not usually the same as the number of unmatched demand nodes, since there may be
several of those in one Hall set. No node liesin two Hall sets. The number of supply and demand
nodes in the 'th Hall set may be found by calling

i nt KheSol nMat chi ngHal | Set Suppl yNodeCount (KHE_SOLN soln, int i);
i nt KheSol nMat chi ngHal | Set DemandNodeCount ( KHE_SOLN sol n, int i);

By the way that Hall sets are definddieSol nMat chi ngHal | Set DemandNodeCount (sol n, i)
must be larger thaikheSol nMat chi ngHal | Set Suppl yNodeCount (sol n, i).

Thej 'th supply node of thé'th Hall set can only be an ordinary supply node, but, in case
other kinds of supply nodes are added in future, the following function is used to find the meet
it lies in, its offset within that meet, and the resource it represents:

bool KheSol niat chi ngHal | Set Suppl yNodel sOr di nary( KHE_SOLN sol n,
int i, int j, MEET *meet, int xneet_offset, KHE RESOURCE #r);

At present this always returhsue. Areportto the user should distinguish the cases wineat
Is and is not a cycle meet. Th&h demand node of thieth Hall set is returned by

KHE_MONI TOR KheSol niat chi ngHal | Set DemandNode( KHE_SOLN sol n,
int i, int j);

It will be either an ordinary demand node or a workload demand node as usual. Finally,

voi d KheSol nivat chi ngHal | Set sDebug( KHE_SOLN sol n,
int verbosity, int indent, FILE *fp);



186 Chapter 7. Matchings and Evenness

prints the Hall sets ofiis matching ontd p with the given verbosity and indent. The verbosity
must be at least 1 but otherwise does not affect what is printed.

7.5.3. Finding competitors

Given an unmatched demand monitoreturned bykheSol nMat chi ngHal | Set DemandNode or

KheSol nMat chi ngDef ect , a competitorof that monitor is eithemitself or a monitor whose
removal would allowmto match. Competitors are similar to the demand nodes of Hall sets, ex-
cept that they relate to a single unmatched demand node. They are themselves always matched.
Finding competitors amounts to redoing the search for an augmenting path for the failed node
and noting the demand nodes that are visited along the way.

Functions

voi d KheSol nMat chi ngSet Conpetitors(KHE SOLN sol n, KHE MONI TOR m) ;
i nt KheSol nMat chi ngConpet it or Count (KHE_SOLN sol n);
KHE _MONI TOR KheSol nMat chi ngConpetitor (KHE SOLN soln, int i);

may be used together to visit the competitors of unmatched demand manitor

KheSol nMat chi ngSet Conpetitors(soln, m;
for( i = 0; i < KheSolnMatchingConpetitorCount(soln); i++)
{
conpetitor_m = KheSol nMat chi ngConpetitor(soln, i);
visit conpetitor_m...

}

The competitors are visited in breadth-first order, beginning witlthich the user may choose

to skip by initializingi in the loop above td rather thar0). There may be any number of
competitors other tham including none, and they may be ordinary demand monitors and
workload demand monitors.

The solution contains one set of competitors which remains constant except when reset by
a call toKheSol nMat chi ngSet Conpetitors. If the solution changes, this set of competitors
remains well-defined as a set of monitors, but becomes out of date as a set of competitors.

Competitors are useful because they can be found quickly, but they are not definitive in
the way that Hall sets are: in unusual cases, a given unmatched monitor may have different
competitors in different maximum matchings. For example, consider these two matchings:
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A A
B B
C

Both are maximum, since all three supply nodes are matched in each; but the compefitors of
in the first matching aré andB, while the competitors of in the second arB andE.

It is important not to change the solution when traversing competitors. Even if itis changed
back again, the unmatched demand nodes may be different afterwards. In the usual case where
the aim is to move one meet that is competing for some scarce resources, the right approach is to
use the loop to find those meets, store them, and move them after it ends.

In applications such as ejection chains it is important to understand what the defect really
is. In the case of unmatched demand nodes, the true defect is the Hall set. This may be
approximated in practice by the set of competitors. Thus, a repair should operate on the set of
competitors independently of their order or which one happens to be the unmatched one.

7.6. Evenness monitoring

Suppose that a school has seven Mathematics teachers, and that at some time there are seven
Mathematics lessons running simultaneously. All seven teachers must be utilized at that time,
which, although feasible, will restrict the options for resource assignment later.

Unless the teachers are very overworked, there must be other times when few Mathematics
lessons are running. The Mathematics lessons are distributed unevenly through the cycle.

KHE offers a kind of monitor, of typ&HE_EVENNESS_MONI TOR, which monitors this kind
of evenness. These work similarly to demand monitors; they are created and removed by

voi d KheSol nEvennessBegi n( KHE_SOLN sol n);
voi d KheSol nEvennessEnd( KHE_SCLN sol n);

although the call t&heSol nEvennessEnd may be omitted when evenness monitoring is wanted

for the lifetime of the solution. Evenness monitors are create¢hbgol nEvennessBegi n but

not attached initially. There is one evenness monitor for each resource partition of the instance
and each time of the cycle, which keeps track of how many tasks whose domains lie within
that partition (as determined t$reResour ceG oupParti tion) are running at that time. The
monitor reports a deviation when this number exceeds some limit, which is usually set at one
less than the number of resources in the partition. Thus, the deviation would be zero when six
Mathematics teachers are needed, and one when seven are needed. Function
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bool KheSol nHasEvenness( KHE _SOLN sol n);

returng r ue when evennness monitors are present.

Like demand monitoring, evenness monitoring depends on the resources demanded at each
time. Unlike demand monitoring, however, domains that cross partition boundaries are not taken
into account, and evenness is only monitored at the root level of the layer tree. Despite these
simplifications, evenness monitoring is potentially useful for giving early warning of demand
problems, especially when used in conjunction with domain tightening (Section 11.3).

When present, evenness monitors may be found in the list of all monitors kept in the
solution, and attached and detached in the usual way. More useful in practice are functions

voi d KheSol nAttachAl | EvennessMoni t or s( KHE_SOLN sol n);
voi d KheSol nDet achAl | Evennesshoni t or s( KHE_SOLN sol n);

which visit each evenness monitor and ensure that it is attached or detached. The usual
operations on monitors may be carried out by upcasting toKifaeMONIl TOR as usual. There
are also operations specific to evenness monitors:

KHE_RESOURCE_GROUP KheEvennessMoni torPartiti on( KHE_EVENNESS MONI TOR ) ;
KHE_TI ME KheEvennesshoni t or Ti me( KHE_EVENNESS MONI TOR m) ;
i nt KheEvennessMoni t or Count ( KHE_EVENNESS MONI TOR ) ;

These return the partition being monitored, the time being monitored, and the number of tasks
whose domains lie within that partition that are currently running at that time (ornQisf
unattached). It would be useful to be able to retrieve the specific tasks that go to make up this
count, but that information is not kept. If it is needed, it is necessary to search the cycle meet
overlapping the time, and all the meets assigned to that cycle meet directly or indirectly, to find
the tasks running at the monitored time whose domains lie within the monitored partition.

Each evenness monitor also contains a limit, such that when the count goes above that limit
a deviation is reported. This limit can be retrieved and changed at any time by calling

i nt KheEvennessMonitorLimt(KHE EVENNESS MONI TOR m);
voi d KheEvennessMonitorSetLimt(KHE EVENNESS MONNTOR m int limt);

Its default value is the number of resources in the partition, minus this same number divided by
six and rounded down. Thus, when there are less than six resources, the value is the number of
resources; when there are between six and eleven resources, the value is one less than the number
of resources; and so on. This seems to work reasonably well in practice. Another way to ignore
unevenness in small partitions would be to detach their monitors.

The deviation i&heEvennessMni t or Count (m) - KheEvennesshonitorLimt(m,or0
if this number is negative. This is converted into a cost by multiplying by a weight (there is no
choice of cost function). The weight may be retrieved, and set at any time, by

KHE_COST KheEvennesshbni t or Vi ght ( KHE_EVENNESS_MONI TOR m) ;
voi d KheEvennessMoni t or Set Wi ght ( KHE_EVENNESS_MONI TOR m KHE_COST wei ght ) ;

The default weight is the smallest non-zero weighgCost (0, 1). Helper function
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voi d KheSol nSet Al | EvennesshMbni t or Wi ght s( KHE_SOLN sol n, KHE _COST wei ght);
sets the weights of all evenness monitors at once. Finally, function

voi d KheEvennessMoni t or Debug( KHE_EVENNESS MONI TOR m
int verbosity, int indent, FILE *fp);

is like KheMoni t or Debug, only specific to this type of monitor.

Evenness is not monitored in the current versionKbéGener al Sol ve (Section 8.3),
because tests run by the author showed run time increases of about 20%, for little or no gain.
Although it has some beneficial effects, evenness monitoring tends to disrupt node regularity and
reduce diversity, since it causes very similar solutions to have slightly different costs.
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Chapter 8. Introducing Solvers

A solver is an operation that makes large-scale changes to a solution. This chapter introduces
solvers, defines interfaces for them, presents a few high-level ones, and explains some general
ideas related to solving, including setting options and gathering statistics.

Solvers operate at a high level and should not be cluttered with implementation details:
their source files will includéche_pl at f orm h as usual, but should not include header file
khe_i nterns. h which gives access to KHE'’s internals. Thus, the user of KHE is as well
equipped to write a solver as its author.

Many solvers are packaged with KHE. They are the subject of this part of the manual, all of
which is implemented usinighe_pl at f or m h but notkhe_i nt er ns. h. To gain access to these
solvers, include header fikbe_sol ver s. h, which liesin subdirectoryr c_sol ver s of the KHE
distribution. Itincludes header filhe_pl at f or m h, so you don’t need that.

8.1. Keeping track of running time

KHE offerstimer objects, of type&HE_TI MER, which keep track of running time. A timer object
stores itsstart time the time that it was most recently created or reset. It may also storea

limit, in which case it can report whether that much time has passed since its start time. Storing
a time limit does not magically stop the program at the time limit; it is up to solvers to check the
time limit periodically and stop themselves when it is reached.

Timers represent a time as a floating point number of secoftts.NO_TI ME, a synonym
for- 1. 0, means ‘no time’. Function

float KheTi meFronString(char xstr);

converts a string into a floating point time. dfr is"-", it returnsKHE_NO_TI ME, otherwise
it returns the number of seconds representedtby in the formatsecs, or m ns: secs, or
hrs: m ns: secs. For exampleQ. 5 is 0.5 seconds, arfél 0 is 5 minutes. Conversely,

char +KheTi neShow(fl oat secs, char buff[20]);

returnssecs in string form, usinguf f for scratch memory. It writes in a more readable format
than the input format, for example. 5 secs" or"5.0 mins".

To make a new timer object in areaacall
KHE_TI MER KheTi mer Make(char =tag, float limit_in_seconds, HA ARENA a);

Thetag parameter, which must be nokkL, identifies the timer, and also appears in debug
output. Theim t_i n_seconds parameter isthe time limit;it may b&E_NO_TI ME. The timer’s
start time is set to the time thteTi mer Make is called. Also,

KHE_TI MER KheTi mer Copy( KHE_TI MER ti mer, HA ARENA a);
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returns a copy of i mer in arenaa. Nothing is reset.
To retrieve the attributes of a timer, call

char =KheTi ner Tag( KHE_TI MER ti mer);
float KheTimerTimeLimt(KHE TIMER tinmer);

KheTi mer Ti meLi m t may returrKHE_NO_TI ME. To change them, call

voi d KheTi ner Reset Start Ti me( KHE_TI MER ti ner);
voi d KheTi mer Reset Ti meLimit (KHE_TIMER timer, float limt_in_seconds);

KheTi nerReset Start Time resetstiner’s start time to the time that it is called.
KheTi mer Reset Ti meLimi t resetstimer’s time limit to |inmit_in_seconds, which may be
KHE_NO_TI ME as usual. Two functions give access to elapsed time:

fl oat KheTi mer El apsedTi ne( KHE_TI MER ti ner);
bool KheTi ner Ti neLi m t Reached( KHE_TI MER ti ner);

KheTi ner El apsedTi me returns the amount of time that has elapsed since the most recent call
to KheTi mer Make or KheTi ner Reset Start Ti ne for the timer. KheTi ner Ti neLi mi t Reached
returng r ue when the elapsed time is equal to or greater than the time limit (always false when
the time limit iskHE_NO_TI ME). Finally,

voi d KheTi mer Debug( KHE _TI MER timer, int verbosity, int indent, FILE *fp);

produces a debug print of mer ontof p with the given verbosity and indent.

Complex solvers may want to keep track of several time limits simultaneously, for example
a global limit plus a limit on the running time of one phase. For this there are objects of type
KHE_TI MER_SET, representing sets of timers. To create a new, empty timer set in areala

KHE_TI MER_SET KheTi ner Set Make( HA_ARENA a) ;
To make a copy of a timer set, call

KHE_TI MER_SET KheTi ner Set Copy( KHE_TI MER_SET tiner_set, HA ARENA a);
To add and delete timers, call

voi d KheTi mer Set AddTi mer (KHE_TI MER_SET timer_set, KHE TIMER tinmer);
voi d KheTi mer Set Del et eTi mer (KHE_TI MER_SET tiner_set, KHE_TIMER tiner);

KheTi mer Set Del et eTi ner aborts ifti ner is not presentimi ner_set. There is also

bool KheTi ner Set Cont ai nsTi mer (KHE_TI MER_SET tinmer_set, char *tag,
KHE TI MER +ti mer);

which seaches for a timer with the giveag inti mer _set . If there isone, it setst i mer to one
such timer and returnis ue, otherwise it returngal se. Function

bool KheTi mer Set Ti meLi m t Reached( KHE_TI MER _SET timer_set);

returnt r ue if at least one of the timers dfi mer _set has reached its time limit. This is the
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logical moment to stop if several time limits are present. Finally,

voi d KheTi mer Set Debug( KHE_TI MER_SET timer_set, int verbosity,
int indent, FILE *fp)
produces a debug print of ner _set ontof p with the given verbosity and indent.

The usual way to keep track of running time is by calling the timer functions of options
objects (Section 8.2). These just delegate to a timer set object stored within the options object.

8.2. Options, running time, and time limits

Solvers have anpti ons parameter of typ&HE_OPTI ONS, holding options that influence their
behaviour. This type is similar to a Unix environment: it is a symbol table with strings for its
keys and values. The KHE main program allows options to be passed in via the command line.

To create a new options object containing the empty set of options, call

KHE_CPTI ONS KheQOpt i onsMake( HA_ARENA a) ;
It is created in arena, which it remembers and returnsin

HA ARENA KheQpti onsArena( KHE_OPTI ONS opti ons);
There is no operation to delete an options object when it is no longer needed; instead, delete or
recycle its arena.

Options can be changed at any time, so when solving in parallel it is important for different
options objects to be passed to each solve. These can be created by copying using

KHE_OPTI ONS KheOpt i onsCopy( KHE_OPTI ONS opti ons, HA ARENA a);
The copy is stored in arere KheAr chi veParal | el Sol ve andKhel nst ancePar al | el Sol ve
(Section 8.4) do this.

To set an option, and to retrieve the previously set value, the calls are

voi d KheQptionsSet (KHE _OPTI ONS options, char xkey, char =val ue);
char *KheOptionsGet (KHE_OPTI ONS options, char xkey, char =dft);

KheOpt i onsGet returns the value associated witky in the most recent call icheOpt i onsSet

with that key. If there is no such call, it returdft , reflecting the principle that solvers should

not rely on their options being set, but rather should be able to choose a suitable value when they
are absent—a value that may depend upon circumstances, not necessarily a fixed default value.

By convention, when an option represents a Boolean, its legal values a@ree" and
"true". Onthe KHE command line, omitting the option omits it from the options object, which
usually means that its value is intended tofkese, while including it, either in the full form
"option=true" orthe short fornfoption", givesitvalue'true". Functions

voi d KheQpti onsSet Bool (KHE_OPTI ONS options, char xkey, bool value);
bool KheOpti onsGet Bool ( KHE_OPTI ONS options, char xkey, bool dft);
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make it easy to handle Boolean optio&eOpt i onsSet Bool callskheOpt i onsSet , with value
"true" or"fal se" depending onal ue. KheOpti onsGet Bool callskheOpti onsGet , returning
an actual Boolean rather than a string. It aborts if the value isfredtse” or"true". If there
Is no value it returngf t , which, as explained above, would usuallyflaése.

Another common case is when an option represents an integer. Convenience functions

voi d KheOptionsSet | nt (KHE OPTIONS options, char xkey, int value);
i nt KheQOptionsGetlnt(KHE OPTIONS options, char xkey, int dft);

make this case easyheOptionsSet | nt callskheOpti onsSet, with value equal toval ue in
string form. KheOpt i onsCet | nt callsKheOpt i onsGet , then returns the value converted to an
integer. It aborts if the value is not an integer. If there is no value it retlimns

It is also possible to associate an arbitrary pointer with a key, by calling functions

voi d KheQpti onsSet bj ect (KHE_OPTI ONS options, char xkey, void xval ue);
voi d *KheQpti onsGet (bj ect (KHE_OPTI ONS options, char xkey, void =dft);

These work in much the same way as the other functions.

When KheOpt i onsCopy is called, byKheArchi veParal | el Sol ve for example, object
options are shared between the copies. Care is heeded, since sharing mutable objects between
threads is not safe. The KHE solvers avoid problems here by not adding any object options until
after the copying has been done: only single-threaded solve functions add them.

Options can be roughly classified into two kinds. One kind is for end users, to allow them to
try out different possibilities. Options of this kind are not set by KHE’s solvers, only used. The
other kind is for KHE’s solvers, to allow them to vary the behaviour of other solvers that they
call. These are set by KHE's solvers, so it is usually futile for the end user to set them.

Each option is described along with the solver it affects. As an aid to managing option
names, there is a convention for beginning option names with a three-character prefix:

gs_ Options set or consulted by general solvers

ps_ Options set or consulted by parallel solvers

ss_  Options set or consulted by structural solvers

ts_  Options set or consulted by time solvers

rs_ Options set or consulted by resource solvers

es_ Options set or consulted by ejection chain solvers

Some options are set by one kind of solver and consulted by another; such options are hard to
classify. The sole option consulted by the KHE main program has no prefix. Itis:

no_print
If this Boolean option appears in the first list of options onkthe - s orkhe -r command
line, then solving will proceed as usual but the result archive will not be printed.

The default values of all Boolean options consulted by KHE code are afaays; for the other
options, a default value is always given as part of the description of the option.

Options objects are passed around through solvers, and they are the natural place to keep



8.2. Options, running time, and time limits 195

other things which are not options, strictly speaking. In particular, each option contains a timer
set (Section 8.1) which may be used to keep track of running time and impose time limits. The
relevant functions are

KHE_TI MER KheOpti onsAddTi ner (KHE_OPTI ONS options, char =tag,
float linmit_in_seconds);

voi d KheOptionsDel et eTi ner (KHE_OPTI ONS options, KHE TIMER tiner);

bool KheOptionsCont ai nsTi ner (KHE_OPTI ONS options, char xtag,
KHE TI MER =ti mer);

bool KheOpti onsTi melLi ni t Reached( KHE_OPTI ONS opti ons);

voi d KheQpti onsTi mer Set Debug( KHE_OPTI ONS options, int verbosity,
int indent, FILE *fp);

KheOpt i onsAddTi ner creates a new timer with the given attributes and adds it to the timer set
within opti ons. KheOpti onsDel et eTi mer deletes the given timer from that timer set; it must
be presentKheOpt i onsCont ai nsTi ner searches the timer set for a timer with the giveg.
KheOpt i onsTi meLi m t Reached returnst rue if any of the timer set’s time limits have been
reached, an#heOpt i onsTi ner Set Debug produces a debug print of the timer setopt i ons

ontof p with the given verbosity and indent. These functions are simple delegations to the
corresponding timer set functions.

Finally, there is one stray function,
KHE_FRAME KheOpt i onsFrame( KHE_OPTI ONS options, char xkey, KHE SOLN soln);

This returns a shared common frame for use by solvers, as described in Section 5.10.

8.3. General solving

A solveris a function that finds solutions, or partial solutions, to instancegereral solver
solves an instance completely, unlike, satinge solvewhich only finds time assignments, or a
resource solvewhich only finds resource assignments. A general solver may split meets, build
layer trees and task trees, assign times and resources, and so on without restriction.

The recommended interface for a general solver, definkldenh, is
typedef KHE_SOLN (*KHE_GENERAL_SOLVER) (KHE_SOLN sol n, KHE_OPTI ONS options);

It will usually return the solution it is given, but it may return a different solution to the same
instance, in which case it should delete the solution it is given. Its second pararpetens,
is a set of options (Section 8.2) which may be used to vary the behaviour of the solver.

The main general solver distributed with KHE is
KHE SOLN KheGener al Sol ve2020( KHE_SOLN sol n, KHE OPTI ONS options);

This single-threaded general solver works by calling functions defined elsewhere in this guide.
It returns the solution it is given. The name includes the year it was completed and will change
from time to time. In publications and solution group names it is referred to as KHE20.

KheGener al Sol ve2020 assumes thatol n is as returned b¥kheSol nMake, so it begins
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with KheSol nSplit Cycl eMeet and KheSol nMakeConpl et eRepr esent ation. Then it calls
solvers defined in this guide: it builds a layer tree and task tree, attaches demand monitors,
callskheCycl eNodeAssi gnTi mes to assign times, and the thrieeTaski ngAssi gnResour ces
functions to assign resources, ending viitle Sol nEnsur e f i ci al Cost .

For convenience&kheGener al Sol ve2020 calls
KheOpt i onsSet Runni ngTi me(options, el apsed_time);

(Section 8.2) just before returning, wheteapsed_t i ne is its running time, obtained by calling
KheOpt i onsTi meLi ni t Now (Section 8.2) on a time limit with tagener al " which it creates at
its start and deletes at its end. Arguably, this is not quite right, becalisehas to be created
beforeKheGener al Sol ve2020 is called, and more work could be done sol n afterwards.

However, callers can easily reset the running time if they wish to.

By convention, options set or consulted directly KiyeGener al Sol ve2020 have names
beginning withgs_. Here is the full list:

gs_diversifier
An integer option which, when set, caus@sCGener al Sol ve2020 to set the diversifier of
the solution it is given to the given value. When omitted, the diversifier retains the value it
has wherkheGener al Sol ve2020 is called.

gs time limt
A string option defining a soft time limit for the solve. Enforcement is up to particular
solvers; this option merely calkheOpt i onsSet Ti neLi mi t (Section 8.2). The formatis as
for functionKheTi meFronfst ri ng described above (Section 8.1): eitlief', meaning no
time limit (the default value), osecs, ormi ns: secs,orhrs: m ns: secs. For example,
10 is 10 seconds, artét 0 is 5 minutes.

gs_mat chi ng_of f
A Boolean option which, wheht rue", instructskheGener al Sol ve2020 to refrain from
installing the global tixel matching (Chapter 7).

gs_noni t or _evenness
A Boolean option which, wheht rue" , instructheCener al Sol ve2020 to install evenness
monitors (Section 7.6).

gs_propagat e_unavail abl e_ti nes_off
A Boolean option which, wheht rue" , instructskheGener al Sol ve2020 to omit its usual
call toKhePr opagat eUnavai | abl eTi mes (Section 8.5.1).

gs_tinme_assignnent_only
A Boolean option which, whentrue", instructskneGener al Sol ve2020 to exit early,
leaving the solution in its state after time assignment.

gs_unassi gnnent _of f
A Boolean option which, wheht rue" , instructsKheGener al Sol ve2020 to omit the calls
to KheSol nTryTaskUnAssi gnnent s (Section 12.8) an@theSol nTr yMeet UnAssi gnment s
(Section 10.4) during the cleanup phase.
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gs_event _tinetabl e _nonitor
During the resource assignment phasghaiGener al Sol ve2020, this option has a value of
typeKHE_EVENT_TI METABLE_MONI TOR, and holds the result of the call

KheEvent Ti met abl eMoni t or Make(sol n, Khel nst anceFul | Event G oup(ins));

The monitor is attached. Before and after that phase, the option is either absent or has
valueNULL. The point of this is that this event timetable monitor is expensive to create and
probably too expensive to update during time assignment, but it is useful during resource
assignment. So this arrangement gives resource assignment algorithms access to a single
shared event timetable monitor, at little cost.

gs_debug_nonitor_id
This option is a string identifying a monitor. It has two or more fields, separated by slashes.
The first field is a constraint Id; the others identify a point of application of the constraint.
For example, Const rai nt: 5/ Nur se3/ 27" is the monitor for constrairitConst r ai nt : 5"
at point of applicatiorNur se3, offset27. This option is used b¥heGener al Sol ve2020
to define optiorgs_debug_noni t or , as explained next. The conversion from string to
monitor is carried out by functiokheSol nRet ri eveMoni t or (Section 6.2).

gs_debug_noni t or
This option is set at the start #heGener al Sol ve2020, whengs_debug_nonitor _i d is
present, to the monitor identified lyg_debug_noni t or _i d. Any solver can reference it
and use itas a hint to produce debug output relevant to that monitor. At present only ejectors
do this: they produce debug output focussed on answering the question ‘Why is the defect
represented by this monitor not removed by the ejection chain algorithm?’.

KheGener al Sol ve2020 is affected indirectly by many other options, via the solversiit calls.
Function

voi d KheSol veDebug( KHE_SCLN sol n, KHE OPTI ONS options, char *fmt, ...);

produces a one-line debug of the current state of a solve. For conciseness it always prints onto
stderr with indent 2. The print containsl n’s instance name, diversifier, cost, and running
time (if opt i ons contains a timer callethl obal " ; if not, the running time is omitted), and ends

with whateverlf printf(stderr, fnt, ...) would produce, followed by a newline.

8.4. Parallel solving

Function

voi d KheAr chi veParal | el Sol ve( KHE_ARCHI VE ar chi ve,
KHE_GENERAL_SOLVER sol ver, KHE_OPTI ONS opti ons,
KHE_SOLN TYPE sol n_type, HA ARENA SET as);

solves the instances af chi ve in parallel.

Each individual solve is carried out Isgl ver , which is passed a fresh solution and a copy
of options. The fresh solution is as returned KyeSol nMake except that the diversifier is set,
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as explained below.

If solutions are saved (see optiops sol n_group andps_first_sol n_group below),
parametesol n_t ype determines whether they are left as they are or reduced to placeholders
(Section 4.2.6)KHE_SOLN_WRI TABLE_PLACEHOLDER is recommended because it recycles a large
amount of memory, while still permitting the solutions to be written. Only if further processing
of the solutions is intended would they be left as they are, by pakBE1GOLN_CRDI NARY.

If as !'= NULL, each call tacheSol nMake is passed an arena set, as Section 4.2.2 suggests.
Thereisone arena set per thread, wilserving one thread and freshly created arena sets serving
the others. At the end, the idle arenas in all arena sets otheashare moved intas, and the
arena setsin all solutions kept by the two functions are set by calls tokneSol nSet Ar enaSet
(Section 4.2.2). If further parallel solving of these solutions is attempted, it will be necessary to
install distinct arena sets first.

Thereis also

KHE_SCLN Khel nst ancePar al | el Sol ve( KHE_I NSTANCE i ns,
KHE_GENERAL_SOLVER sol ver, KHE_OPTI ONS opti ons,
KHE_SOLN TYPE sol n_type, HA ARENA SET as);

Behind the scenesiit is the same, but it solves a single instance rather than an entire archive, and
it returns any one best solution rather than storing solutions in a solution group.

All objects created by these two functions, except for solutions that are kept, are deleted
before they return. This includes all copiesopt i ons, and all freshly created arena sets.

Options consulted by parallel solvers have names beginningog/ithHere is the full list:

ps_t hreads
The number of threads used for solving. Thisincludes the initial thread, the one that called
KheAr chi vePar al | el Sol ve orKhel nst ancePar al | el Sol ve, so the value must be at least
1. If ps_t hr eads is absent, or present but KHE has been compiled with multi-threading
off, its value is taken to be 1.

ps_make
The number of solutiongheAr chi vePar al | el Sol ve andKhel nst ancePar al | el Sol ve
make per instance. fs_nake is absent, its value is taken to be 1.

ps_no_diversify
For each instance, the solutions passembtoer are identical except that the diversifier of
the first is 0, the diversifier of the second is 1, and so on. The solver may use these values
to create diverse solutions. Boolean optmn no_di ver si fy, when"true", gives the
same diversifier (namely 0) to all solutions. All solutions should then turn out the same,
except when there are time limits: they can cut off solving at slightly different moments.

ps_keep
The maximum number of solutions th&beAr chi vePar al | el Sol ve keeps (stores in
ps_sol n_group below) per instance. Ips_keep is absent, its value is taken to be 1.
The besps_keep solutions are keptkhel nst ancePar al | el Sol ve does not consult this
option; it always keeps (in fact, returns) one solution, the best it found.
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ps_sol n_group
A string option, which, if present, causes a solution group to be addeabdve holding
the bestps_keep solutions to each instance. The value of the string is the name of the
solution group. If there is already a solution groupirhi ve with that name, the name is
extended so that it does not clash with existing solution group names.

If ps_sol n_group is omitted, or its name is wrong, no solution group is made. When
solutions have been found but they are not in the result archive, this is the usual reason.

ps_first_soln_group
Like ps_sol n_group except that the solution group holds one solution for each instance,
the one whose solve was started first. This solution will thus be added to two solution groups
if ps_sol n_group andps_first_sol n_group are both present and the solution is one of
theps_keep best for itsinstance. (Actually,in that case the solution is copied, owing to the
possible need to store different running times in the two versions, as explained just below
under optiorps_t i me_neasur e). The author uses

ps_first_sol n_group=KHE20 ps_sol n_gr oup=KHE20x8

to get the results of a single run and of a best of 8 run, while producing only eight (not nine)
solutions. If presenfis_fi rst _sol n_gr oup will precede the other in the archive.

ps_time_neasure
Measuring running time is awkward for parallel solving. This option says how to do it.

If ps_time_neasureis"onit",the parallel solver does not set the solutions’running times.
They have the values given to them ¢t ver . If sol ver is KheGener al Sol ve2020, for
example, each holds the wall clock time from whéwCGener al Sol ve2020 was called to
when it returns. This is useful when all solutions are kept, for showing how running times
vary. Itis misleading wheps_t hr eads exceeds the number of processors.

If ps_ti me_neasure is"shared", each instance monopolizes all threads while its solutions
are being constructed. There is some idle time for some threads while they wait for others
to finish off the current instance, making the total wall clock time of the solve somewhat
larger than for' omi t". Then the running times of all solutions for one instance are set to
the same value: the wall clock time from when the first solve of their instance began until
the last solve ended. This is useful when only the best, or the few best, solutions are being
kept, because it records in those solutions how long it really takes to find them, given that
all the solutions have to be found, albeit in parallel, before the few can be chosen.

If ps_time_measure is"auto" (the default value), then the behaviour is as'fom t "
whenps_keep >= ps_make, and as fot shar ed" whenps_keep < ps_nake.

This option only affects the solutions storedpi;_sol n_gr oup. The solutions stored in
ps_first_sol n_group have the running times given to them ¢y ver .

ps_time_limt
A string option defining a soft time limit for solving each instance. The parallel solver
will stop initiating solves of an instance once the wall clock time since it initiated the first
solve of that instance exceeds this limit, even if the requestedake solves have not all
begun. The format is as for functidgtheTi neFronStri ng described above (Section 8.1):
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either"-", meaning no time limit (which is the default value),s@cs, orm ns: secs, or
hrs: mi ns: secs. For examplel0 is 10 seconds, arfét 0 is 5 minutes.

On the author’s quad-core machine, finding 8 solutions by running 8 threads is usually somewhat
faster than finding them by running 4 threads. The effectis not large. Itis presumably due to the

hardware hyper-threading feature, which allows up to two threads to run on each processor in an
attempt to improve throughput. Butthere is also a random element concerning whether two slow
solves happen to be allocated to the same thread, so it is hard to be sure.

Parallelism is obtained via functiopshr ead_cr eat e andpt hread_j oi n from the Posix
threads library. KHE has been carefully designed to ensure that operations carried out in parallel
on distinct solutions cannot interfere with each other. If you do not have Posix threads, a simple
workaround documented in KHE’s makefile will allow you to compile KHE without it. The only
difference is thakheAr chi vePar al | el Sol ve andKhel nst ancePar al | el Sol ve will find their
solutions sequentially rather than in parallel.

8.5. Monitor adjustments

In this section we present solvers which adjust monitors. At present we have only one to present
here, although the monitor grouping solvers from Chapter 13 would also fit.

8.5.1. Propagating unavailable times to resource monitors

A resource’s unavailable timesU,, is a set of times taken from certain monitors of non-zero
weight that apply ta: all times in avoid unavailable times monitors, all times in limit busy
times monitors with maximum limit 0, and all times in positive time groups of cluster busy
times constraints with maximum limit 0. In this section we do not care about the weight of these
monitors, provided it is non-zero. We simply combine all these timeddnto

Suppose thathas a cluster busy times or limit active intervals moniwith a time group
T suchthal O U,. Then,althougf could be busy, itis not likely to be busy, and itis reasonable
to letmknow this, by callingkheC ust er BusyTi mesMoni t or Set Not BusySt at e (Section 6.6.4)
or KheLi mi t Acti vel nt er val shbni t or Set Not BusySt at e (Section 6.6.7).

KHE offers a solver that implements this idea:
bool KhePropagat eUnavai | abl eTi mes( KHE_SOLN sol n, KHE_RESQURCE_TYPE rt);

For each resourceof typert in sol n's instance (or for each resource of the instanage ifs
NULL), it calculatedJ,, and, ifU, is non-empty, it checks every time grotipn every cluster busy
times and limit active intervals monitor for For eachl O U,, it calls the function appropriate
to the monitor, withact i ve set tof al se if T is positive, and tor ue if T is negative. It returns
t rue if it changed anything.

There is no corresponding function to undo these settings. As cutoff indexes increase they
become irrelevant anyway.
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8.6. Gathering statistics

KHE offers a module for gathering statistics. It can calculate running times and generate files
containing tables in several formats, and graphs in Lout format.

8.6.1. Running time and date

To find out how long something takes to run, objects of tfie STATS_TI MER (the usual pointer
to a private record) are used. Each records one moment in time. To create and delete these timer
objects, the functions are

KHE_STATS_TI MER KheSt at sTi mer Make(voi d);
voi d KheSt at sTi mer Del et e( KHE_STATS_TI MER st );

KheSt at sTi mer Make returns a new timer, initialized by callingpeSt at sTi mer Reset on it, and
KheSt at sTi ner Del et e deletest , reclaiming the memory it used. There is also

KHE_STATS TI MER KheSt at sTi mer Copy( KHE_STATS Tl MER st ) ;
which copiest , producing a new timer holding the same timesas The other functions are

voi d KheSt at sTi mer Reset (KHE_STATS Tl MER st);
fl oat KheStatsTi mer Nowm( KHE _STATS Tl MER st);

KheSt at sTi mer Reset resetsthe time held withsi to the time wheikheSt at sTi mer Reset was

called. KheSt at sTi mer Now compares the time recordedsin (whenkhesSt at sTi ner Reset was

last called) with the time now and reports the difference in seconds. Both functions may be called
any number of times on the same timer. Any number of timers may be used independently.

Because wall clock times are used, times measured within one thread of a parallel solve
will not in general measure the time consumed by that thread. However, a parallel solver can
be called betweekheSt at sTi ner Reset andKheSt at sTi mer Now, and then they will reliably
measure the elapsed time of the parallel solve.

Also offered is

char +KheSt at sDat eToday(voi d);

which returns the current date as a string in static memory.

For the sake of compilations that do not have the Unix system functions called by these
functions, filekhe. h has aKHE_USE_TI M NG preprocessor flag. Its default value is 1; changing
it to O will turn off all calls to Unix timing system functions. If that is done, all functions
will still compile and run without error, bukheSt at sTi mer Now will always return- 1. 0, and
KheSt at sDat eToday will return™ ?".

8.6.2. Files of tables and graphs

The main thing that the stats module does is generate files of tables and graphs. Any number of
files may be generated simultaneously (not in parallel, because the stats module has no locking,
but by one thread). One file may contain any number of tables and graphs, although only one

may be generated at a time within any one file.
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To begin and end a file, call

voi d KheSt at sFil eBegi n(char =file_name);
voi d KheStatsFil eEnd(char =file_nane);

This writes a file calledi | e_name in sub-directoryst at s of the current directory (which the
user must have created previously). The file is openekhb$t at sFi | eBegi n and closed by
KheSt at sFi | eEnd. To generate the actual tables and graphs, see the following subsections.

8.6.3. Tables

To generate tables, make matching pairs of calls to the following functions in between the calls
toKheSt at sFi | eBegi n andKheSt at sFi | eEnd:

voi d KheSt at sTabl eBegi n(char =file name, KHE STATS TABLE TYPE table type,
int col _width, char =corner, bool with _average row, bool with total row,
bool highlight cost _mninma, bool highlight time_mning,
bool highlight int_mnim);

voi d KheSt at sTabl eEnd(char *fil e_nane);

Only one table at a time can be generated into a given file, so a table is not identified separately
fromits file. The table is begun ¥heSt at sTabl eBegi n, and finished, including being written

out to the file, bykheSt at sTabl eEnd. Where the file format permits, a label will be associated
with the table: the file name for the first table, the file hame followed by an underscore and
2 for the second table, and so on. The value of the table is created in between these two calls,
by calling functions to be presented shortly. Because the entire table is saved in memory until
KheSt at sTabl eEnd is called, these other calls may occur in any order. In particular it is equally
acceptable to generate the table row by row or column by column.

The format of the table is specified bgbl e_t ype:

t ypedef enum {
KHE_STATS_TABLE_PLAI N,
KHE_STATS_TABLE_LQUT,
KHE_STATS_TABLE_LATEX

} KHE_STATS_TABLE_TYPE;

The choices are plain text, Lout, or LaTeX. Parametér w dt h determines the width in char-
acters of each columnin plain text; itisignored by the other formats. Parameter is printed
in the top left-hand corner of the table. It must be Mbht, but it can be the empty string.

Each entry in the table has a type, which may be eidftieng, cost time (really just an
arbitraryf | oat), orint. If with_average_rowistrue, the table ends with an extra row. Each
entry in this row contains the average of the non-blank, non-string entries above it, if they all have
the same type; otherwise the entry is blankwilf h_t ot al _rowistrue, the effect is the same
except that totals are printed, not averages.

If hi ghlight_cost_m ni maistrue, the minimum values of typeostin each row appear
in bold font, or marked by an asterisk in plain text. Parametiegsl i ght _ti me_ni ni ma and
hi ghl i ght _i nt _ni ni ma are the same except that they highlight values of typeor int.
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A caption can be added by calling
voi d KheStat sCapti onMake(char *file_nane, char =fnmt, ...);

at any time betweeKkheSt at sTabl eBegi n andKheSt at sTabl eEnd, as often as desired. This
does whaprintf would do with the arguments aftér| e_nane. The results of all calls are
saved and printed as a captionKheSt at sTabl eEnd.

In any given table, each row except the first (header) row must be declared, by calling
voi d KheSt at sRowAdd(char =file_nane, char xrow_ | abel, bool rule_bel ow);

The rows appear in the order of the calls. Parameter | abel both identifies the row and
appearsin the first (header) column of the table.ulfe_bel owist r ue, the row will have a rule
belowit. The header row always has a rule below it, and there is always a rule below the last row
(not counting any average or total row).

In the same way, non-header columns are declared, in order, by calls to
voi d KheStatsCol Add(char *file _nane, char =col |abel, bool rule after);

wherecol _| abel both identifies the column and appears in the first (header) row of the table,
and settingul e_after totrue causes a rule to be printed after the column.

To add an entry to the table, call any one of these functions:

voi d KheStatsAddEntryString(char =file_nane, char =row_| abel,
char col _| abel, char =*str);

voi d KheSt at sAddEntryCost (char *file_name, char *row_| abel,
char =*col _| abel, KHE _COST cost);

voi d KheSt at sAddEntryTi me(char =file_name, char *row_| abel,
char *col _label, float time);

voi d KheStatsAddEntrylnt(char =file_nane, char =row_| abel,
char =col _| abel, int val);

These add an entry fo | e_nane’s table at row ow_| abel and columrrol _| abel , aborting if
these are unknown or an entry has already been added there. If no entry is ever added at some
position, the table will be blank there. The entry’s format depends on the call. For example,

KheSt at sAddEnt ryCost (file_name, row | abel, col | abel, KheSol nCost(soln));

adds a solution cost to the table which will be formatted in the standard way.

All strings passed to these functions that require long-term storage are copied, so mutating
strings are not a concern. On the other hand, there is no locking, so calls which create tables
should be single-threaded, as should calls which modify the same table.

8.6.4. Graphs

To generate graphs in Lout format, make matching pairs of calls to the following functions in
between the calls tkheSt at sFi | eBegi n andKheSt at sFi | eEnd:
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voi d KheStat sG aphBegi n(char *file_name);
voi d KheStatsG aphEnd(char *file_nange);

As for tables, only one graph can be generated into a given file at a time, and so the graph is iden-
tified by the file name. To set options which control the overall appearance of the graph, call

voi d KheStatsG aphSet Wdth(char *file_name, float w dth);

voi d KheStat sGaphSet Hei ght (char *file_name, float height);
voi d KheStat sG aphSet XMax(char *file_name, float xmax);

voi d KheStatsG aphSet YMax(char *file_name, float ymax);

voi d KheSt at sG aphSet AboveCaption(char *file_nane, char =val);
voi d KheSt at sG aphSet Bel owCaption(char *file_nane, char =val);
voi d KheStatsG aphSet Left Caption(char *file _name, char xval);
voi d KheStat sG aphSet Ri ght Caption(char *file_nane, char =val);

These determine the width and height of the graph (in centimetres), the maximum x and y values,
and the small captions above, below, to the left of, and to the right of the graph. If calls to these
functions are not made, the options remain unspecified, causing Lout’s graph package to substi-
tute default values for them in its usual way. The caption values must be valid Lout source.

A caption can be added by calling the same function as for tables:
voi d KheStat sCapti onMake(char *file_nane, char =fnt, ...);

at any time betweekheSt at sG aphBegi n andkheG aphTabl eEnd.

Any number ofdatasetsamay be displayed on one graph; each dataset is a sequence of
points. Often there is just one dataset. To create a dataset, call

voi d KheSt at sDat aSet Add(char =file_name, char xdataset | abel,
KHE _STATS DATASET_TYPE dat aset _type);

wheredat aset _| abel is used to identify the dataset, adat aset _t ype determines how the
data are presented. At present the stats module offers just one choice:

t ypedef enum {
KHE_STATS_DATASET_HI STO
} KHE_STATS_DATASET_TYPE;

but the Lout graph package offers many others, so it would not be difficult to expand the choices
here.KHE_STATS_DATASET_H STOprints a histogram. The x values of the dataset’s points should
be increasing integers; the y values are the frequencies. Function

voi d KheSt at sPoi nt Add(char *file_name, char xdataset | abel,
float x, float y);

adds a point to a dataset. The points are generated in the order received, so in practice, successive
calls toKheSt at sPoi nt Add on the same dataset should have increasing x values.
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8.7. Exponential backoff

One strategy for making solvers faster is to do a lot of what is useful, and not much of what isn’'t
useful. When something is always useful, it is best to simply do it. When something might be
useful but wastes a lot of time when it isn't, it is best to try it, observe whether it is useful, and
do more or less of it accordingly. Solvers that do this are said twlagtive

For example, suppose there is a choice of two or more methods of doing something. In
that case, information can be kept about how successful each method has been recently, and the
choice can be weighted towards recently successful methods.

However, this section is concerned with a different situation, involving just one method.
Suppose there is a sequencepportunitieso apply this method, and that as each opportunity
arrives, the solver can choose to apply the method or not. Typically, the method will be a repair
method: repairisoptional. If the solvacceptshe opportunity, the method isthen run and either
succeedgdoes something useful) dails (does nothing useful). Otherwise, the soldeclines
the opportunity. So opportunities are classified as successful, failed, or declined.

Exponential backoffrom computer network implementation is a form of adaptation suited
to this situation. It works as follows. If the solver applies the method and it is successful, then it
forgets all history and will accept the next opportunity. But if the solver applies the method and
it fails, then it remembers the total number of failed opportunfEéscluding this one) since
the last successful opportunity, and does not accept another opportunity until after it has declined
2F‘1opportunities. Declined opportunities do not count as failures.

Here are some examples. Each character is one opportsisitysuccessful opportunity (or
the start of the sequence)is a failed one, and is a declined one. Each successful opportunity
makes a fresh start, so the examples all begin &#dhd contain only and. thereafter:

S

SF.

SF. F..

SF.F..F. ...
SF.F..F...F.......

and so on. Every complete trace of exponential backoff can be broken &t edolsub-traces
like these. Methods that always succeed are tried at every opportunity. Methods that always fail
are tried only about logn times, wheran is the total number of opportunities.

Other rules for which opportunities to accept could be used, rather than waitinQFu'ﬁtiI
opportunities have been declined. For example, every opportunity could be accepted, which
amounts to having no backoff at all. The principles are the same, only the rule changes.

KHE offers three operations which together implement exponential backoff:
KHE_BACKOFF KheBackof f Begi n( KHE_BACKOFF_TYPE backoff type, HA ARENA a);

bool KheBackof f Accept Qpport unity( KHE_BACKOFF bk);
voi d KheBackof f Resul t (KHE_BACKOFF bk, bool success);

KheBackof f Begi n creates a new backoff object in aremapassing aackof f _type value
of type
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t ypedef enum {
KHE_BACKOFF_NONE,
KHE_BACKOFF_EXPONENTI AL

} KHE_BACKOFF_TYPE;

which determines which rule is used: none or exponentiadBackof f Accept Cpportunity is
called when an opportunity arises, and retunnge if that opportunity should be accepted. In
that case, the next call must beteBackof f Resul t , reporting whether or not the method was
successful. As usual, the backoff object’'s memory is reclaimed when the arena is deleted.

Suppose that the program pattern without exponential backoff is

while( ... )
{

i f( opportunity has_arisen )
success = try_repair_method(soln);

}

Then the modified pattern for including exponential backoff is

bk = KheBackof f Begi n( KHE_BACKOFF_EXPONENTI AL) ;
while( ... )
{

i f( opportunity has_arisen && KheBackof f Accept Cpportunity(bk) )
{

success = try_repair_mnethod(soln);
KheBackof f Resul t (bk, success);

}

}

Each successfitheBackof f Accept Oppor t uni ty is followed by a call tckheBackof f Resul t .

All backoff objects hold a few statistics, kept only for printing KiyeBackof f Debug
below, and a boolean flag whichtisue if the next call must be t&heBackof f Resul t . When
exponential backoff is requested, a backoff object also maintains two int€jarglM. C is
the number of declines since the last accept (or since the backoff object was crébisdhe
maximum number of opprtunities that may be declined, defined by

oo ifF=0

M =0,
=t ifF>1

where F is the number of failures since the last success (or since the backoff object was
created). The next call tgheBackof f Accept Cpportunity will returntrue if C>M. The
implementation will not increadd if that would cause an overflow. Overflow is very unlikely,
since an enormous number of opportunities would have to occur first.

Function
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char xKheBackof f ShowNext Deci si on( KHE_BACKOFF bk) ;

returns' ACCEPT" when the next call theBackof f Accept Qppor t uni ty will returntrue, and
"DECLI NE" when it will returnf al se. There is also

voi d KheBackof f Debug( KHE_BACKOFF bk, int verbosity, int indent, FILE *fp);

Verbosity 1 prints the current state, including avhen the flag is set, on one line. Verbosity 2
prints some statistics: the number of opportunities so far, and how many are successful, failed,
and declined, in a multi-line format.



Chapter 9. Time-Structural Solvers

This chapter documents the solvers packaged with KHE that modify the time structure of a
solution: split and merge its meets, add nodes and layers, and so on. These solvers may alter
time and resource assignments, but they only do so occasionally and incidentally to their
structural work.

9.1. Layer tree construction

KHE offers a solver for building a layer tree holding the meets of a given solution:

KHE_NCDE KheLayer Tr eeMake( KHE_SOLN sol n);

The root node of the tree, holding the cycle meets, isreturned. The function has no special access
to data behind the scenes. Instead, it works by calling basic operations and helper functions:

It callskheMeet Spl i t to satisfy split events constraints and other influences on the number
and duration of meets, as far as possible. It is usual tkoellayer Tr eeMake when each
eventis represented ol n by a single meet of the full duration (that is, aftéeSol nMake
andkheSol nMakeConpl et eRepr esent at i on), but some meets may be already split. In any
caseKheLayer Tr eeMake does not create, delete, or merge meets.

It callskheMeet BoundMake with aNULL meet bound group to set the time domains of meets

to satisfy preassigned times, prefer times constraints, and other influences on time domains,
as far as possible. For each meet, one cahtdket BoundMake is made for each possible
duration. It is usual to calkheLayer Tr eeMake at a moment when the time domains of

the meets are not restricted by meet bounds, but some meets may already have bounds. In
any casekhelLayer Tr eeMake only adds bounds, never removes them, so it either leaves a
domain unchanged, or reduces it to a subset of its initial value.

It callskheMeet Assi gn in trivial cases where there is no doubt that the assignments will be
final. Precisely, if there are two events of equal duration linked by a link events constraint
and split into meets of equal durations, and the algorithm places one in a parent node and
the other in a child of that parent, then, provided the child node itself has no children (which
would render the case non-trivial), the meets of the child node will be assigned to meets of
the parent node, and the child node will be deleted in accordance with the convention given
in Chapter 10, that meets whose assignments will never change should not lie in nodes.

It calls KheMeet Assi gnFi x to fix all the assignments it makes (as defined immediately
above). These can be unfixed afterwards if desired.

208
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» It callskheNodeMake andkheNodeAddMeet to ensure that for each event there is one node
holding the meets of that event, unless these meets receive the trivial assignments just de-
scribed. Thereisalso a node (the root node returnétiédyayer Tr eeMake, also accessible
askKheSol nNode( sol n, 0)) holding the cycle meets. Any other meets (usually none) are
not placed into nodexkhelLayer Tr eeMake requiressol n to contain no nodes initially.

» It callsKheNodeAddPar ent to reflect link events constraints (even between events whose
durations differ), as far as possible, and the need to ultimately assign every meet to a cycle
meet. WherkheLayer Tr eeMake returns, every node is a descendant of the root node.

*  Some instances contain events which have already been split, with the fragments presented
asdistinct events. Itis best if the nodes holding the meets derived from these fragments are
merged. So for each pair of distinct events which appear to be part of one course because
they share a spread events constraint or avoid split assignments constraint, if certain other
conditions (Section 9.1.5) are satisfied, the nodes holding the meets of those two events are
merged by a call t&heNodeMer ge.

These elements interact in ways that make most of them impossible to separate. For example,
the splitting of an event into meets needs to be influenced not just by the event’s own split events

constraints and distribute split events constraints, but also by the constraints of the events that it
is linked to by link events constraints.

Logically, order events constraints should also affect the construction of layer trees. In the
version of KHE documented here they are not consulted, but this will change.

AlthoughKhelLayer Tr eeMake does not calkheLayer Make, resource layers (sets of events
that share a common preassigned resource which has a hard avoid clashes constraint) strongly
influence its behaviour. It ensures that the events of each layer are split into meets which can be
packed into the cycle meets without overlapping in time, except in the unlikely case where the
total duration of the events of the layer exceeds the total number of times in the cycle.

For eachheet with a pre-existing assignment to somre get _neet , KheLayer Tr eeMake
tries to placereet into a child node of ar get _neet 's node. In exceptional circumstances, this
may not be possible, and then the pre-existing assignment is remowédelayer Tr eeMake.
Suppose there is an event with two meets, both assigned to other meets. If those two other meets
are both derived from the same event, or if they are both cycle meets, then all is well; but if not,
one of the original meets will be unassigned. This is done bedtnes@yer Tr eeMake tracks
relations between events, not meets, and cannot cope with the idea of one event being assigned
partly to one event and partly to another. A meet will also be unassigned when there is a cycle
of assignments, but that should never occur in practice.

The above attempts to be a complete specificatiokhet.ayer Tr eeMake, sufficient for
using it. For the record, the following subsections explain how it works in detail.

9.1.1. Overview

KheLayer Tr eeMake uses a constructive heuristic which runs quickly. It works by examining the
relevant constraints and taking actions to satisfy them, giving priority to those with higher weight.

It does not search through a large space of possible solutions to find the best. Thisis appropriate,
because in practice good solutions are easy to find. The problem is more about giving due weight
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to the many influences on the solution than about real solving.

KheLayer Tr eeMake begins by unassigning meets to remove cases where two meets derived
from a single event are assigned to meets not both derived from the same event or both cycle
meets, and splitting meets whose duration exceeds the number of times in the instance into meets
of duration within that bound. This allows the remainder of the algorithm to assume that each
event is preassigned to at most one other event, and that there are no oversize meets.

In practice, it is likely that the constraints of an instance will cooperate harmoniously, but
for completenessit is necessary to handle cases where they do not. For example, there is nothing
to prevent a link events constraint from linking two events, one of which is required by a split
events constraint to split into three meets, while the other is required to split into one.

Thereis a data structure, described in the following sections, which embodies all the require-
ments that the final layer tree must satisfy, including how events are to be split into meets, and
how meets are to be grouped into nodes. Itis an invariant that at least one layer tree must satisfy
all these requirements. Initially, the data structure embodies no requirementsat all. Along series
of jobsis then applied to it, each inspired by some constraint or other feature of the instance to
request that the data structure add some new requirements to the ones it currently embodies. If
no layer trees would satisfy both the old and new requirements, thergjecsed(it is ignored);
otherwise, it isacceptedits requirements are added). There are also cases in which some of the
requirements of a job are accepted but others have to be rejected. The jobs are sorted by decreas-
ing priority, which is usually the combined weight of the constraint that inspired the job. In this
way, contradictory requests are resolved by giving preference to requests of higher priority.

Here is the full list of job types, with brief descriptions. How each job modifies the data
structure will be explained later. The jobs not derived from constraints have high priority.

Pre-existing splitsEach already split evemtgenerates a job requiring the meets that
ultimately split into to be packable into (created by further splitting of) the pre-existing meets.

Preassigned times{HSTT specifies that a meet derived from an event with a preassigned
time must be assigned that time. Several simultaneous meets derived from one event are unlikely
to be wanted, so this job requests that a preassigned event be not split further than its pre-existing
splits, and that the meets’time domains be set to singleton domains.

Pre-existing assignments and link events constraifiteese are interpreted as requests to
create parent-child links between nodes.

Avoid clashes constraint&£ach resource subject to a required avoid clashes constraint
gives rise to a job which requests that the layer tree recognize that the events to which the
resource is preassign