The KHE High School Timetabling
Engine

Jeffrey H. Kingston
jeff@it.usyd.edu.au

Version of 28 January 2016

Contents

Chapter 1.
1.1.
1.2.
1.3.

Chapter 2.
2.1.
2.2.
2.3.
2.4.
2.5.

Chapter 3.
3.1
3.2.
3.3.
3.4.

3.5.

3.6.

3.7.

Part A: The Platform

Introduction
Installation and use
The data types of KHE
Common operations

Archives and Solution Groups

Archives

Solution groups

Reading archives -
Reading archives incrementally
Writing archives and solution groups

Instances ..

Creating instances e e e e
Visiting and retrieving the components of instances
Constraint density

Times

3.4.1. Time groups
3.4.2. Times
Resources

3.5.1.
3.5.2.
3.5.3.
3.5.4.
3.5.5.
Events
3.6.1.
3.6.2.
3.6.3.
3.6.4.

Resource types

Resource groups

Resources

Resource layers e e -
Resource similarity and inferring resource partitions
Event groups

Events

Event resources
Event resource groups

Constraints e e
3.7.1. Assign resource constraints
3.7.2. Assign time constraints
3.7.3. Split events constraints

3.7.4.
3.7.5.
3.7.6.
3.7.7.
3.7.8.
3.7.9.

3.7.10.
3.7.11.
3.7.12.
3.7.13.
3.7.14.
3.7.15.
3.7.16.

Distribute split events constraints
Prefer resources constraints
Prefer times constraints .
Avoid split assignments constraints
Spread events constraints
Link events constraints
Order events constraints
Avoid clashes constraints
Avoid unavailable times constraints
Limit idle times constraints
Cluster busy times constraints
Limit busy times constraints
Limit workload constraints

Chapter 4. Solutions
4.1. Overview

4.2. Solution

objects

4.3. Complete representation and preassignment conversion

4.4. Solution

time, resource, and event groups

4.5. Diversification
4.6. Visit numbers o
4.7. Running times and time limits

4.8. Meets
4.8.1.
4.8.2.
4.8.3.
4.8.4.
4.8.5.

4.9. Tasks
4.9.1.
4.9.2.
4.9.3.

Splitting and merging

Assignment e
Cycle meets and time assignment
Meet domains and bounds

Automatic domains

Assignment .

Cycle tasks and resource assignment
Task domains and bounds

4.10. Marks and paths N
4.11. Placeholder and invalid solutions
4.12. The solution invariant

Chapter 5. Extra Types for Solving
5.1. Layer trees

5.2. Nodes

39
40
42
43
45
46
46
47
48
49
50
51
52

54
54
55
57
59
60
63
64
65
67
69
72
74
77
78
80
82
83
84
87
88

89
89
90

5.3.
5.4.
5.5.

Chapter 6.

6.1.
6.2.
6.3.
6.4.

6.5.

6.6.

6.7.

6.8.
6.9.

Chapter 7.

7.1
7.2.
7.3.
7.4.

Layers
Zones
Taskings

Solution Monitoring
Measuring cost
Monitors

Attaching, detaching, and provably zero fixed cost

Event monitors
6.4.1. Split events monitors
6.4.2. Distribute split events monitors
6.4.3. Assign time monitors
6.4.4. Prefer times monitors
6.4.5. Spread events monitors
6.4.6. Link events monitors
6.4.7. Order events monitors
Event resource monitors
6.5.1. Assign resource monitors
6.5.2. Prefer resources monitors
6.5.3. Avoid split assignments monitors
Resource monitors ..
6.6.1. Avoid clashes monitors
6.6.2. Avoid unavailable times monitors
6.6.3. Limitidle times monitors
6.6.4. Cluster busy times monitors
6.6.5. Limit busy times monitors
6.6.6. Limit workload monitors
Timetable monitors
Time group monitors
Group monitors
6.9.1. Basic operations on group monitors
6.9.2. Defects
6.9.3. Tracing

Matchings and Evenness

The bipartite matching problem
Settingup
Ordinary supply and demand nodes
Workload demand nodes

94
97
99

101
101
102
104
105
106
106
106
107
107
107
108
108
109
109
109
110
111
111
111
112
112
113
114
116
116
117
119
121

122
122
124
126
128

7.5.

7.6.

Chapter 8.
8.1.
8.2.
8.3.
8.4.

8.5.

8.6.

Chapter 9.
9.1.

9.2.
9.3.

9.4.

7.4.1. Constructing workload requirements

7.4.2. From workload requirements to workload demand nodes

Diagnosing failure to match “
7.5.1. Visiting unmatched demand nodes
7.5.2. Hall sets ..

7.5.3. Finding competitors

Evenness monitoring

Part B: Solving

Introducing Solving

General solving

Parallel solving

Benchmarking

Options S
8.4.1. General options
8.4.2. Structural solver options
8.4.3. Time solver options
8.4.4. Resource solver options
8.4.5. Ejection chain options

Gathering statistics
8.5.1. Running time and date
8.5.2. Files of tables and graphs
8.5.3. Tables
8.5.4. Graphs

Exponential backoff

Structural Solvers
Layer tree construction
9.1.1. Overview
9.1.2. Linking
9.1.3. Splitting
9.1.4. Layering
9.1.5. Merging
Time-equivalence
Layers Ce
9.3.1. Layer construction
9.3.2. Layer coordination
Runarounds
9.4.1. Minimum runaround durat|on

129
130
131
131
131
132
134

137
137
138
138
139
140
140
141

142
143
146
146

147

147
149
150

153
153
154
156
157
158
159
160
161
161
162
164
164

9.4.2. Building runarounds

9.5. Rearranging nodes

9.5.1. Node merging N
9.5.2. Node meet splitting and merging
9.5.3. Node moving

9.5.4. Vizier nodes

9.5.5. Flattening

9.6. Adding zones .
9.7. Meet splitting and merging

9.7.1. Analysing split defects
9.7.2. Merging adjacent meets

9.8. Monitor attachment and grouping

Chapter 10. Time Solvers

10.1.
10.2.

10.3.

10.4.
10.5.
10.6.

10.7.

10.8.

Vi

Specification
Helper functions e
10.2.1. Node assignment functions
10.2.2. Kempe and ejecting meet moves
Meet bound groups and domain reduction
10.3.1. Meet bound groups N
10.3.2. Exposing resource unavailability .
10.3.3. Preventing cluster busy times and limit idle times defects
Some basic time solvers
A time solver for runarounds
Extended layer matching with EIm
10.6.1. Introducing layer matching
10.6.2. The core module
10.6.3. Splitting supplies
10.6.4. Improving node regularity
10.6.5. Handling irregular monitors
Time repair e e e e e e e
10.7.1. Node-regular time repair using layer node matchlng
10.7.2. Ejection chain time repair
10.7.3. Tree search layer time repair S
10.7.4. Meet set time repair and the fuzzy meet move
Layered time assignment
10.8.1. Layer assignments e
10.8.2. A solver for layered time assignment
10.8.3. A complete time solver

165
167
167
167
168
168
170
170
171
171
172
172

176
176
177

177
178
184

184
184
185
189
190
191
192
194
199
200
201
203
203
204

204
206

207

207

208

211

Chapter 11
11.1.
11.2.
11.3.

11.4.
11.5.
11.6.
11.7.
11.8.
11.9.

Resource Solvers
Specification e .
The resource assignment invariant
Resource-structural solvers
11.3.1. Task bound groups
11.3.2. Task trees
11.3.3. Task tree construction
11.3.4. Other task tree solvers
11.3.5. Task groups
Most-constrained-first assignment
Resource packing
Split assignments ..
Kempe and ejecting task moves
Ejection chain repair
Resource pair repair
11.9.1. The basic function
11.9.2. Aresource pair solver
11.9.3. Partition graphs

11.9.4. The implementation of resource pair reassignment

11.10. Resource rematching
11.11. Trying unassignments
11.12. Putting it all together

Chapter 12
12.1.
12.2.
12.3.
12.4.
12.5.

12.6.

Ejection Chains

Introduction

Ejector construction

Ejector solving oo

How to write an augment function

Variants of the ejection chains idea
12.5.1. Defect promotion o
12.5.2. Fresh visit numbers for sub-defects
12.5.3. Ejection trees
12.5.4. Sorting repairs
12.5.5. Adjustment on success

Gathering statistics
12.6.1. Options for choosing ejectors and schedules
12.6.2. Statistics for analysing Kempe meet moves
12.6.3. Statistics describing a single solve

212
212
212
214
214
214
215
218
219
221
222
222
223
223
224
224
224
225
227
230
230
230

233
233
235
238
239
241
241
242
242
246
246
247
247
248
248

vii

12.6.4. Statistics describing multiple solves
12.6.5. Organizing augment and repair types

12.7. Ejection chain time and resource repair functions
12.7.1. Limiting the scope of changes

12.7.2. Correlation problems involving demand defects

12.7.3. Primary grouping and detaching
12.7.4. Secondary groupings
12.7.5. Augment functions

Appendix A. Modules Packaged with KHE

A.1l. The M module .
A.1.1. Memory allocation
A.1.2. Assertions N
A.1.3. Variable-length arrays
A.l1.4. String factories
A.1.5. Symbol tables

A.2. Variable-length bitsets

A.3. Priority queues .

A.4. XML handling with KML .
A.4.1. Representing XML in memory
A.4.2. Error handling and format checking
A.4.3. Reading XML files
A.4.4. Writing XML files

Appendix B. Implementation Notes

B.1. Source file organization
B.2. Relations between objects
B.3. Kernel operations

B.4. Monitor updating

References ..

viii

249
250
251
252
254
256
258
259

264
264
264
265

265
268
269
271
273
275
276
277
278
280

282
282
283
284
287

293

Part A

The Platform

Chapter 1. Introduction

Some instances of high school timetabling problems, taken from institutions in several countries
and specified formally in an XML format called XHSTT, have recently become available [11].
For the first time, the high school timetabling problem can be studied in its full generality.

KHE is an open-source ANSI C library, released under the GNU public licence, which aims
to provide a fast and robust foundation for solving instances of high school timetabling problems
expressed in the XHSTT format. Users of KHE may read and write XML files, create solutions,
and add and change time and resource assignments using any algorithms they wish. The cost of
the current solution is always available, kept up to date by a hand-coded constraint propagation
network. KHE also offers features inherited from the author’s KTS system [6, 8], notably layer
trees and matchings, and solvers for several major sub-tasks.

KHE is intended for production use, but it is also a research vehicle, so new versions will
not be constrained by backward compatibility. Please report bugs tojefé@it.usyd.edu.au
will release a corrected version within a few days of receiving a bug report, wherever possible.

This introductory chapter explains how to install and use KHE, surveys its data types, and
describes some operations common to many types.

1.1. Installation and use

KHE has a home page, at
http://ww.it.usyd. edu. au/ ~j ef f/ khe/

The current version of KHE is a gzipped tar file in that directory. The current version of this
documentation (a PDF file) is also stored there. The names of these files change with each
release; they are most easily downloaded using links on the home page.

The version number of a KHE release is its date of release, in the fggiysatmm_ddFor
example, the first release was on 9 August 2010, so its version number is 2010_08_09. lIts files’
names arekhe-2010_08_09. tar. gz and khe_gui de-2010_08_09. pdf . The version
number also appears in a preprocessor definition ikfigeh, like this for example:

#define KHE_VERSI ON "2010_08_09"

To install KHE, download a release and unpack it ugingzi p andtar xf as usual. The
resulting directorykhe, contains the source files of KHE, a makefile, andba subdirectory
containing the source files of this documentation. Ty in directorykhe compiles KHE,
producing a set ofo files and an executable callebde which may be used for testing.

Runkhe with no command line arguments to get a usage message. It is capable of reading
an XML archive, solving each of its instances, and writing out the archive with the solutions
added as a new solution group.

More commonly, it is desired to use KHE within a larger program. A simple way to

1.1. Installation and use 3

incorporate KHE into a larger C program is as follows. Rake as before, then move directory
khe to be subdirectorithe of the main source code directory of the larger C program. Add

#i ncl ude "khe. h"

at the top of each source file of the larger program that requires access to KHE. To ensure that
the C compiler can find filehe. h,add- 1 khe to the command which invokes the C compiler.

Add khe/ *. o to the list of files that are to be linked together to form the executable. Remove
executabléhe, and also remove object fikhe_mai n. 0, since it contains an unwantedi n() .

It is necessary to add mto the main linker command, to gain access to the mathematical
functions, and alsel expat , because KHE relies on the well-known Expat library for reading
XML. Expat offers a choice of encodings for the characters it reads. However, this choice must
be made at compile time, and since the precompiled version of Expat on the author's computer
returns UTF-8 characters, UTF-8 is used uniformly throughout KHE, represented by tlae C
type. Users who want other encodings will have to convert to and from UTF-8.

You may already have Expat on your system, since a lot of software that reads XML usesit.
If not, you can get it from SourceForge. The author’s experience was that his system’s package
installer did not install the requiregkpat . h include file, but downloading from SourceForge
and following the basic install procedure described in the distribution worked fine.

KHE uses Posix threads to implement solving in parallel (funckioePar al | el Sol ve
from Section 8.2), so the compiler and linker commands needptte ead flag. If you don't
have Posix threads, the makefile documents a workaround. The only difference will be that
parallel solvers will do their solving sequentially rather than in parallel.

Another possible porting problem arises in those parts of KHE which consult the system to
find out how much time has been consumed while solving. Again, there is a workaround for this
in the makefile, which if taken will cause all time measurements to be 0.

1.2. The data types of KHE

This section is an overview of KHE’s data types. The following chapters have the details.

TypeKHE_ARCHI VE represents one archive, that is, a collection of instances plus a collection
of solution groups. Typ&HE _SOLN_GROUP represents one solution group, that is, a set of
solutions of the instances of the archive it lies in. The word ‘solution’ is abbreviated to ‘soln’
wherever it appears in the KHE interface. Use of these types is optional: instances do not have
to lie in archives, and solutions do not have to lie in solution groups.

Type KHE_| NSTANCE represents one instance of the high school timetabling problem.
KHE_TI ME_GROUP represents a set of timeé&E_TI MVE represents one timé&HE_RESOURCE_TYPE
represents a resource type (typicalgacher Room Class or Studeny, KHE_ RESOURCE_GROUP
represents a set of resources of one type K&EJRESOURCE represents one resource.

Type KHE_EVENT_GROUP represents a set of event§iE EVENT represents one event,
including all information about its time. TypeHE_EVENT_RESOURCE represents one resource
element within an event. Typ&E_CONSTRAI NT represents one constraint. This could have any
of the constraint types of the XML format (it is their abstract supertype).

TypeKHE_SOLN represents one solution, complete or partial, of a given instance, optionally

4 Chapter 1. Introduction

lying within a solution group. Typ&HE_MEET represents one meet (KHE’'s commendably brief
name for what the XML format calls a solution event, split event, or sub-event: one event as it
appears in a solution), including all information about its time. Tkide TASK represents one
piece of work for a resource to do: one resource element within a meet.

KHE supports multi-threading by ensuring that each instance and its components (of
type KHE_I NSTANCE, KHE_TI ME_GROUP, and so on) is immutable after loading of the instance is
completed, and that operations applied to one solution object do not interfere with operations
applied simultaneously to anotHérhus, after instance loading is completed, it is safe to create
multiple threads with differerdHE_SOLN objects in each thread, all referring to the same instance,
and operate on those solutions in parallel. No such guarantees are given for operating on the
same solution from different threads.

1.3. Common operations

This section describes some miscellaneous operations that are common to many data types.

Use of KHE often involves creating objects that contain references to KHE entities (objects
of types defined by KHE) alongside other information. Sometimes it is necessary to go back-
wards, from a KHE entity to a user-defined object. Accordingly, each KHE entity conthatka
pointerwhich the user is free to set and retrieve, using calls which look generically like this:

voi d KheEntitySet Back(KHE ENTITY entity, void xback);
voi d »KheEntityBack(KHE ENTITY entity);

All back pointers are initialized t8ULL. In general, KHE itself does not set back pointers. The
exception is that some solvers packaged with KHE set the back pointers of the solution entities
they deal with. This is documented where it occurs.

Timetables often contain symmetries of various kinds. In high school timetabling, the
student group resources of one form are often symmmetrical: they attend the same kinds of
events over the course of the cycle.

Knowledge of similarity can be useful when solving. For example, it might be useful to
timetable similar events attended by student group resources of the same form at the same time.
Accordingly, several KHE entities offer an operation of the form

bool KheEntitySimlar(KHE_ENTITY el, KHE_ENTITY e2);

which returns r ue if KHE considers that the two entities are similar. If they are the exact same
entity, they are always considered similar. In other cases, the definition of similarity varies with
the kind of entity, although it follows a common pattern: evidence both in favour of similarity
and against it is accumulated, and there needs to be a significant amount of evidence in favour,
and more evidence in favour than against. For example, an event containing no event resources
will never be considered similar to any event except itself, since positive evidence, such as
requests for the same kinds of teachers, is lacking.

1Assuming that KHE is linked to an implementationraf | oc() suited to multiple threads, such as the Lirglix bc
implementation by Doug Lea and W. Gloger. KHE does not leak memory, although, since garbage collection is not
standard in C, the user must indicate when major objects, such as instances and solutions, are no longer required.

1.3. Common operations 5

Similarity is not a transitive relation in general. In other wordslifande2 are similar, and
e2 ande3 are similar, that does not imply that ande3 are similar. There is a heuristic aspect
to it that seems inevitable, although the intention is to stay on the safe side: to declare two entities
to be similar only when they clearly are similar.

Another operation that applies to many entities, albeit a humble one, is printing the current
state of the entity as an aid to debugging. The KHE operations for this mostly take the form

voi d KheEntityDebug(KHE_ENTITY entity, int verbosity,
int indent, FILE *fp);

They produce a debug print efiti ty ontof p.

Thever bosi ty parameter controls how much detail is printed. Any value is acceptable. A
zero or negative value always prints nothing. Every positive value prints something, and as the
value increases, more detail is printed, depending, naturally, on the kind of entity. Value 1 tries
to print the minimum amount of information needed to identify the entity, often just its name.

If i ndent is non-negative, a multi-line format is used in which each line begins with at least
i ndent spaces. If ndent is negative, the print appears on one line with no indent and no con-
cluding newline. Since space is limited, verbosity may be reduced witeEmt is negative.

Many entities are organized hierarchically. Depending on the verbosity, printing an entity
may include printing its descendants. Their debug functions are passed a vahefarwhich
is 2 larger than the value received (when non-negative), so that the hierarchy is represented in the
debug output by indenting. The debug print of one entity usually beging vatid ends with a
matching] , making it easy to move around the printed hierarchy using a text editor.

Chapter 2. Archives and Solution Groups

This chapter describes tKeE_ARCHI VE andKHE_SOLN_GROUP data types, representing archives
and solution groups as in the XML format. Their use is optional, since instances are not required
to lie in archives, and solutions are not required to lie in solution groups.

2.1. Archives

An archive is defined in the XML format to be a collection of instances together with groups
of solutions to those instances. There may be any number of instances and solution groups. To
create a new, empty archive, call

KHE_ARCHI VE KheAr chi veMake(char #id, KHE_ARCHI VE_METADATA nd);

Both parameters are optional (mayMkL);i d is anidentifier for the archive, amd is metadata,
which can be created b$heAr chi veMet aDat aMake below. Functions

char *KheArchi vel d(KHE_ARCHI VE ar chi ve);
KHE_ARCHI VE_METADATA KheAr chi veMet aDat a(KHE_ARCHI VE ar chi ve);

return these two attributes. To set and retrieve the back pointer (Section 1.3), call

voi d KheAr chi veSet Back(KHE_ARCHI VE ar chi ve, void *back);
voi d *KheAr chi veBack(KHE_ARCHI VE archi ve);

Archive metadata may be created by calling

KHE_ARCHI VE_METADATA KheAr chi veMet aDat aMake(char *nane,
char *contributor, char xdate, char =description, char *remarks);

wherer emar ks, being optional, may bBULL. The attributes may be retrieved by calling

char =KheArchi veMet aDat aNane(KHE_ARCHI VE_METADATA nd) ;

char *KheAr chi veMet aDat aCont ri but or (KHE_ARCHI VE_METADATA md) ;
char =KheArchi veMet aDat aDat e(KHE_ARCHI VE_METADATA nd) ;

char *KheArchi veMet aDat aDescri pti on(KHE_ARCH VE_METADATA nd) ;
char =KheArchi veMet aDat aRenar ks(KHE_ARCHI VE_METADATA nd) ;

Initially an archive contains no instances and no solution groups. Solution groups are added
automatically as they are created, because every solution group lies in exactly one archive. An
instance may be added to an archive by calling

bool KheAr chi veAddl nst ance(KHE_ARCHI VE ar chi ve, KHE | NSTANCE i ns);

KheAr chi veAddl nst ance returnstrue if it succeeds in addingns to archive, andfal se
otherwise, which can only be becawsehi ve already contains an instance with the same Id as

2.1. Archives 7

i ns. The instance will appear after any instances already present. An instance may be deleted
from an archive (but not destroyed) by calling

voi d KheAr chi veDel et el nst ance(KHE_ARCHI VE archive, KHE_I NSTANCE ins);

KheAr chi veDel et el nst ance aborts ifi ns is not inarchi ve. If there are any solutions for
i ns inarchive, they are deleted too. The gap left by deleting the instance is filled by shuffling
subsequent instances up one place.

To visit the instances of an archive, call

i nt KheArchi vel nst anceCount (KHE_ARCHI VE archi ve);
KHE_| NSTANCE KheAr chi vel nst ance(KHE_ARCHI VE archive, int i);

The first returns the number of instancesiithi ve, and the second returns thi&h of those
instances, counting from 0 as usual in C. There is also

bool KheArchiveRetrievel nstance(KHE_ARCHI VE ar chi ve, char =id,
KHE_| NSTANCE =*i ns) ;

If archi ve contains an instance with the given, this function set$ns to that instance and
returng r ue; otherwise it leavesi ns untouched and returiial se. Inthe same way,

i nt KheAr chi veSol nG oupCount (KHE_ARCHI VE ar chi ve);

KHE_SOLN_GROUP KheAr chi veSol nG oup(KHE_ARCHI VE archive, int i);

bool KheArchiveRetrieveSol nG oup(KHE_ARCH VE archive, char =id,
KHE_SOLN_GROUP *sol n_group);

visit the solution groups of an archive, and retrieve a solution groupl by

2.2. Solution groups
A solution group is a set of solutions to instances of its archive. To create a solution group, call

bool KheSol nG oupMake(KHE_ARCHI VE ar chi ve, char =id,
KHE_SOLN_GROUP_METADATA md, KHE _SOLN_GROUP *sol n_group);

Parametear chi ve is compulsory. The solution group will be added to the archive. Parameters
i d andnd are the 1d and MetaData attributes from the XML file; both are optional, Muth.
meaning absent, although they are compulsoay ¢hi ve is to be written later. If the operation

is successful, thenhr ue is returned withxsol n_gr oup set to the new solution group; if it is
unsuccessful (which can only be becaudas already the Id of a solution group ef chi ve),

thenf al se is returned withrsol n_gr oup set toNULL.

To set and retrieve the back pointer (Section 1.3) of a solution group, call

voi d KheSol nG oupSet Back(KHE_SOLN_GROUP sol n_group, void *back);
voi d *KheSol nG oupBack(KHE_SOLN_GROUP sol n_group);

as usual. To retrieve the other attributes, call

8 Chapter 2. Archives and Solution Groups

KHE ARCHI VE KheSol nGr oupAr chi ve(KHE_SOLN_GROUP sol n_group);
char *KheSol nGroupl d(KHE_SOLN_GROUP sol n_group);
KHE SOLN GROUP_METADATA KheSol nGr oupMet aDat a(KHE_SOLN_GROUP sol n_group) ;

Solution group metadata may be created by calling

KHE SOLN GROUP_METADATA KheSol nG oupMet aDat aMake(char *contri butor,
char xdate, char =description, char xpublication, char *renmarks);

wherepubl i cat i on andr emar ks, being optional, may b8ULL. The attributes may be retrieved
by calling

char *KheSol nGr oupMet aDat aCont ri but or (KHE_SOLN_GROUP_METADATA nd) ;
char *KheSol nGr oupMet aDat aDat e(KHE_SOLN_GROUP_METADATA) ;

char *KheSol nGr oupMet aDat aDescri pti on(KHE_SOLN_GROUP_METADATA nd) ;
char *KheSol nGr oupMet aDat aPubl i cati on(KHE_SOLN _GROUP_METADATA nd) ;
char *KheSol nGr oupMet aDat aRenar ks(KHE_SCOLN GROUP_METADATA md) ;

Initially a solution group has no solutions. These are added and deleted by calling

voi d KheSol nG oupAddSol n(KHE_SCLN_GROUP sol n_group, KHE_SCLN sol n);
voi d KheSol nG oupDel et eSol n(KHE_SOLN_GROUP sol n_group, KHE SOLN sol n);

A solution can only be added when its instance lies in the solution group’s archive.
To visit the solutions of a solution group, call

i nt KheSol nG oupSol nCount (KHE_SOLN_GROUP sol n_group);
KHE_SCLN KheSol nG oupSol n(KHE_SOLN_GROUP sol n_group, int i);

as usual. Solutions have no Id attributes, so there iha6ol nGr oupRet ri eveSol n function.
When solutioni is deletedkheSol nG oupSol nCount decreases by 1, solution+ 1 becomes
solutioni , and so on.

2.3. Reading archives
KHE reads and writes archives in a standard XML format [11]. To read an archive, call

bool KheArchiveRead(FILE #fp, KHE ARCH VE *archive, KM._ERRCOR *ke,
bool infer resource partitions, bool allow.invalid_solns,
char =xleftover, int *leftover_len, FILE »echo fp);

File f p must be open for reading UTF-8, and it remains open after the call returns. If, starting
from its current positiorf,p contains a legal XML archive, themeAr chi veRead setstar chi ve

to that archive anelke to NULL and returnsr ue with the current position of p moved to after

the archive. If there was a problem reading the file, then it*setshi ve to NULL and+ke to an

error object and returrisil se. Any reports in the archive are discarded without checking.

TypeKM._ERRCR is from the KML module packaged with KHE. A full description of the
KML module appears in Appendix A.4. Given an object of tyjMe_ERROR, operations

2.3. Reading archives 9

i nt Km ErrorLi neNum KM._ERRCOR ke);
i nt K Error Col Num(KM._ERRCR ke);
char *Km Error String(KM._ERRCR ke);

return the line number, the column number, and a string description of the error.

KheAr chi veRead builds the archive object by calling only functions described in this guide;
there is nothing special about the archive it makes. Paramdter_r esource_partitions is
passed on to the callskbel nst anceMakeEnd (Section 3.1).KheAr chi veRead builds complete
representations of the solutions it reads, by calkhgSol nMakeConpl et eRepr esent at i on,
KheSol nAssi gnPr eassi gnedTi mes, and KheSol nAssi gnPr eassi gnedResour ces (Section
4.3); but it does not cakheSol nMat chi ngBegi n or KheSol nEvennessBegi n (Chapter 7).

Usually, if there are errors in the filgheAr chi veRead returnsf al se and sets ke to the
firsterror. Butifal I ow_i nval i d_sol ns ist r ue, then some errors lying in solutions are handled
differently: the erroneous solutions are converted to invalid placeholders (Section 4.11). Each
invalid placeholder solution contains its first error, and none of its errors dalise to be
returned orke to be set. Not all errors, not even all errors lying in solutions, can be handled in
this way; those that cannot caugeAr chi veRead to returnf al se and setke as usual.

KheAr chi veRead callsKm Read (Appendix A.4.3), passinigef t over, | ef tover _| en, and
echo_f p to it, and setting itend_| abel parameter td </ H ghSchool Ti net abl eAr chi ve>"
if 1 eftover isnonNULL, and toNULL if | ef t over isNULL. Appendix A.4.3 has the details, but
just briefly,l ef t over andl ef t over _| en should beNULL when the archive occupiés from its
current position to the end, and nbdkL when other material may follow the archivefip; and
echo_f p would normally beNULL.

To create an archive by reading an XML string, call

bool KheArchi veReadFronstring(char +str, KHE _ARCH VE =xar chi ve,
KM._ERROR +ke, bool infer_resource partitions, bool allow.invalid_solns);

Thisisjust likekheAr chi veRead except that the archive liessmr instead of p, and is expected
to occupy the entire string.

2.4. Reading archives incrementally
A large archive may have to be read one solution at a time. For this, call

bool KheArchiveReadl ncremental (FILE *fp, KHE ARCHI VE xar chi ve,
KM._ERROR *ke, bool infer_resource partitions, bool allow.invalid solns,
char =x|leftover, int xleftover _len, FILE *echo_fp,
KHE_ARCHI VE_FN archive_begin_fn, KHE ARCH VE FN archive_end _fn,
KHE_SOLN_GROUP_FN sol n_group_begi n_fn,
KHE_SOLN GROUP_FN sol n_group_end _fn, KHE SCLN FN soln_fn, void *inpl);

The return value and the first eight parameterssto_f p inclusive, are as fdtheAr chi veRead.

The next five parameters are callback functions, and the last parameters not used by KHE

but is instead passed through to the calls on the callback functions. Any or all of the callback
functions may b&lULL, in which case the corresponding callbacks are not made.

10 Chapter 2. Archives and Solution Groups

Callback functionar chi ve_begi n_f n is called byKheAr chi veReadl ncrenent al at the
start of the archive. It must be written by the user like this:

voi d archive_begi n_fn(KHE ARCH VE archive, void *inpl)
{

}

Its ar chi ve parameter is set to the archive tiaeAr chi veReadl ncrenent al will eventually
build, the one it returns in itsar chi ve parameter; itsnpl parameter contains the value of the
i npl parameter okheAr chi veReadl ncrement al . At the time of this callar chi ve contains its
Id and metadata attributes, but no instances and no solution groups.

Callback functionarchive_end_fn is called at the end of the archive, just before
KheAr chi veReadl ncrement al itself returns:

voi d archive_end _fn(KHE ARCH VE archive, void *inpl)
{

}

When this function is calledgr chi ve contains all of its instances and solution groups. If
KheAr chi veReadl ncrenent al returng r ue, there has been one callbaclata@hi ve_begi n_fn
and one tar chi ve_end_fn, if nonNULL.

Callback functiorsol n_gr oup_begi n_f n is called at the start of each solution group:

voi d sol n_group_begi n_f n(KHE_SOLN_GROUP sol n_group, void *inpl)
{

}

Itssol n_gr oup parameter is set to one of the solution groups that the final archive will eventually
contain, and it$ npl parameter is as before. At the time of this csdl, n_gr oup contains its

Id and MetaData, antheSol nG oupAr chi ve(sol n_group) returns the enclosing archive, but
there are no solutions Bol n_gr oup.

Callback functiorsol n_gr oup_end_f n is called at the end of each solution group:

voi d soln_group_end fn(KHE SOLN GROUP sol n_group, void *inpl)
{

}

At the time of this callsol n_gr oup contains all its solutions.
Finally, callback functiorsol n_f n is called after each solution is read:

voi d sol n_fn(KHE_SOLN sol n, void *inpl)
{

}

2.4. Reading archives incrementally 11

The solution is complete, artieSol nSol nGroup(sol n) returns the enclosing solution group.

The purpose of incremental reading is to process the solutions as they are read, so that
they can be discarded and their memory reclaimed. One way to save memory is to replace each
solution by a placeholder. This can be done by pagssihg for all callbacks exceptol n_fn,
which would be defined like this:

voi d sol n_fn(KHE _SOLN sol n, void *inpl)
{
i f(!'KheSol nl sPl acehol der(soln))
KheSol nReduceToPl acehol der (sol n);

}

The test is needed only ifllow invalid_solns is true. As Section 4.11 explains,
KheSol nReduceToPl acehol der reclaims most of the memory @bl n, leaving just thesol n

object itself and a few key attributes, including its cost. This memory will then be recycled for
holding other solutions. In this way, the total memory cost is reduced to not much more than the
memory needed to hold the instances, but enough information is retained to support operations
which (for example) print tables of solutions and their costs.

Other applications might processl n in some way (print timetables, for example) before
finishing with a call takheSol nReduceToP! acehol der , or everkheSol nDel et e.

2.5. Writing archives and solution groups
To write an archive to a file, call
voi d KheArchi veWite(KHE ARCH VE archive, bool with reports, FILE *fp);

If with_reports istrue, each solution written to the file contain®eport section evaluating

the solution. Filg p must be open for writing UTF-8 characters, and it remains open after the
call returns. Ids, names, and meta-data are optional in KHE but compulsory when writing XML.
If any are missingkheAr chi veW i t e will write an incomplete file, print an error message, and
abort. Itwillalways return whear chi ve was produced by a successful calkbeAr chi veRead,

since then all the necessary elements are present.

When writing solutionsitheAr chi veW i t e writes as little as possible. It does not write an
unassigned or preassigned task. It does not write a meet if its duration equals the duration of the
corresponding event, its time is unassigned or preassigned, and its tasks are not written according
to the rule just given (see also Section 4.3).

A similar function is

voi d KheArchiveWiteSol nG oup(KHE_ARCHI VE ar chi ve,
KHE SOLN GROUP sol n_group, bool with reports, FILE *fp);

It also writesar chi ve, but the only solution group frorar chi ve it writes issol n_gr oup.

Chapter 3. Instances

An instanceis a particular case of the high school timetabling problem, for a particular term
or semester of a particular school. This chapter describeg#hé NSTANCE data type, which
represents instances as defined in the XML format.

3.1. Creating instances
To make a new, empty instance, call
KHE_| NSTANCE Khel nst anceMakeBegi n(char =i d, KHE | NSTANCE METADATA nd);

Parametersd andmd are the Id and MetaData attributes from the XML file; both are optional,
with NULL meaning absent. Functions

char =Khel nstancel d(KHE_I NSTANCE i ns);
char *Khel nst anceName(KHE | NSTANCE i ns);
KHE_| NSTANCE_METADATA Khel nst anceMet aDat a(KHE_| NSTANCE i ns) ;

may be called to retrieve these attribut&sel nst anceNane is a convenience function that calls
Khel nst anceMet aDat aNane below.

For the convenience of functions that reorganize archives, an instance may lie in any
number of archives. To add an instance to an archive and delete it from an archive, call functions
KheAr chi veAddl nst ance and KheAr chi veDel et el nst ance from Section 2.1. To visit the
archives containing a given instance, call

i nt Khel nst anceAr chi veCount (KHE_| NSTANCE i ns) ;
KHE_ARCHI VE Khel nst anceAr chi ve(KHE I NSTANCE ins, int i);

in the usual way.
To set and retrieve the back pointeriafs, call

voi d Khel nst anceSet Back(KHE_| NSTANCE i ns, void *back);
voi d *Khel nst anceBack(KHE_I NSTANCE i ns) ;

as usual.
After the instance has been completed, using functions still to be defined, call

voi d Khel nst anceMakeEnd(KHE | NSTANCE i ns, bool infer_resource partitions);

This must be done, single-threaded, before any solution is created. It checks the instance
and initializes various constant data structures used to speed the solution process. Parameter
i nfer_resource_partitions isthe subject of Section 3.5.5.

Instance metadata may be created by calling

12

3.1. Creating instances 13

KHE_| NSTANCE_METADATA Khel nst anceMet aDat aMake(char =*narre,
char =contributor, char +date, char *country,
char =*description, char xremarks);

wherer emar ks, being optional, may bBULL. The attributes may be retrieved by calling

char xKhel nst anceMet aDat aName(KHE | NSTANCE METADATA) ;

char xKhel nst anceMet aDat aCont ri but or (KHE | NSTANCE METADATA nd) ;
char xKhel nst anceMet aDat aDat e(KHE | NSTANCE METADATA) ;

char xKhel nst anceMet aDat aCount r y(KHE | NSTANCE_METADATA md) ;
char xKhel nst anceMet aDat aDescri pti on(KHE | NSTANCE METADATA nd) ;
char xKhel nst anceMet aDat aRemar ks(KHE_| NSTANCE_METADATA md) ;

Khel nst anceMet aDat aRemar ks may returnNULL.

An instance may contain any number of time groups, times, resource types, event groups,
events, and constraints. These are added by the functions that create them, to be given later.

3.2. Visiting and retrieving the components of instances
To visit all the time groups of an instance, or retrieve a time grouipdbgall

i nt Khel nstanceTi meG oupCount (KHE_I NSTANCE i ns);

KHE_TI ME_GROUP Khel nst anceTi neG oup(KHE_I NSTANCE ins, int i);

bool Khel nstanceRet ri eveTi neG oup(KHE_I NSTANCE i ns, char =id,
KHE_TI ME_GROUP +tg);

The first returns the number of time groupsiims. The second returns theth time group,
counting from 0 as usual in C. The third searches for a time groupofvith the giveni d; if
found, it setst g to it and returnsr ue, otherwise it leavest g unchanged and returfsl se.

Only time groups created by callskbeTi neG oupMake (Section 3.4.1) made by the user
may be accessed by callinghel nst anceTi meG oupCount , Khel nst anceTi neG oup, and
Khel nst anceRet ri eveTi meG oup. Some other time groups are created automatically by KHE,
but they are accessed in other ways. They include one time group for each time, holding just that
time; a time group holding the full set of times of the instance; and an empty time group. These
last two are returned by

KHE Tl ME_GROUP Khel nst anceFul | Ti meG oup(KHE | NSTANCE i ns) ;
KHE TI ME_GROUP Khel nst anceEnmpt yTi meG oup(KHE | NSTANCE i ns) ;

Time groups may also be created during solving (Section 4.4). Those too are not accessible via
Khel nst anceTi meG oupCount , Khel nst anceTi meG oup, or Khel nst anceRet ri eveTi meG oup.

To visit all the times of an instance, or retrieve a time by Id, call

i nt Khel nst anceTi meCount (KHE_| NSTANCE i ns);

KHE_TI ME Khel nst anceTi me(KHE | NSTANCE ins, int i);
bool Khel nstanceRetri eveTi me(KHE_| NSTANCE i ns, char *id, KHE TIME *t);

These work in the same way as the functions above for visiting and retrieving time groups.

14 Chapter 3. Instances

To visit all the resource types of an instance, or retrieve a resource typk ol

i nt Khel nst anceResour ceTypeCount (KHE | NSTANCE i ns);

KHE_RESOURCE TYPE Khel nst anceResour ceType(KHE I NSTANCE ins, int i);

bool Khel nst anceRet ri eveResour ceType(KHE | NSTANCE i ns, char =id,
KHE_RESOURCE_TYPE =*rt);

These work in the same way as the corresponding functions for visiting and retrieving time
groups and times. Resource types have operations which give access to their resource groups and
resources. For convenience there are also operations

bool Khel nst anceRet ri eveResour ceG oup(KHE_I NSTANCE i ns, char =*id,
KHE_RESOURCE_GROUP +*rg);

bool Khel nstanceRet ri eveResour ce(KHE_I NSTANCE i ns, char =*id,
KHE RESOURCE =*r);

which search all the resource types of for a resource group or resource with the given It
is also possible to bypass resource types and visit all resources directly, by calling

i nt Khel nst anceResour ceCount (KHE_I NSTANCE i ns) ;
KHE_RESOURCE Khel nst anceResour ce(KHE_I NSTANCE ins, int i);

in the usual way. The resources will be visited in the order they were created.
To visit all the event groups of an instance, or to retrieve an event groug, logll

i nt Khel nstanceEvent G oupCount (KHE | NSTANCE i ns);

KHE_EVENT _GROUP Khel nst anceEvent Group(KHE_| NSTANCE ins, int i);

bool Khel nstanceRet ri eveEvent Group(KHE_ | NSTANCE i ns, char =id,
KHE_EVENT_GROUP xeg);

These work in the usual way. Some event groups are created automatically by KHE, including
one event group for each event, holding just that event; an event group holding the full set of
events of the instance; and an empty event group. These last two are returned by

KHE_EVENT_GROUP Khel nst anceFul | Event Gr oup(KHE_I NSTANCE i ns);
KHE_EVENT_GROUP Khel nst anceEnmpt yEvent G oup(KHE_I NSTANCE i ns) ;

Automatically defined event groups are not visited Kinel nst anceEvent G oupCount and
Khel nst anceEvent G oup. Even more event groups may be created during solving. Those also
do not appear in the list of event groups of the original instance.

To visit the events of an instance, or to retrieve an eventbgall

i nt Khel nst anceEvent Count (KHE | NSTANCE i ns) ;
KHE EVENT Khel nst anceEvent (KHE | NSTANCE ins, int i);
bool Khel nstanceRet ri eveEvent (KHE | NSTANCE ins, char *id, KHE EVENT xe);

To visit the event resources of an instance, call

i nt Khel nst anceEvent Resour ceCount (KHE_I NSTANCE i ns) ;
KHE_EVENT_RESOURCE Khel nst anceEvent Resour ce(KHE_I NSTANCE ins, int i);

3.2. Visiting and retrieving the components of instances 15

The event resources may also be visited via their events.
To visit all the constraints of an instance, or to retrieve a constraint pgall

i nt Khel nst anceConstrai nt Count (KHE | NSTANCE i ns);

KHE_CONSTRAI NT Khel nst anceConstrai nt (KHE_| NSTANCE ins, int i);

bool Khel nstanceRet ri eveConstrai nt (KHE | NSTANCE i ns, char xid,
KHE_CONSTRAI NT *c);

These operations work in the usual way.

3.3. Constraint density

Within a given instance, theéensityof a given kind of constraint is the number of applications

of constraints of that kind, divided by the number of places where constraints of that kind could
apply. The density is a floating-point number, usually between 0 and 1, although it can exceed
1, since nothing prevents several constraints of the same kind from applying at one place.

In support of this concept KHE offers functions

i nt Khel nst anceConst rai nt Densi t yCount (KHE_| NSTANCE i ns,
KHE_CONSTRAI NT_TAG constraint _tag);

i nt Khel nstanceConstrai nt Densi tyTot al (KHE_| NSTANCE i ns,
KHE_CONSTRAI NT_TAG constraint _tag);

returning the number of applications of constraints of kindst rai nt _t ag ini ns (thedensity

coun), and the number of places where constraints of that kind could apphsifthe density

total). The density is the quotient of these two quantities, unless the density total is 0, in which
case the density is undefined, although it may be reported as 0.0 in that case. Precise definitions
of the density count and density total are given for each kind of constraint in Section 3.7.

The first time either of these functions is called for any value@fstrai nt _t ag, the
results of both functions are calculated for all values@fst r ai nt _t ag and stored inns. So
multi-threaded calls on these functions are only safe if one single-threaded call is made first.

3.4. Times

3.4.1. Time groups
A time group, representing a set of times, is created and added to an instance by calling

bool KheTi meG oupMake(KHE | NSTANCE ins, KHE_TI ME_GROUP_KI ND ki nd,
char *id, char xname, KHE_TIME_GROUP *tg);

This works like all creations of named objects do in KHE] df is nonNULL andi ns already
contains a time group with thigl, it returnsf al se and creates nothing; otherwise it creates a
new time group, setd g to point to it, and returnsr ue.

Parameteki nd has type

16 Chapter 3. Instances

t ypedef enum {
KHE_TI ME_GROUP_KI ND_ORDI NARY,
KHE_TI ME_GROUP_KI ND_WEEK,
KHE_TI ME_GROUP_KI ND_DAY

} KHE_TI ME_GROUP_KI ND;

KHE_TI ME_GROUP_KI ND_ORDI NARY is the usual kind. The XML format allows some time groups

to be referred to as Weeks and Days, although they do not differ from other time groups in any
other way. ValueHE_TI ME_GROUP_KI ND_WEEK and KHE_TI ME_GROUP_KI ND_DAY record this
usage; they matter only when reading and writing XML files, not when solving.

Thei d andnane parameters may béJLL; they are used only when writing XML, when
they represent the compulsory Id and Name attributes of the time group. Irrespective of the order
time groups are created in, to conform with the XML rules, when writing time groups KHE writes
days first, then weeks, then ordinary time groups; it does not write predefined time groups.

To set and retrieve the back pointertaf, call

voi d KheTi meG oupSet Back(KHE _TI ME_ GROUP tg, void xback);
voi d *KheTi meG oupBack(KHE TI ME_GROUP tg);

in the usual way. The other attributes may be retrieved by calling

KHE | NSTANCE KheTi meGroupl nst ance(KHE_TI ME_GROUP t Q) ;
KHE_TI ME_GROUP_KI ND KheTi neG oupKi nd(KHE_TI ME_GROUP tg);
char xKheTi meG oupl d(KHE_TI ME_GROUP tg);

char xKheTi meG oupName(KHE_TI ME_GROUP tQ);

Initially the time group is empty. There are several operations for changing its set of times:

voi d KheTi meG oupAddTi me(KHE_TIME GROUP tg, KHE TIME t);

voi d KheTi meG oupSubTi me(KHE_TIME GROUP tg, KHE TIME t);

voi d KheTi meG oupUni on(KHE TIME GROUP tg, KHE TIME GROUP tg2);

voi d KheTi meG oupl ntersect (KHE TI ME_ GROUP tg, KHE TIME GROUP tg2);
voi d KheTi meG oupDi fference(KHE TI ME_GROUP tg, KHE TIME_GROUP tg2);

These add a time tog, remove a time, repladey’s set of times with its union or intersecton
with the set of times of g2, and with the difference dfg’s times and g2’s times. The first two
operations are treated as set operationghsdi meG oupAddTi me does nothing it is already
present, an#heTi meG oupSubTi ne does nothing it is not already present.

Changes to the time groups of an instance are not allowedkaféé&nst anceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct time
groups for their own use (Section 4.4).

There are also predefined time groups, for the full set of times of the instance and for the
empty set of times (Section 3.2), and one for each time of the instance, containing just that time
(Section 3.4). These time groups ha_TI ME_GROUP_KI ND_ORDI NARY for kind andNULL for
Id and Name. Their times may not be changed. They are never read or written; if time groups
with their values are wanted in an instance, the user must define them.

The times of any time group are visited by

3.4. Times 17

i nt KheTi neG oupTi meCount (KHE TI ME_ GROUP tg);
KHE_TI ME KheTi neGr oupTi me(KHE TIME GROUP tg, int i);

These work in the same way as the visit functions for instances above. And

bool Ti meG oupContains(KHE TIME_ GROUP tg, KHE TIME t);

bool KheTi neG oupEqual (KHE_TI ME_GROUP tgl, KHE TIME GROUP tg2);
bool KheTi neG oupSubset (KHE _TI ME_GROUP tgl, KHE TI ME GROUP tg2);
bool KheTi neG oupDi sj oi nt (KHE _TI ME_GROUP tgl, KHE TIME GROUP tg2);

returntrue if tg containg, if t gl andt g2 contain the same times, if the timestafl are a
subset of the times ofy2, and if the times of g1 andt g2 are disjoint. These tests use bit vectors,

so are quite fast. There is nothing to prevent two distinct time groups from containing the same
times, so the C equality operator should never be applied to time groups.

Here are some miscellaneous time group functions. Function
bool KheTi neG oupl sConpact (KHE_TI ME_GROUP tg);

returnst rue whent g is compact when it is empty or there are no gaps in its times, taken in
chronological order. Function

i nt KheTi neG oupQverl ap(KHE_TI ME_GROUP tg, KHE TIME time, int durn);

returns the number of times that a meet starting at with durationdur n would overlap with
tg. And function

KHE TI ME_GROUP KheTi meG oupNei ghbour (KHE TIME GROUP tg, int delta);

returns a predefined time group containigés times shiftedlel t a places, wheréel t a may be
any integer. The time group will be emptydél t a is such a large (positive or negative) number
that all the times are shifted off the cycle. For examfgheTi meG oupNei ghbour (tg, 0) is

t g, andKheTi meG oupNei ghbour (tg, -1) holds the times that immediately precedgs.

As an aid to debugging, function

voi d KheTi meG oupDebug(KHE TIME GROUP tg, int verbosity,
int indent, FILE *fp);

printst g ontof p with the given verbosity and indent, as described for debug functions in general
in Section 1.3. Verbosity 1 prints the Id of the time group in some cases, and the first and last
time (at most) enclosed in braces in others.

3.4.2. Times

A time is created and added to an instance by calling

bool KheTi neMake(KHE_|I NSTANCE i ns, char *id, char =nane,
bool break after, KHE TIME *t);

Asusual, d al se return value is only possible whéd is nonNULL and already in use by another
time object. Parameters andname may beNULL, and are used only when writing XML.

18 Chapter 3. Instances

Parametebreak_after says that a break occurs after this time, so that, for example,
an event of duration 2 could not begin here. This is not an XML feature; when representing
XML this parameter should always bel se. Within KHE itself it is used only by function
KheSol nSpl i t Cycl eMeet and its associated operations (Section 4.8.3).

To set and retrieve the back pointer of a time, call functions

voi d KheTi meSet Back(KHE_TIME t, void *back);
voi d *KheTi meBack(KHE TIME t);

as usual. The other attributes are retrieved by

KHE_I NSTANCE KheTi nel nst ance(KHE_TI ME t);
char =KheTi mel d(KHE_TIME t);

char *KheTi meName(KHE_TI ME t);

bool KheTi meBreakAfter (KHE_TIME t);

int KheTi nel ndex(KHE_TI ME t);

KheTi mel ndex returns an automatically generated index numbet foe: O for the first time

created, 1for the second, and so on. The times of an instance form a sequence, not a set, and must
be created in chronological order. This is unlike resources, events, etc., whose order of creation
does not matter. The XML format requires times to appear in this same order. Function

bool KheTi neHasNei ghbour (KHE_TIME t, int delta);

returng r ue when there is a time whose index is the index @lusdel t a, wheredel t a may be
any integer, negative, zero, or positive. Function

KHE_TI ME KheTi neNei ghbour (KHE_TIME t, int delta);

returns this time when it exists, and aborts when it does not.

When calculating with the chronological ordering of time—deciding whether two meets
are adjacent, and so on—it is often best to KbéiTi nel ndex to obtain the indexes of the times
involved and work with them. However, these functions may help to avoid time indexes:

bool KheTi meLE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neLT(KHE _TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neGI(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi neGE(KHE _TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi meEQ(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);
bool KheTi meNE(KHE TIME tinel, int deltal, KHE TIME tine2, int delta2);

They returrt r ue whenkheTi neNei ghbour (timel, deltal)’stime index isless than or equal
to KheTi meNei ghbour (ti me2, delta2)’s,and soon. The neighbours need not exist; the func-
tions simply convert times into indexes and perform the indicated integer operations. Also,

i nt KheTinelnterval sOverl ap(KHE_TIME timel, int durnl,
KHE TIME tinme2, int durn2);

takes two time intervals, one beginningtatrel with durationdur nl, the other beginning at

3.4. Times 19

t i me2 with durationdur n2, and returns the number of timeslying in both intervals. For example,
the result will be 0 when either interval ends before the other begins. Similarly,

bool KheTi mel nterval sOverl aplnterval (KHE_TI ME timel, int durnl,
KHE_TIME tinme2, int durn2, KHE_TIME +overlap_time, int *xoverlap_durn);

returnstrue when KheTi nel nt erval sOverl ap is non-zero, and setsoverlap_time and
=over | ap_dur n to the starting time and duration of the overlap; otherwise it retuahse.

For convenience, a time group is created for each time, holding just that time. Function
KHE TI ME_GROUP KheTi meSi ngl et onTi meG oup(KHE TIME t);

returns this predefined time group. It cannot be changed.

3.5. Resources

3.5.1. Resource types

A resource type, representing one broad category of resources, such as the teachers or rooms, is
created and added to an instance in the usual way by the call

bool KheResour ceTypeMake(KHE_| NSTANCE ins, char *id, char =*nane,
bool has_partitions, KHE_RESOCURCE TYPE *rt);

Attributesi d andnane represent the optional XML Id and Name attributes as usual. Its back
pointer may be set and retrieved by

voi d KheResour ceTypeSet Back(KHE_RESOURCE TYPE rt, void xback);
voi d *KheResour ceTypeBack(KHE RESOURCE TYPE rt);

as usual, and its other attributes may be retrieved by

KHE_| NSTANCE KheResour ceTypel nst ance(KHE_RESOURCE TYPE rt);
i nt KheResour ceTypel ndex(KHE_RESOURCE TYPE rt);

char *KheResour ceTypel d(KHE_RESOURCE TYPE rt);

char *KheResour ceTypeName(KHE_RESCURCE TYPE rt);

bool KheResourceTypeHasPartitions(KHE RESOURCE TYPE rt);

KheResour ceTypel ndex(rt) returnsthe index oft in the enclosing instance, that is, the value
of i for whichKhel nst anceResour ceType returnst .

Attributehas_parti tions is not an XML feature, and should be given vafa se when
reading an XML instance. It indicates that there is a unique partitioning of the resources of this
resource type, defined by a collection of specially marked resource groupsgatiéidns For
example, the resources of a student groups resource type might be partitioned into forms, or the
resources of a teachers resource type might be partitioned into faculties. When a resource type
has partitions, each of its resources must lie in exactly one partition.

Each resource type contains an arbitrary number of resource groups, representing sets
of resources of its type. Resource groups are added to a resource type automatically by the

20 Chapter 3. Instances

functions that create them. To visit all the resource groups of a given resource type, or to retrieve
a resource group with a givén from a given resource type, call

i nt KheResour ceTypeResour ceG oupCount (KHE_ RESOURCE TYPE rt);
KHE_RESOURCE GROUP KheResour ceTypeResour ceG oup(KHE_ RESOURCE TYPE rt,
int i);
bool KheResourceTypeRetri eveResour ceG oup(KHE RESOCURCE TYPE rt,
char *id, KHE RESOURCE GROUP xrg);

These work in the usual way. The partitions of a resource type may be visited by

int KheResourceTypePartitionCount (KHE RESOURCE TYPE rt);
KHE_RESOURCE_GROUP KheResour ceTypePartition(KHE RESOURCE TYPE rt, int i);

KheResour ceTypePartitionCount returns O whemt does not have partitions.

Some resource groups are made automatically by KHE, including one resource group for
each resource, holding just that resource; a resource group holding the full set of resources of
the resource type; and an empty resource group. These last two are returned by

KHE_RESOURCE_GROUP KheResour ceTypeFul | Resour ceG oup(KHE_RESOURCE_TYPE rt);
KHE_RESOQURCE_GROUP KheResour ceTypeEnpt yResour ceG oup(KHE_RESOURCE _TYPE rt);

Automatically made resource groups are not visitedhi®Rresour ceTypeResour ceG oupCount
and KheResour ceTypeResour ceG oup. Even more resource groups may be created during
solving, but those do not appear in the list of resource groups of the original instance.

To visit all the resources of a given resource type, or to retrieve a resource of a given
resource type byd, call

i nt KheResour ceTypeResour ceCount (KHE RESOURCE TYPE rt);
KHE RESOURCE KheResour ceTypeResour ce(KHE RESOURCE TYPE rt, int i);
bool KheResourceTypeRetri eveResour ce(KHE_RESCURCE TYPE rt,

char *id, KHE RESOURCE *r);

in the usual way.

Two functions, which should be called only after the instance is complete, are offered for
summarising how complex the task of assigning resources of a given type is. The values of
both functions are calculated as the instance is built and kept, so one call on either function costs
practically nothing. The firstis

bool KheResour ceTypeDemandl sAl | Preassi gned(KHE_RESQURCE_TYPE rt);

It returnst r ue if every event resource of type is preassigned. In practice this is always true
for student group resource types, and often for teachers, but rarely for rooms. The second is

i nt KheResour ceTypeAvoi dSpl it Assi gnment sCount (KHE_RESOCURCE_TYPE rt);

It returns the number of points of application of avoid split assignments constraints that constrain
eventresources of thistype. The larger thisnumber is, the more difficult the resource assignment
problem for resources of this type is likely to be.

3.5. Resources 21

3.5.2. Resource groups
A resource group is created and added to a resource type by the call

bool KheResour ceG oupMake(KHE_RESOURCE_TYPE rt, char *id, char *name,
bool is_partition, KHE RESOURCE_GROUP *rQ)

This function returngal se only wheni d is nonNULL and some other resource group of type
rt hasthis d. The resource group lies in resource typeavith the usual d andnarre attributes.
Attributei s_partition is not an XML feature, and should be given vafaé se when reading

an XML instance. It may bérue only if attributehas_partitions of the resource group’s
resource type isr ue, in which case it indicates that this resource group is a partition, that is, one
of those resource groups which define the unique partitioning of the resources of that type.

To set and retrieve the back pointer of a resource group, call

voi d KheResour ceG oupSet Back(KHE_ RESOURCE GROUP rg, void *back);
voi d *KheResour ceG oupBack(KHE_RESOURCE _GROUP rgQ);

as usual. The other attributes may be retrieved by calling

KHE_RESOURCE TYPE KheResour ceG oupResour ceType(KHE_RESOURCE _GROUP rg);
KHE_| NSTANCE KheResour ceG oupl nst ance(KHE_ RESOURCE _GROUP rg);

char *KheResour ceG oupl d(KHE_ RESOURCE_GROUP rq);

char *KheResour ceG oupName(KHE_RESOURCE_GROUP rg);

bool KheResourceG oupl sPartition(KHE_ RESOURCE GROUP rg);

KheResour ceG oupl nst ance returns the resource group’s resource type’s instance.
Initially the resource group is empty. Several operations change its resources:

voi d KheResour ceGr oupAddResour ce(KHE_RESOURCE_GROUP rg, KHE RESOURCE r);
voi d KheResour ceGroupSubResour ce(KHE_RESOURCE_GROUP rg, KHE RESOURCE r);
voi d KheResour ceGr oupUni on(KHE_RESOURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);
voi d KheResour ceG oupl nt er sect (KHE_RESOURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);
voi d KheResour ceG oupDi f f er ence(KHE_RESOURCE_GROUP r g,
KHE_RESOURCE_GROUP rg2);

These add torg, remover, replacer g’s set of resources with its union or intersecton with

the set of resources 0f2, and with the difference ofg’s resources andg2’s resources. All

the resources and resource groups involved must be of the same type. The first two operations
are treated as set operations KkeResour ceG oupAddResour ce does nothing ifr is already
present, an#theResour ceG oupSubResour ce does nothing if is not already present.

These functions may not be used to alter resource groups which define partitions. When a
resource type has partitions, each of its resources is added to its partition when it is created.

Changes to the resource groups of an instance are not allowedraftest anceMakeEnd
is called, since instances are immutable after that point. However, solutions may construct
resource groups for their own use (Section 4.4).

22 Chapter 3. Instances

There are also predefined resource groups, for the complete set of resources of each
resource type and the empty set of resources of each type (see Section 3.5.1 for those), and one
for each resource of the instance, containing just that resource (Section 3.5). The resources in
predefined resource groups may not be changed.

The resources of any resource group are visited by

i nt KheResour ceG oupResour ceCount (KHE_ RESOURCE GROUP rQ);
KHE_RESOURCE KheResour ceG oupResour ce(KHE_ RESOURCE GROUP rg, int i);

These work in the usual way. And

bool KheResour ceG oupCont ai ns(KHE_RESOURCE_GROUP rg, KHE RESOURCE r);
bool KheResour ceG oupEqual (KHE_RESOURCE _GROUP rgl,
KHE RESOURCE _GROUP rg2);
bool KheResour ceG oupSubset (KHE_ RESOURCE GROUP r g1,
KHE RESOURCE _GROUP rg2);
bool KheResour ceG oupDi sj oi nt (KHE_RESOURCE_GROUP r g1,
KHE RESOURCE_GROUP rg2);

returnt r ue if r g containg , if rgl andr g2 contain the same resources, if the resourcegbf

form a subset of the resources @R, and if the resources 0fj1 andr g2 are disjoint. These tests

use bit vectors, so are quite fast. Two distinct resource groups may contain the same resources,
so it is best not to apply the C equality operator to resource groups.

After a resource group is finalized, function
KHE_RESOURCE_GROUP KheResour ceG oupPartiti on(KHE_RESOURCE_GROUP rg);

may be called. If g is non-empty and its resources share a partition, the result is that partition,
otherwise the result iISULL. SinceKheResour ceG oupPartition is called when monitoring
evenness, for efficiency the result is precomputed and storeghimen it is finalized.

As an aid to debugging, function

voi d KheResour ceG oupDebug(KHE_RESOURCE_GROUP rg, int verbosity,
int indent, FILE *fp);

printsr g ontof p with the given verbosity and indent, as described for debug functions in general
in Section 1.3. Verbosity 1 prints the Id of the resource group in some cases, and the first and last
resource (at most) enclosed in braces in others.

3.5.3. Resources

A resource is created and added to its resource type by the call

bool KheResour ceMake(KHE RESOURCE TYPE rt, char =id, char =*name,
KHE_RESOURCE_GROUP partition, KHE RESOURCE *r);

A resource type is compulsoryg andnane are the usual optional XML Id and Name.
Unlike KheResour ceG oupMake, which returng al se when itsi d parameter is nohuLL

3.5. Resources 23

and some other resource group of the same resource type already hasdieReshur ceMake

returnd al se and setsr toNULL when its d parameter is nolWJLL and some other resouroé

any resource typalready has its Id. This is because predefined event resources are permitted to
identify a resource by its Id alone, and so resource lds must be unique among all the resources of
the instance, not merely among resources of a given type.

Thepartition attribute is not an XML feature, and should be given valkeL when
reading an XML instance. It must be ndlbkL if and only ifrt’s has_parti ti ons attribute is
t rue, in which case its value must be a resource group of typeghose s_parti ti on attribute
ist rue, and itindicatesthat the new resource lies in the specified partition. The new resource will
be added to the partition by this function, and no separate cBdistaur ceG oupAddResour ce
to do this is necessary or even permitted.

To set and retrieve the back pointer of a resource, call

voi d KheResour ceSet Back(KHE_RESOURCE r, void *back);
voi d *KheResour ceBack(KHE_RESOURCE r);

as usual. The other attributes may be retrieved by the calls

KHE_I NSTANCE KheResour cel nst ance(KHE_RESOURCE r);

i nt KheResour cel nst ancel ndex(KHE_RESOURCE r);
KHE_RESOURCE_TYPE KheResour ceResour ceType(KHE_RESOURCE r);
i nt KheResour ceResour ceTypel ndex(KHE_RESOURCE r);

char *KheResour cel d(KHE_RESOURCE r);

char *KheResour ceNanme(KHE_RESOURCE r);

KHE_RESOURCE_GROUP KheResour cePartiti on(KHE_RESOURCE r);

KheResour cel nstance returns the enclosing instance, amtieResour cel nstancel ndex
returnsr’s index in that instance (the value offor which Khel nst anceResour ce(ins, i)

returns r). KheResourceResourceType returns the resource type ofr, and
KheResour ceResour ceTypel ndex returnsr’s index in that resource type (the value ioffor

which KheResour ceTypeResource(rt, i) returnsr). Unlike the index numbers of times,
which indicate chronological order, the index numbers of resources have no significance to the
specification of the instance. They are made available only for convenience.

A resource group is created automatically for each resoyteelding justr. Function
KHE_RESOURCE _GROUP KheResour ceSi ngl et onResour ceG oup(KHE_RESOURCE r);

returns this resource group. This resource group may not be changed.
The event resources thats preassigned to are made available by calling
i nt KheResour cePreassi gnedEvent Resour ceCount (KHE_RESOURCE r) ;

KHE_EVENT _RESOURCE KheResour cePreassi gnedEvent Resour ce(KHE_RESOURCE r,
int i);

Naturally, the entire instance has to be loaded for these to work correctly. At present there is no
way to visit events containing event resource groups containing a given resource.

Some constraints apply to resources. When these constraints are created, they are added to

24 Chapter 3. Instances

the resources they apply to. To visit all the constraints applicable to a given resource, call

i nt KheResour ceConst rai nt Count (KHE_RESOURCE r) ;
KHE_CONSTRAI NT KheResour ceConstrai nt (KHE_ RESOURCE r, int i);

There may be any number of avoid clashes constraints, avoid unavailable times constraints,
limit idle times constraints, cluster busy times constraints, limit busy times constraints, and limit
workload constraints, in any order. There are also

KHE_TI ME_GROUP KheResour ceHar dUnavai | abl eTi meG oup(KHE_RESCURCE r) ;
KHE_TI ME_GROUP KheResour ceHar dAndSof t Unavai | abl eTi meG oup(
KHE_RESOURCE 1) ;

KheResour ceHar dUnavai | abl eTi neG oup returns the union of the domains of the required
unavailable times constraintsiof KheResour ceHar dAndSof t Unavai | abl eTi meGr oup doesthe

same, except that the domains of all unavailable times constraints are included. Both functions
return the empty time group when there are no applicable constraints.

These two public functions are used by KHE when calculating lower bounds:

bool KheResour ceHasAvoi dC ashesConst rai nt (KHE_RESCURCE r, KHE COST cost);
i nt KheResour cePreassi gnedEvent sDurat i on(KHE_RESOURCE r, KHE COST cost);

KheResour ceHasAvoi dCl ashesConstrai nt returnst rue if some avoid clashes constraint of
combined weight greater thawst applies tor ; KheResour cePr eassi gnedEvent sDur ati on
returns the total duration of events which are both preassigreudi either preassigned a time
or subject to an assign time constraint of combined cost greatectiiain

As an aid to debugging, function

voi d KheResour ceDebug(KHE_RESOURCE r, int verbosity,
int indent, FILE fp)

produces a debug print of resourcento filef p with the given verbosity and indent, as described
for debug functions in general in Section 1.3.

3.5.4. Resource layers

A resource layeis the set of events containing a preassignment of a given resowlbieh is

the subject of a hard avoid clashes constraint. A resource layer’s events may not overlap in time:
they must spread horizontally across the timetable, hence the term ‘layer’. Within a solution, the
meets derived from the events of one resource layer fosolwion layer or justlayer.

Layers are important in high school timetabling, at least for student group resources, since
the total duration of their events is often close to the total duration of the cycle, and hence these
events strongly constrain each other. The following operations are available on the layer of

i nt KheResourcelLayer Event Count (KHE_RESOURCE r) ;
KHE_EVENT KheResour celLayer Event (KHE_RESCURCE r, int i);
i nt KheResour celLayer Durati on(KHE_RESOURCE r);

The first two work together in the usual way to return the events of the resource layer. They

3.5. Resources 25

are sorted by increasing event index. If the resource is not preassigned to any events, or
has no required avoid clashes constraint, th&nResour ceLayer Event Count returns O.
KheResour ceLayer Dur at i on returns the total duration of the events of the layer. In the unlike-

ly case that is assigned to the same event twice, the event still appears only once in the list of
events of the layer, and contributes its duration only once to the layer duration.

3.5.5. Resource similarity and inferring resource partitions
Following the general approach introduced in Section 1.3, KHE offers function
bool KheResourceSim | ar (KHE RESOURCE r1, KHE RESOURCE r?2);

which returng rue when resourcesl andr 2 are similar: when they lie in similar resource
groups and are preassigned to similar events. The exact definition is given below.

KheResour ceSi mi | ar often succeeds in recognising that student group resources from the
same form are similar, and that teacher resources from the same faculty are similar. However, it
needs positive evidence to work with. For example, when there are no student or teacher resource
groups, and each event contains one preassigned student group resource, one preassigned teacher
resource, and a request for one ordinary classroom, there is no basis for grouping the resources
and each will be considered similar only to itself.

Resource partitions (Section 3.5.1) are not part of the XML format. But they are useful
when solving, s&hel nst anceMakeEnd has an nf er _resource_partiti ons parameter which,
whent r ue, causes partitions to be added to each resource tygigat lacks them. Afterwards,
KheResour ceTypeHasPartitions(rt) will be true, KheResourceG oupl sPartition(rg)
will be true for some of the resource groups of, and KheResour cePartition(r) will
return a norNULL partition for each resourge All this is exactly as though the partitions had
been entered explicitly, except that any specially created resource groups will not be visited by
KheResour ceTypeResour ceG oupCount andKheResour ceTypeResour ceG oup.

The algorithm for inferring resource partitions is a simple application of resource similarity.
Build a graph in which each node correspondsto one resource, and an edge joins two nodes when
their resources are similar. The partitions are the connected components of this graph.

The details of hoviKheResour ceSi mi | ar works are not very important, but, for the record,
here they are. To decide whether two resources are similar or not, two non-negative integers,
the positive evidencand thenegative evidenceare calculated as explained below. The two
resources are similar if the positive evidence exceeds the negative evidence by at least two.

Evidence comes from two sources: the resource groups that the resources lie in, and the
events that the resources are preassigned to. A resource gradmissible(i.e. admissible
as evidence) if its number of resources is at least two and at most one third of the number
of resources of its resource type. Inadmissible resource groups are considered to contain no
useful information and are ignored. Each case of an admissible resource group containing both
resources counts as two units of positive evidence, and each case of an admissible resource group
containing one resource but not the other counts as one unit of negative evidence.

A definition of what it means for two events to be similar appears in Section 3.6.2. Each
case of an event preassigned one resource being similar to an event preassigned the other counts
as two units of positive evidence. Each case of an event preassigned one resource for which there

26 Chapter 3. Instances

IS no similar event preassigned the other counts as one unit of negative evidence. The cases are
distinct, in the sense that each event participates in at most one case.

3.6. Events

3.6.1. Event groups
An event group, representing a set of events, is created and added to an instance by calling

bool KheEvent G oupMake(KHE | NSTANCE ins, KHE EVENT GROUP_KI ND ki nd,
char xid, char *nanme, KHE EVENT_GROUP *eg);

As usual, it return$al se only wheni d is nonNULL andi ns already contains an event group
with thisi d. To set and retrieve the back pointer, call

voi d KheEvent G oupSet Back(KHE_EVENT_GROUP eg, void *back);
voi d *KheEvent Gr oupBack(KHE_EVENT GROUP eg);

as usual. The other attributes may be retrieved by the calls

KHE_| NSTANCE KheEvent Groupl nst ance(KHE_EVENT_GROUP eg);
KHE_EVENT _GROUP_KI ND KheEvent G oupKi nd(KHE_EVENT_GROUP eg);
char *KheEvent Groupl d(KHE_EVENT_GROUP egq);

char *KheEvent G oupNanme(KHE_EVENT _GROUP eg);

The event group kind is a value of type

t ypedef enum {
KHE_EVENT_GROUP_KI ND_COURSE,
KHE_EVENT_GROUP_KI ND_ORDI NARY

} KHE_EVENT_GROUP_KI ND;

The XML format allows some event groups to be referred to as Courses, although they do not
differ from other event groups in any other way. T@d attribute records this distinction; it is
only used by KHE when reading and writing XML files, not when solving.

Irrespective of the order event groups are created in, to conform with the XML rules, when
writing event groups KHE writes courses first, then ordinary event groups.

Initially the event group is empty. There are several operations for changing its events:

voi d KheEvent G oupAddEvent (KHE_EVENT_GROUP eg, KHE_EVENT e);

voi d KheEvent G oupSubEvent (KHE_EVENT_GROUP eg, KHE_EVENT e);

voi d KheEvent G oupUni on(KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);

voi d KheEvent G oupl nt er sect (KHE_EVENT_GROUP eg, KHE_EVENT_GROUP eg2);
voi d KheEvent G oupDi f f erence(KHE_EVENT _GROUP eg, KHE_EVENT_GROUP eg2);

These add an eventég, remove an event, replaeg’s set of events with its union or intersecton
with the set of events afg2, and with the difference odg’s events an@g2’s events. The first
two operations are treated as set operationghsBvent G oupAddEvent does nothing ife is

3.6. Events 27

already present, aritheEvent G oupSubEvent does nothing if is not already present.

Changes to the event groups of an instance are not allowedaéierst anceMakeEnd is
called, since instances are immutable after that point. However, solutions may construct event
groups for their own use (Section 4.4).

There are also predefined event groups, for the complete set of events of the instance and
for the empty set of events (Section 3), and one for each event of the instance, containing just
that event (Section 3.6). The events in predefined event groups may not be changed.

To visit the events of an event group, functions

i nt KheEvent G oupEvent Count (KHE_EVENT_GROUP eg);
KHE_EVENT KheEvent G oupEvent (KHE_EVENT_GROUP eg, int i);

are used in the usual way. And

bool KheEvent GroupCont ai ns(KHE_EVENT_GROUP eg, KHE EVENT e);

bool KheEvent GroupEqual (KHE_EVENT_GROUP egl, KHE_EVENT_GROUP eg2);
bool KheEvent GroupSubset (KHE_EVENT_GROUP egl, KHE_EVENT_GROUP eg2);
bool KheEvent GroupDi sj oi nt (KHE_EVENT_GROUP egl, KHE_EVENT_GROUP eg2);

returntrue if eg containse, if egl andeg2 contain the same events, if the eventegf are

a subset of the events e§2, and if the events oégl andeg?2 are disjoint. These tests use bit
vectors, so are quite fast. There is nothing to prevent two distinct event groups from containing
the same events, so the C equality operator should never be applied to event groups.

Some constraints apply to event groups. When these are created, they are added to the event
groups they apply to. To visit all the constraints that apply to a given event group, call

i nt KheEvent GroupConst rai nt Count (KHE_EVENT _GROUP eg) ;
KHE_CONSTRAI NT KheEvent GroupConstrai nt (KHE EVENT_GROUP eg, int i);

There may be any number of avoid split assignments constraints, spread events constraints, and
link events constraints, in any order.

Function

voi d KheEvent G oupDebug(KHE_EVENT_GROUP eg, int verbosity,
int indent, FILE *fp);

produces a debug print ef ontof p with the given verbosity and indent, in the usual way.

3.6.2. Events

An event is created and added to an instance by calling

bool KheEvent Make(KHE | NSTANCE i ns, char =*id, char *nane, char =col or,
int duration, int workload, KHE TIME preassigned_time, KHE EVENT =*e);

This works in the usual way, returnirigl se only if i d is nonNULL and is already used by an
existing event of ns. Parametecol or is an optional color to be used when printing the event
in timetables. If norNULL, its value must be a legal Web coloU#{CFC00" for example, or a

28 Chapter 3. Instances

colour name). A duration and workload are compulsory (the XML specification states that a
missing workload is taken to be equal to the duration), but the preassigned time midyLbe
The back pointer may be set and retrieved by

voi d KheEvent Set Back(KHE_EVENT e, void *back);
voi d »KheEvent Back(KHE_EVENT e);

as usual, and the other attributes may be retrieved by

KHE | NSTANCE KheEvent | nst ance(KHE EVENT e€);
char +*KheEvent | d(KHE_EVENT e);

char *KheEvent Nane(KHE_EVENT e);

char xKheEvent Col or (KHE_EVENT e);

i nt KheEvent Dur ati on(KHE_EVENT e);

i nt KheEvent Wr k|l oad(KHE_EVENT e);

KHE TI ME KheEvent Preassi gnedTi me(KHE_EVENT e);

There are two other useful query functions. First,
i nt KheEvent | ndex(KHE_EVENT e);

returns the index number ef(0 for the first event inserted, 1 for the next, etc.). This number has
no timetabling significance; it is included merely for convenience. Second,

i nt KheEvent Demand(KHE_EVENT e);

returns thelemandf e, defined to be its duration multiplied by the number of its event resources
(in matching terms, the number of demand tixels). This is included as a measure of the overall
bulk of an event, useful for sorting events by estimated difficulty of timetabling.

Each event also contains any number of event resources. These are added to their events as
they are created. To visit them, call

i nt KheEvent Resour ceCount (KHE_EVENT e);
KHE EVENT RESCURCE KheEvent Resource(KHE EVENT e, int i);

in the usual way. There is also

bool KheEvent Retri eveEvent Resour ce(KHE_EVENT e, char +role,
KHE_EVENT_RESQURCE *er);

which attempts to retrieve an event resource feomith the giverr ol e. If there is such an event
resource, the function seter to that event resource and retutmse. If not,*er is not changed
andf al se is returned.

Each event also contains any number of event resource groups. These are added to their
events as they are created. To visit them, call

i nt KheEvent Resour ceG oupCount (KHE_EVENT e) ;
KHE_EVENT RESOURCE GROUP KheEvent Resour ceG oup(KHE EVENT e, int i);

as usual.

3.6. Events 29

For convenience, an event group is created for each event, holding just that event. Call
KHE_EVENT _GROUP KheEvent Si ngl et onEvent Gr oup(KHE_EVENT event);

to retrieve this event group. Other events may not be added to it.

Some constraints apply to events. When these constraints are created, they are added to the
events they apply to. To visit all the constraints applicable to a given event, call

i nt KheEvent Const rai nt Count (KHE_EVENT e);
KHE_CONSTRAI NT KheEvent Constraint (KHE_EVENT e, int i);

There may be any number of assign time constraints, prefer times constraints, split events
constraints, and distribute split events constraints, in any order, except that an event with a
preassigned time cannot have assign time constraints and prefer times constraints.

Following the general pattern given in Section 1.3, function
bool KheEvent Simil ar (KHE EVENT el, KHE EVENT e2);

returng r ue if el ande2 are similar: if they have the same duration and similar event resources.
The exact definition is as follows. An eveniidmissiblef it has one or more admissible event
resources. An eventresource is admissible if its hard domain (reflecting its prefer resources con-
straints and any preassignment) is an admissible resource group, as defined in Section 3.5.5. An
eventis always similar to itself. Two distinct events are similar if they are admissible, have equal
durations, and their admissible event resources (taken in any order) have equal hard domains.

Thereis also

bool KheEvent Mer geabl e(KHE_EVENT el, KHE EVENT e2, int slack);

which returng r ue if el ande2 could reasonably be considered to be split fragments of a single
larger event: if their event resources correspond, ignoring differences in the order in which they
appear in the two events. #l ack is non-zeroKheEvent Mer geabl e returnst r ue even if up

tosl ack event resources iell do not correspond with any event resourceirand vice versa.

Two event resources correspond when they have the same resource type, the same preassigned
resource, equal hard domains as returnedKbgEvent Resour ceHar dDomai n, and equal
hard-and-soft domains as returneddbgEvent Resour ceHar dAndSof t Donai n. Like those two

functions KheEvent Mer geabl e can only be called after the instance is complete.

A reasonable way to decide whether two events must be disjoint in time is to call

bool KheEvent Shar ePreassi gnedResour ce(KHE_EVENT el, KHE_EVENT e2,
KHE_RESOURCE *r);

If el ande2 share a preassigned resource which has a required avoid clashes constraint, this
function returng r ue and sets to one such resource; otherwise it returasse and sets to
NULL. It should only be called after the instance is complete.

Function

voi d KheEvent Debug(KHE_EVENT e, int verbosity, int indent, FILE *fp);

produces a debug print efontof p with the given verbosity and indent, in the usual way.

30 Chapter 3. Instances

3.6.3. Eventresources

An event resource is created and added to an event by the call

bool KheEvent Resour ceMake(KHE _EVENT event, KHE RESOURCE TYPE rt,
KHE_RESOURCE preassi gned_resource, char *role, int workload,
KHE_EVENT_RESOURCE =*er);

This returnd al se only when the optionalol e parameter (used only when writing XML) is
nonNULL and there is already an event resource wighient with this value forr ol e. Parameter
preassi gned_r esour ce is an optional resource preassignment and mayubke.

To set and retrieve the back pointer of an event resource, call

voi d KheEvent Resour ceSet Back(KHE_EVENT RESOURCE er, void *back);
voi d *KheEvent Resour ceBack(KHE_EVENT RESOURCE er);

as usual. The other attributes may be retrieved by

KHE_I NSTANCE KheEvent Resour cel nst ance(KHE_EVENT _RESOURCE er);

i nt KheEvent Resour cel nst ancel ndex(KHE_EVENT_RESOURCE er);

KHE_EVENT KheEvent Resour ceEvent (KHE_EVENT_RESOURCE er);

i nt KheEvent Resour ceEvent | ndex(KHE_EVENT _RESOURCE er);

KHE_RESOURCE_TYPE KheEvent Resour ceResour ceType(KHE_EVENT _RESOURCE er);
KHE_RESOURCE KheEvent Resour cePr eassi gnedResour ce(KHE_EVENT _RESOURCE er);
char *KheEvent Resour ceRol e(KHE_EVENT_RESOURCE er);

i nt KheEvent Resour ceWor kl oad(KHE_EVENT_RESOURCE er);

KheEvent Resour cel nst ance returns the enclosing instance, and
KheEvent Resour cel nst ancel ndex is the index number ddr in that instance (the numbeifor
which Khel nst anceEvent Resour ce(ins, i) returnser). KheEvent Resour ceEvent returns
the enclosing event, aritieEvent Resour ceEvent | ndex is the index number ofr in that event
(the number such thakheEvent Resource(e, i) returnser).

Some constraints apply to event resources. When these are created, they are added to the
event resources they apply to. To visit the constraints that apply to a given event resource, call

i nt KheEvent Resour ceConst rai nt Count (KHE_EVENT_RESOURCE er) ;
KHE_CONSTRAI NT KheEvent Resour ceConstrai nt (KHE_EVENT _RESOURCE er, int i);

There may be any number of assign resources constraints, prefer resources constraints, and avoid
split assignments constraints, in any order, except that an event resource with a preassigned
resource cannot have assign resource constraints and prefer resources constraintsthif the
constraint is an avoid split assignments constraint, function

i nt KheEvent Resour ceConstrai nt Event Groupl ndex(KHE_EVENT RESOURCE er, int i);

may be called to find the event group index within that constraint that cortair(t returns- 1
if the i 'th constraint is not an avoid split assignments constraint.)

After the instance is complete but not before, functions

3.6. Events 31

KHE RESOURCE_GROUP KheEvent Resour ceHar dDomai n(KHE_EVENT RESOURCE er);
KHE RESOURCE_GROUP KheEvent Resour ceHar dAndSof t Domai n(KHE_EVENT RESOURCE er);

return domains suited & . The resource group returned KheEvent Resour ceHar dDonai n is

the intersection of the domains of the required prefer resources constraints, with weight greater
than 0, ofer and other event resources that share a required avoid split assignments constraint of
weight greater than O witér , either directly or indirectly via any number of intermediate event
resources. If any of these event resources is preassigned, then the singleton resource groups
containing the preassigned resources are intersected along with the other groups. The same is
true ofKheEvent Resour ceHar dAndSof t Domai n, except that both hard and soft prefer resources

and avoid split assignments constraints are used, producing smaller domains in general.

These functions are not recommended for use when solving,i§ia€esk Tr eeMake offers
a more sophisticated way of initializing the domains of tas#®Event Resour ceHar dDomai n
is used when deciding whether events are similar.

Function

voi d KheEvent Resour ceDebug(KHE_EVENT _RESCURCE er, int verbosity,
int indent, FILE *fp);

produces a debug print ef ontof p with the given verbosity and indent, in the usual way.

3.6.4. Event resource groups
An event resource group is created and added to an event by the call

KHE_EVENT RESOURCE GROUP KheEvent Resour ceG oupvake(KHE _EVENT event,
KHE_RESOURCE_GROUP rg);

Its attributes may be retrieved by calling

KHE_EVENT KheEvent Resour ceG oupEvent (KHE_EVENT _RESOURCE_GROUP erg);
KHE_RESOURCE_GROUP KheEvent Resour ceG oupResour ceG oup(
KHE_EVENT _RESOURCE_GROUP erg);

In addition to making a new event resource group obj&eEvent Resour ceG oupMake

calls KheEvent Resour ceMake once for each resource afg, with the resource for its
preassi gned_r esour ce parameter and the obvious valuesfor its other parameters. This satisfies
the semantic requirement that adding a resource group should be just like adding its resources
individually. These added event resources appear on the list of event resources of the event just
like other event resources; they can be distinguished from them only by calling

KHE EVENT RESOURCE GROUP KheEvent Resour ceEvent Resour ceG oup(
KHE_EVENT _RESOURCE er);

which returns the event resource group that caasdd be created when there is one, attiL

whener was created directly. For example, when printing XML files, KHE calls this function
once for each event resource, to decide whether it should be printed explicitly or omitted because
it is part of an event resource group. Function

32 Chapter 3. Instances

voi d KheEvent Resour ceG oupDebug(KHE_EVENT RESOURCE_GROUP er g,
int verbosity, int indent, FILE *fp);

produces a debug print ef g ontof p with the given verbosity and indent, in the usual way.

3.7. Constraints

Some attributes of constraints are common to all kinds of constraints; others vary from one kind
of constraint to another. Accordingly, KHE offers tyllE_ CONSTRAI NT, which is the abstract
supertype of all kinds of constraints, and one subtype of this type for each kind of constraint.

To set and retrieve the back pointer of a constraint object, call

voi d KheConstrai nt Set Back(KHE_CONSTRAI NT ¢, void xback);
voi d *KheConst rai nt Back(KHE_CONSTRAI NT c¢);

as usual. To retrieve the other attributes common to all kinds of constraints, use functions

KHE_| NSTANCE KheConstrai nt | nst ance(KHE_CONSTRAINT c¢);

char *KheConstrai ntld(KHE_CONSTRAI NT c);

char *KheConst rai nt Name(KHE_CONSTRAI NT ¢);

bool KheConst rai nt Requi r ed(KHE_CONSTRAI NT ¢);

i nt KheConst rai nt Wi ght (KHE_CONSTRAI NT c);

KHE_COST KheConst r ai nt Conbi nedWei ght (KHE_CONSTRAI NT c);
KHE_COST_FUNCTI ON KheConst r ai nt Cost Funct i on(KHE_CONSTRAI NT c¢);
i nt KheConstraint | ndex(KHE_CONSTRAINT c);

KHE_CONSTRAI NT_TAG KheConst r ai nt Tag(KHE_CONSTRAI NT c);

KheConst rai ntl nstance returns the instancesheConstrai nt1d and KheConst r ai nt Name
return the constraint’s Id and Name (as usual, these are optional in KHE, needed only when
writing XML). KheConstrai nt Requi red ist rue when the Required attribute is true.

KheConst r ai nt i ght is the weight given to violations of the constraint. As explained
in Section 6.1KheConstrai nt Conbi nedWei ght is similar, except that hard constraints are
weighted more heavilykHE_COST is also defined therekheConst r ai nt Cost Functi on is the
cost function used when calculating the cost of deviations, of type

t ypedef enum {
KHE_SUM STEPS_COST_FUNCTI ON,
KHE_STEP_SUM COST_FUNCTI ON,
KHE_SUM COST_FUNCTI ON,
KHE_SUM SQUARES_COST_FUNCTI ON,
KHE_SQUARE_SUM COST_FUNCTI ON
} KHE_COST_FUNCTI ON;

KheConstrai nt | ndex returns an automatically generated index numbercfo® for the first
constraint created, 1 for the second, and so KimeConstrai nt Tag is the type tag which
determines which concrete kind of constraint this is, with type

3.7. Constraints 33

t ypedef enum {
KHE_ASSI GN_RESOURCE_CONSTRAI NT_TAG
KHE_ASSI GN_TI ME_CONSTRAI NT_TAG,
KHE_SPLI T_EVENTS_CONSTRAI NT_TAG,
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT_TAG,
KHE_PREFER_RESOURCES CONSTRAI NT_TAG,
KHE_PREFER_TI MES_CONSTRAI NT_TAG,
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT_TAG,
KHE_SPREAD_EVENTS_CONSTRAI NT_TAG,
KHE_LI NK_EVENTS_CONSTRAI NT_TAG,
KHE _ORDER _EVENTS_CONSTRAI NT_TAG,
KHE_AVO D_CLASHES CONSTRAI NT_TAG,
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT_TAG,
KHE_LIM T_I DLE_TI MES_CONSTRAI NT_TAG,
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT_TAG
KHE_LIM T_BUSY_TI MES_CONSTRAI NT_TAG,
KHE_LI M T_WORKLOAD CONSTRAI NT_TAG,
KHE_CONSTRAI NT_TAG_COUNT

} KHE_CONSTRAI NT_TAG,

The last value is not a valid tag; it counts the number of constraints, allowing code of the form

for(tag = 0; tag < KHE_CONSTRAI NT_TAG COUNT; tag++)

to be written which visits every tag, now and in the future.
The number of points of application of a constraint is returned by

i nt KheConstraint Appl i esToCount (KHE_CONSTRAI NT c);

For an assign resource constraint this is the total number of event resources; for a split events
constraint it is the total number of events plus the sizes of the event groups; and so on.

Given a tag, one can obtain a string representation of the constraint name by calling

char *KheConst rai nt TagShow(KHE_CONSTRAI NT_TAG tag) ;
char *KheConst rai nt TagShowSpaced(KHE_CONSTRAI NT_TAG t ag);

The first returns an unspaced forf{si gnResour ceConstrai nt" and so on), the second
returns a spaced formAssi gn Resource Constraint" and soon). There is also

KHE_CONSTRAI NT_TAG KheSt ri ngToConstrai nt Tag(char *str);

which implements the inverse function, from unspaced constraint names to constraint tags, and
char *KheCost Functi onShow(KHE_COST_FUNCTI ON cf);

which returns a cost function’s string representation, and

voi d KheConstrai nt Debug(KHE_CONSTRAI NT ¢, int verbosity,
int indent, FILE *fp);

34 Chapter 3. Instances

which produces a debug print ofontof p with the given verbosity and indent.
The names of the concrete subtypes themselves are

KHE_ASSI GN_RESOURCE_CONSTRAI NT
KHE_ASSI GN_TI ME_CONSTRAI NT

KHE_SPLI T_EVENTS_CONSTRAI NT

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT
KHE_PREFER_RESOURCES_CONSTRAI NT
KHE_PREFER_TI MES_CONSTRAI NT

KHE_AVO D_SPLI T_ASS| GNVENTS_CONSTRAI NT
KHE_SPREAD_EVENTS_CONSTRAI NT

KHE_LI NK_EVENTS_CONSTRAI NT
KHE_ORDER_EVENTS_CONSTRAI NT

KHE_AVOl D_CLASHES_CONSTRAI NT

KHE_AVOl D_UNAVAI LABLE_TI MES_CONSTRAI NT
KHE_LI M T_I DLE_TI MES_CONSTRAI NT
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT
KHE_LI M T_BUSY_TI MES_CONSTRAI NT

KHE_LI M T_WORKLOAD_CONSTRAI NT

Downcasting and upcasting betweéit_CONSTRAI NT and each of these subtypes, using C casts,
isa normal part of the use of KHE. Alternatively, since C casts can also be used for unsafe things,
explicit functions are offered for upcasting:

3.7. Constraints

KHE_CONSTRAI NT KheFr omAssi gnResour ceConst r ai nt (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);

KHE_CONSTRAI NT KheFr omAssi gnTi neConst rai nt (
KHE_ASSI GN_TI ME_CONSTRAI NT c¢)

KHE_CONSTRAI NT KheFr onSpl i t Event sConst rai nt (
KHE_SPLI T_EVENTS_CONSTRAI NT c);

KHE_CONSTRAI NT KheFronDi stri but eSplitEvent sConstraint (
KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢);

KHE_CONSTRAI NT KheFr onPr ef er Resour cesConst rai nt (
KHE_PREFER _RESOURCES_CONSTRAI NT c¢)

KHE_CONSTRAI NT KheFr onPr ef er Ti mesConst r ai nt (
KHE_PREFER _TI MES_CONSTRAI NT c);

KHE_CONSTRAI NT KheFr omAvoi dSpl i t Assi gnment sConst rai nt (
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT ¢) ;

KHE_CONSTRAI NT KheFr onSpr eadEvent sConst r ai nt (
KHE_SPREAD EVENTS_CONSTRAI NT ¢) ;

KHE_CONSTRAI NT KheFr onLi nkEvent sConst r ai nt (
KHE_LI NK_EVENTS_CONSTRAI NT c);

KHE_CONSTRAI NT KheFr onOr der Event sConst r ai nt (
KHE_ORDER_EVENTS_CONSTRAI NT c);

KHE_CONSTRAI NT KheFr omAvoi dCl ashesConst rai nt (
KHE_AVO D_CLASHES CONSTRAINT c¢);

KHE_CONSTRAI NT KheFr omAvoi dUnavai | abl eTi mesConst rai nt (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT ¢);

KHE_CONSTRAI NT KheFronili m t1dl eTi mesConstrai nt (
KHE_LI'M T_I DLE_TI MES_CONSTRAI NT ¢):

KHE_CONSTRAI NT KheFr onCl ust er BusyTi nesConst rai nt (
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT c);

KHE_CONSTRAI NT KheFronLi mi t BusyTi mesConst r ai nt (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢):

KHE_CONSTRAI NT KheFr onli m t Wor kl oadConst r ai nt (
KHE_LI M T_WORKLOAD CONSTRAI NT ¢);

and for downcasting:

36 Chapter 3. Instances

KHE_ASSI GN_RESOURCE_CONSTRAI NT

KheToAssi gnResour ceConst r ai nt (KHE_CONSTRAI NT c¢);
KHE_ASSI GN_TI ME_CONSTRAI NT

KheToAssi gnTi meConst rai nt (KHE_CONSTRAI NT c);
KHE_SPLI T_EVENTS CONSTRAI NT

KheToSpl i t Event sConst rai nt (KHE_CONSTRAI NT ¢);
KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT

KheToDi stributeSplitEventsConstraint (KHE_CONSTRAI NT c);
KHE_PREFER_RESOURCES_CONSTRAI NT

KheToPr ef er Resour cesConst rai nt (KHE_CONSTRAI NT ¢);
KHE_PREFER_TI MES_CONSTRAI NT

KheToPr ef er Ti mesConst rai nt (KHE_CONSTRAI NT ¢);
KHE_AVQO D_SPLI T_ASSI GNVENTS_CONSTRAI NT

KheToAvoi dSpl it Assi gnment sConst rai nt (KHE_CONSTRAI NT ¢);
KHE_SPREAD EVENTS_CONSTRAI NT

KheToSpr eadEvent sConst rai nt (KHE_CONSTRAI NT c¢);
KHE_LI NK_EVENTS_CONSTRAI NT

KheToLi nkEvent sConst r ai nt (KHE_CONSTRAI NT c);
KHE_ORDER_EVENTS_CONSTRAI NT

KheToOr der Event sConst rai nt (KHE_CONSTRAI NT ¢);
KHE_AVO D_CLASHES CONSTRAI NT

KheToAvoi dd ashesConst rai nt (KHE_CONSTRAI NT c¢);
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT

KheToAvoi dUnavai | abl eTi mesConstrai nt (KHE_CONSTRAI NT c);
KHE_LI M T_I DLE_TI MES_CONSTRAI NT

KheToLi ni t1dl eTi mesConst rai nt (KHE_CONSTRAINT c¢);
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT

KheTod ust er BusyTi mesConst r ai nt (KHE_CONSTRAI NT ¢);
KHE LI M T_BUSY_TI MES_CONSTRAI NT

KheToLi ni t BusyTi mesConst r ai nt (KHE_CONSTRAI NT c¢);
KHE_LI M T_WORKLOAD CONSTRAI NT

KheToLi ni t Wor kl oadConst r ai nt (KHE_CONSTRAI NT c¢);

The downcasting functions check that their parameter is of the correct type, and abort if not.

3.7.1. Assign resource constraints
An assign resource constraint is created and added to an instance by

bool KheAssi gnResour ceConstrai nt Make(KHE_I NSTANCE ins, char +id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
char *role, KHE ASSI GN RESOURCE CONSTRAI NT *c);

This accepts the attributes common to all constraints, followed by an optioh&| which is
specific to this kind of constraint. As usual, if successful it retime, settingsc to the new
constraint; if not (which can only be becauskis nonNULL and equal to the Id of an existing
constraint ofi ns), then it returng al se, settingsc to NULL.

3.7. Constraints 37

The attributes common to all kinds of constraints may be retrieved by upcasting to
KHE_CONSTRAI NT and calling the relevant operations on that type. The attribute specific to assign
resources constraints may be retrieved by calling

char *KheAssi gnResour ceConst r ai nt Rol e(KHE_ASSI GN_RESOURCE_CONSTRAI NT c);

Initially the constraint has no points of application. There are two ways to add them. The first
is to giveNULL for r ol e, then add the event resources that this constraint applies to by calling

voi d KheAssi gnResour ceConst r ai nt AddEvent Resour ce(
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT_RESOURCE er);

as often as necessary. Itis an error to call this function veherontains a preassigned resource,
since assign resource constraints do not apply to event resources with preassigned resources. To
visit the event resources of call

i nt KheAssi gnResour ceConst rai nt Event Resour ceCount (
KHE_ASSI GN_RESOURCE_CONSTRAI NT c¢);

KHE_EVENT _RESOURCE KheAssi gnResour ceConst rai nt Event Resour ce(
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

as usual.

The second way to add event resources, used when reading XML files, is to givéld hon-
value forr ol e, then add events and event groups. To add events and visit them, the calls are

voi d KheAssi gnResour ceConst rai nt AddEvent (
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT e);

i nt KheAssi gnResour ceConst rai nt Event Count (
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢);

KHE EVENT KheAssi gnResour ceConstrai nt Event (
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

To add event groups and visit them, the calls are

voi d KheAssi gnResour ceConst rai nt AddEvent G oup(
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢, KHE_EVENT_GROUP eg) ;
i nt KheAssi gnResour ceConstrai nt Event G oupCount (
KHE_ASSI GN_RESOURCE_CONSTRAI NT ¢);
KHE_EVENT_GROUP KheAssi gnResour ceConstrai nt Event G oup(
KHE_ASSI GN_RESOURCE_CONSTRAINT ¢, int i);

When this is done, KHE stores the events and event groups in the constraint so that they can be
written out again correctly later, but it also works out which event resources the constraint applies
to and callKheAssi gnResour ceConst r ai nt AddEvent Resour ce for each of them, taking due

note of the XML rule that it does not apply when an event does not contain an event resource
with the specified role, or when such an event resource has a preassigned resource.

The constraint density of the assign resources constraints of an instance (Section 3.3) is
their number of their points of application divided by the number of event resources without
preassigned resources.

38 Chapter 3. Instances

3.7.2. Assign time constraints
An assign time constraint is created and added to an instance by

bool KheAssi gnTi meConst rai nt Make(KHE_| NSTANCE i ns, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_ASSI GN_TI ME_CONSTRAI NT *c);

As usual, if successful it returns ue, settingsc to the new constraint; if not (which can only
be becaused is nonNULL and equal to the Id of an existing constraint of), then it returns
fal se, setting:c toNULL. The attributes may be retrieved by upcastingH CONSTRAI NT and
calling the relevant operations on that type.

The points of application of an assign time constraint are events, and the XML file allows
them to be given individually and in groups. To add individual events and visit them, call

voi d KheAssi gnTi meConst rai nt AddEvent (KHE_ASSI GN_TI ME_CONSTRAI NT c,
KHE_EVENT e);

i nt KheAssi gnTi neConst rai nt Event Count (KHE_ASSI GN_TI ME_CONSTRAI NT ¢) ;

KHE EVENT KheAssi gnTi meConstrai nt Event (KHE_ASSI GN_TI ME_CONSTRAI NT c,
int i);

To add groups of events and visit them, call

voi d KheAssi gnTi meConstrai nt AddEvent Gr oup(KHE_ASSI GN_TI ME_CONSTRAI NT c,
KHE_EVENT_GROUP eg);

i nt KheAssi gnTi neConst rai nt Event G oupCount (
KHE_ASSI GN_TI ME_CONSTRAI NT c¢);

KHE_EVENT _GROUP KheAssi gnTi meConst r ai nt Event Group(
KHE_ASSI GN_TI ME_CONSTRAINT ¢, int i);

The XML specification states that assign time constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

The constraint density of the assign times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.

3.7.3. Split events constraints

A split events constraint is created and added to an instance by

bool KheSplitEvent sConstrai nt Make(KHE | NSTANCE i ns, char =id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
int mn_duration, int max_duration, int mn_amount,
int max_anount, KHE SPLIT _EVENTS CONSTRAI NT *c);

in the usual way. Most of the attributes may be retrieved by upcastiKgetdCONSTRAI NT and
calling the relevant operation on that type. The exceptions are

3.7. Constraints 39

int KheSplitEventsConstraint M nDuration(KHE_SPLI T_EVENTS CONSTRAINT c);
i nt KheSplitEventsConstraint MaxDuration(KHE_SPLI T_EVENTS CONSTRAINT c);
i nt KheSplitEventsConstrai nt M nAnount (KHE_SPLI T_EVENTS_CONSTRAI NT c¢);
i nt KheSplitEvent sConstrai nt MaxAnount (KHE_SPLI T_EVENTS_CONSTRAI NT c¢);

which return the various attributes specific to split events constraints.

The points of application are events, and, as for assign time constraints, these may be added
and visited individually:

voi d KheSplitEvent sConstrai nt AddEvent (KHE_SPLI T_EVENTS_CONSTRAI NT c,
KHE_EVENT e);

i nt KheSplitEventsConstraint Event Count (KHE_SPLI T_EVENTS_CONSTRAINT c);

KHE_EVENT KheSpl it Event sConstrai nt Event (KHE_SPLI T_EVENTS_CONSTRAI NT c,
int i);

and also in groups:

voi d KheSplitEvent sConstrai nt AddEvent G oup(
KHE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);
i nt KheSplitEvent sConstraint Event G oupCount (
KHE_SPLI T_EVENTS_CONSTRAI NT ¢);
KHE EVENT_GROUP KheSpl it Event sConst rai nt Event G oup(
KHE_SPLI T_EVENTS_CONSTRAINT ¢, int i);

All the events are linked to the constraint, unlike for assign time constraints.

The constraint density of the split events constraints of an instance (Section 3.3) is their
number of points of application divided by the total number of events.

3.7.4. Distribute split events constraints
A distribute split events constraint is created and added to an instance by

bool KheDistributeSplitEventsConstraint Make(KHE | NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
int duration, int minimm int nmaxi num
KHE DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT *c);

in the usual way. Most of the attributes may be retrieved by upcastikgetdCONSTRAI NT and
calling the relevant operation on that type. The exceptions are

int KheDistributeSplitEventsConstraintDuration(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢) ;

int KheDistributeSplitEventsConstraintM ni mumn
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢) ;

i nt KheDistributeSplitEventsConstraint Maxi mum
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢) ;

which return the various attributes specific to distribute split events constraints.
The points of application are events, and, as for split events constraints, these may be added

40 Chapter 3. Instances

and visited individually:

voi d KheDi stributeSplitEventsConstraint AddEvent (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE_EVENT e);
int KheDistributeSplitEventsConstraint Event Count (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c¢);
KHE_EVENT KheDi stribut eSplitEvent sConstrai nt Event (

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAINT ¢, int i);

and also in groups:

voi d KheDi stributeSplitEventsConstraint AddEvent G oup(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT ¢, KHE_EVENT GROUP eg);
i nt KheDistributeSplitEventsConstraint Event G oupCount (
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT c¢);
KHE_EVENT_GROUP KheDi st ri but eSpl it Event sConst rai nt Event Group(
KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAINT ¢, int i);

All the events are linked to the constraint.

The constraint density of the distribute split events constraints of an instance (Section 3.3)
Is their number of points of application divided by the total number of events.

3.7.5. Prefer resources constraints

A prefer resources constraint is created and added to an instance by

bool KhePref er Resour cesConst rai nt Make(KHE_| NSTANCE i ns, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
char *role, KHE PREFER RESOURCES CONSTRAI NT *c);

As usual, the only reason for returnifigl se is thati d is nonNULL and there is already a
constraint ini ns with thisid. Most of the attributes may be retrieved by upcasting to
KHE_CONSTRAI NT and calling the relevant operations on that type; the exceptioni & which

is retrieved by calling

char *KhePref er Resour cesConst rai nt Rol e(KHE_PREFER_RESOURCES CONSTRAI NT c);

since it is specific to this constraint type.

In the XML specification, the resources that make up the domain of the constraint may be
added in groups or individually. To add them in groups, and to visit the groups, call

bool KhePref er Resour cesConst rai nt AddResour ceG oup(
KHE_PREFER _RESOURCES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);

i nt KhePrefer Resour cesConst rai nt Resour ceG oupCount (
KHE_PREFER_RESOURCES CONSTRAI NT c);

KHE_RESOURCE_GROUP KhePr ef er Resour cesConst r ai nt Resour ceGroup(
KHE_PREFER _RESOURCES CONSTRAINT ¢, int i);

Thebool result type ofkhePr ef er Resour cesConst r ai nt AddResour ceG oup (and other func-

3.7. Constraints 41

tions below) is explained at the end of this section. To add and visit resources individually, call

bool KhePref er Resour cesConst rai nt AddResour ce(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE RESOURCE r);

i nt KhePr ef er Resour cesConst r ai nt Resour ceCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c);

KHE RESOURCE KhePr ef er Resour cesConst r ai nt Resour ce(
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

After the instance is complete, but not before, function

KHE_RESOURCE_GROUP KhePr ef er Resour cesConst r ai nt Domai n(
KHE_PREFER _RESOURCES_CONSTRAI NT c¢)

returns the domain af as a single resource group. If exactly one resource group or one resource
was added, this resource group will be that resource group or the automatically created singleton
resource group for that resource; otherwise it will be created by taking the union of everything
added. Thisresource group may be used like any other, except for a problem in one special case:
when no resource groups or resources are added, the domain is not only an empty resource group
but also has &ULL resource type.

The points of application of prefer resources constraints are event resources, and they
are handled in the same way as for assign resource constraints. That is, one can load the event
resources directly by having\uLL value forr ol e and calling

bool KhePref er Resour cesConst rai nt AddEvent Resour ce(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_RESCURCE er);

i nt KhePref er Resour cesConst rai nt Event Resour ceCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c) ;

KHE_EVENT RESOURCE KhePr ef er Resour cesConst r ai nt Event Resour ce(
KHE_PREFER_RESOURCES _CONSTRAINT ¢, int i);

or load them indirectly by loading events:

bool KhePref er Resour cesConstr ai nt AddEvent (
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT e);

i nt KhePref er Resour cesConst rai nt Event Count (
KHE_PREFER_RESOURCES_CONSTRAI NT c);

KHE_EVENT KhePr ef er Resour cesConst r ai nt Event (
KHE_PREFER_RESOURCES_CONSTRAINT c, int i);

and event groups:

bool KhePr ef er Resour cesConst rai nt AddEvent G oup(
KHE_PREFER_RESOURCES_CONSTRAI NT ¢, KHE_EVENT_GROUP eg,
KHE EVENT +probl em event);

i nt KhePref er Resour cesConst rai nt Event G oupCount (
KHE_PREFER_RESOURCES_CONSTRAI NT c¢) ;

KHE_EVENT_GROUP KhePr ef er Resour cesConst r ai nt Event Gr oup(
KHE_PREFER_RESOURCES_CONSTRAINT ¢, int i);

42 Chapter 3. Instances

WhenkKhePr ef er Resour cesConst r ai nt AddEvent G oup returns al se, probl em event s set
to the first event that caused the problem. The rules for skipping inappropriate events are as for
assign resource constraints.

The resources, resource groups, and event resources of a prefer resources constraint all have
a resource type attribute. All these resources types must be equal. This is why the operations
above for adding a resource, resource group, event resource, event, or event group albblave a
result type: they all returhal se and add nothing if the operation would add an entity with a
different resource type from something added previously.

The constraint density of the prefer resources constraints of an instance (Section 3.3)
Is their number of points of application divided by the number of event resources without
preassigned resources.

3.7.6. Prefer times constraints

A prefer times constraint is created and added to an instance by

bool KhePref er Ti mesConst r ai nt Make(KHE_| NSTANCE i ns, char =id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
int duration, KHE PREFER TI MES CONSTRAI NT *c);

As usual, the only possible reason for returrfiagse is thati d isnonNULL and there is already a
constraintin ns with thisi d. A duration is optional; to not give one (meaning that the constraint
applies for all durations), use the special vaitie_ANY_DURATI ON, a synonym for 0.

Most of the attributes may be retrieved by upcastingHb CONSTRAI NT and calling the
relevant operations on that type; the exceptiatursat i on, which is retrieved by calling

i nt KhePreferTi mesConstraint Durati on(KHE PREFER TI MES CONSTRAINT c);

since it is specific to this constraint type.

In the XML specification, the times that make up the domain of the constraint may be added
in groups or individually. To add them in groups, and to visit the groups, call

voi d KhePref er Ti mesConst rai nt AddTi meG oup(
KHE_PREFER _TI MES_CONSTRAI NT ¢, KHE_TI ME_GROUP tQ);

i nt KhePreferTi nesConstrai nt Ti neG oupCount (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE_TI ME_GROUP KhePr ef er Ti mesConst r ai nt Ti meG oup(
KHE_PREFER TI MES_CONSTRAINT ¢, int i);

To add and visit times individually, call

voi d KhePr ef er Ti mesConst rai nt AddTi nme(
KHE_PREFER_TI MES_CONSTRAINT ¢, KHE TIME t);

i nt KhePreferTi mesConstrai nt Ti meCount (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE_TI ME KhePr ef er Ti mesConst rai nt Ti me(
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

3.7. Constraints 43

After the instance is complete, but not before, function

KHE_TI ME_GROUP KhePr ef er Ti mesConst r ai nt Donai n(
KHE_PREFER_TI MES_CONSTRAI NT c¢);

returns the domain af as a single time group. If exactly one time group or one time was added,
this time group will be that time group or the automatically created singleton time group for that
time; otherwise it will be created by taking the union of everything added. Thistime group may
be used like any other.

The points of application of prefer times constraints are events, and they can be added and
visited individually:

voi d KhePr ef er Ti mesConst rai nt AddEvent (
KHE_PREFER_TI MES_CONSTRAI NT ¢, KHE_EVENT e);

i nt KhePref er Ti nesConst rai nt Event Count (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE_EVENT KhePr ef er Ti mesConst r ai nt Event (
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

or in groups:

voi d KhePref er Ti mesConst rai nt AddEvent G oup(
KHE_PREFER_TI MES_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);

i nt KhePref er Ti nesConst rai nt Event G oupCount (
KHE_PREFER_TI MES_CONSTRAI NT c);

KHE EVENT_GROUP KhePr ef er Ti mesConst r ai nt Event G oup(
KHE_PREFER_TI MES_CONSTRAINT ¢, int i);

The XML specification states that prefer times constraints skip events with preassigned times,
whether those events are mentioned or not. Accordingly, although such events are added to
constraints by the calls just given, the reverse links, from the events to the constraint, are added
only to events that do not have preassigned times.

The constraint density of the prefer times constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events without preassigned times.
3.7.7. Avoid split assignments constraints
An avoid split assignments constraint is created and added to an instance by

bool KheAvoi dSplit Assi gnnment sConst rai nt Make(KHE | NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
char *role, KHE_AVO D SPLI T_ASSI GNVENTS_CONSTRAI NT *c);

As usual, the attributes may be retrieved by upcastingH& CONSTRAI NT and calling the
relevant operation on that type, except that to retrieve ¢the attribute the call is

char *KheAvoi dSpl it Assi gnment sConst rai nt Rol e(
KHE_AVO D_SPLI T_ASSI GNMENTS_CONSTRAI NT c);

44 Chapter 3. Instances

Ther ol e attribute may béULL.

The handling of the points of application of an avoid split assignments constraint is
somewhat complex, because one point of application is fundamentally a set of event resources
(the XML file identifies each set by an event group and a role), so that the points of application
overall form a set of sets of event resources. We will first explain how to add these points of
application when reading an XML file, and then how to do it directly.

When reading an XML file, a noRLLL r ol e is passed, and then each event group is added
in the usual way. To add an event group and to visit the event groups, the calls are

bool KheAvoi dSpl it Assi gnment sConst rai nt AddEvent G oup(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg,
KHE EVENT =probl em event);

i nt KheAvoi dSpl it Assi gnment sConst rai nt Event Gr oupCount (
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT c¢) ;

KHE_EVENT _GROUP KheAvoi dSpl it Assi gnnent sConst r ai nt Event Group(
KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAINT ¢, int i);

Behind the scenes, the appropriate event resources are retrieved from the events of each event
group and added automatically, so that nothing further needs to be dori@l sA result
returned bykheAvoi dSpl i t Assi gnment sConst r ai nt AddEvent G oup indicates that one of the

events ofeg does not contain an event resource with the required\abh-+ ol e. In this case,

«probl em event will contain the first event oég with this problem on return.

When the instance is not derived from an XML file it may be more convenient to add
event resources directly. For the sake of this cagles may beNULL, and theeg parameter of
KheAvoi dSpl i t Assi gnment sConst r ai nt AddEvent G oup may also beNULL. If either iSNULL,
event resources are not added automatically.

To add event resources manually, and to visit event resources (whether added automatically
or manually), the calls are

voi d KheAvoi dSpl it Assi gnment sConst rai nt AddEvent Resour ce(
KHE_AVO D _SPLI T_ASSI GNMENTS_CONSTRAI NT ¢, int eg_index,
KHE_EVENT _RESOURCE er);
i nt KheAvoi dSpl it Assi gnment sConst rai nt Event Resour ceCount (
KHE_AVO D _SPLI T_ASSI GNMENTS_CONSTRAINT ¢, int eg_index);
KHE EVENT RESOURCE KheAvoi dSplit Assi gnment sConst rai nt Event Resour ce(
KHE AVO D SPLI T_ASSI GNVENTS_CONSTRAINT ¢, int eg_index, int er_index);

These functions add an event resource toethé ndex’th point of application ofc, return the
number of event resources at that point, and returertthendex’th event resource at that point.
They define the required set of sets of event resources.

Usually, constraints are added to the instance and to the entities they apply to. For avoid
split assignments constraints this would mean adding the constraint to the instance and the event
groups. Thisis done, but, for convenience, each avoid split assignments constaint is also added
to each of its event resources.

The constraint density of the avoid split assignments constraints of an instance (Section
3.3) is the number of event resources in all points of application divided by the number of event

3.7. Constraints 45

resources without preassigned resources.

3.7.8. Spread events constraints
A spread events constraint is created and added to an instance by

bool KheSpreadEvent sConst rai nt Make(KHE | NSTANCE i ns, char xid,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_TI ME_SPREAD ts, KHE SPREAD EVENTS CONSTRAI NT xc);

where typeKHE_TI ME_SPREAD is explained below. Most of the attributes may be retrieved by
upcasting t&KHE_CONSTRAI NT and calling the relevant operation on that type. The exception is

KHE Tl ME_SPREAD KheSpreadEvent sConstrai nt Ti meSpr ead(
KHE_SPREAD EVENTS_CONSTRAI NT c);

which returns the time spread. TygEE_TI ME_SPREAD is an object which describes the time
groups that the constraint requires the event group to spread through, and the limits on the
number of events that may touch each time group. Time spread objects are immutable, and may
be shared among any number of constraints. To create a time spread object, call

KHE_TI ME_SPREAD KheTi meSpr eadMake(KHE_| NSTANCE i ns) ;
Initially this has no time groups. To add them, call

voi d KheTi meSpr eadAddLi ni t edTi neG oup(KHE_TI ME_SPREAD t s,
KHE_LI M TED_TI ME_GROUP |t Q);

repeatedly. To retrieve the limited time groups of a time spread, call

i nt KheTi neSpreadLi nit edTi neG oupCount (KHE_TI ME_SPREAD | ts);
KHE_LI M TED_TI ME_GROUP KheTi meSpr eadLi it edTi meG oup(
KHE_TI ME_SPREAD I ts, int i);

An object of typeKHE_LI M TED_TI ME_GROUP contains what one element of a time spread needs:
a time group plus a minimum and maximum number of events. It may be created by calling

KHE_LI M TED_TI ME_GROUP KheLi ni t edTi meG oupMake(KHE_TI ME_GROUP t g,
int mnimm int maxinun;
and functions

KHE_TI ME_GROUP KheLi m t edTi meG oupTi meG oup(KHE_LIM TED _TI ME_GROUP | tQ);
i nt KheLim tedTi meG oupM ni num(KHE LI M TED TI ME_ GROUP It Q);
int KheLimitedTi meG oupMaxi munm(KHE_LI M TED_TI ME_GROUP | tg);

retrieve its attributes.

Two other operations on time spreads, available only after the instance is complete, provide
information that may be useful to solvers:

46 Chapter 3. Instances

bool KheTi meSpreadTi meG oupsDi sj oi nt (KHE_TI ME_SPREAD ts);
bool KheTi meSpreadCover sWol eCycl e(KHE_TI ME_SPREAD ts);

KheTi meSpr eadTi meG oupsDi sj oi nt returnst r ue when the time groups dfs’s limited time
groups are pairwise disjoinkheTi meSpr eadCover s\Wol eCycl e returng r ue when every time
of the cycle appears in at least one of the time groups &flimited time groups.

Spread events apply to event groups; the operations for adding and visiting them are

voi d KheSpreadEvent sConst rai nt AddEvent G oup(
KHE_SPREAD_EVENTS_CONSTRAI NT ¢, KHE_EVENT_GROUP eg);

i nt KheSpreadEvent sConst rai nt Event GroupCount (
KHE_SPREAD_EVENTS_CONSTRAI NT c¢);

KHE_EVENT _GROUP KheSpr eadEvent sConstrai nt Event G oup(
KHE_SPREAD_EVENTS_CONSTRAINT ¢, int i);

as usual.

The constraint density of the spread events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.9. Link events constraints

A link events constraint is created and added to an instance by

bool KheLi nkEvent sConst rai nt Make(KHE_I NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_LI NK_EVENTS_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting-# CONSTRAI NT and calling the relevant
operation on that type. One point of application of a link events constraint is an event group; one
constraint may contain any number of these. The operations for adding them are

voi d KheLi nkEvent sConstrai nt AddEvent Group(KHE_LI NK_EVENTS_CONSTRAI NT c,
KHE_EVENT_GROUP eg);
i nt KheLi nkEvent sConst rai nt Event GroupCount (KHE_LI NK_EVENTS_CONSTRAI NT c);
KHE_EVENT _GROUP KheLi nkEvent sConstrai nt Event G oup(
KHE_LI NK_EVENTS_CONSTRAINT c, int i);

as usual.

The constraint density of the link events constraints of an instance (Section 3.3) is the
number of events in their points of application, divided by the number of events.

3.7.10. Order events constraints

An order events constraint is created and added to an instance by

bool KheOrder Event sConst rai nt Make(KHE_I NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_ORDER_EVENTS_CONSTRAI NT =*c) ;

3.7. Constraints 47

Most of the attributes may be retrieved by upcasting- CONSTRAI NT and calling the relevant
operation on that type.

One point of application of an order events constraint is a pair of instance events, together
with integer minimum and maximum separations. To add one point of application, call

voi d KheOr der Event sConst rai nt AddEvent Pai r (KHE_ORDER_EVENTS CONSTRAI NT c,
KHE_EVENT first _event, KHE EVENT second_event, int mn_separation,
int max_separation);

Bothni n_separati on andmax_separ ati on must be non-negative. Infinity, the default value
of max_separati on in the XML format, is implemented by passihyT_MAX.

To retrieve the number of points of application and the attributes of each, call

i nt KheOrder Event sConst rai nt Event Pai r Count (
KHE_ORDER_EVENTS_CONSTRAI NT c);

KHE_EVENT KheOr der Event sConst rai nt Fi r st Event (
KHE_ORDER _EVENTS _CONSTRAINT ¢, int i);

KHE_EVENT KheOr der Event sConst rai nt SecondEvent (
KHE_ORDER _EVENTS CONSTRAINT ¢, int i);

i nt KheOrder Event sConstrai nt M nSepar at i on(
KHE_ORDER _EVENTS _CONSTRAINT ¢, int i);

i nt KheOrder Event sConst rai nt MaxSepar at i on(
KHE_ORDER _EVENTS _CONSTRAINT ¢, int i);

in the usual way. The value &heOr der Event sConst rai nt Event Pai r Count (¢) is the same
as the value oKheConst r ai nt Appl i esToCount ((KHE_CONSTRAINT) c).

The constraint density of the order events constraints of an instance (Section 3.3) is their
number of points of application divided by the number of events.

3.7.11. Avoid clashes constraints

An avoid clashes constraint is created and added to an instance by

bool KheAvoi dCl ashesConst r ai nt Make(KHE_I NSTANCE i ns, char =id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_AVO D_CLASHES_CONSTRAI NT *c);

as usual. The attributes may be retrieved by upcastirgHEo CONSTRAI NT and calling the
relevant operation on that type.

Avoid clashes constraints apply to resource groups and resources. To add and visit resource
groups, the operations are

voi d KheAvoi dC ashesConst rai nt AddResour ceG oup(
KHE_AVO D_CLASHES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);
i nt KheAvoi dCl ashesConst r ai nt Resour ceG oupCount (
KHE_AVO D_CLASHES_CONSTRAI NT c¢)
KHE_RESOURCE_GROUP KheAvoi dCl ashesConst r ai nt Resour ceG oup(
KHE_AVO D _CLASHES CONSTRAINT ¢, int i);

48 Chapter 3. Instances

while to add and visit resources the operations are

voi d KheAvoi dd ashesConst rai nt AddResour ce(
KHE_AVO D_CLASHES CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheAvoi dCl ashesConst r ai nt Resour ceCount (
KHE_AVO D_CLASHES_CONSTRAINT c);

KHE_RESOURCE KheAvoi dd ashesConst rai nt Resour ce(
KHE_AVO D_CLASHES CONSTRAINT c, int i);

These all work in the usual way.

The constraint density of the avoid clashes constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.12. Avoid unavailable times constraints

An avoid unavailable times constraint is created and added to an instance by

bool KheAvoi dUnavai | abl eTi nesConst r ai nt Make(KHE_I NSTANCE i ns, char =*id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT *c);

in the usual way. To add the resource groups and resources defining the points of application,
and to visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddResour ceG oup(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT ¢, KHE RESOURCE_GROUP rg);
i nt KheAvoi dUnavai | abl eTi mesConst r ai nt Resour ceGr oupCount (
KHE_AVO D_UNAVAI LABLE _TI MES_CONSTRAI NT c) ;
KHE_RESOURCE _GROUP KheAvoi dUnavai | abl eTi nesConst r ai nt Resour ceG oup(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAINT ¢, int i);

for resource groups and

voi d KheAvoi dUnavai | abl eTi mesConst r ai nt AddResour ce(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAI NT ¢, KHE RESOURCE r);

i nt KheAvoi dUnavai | abl eTi nesConst rai nt Resour ceCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c);

KHE RESOURCE KheAvoi dUnavai | abl eTi mesConst rai nt Resour ce(
KHE_AVO D_UNAVAI LABLE TI MES_CONSTRAINT c, int i);

forindividual resources. The XML format allows the unavailable times themselves to be defined
by both time groups and times. To add time groups and visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddTi meG oup(
KHE_AVQO D_UNAVAI LABLE_TI MES_CONSTRAINT ¢, KHE TI ME_GROUP tgQ);
i nt KheAvoi dUnavai | abl eTi mesConst rai nt Ti meG oupCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢);
KHE_TI ME_GROUP KheAvoi dUnavai | abl eTi mesConst r ai nt Ti meG oup(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAINT ¢, int i):;

3.7. Constraints 49

To add individual times and visit them, call

voi d KheAvoi dUnavai | abl eTi mesConst rai nt AddTi me(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT ¢, KHE TIME t);

i nt KheAvoi dUnavai | abl eTi nesConst rai nt Ti meCount (
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢);

KHE_TI ME KheAvoi dUnavai | abl eTi nesConstrai nt Ti me(
KHE_AVO D_UNAVAI LABLE_TI MES CONSTRAINT ¢, int i);

These functions all work in the usual way. Function

KHE_TI ME_GROUP KheAvoi dUnavai | abl eTi nesConst rai nt Unavai | abl eTi nes(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢) ;

returns a time group containing the union of the time groups and timesaoid

KHE_TI ME_GROUP KheAvoi dUnavai | abl eTi nesConst r ai nt Avai | abl eTi mes(
KHE_AVO D_UNAVAI LABLE_TI MES_CONSTRAI NT c¢);

returns a time group containing the complement of those times—the available times. Both
functions may be called only after construction of the instance is complete.

The constraint density of the avoid unavailable times constraints of an instance (Section
3.3) is the number of points of application divided by the number of resources.

3.7.13. Limitidle times constraints

A limit idle times constraint is created and added to an instance by

bool KheLimitldl eTi mesConstrai nt Make(KHE_| NSTANCE i ns, char +id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int mnimm int maxi mum KHE_LIM T_I DLE_TI MES_CONSTRAI NT *C);

Most of the attributes may be retrieved by upcasting-# CONSTRAI NT and calling the relevant
operation on that type; the exceptions are

int KheLimtldleTinmesConstraintM ni mum(KHE LIM T I DLE TI MES CONSTRAINT c¢);
int KheLimtldleTimesConstraint Maxi mum(KHE LIM T_| DLE TI MES_CONSTRAI NT c¢);

which are specific to this kind of constraint.
A limit idle times constraint requires time groups, which are added and visited by calling

voi d KheLimit1dleTi mesConstrai nt AddTi meG oup(
KHE_LIM T_I DLE_TI MES_CONSTRAI NT ¢, KHE_ TIME_GROUP tgQ);
int KheLimtldleTi mesConstraintTi meG oupCount (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);
KHE_TI ME_GROUP KhelLi mi t1dl eTi nesConstraint Ti meG oup(
KHE_LIM T_I DLE_TI MES_CONSTRAINT ¢, int i);

After the instance ends, the following queries are available:

50 Chapter 3. Instances

bool KheLimtldl eTi mesConstraint Ti meG oupsDi sj oi nt (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);

bool KheLi mtl1dl eTi mesConstrai nt Ti meG oupsCover Whol eCycl g(
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);

They returrt r ue when the time groups af are pairwise disjoint, and when their union covers
the whole cycle.

A limit idle times constraint also requires the resource groups and resources which define
its points of application. Resource groups are added and visited by calling

voi d KheLinitldleTi nesConstrai nt AddResour ceG oup(
KHE_LI M T_| DLE_TI MES_CONSTRAI NT ¢, KHE_RESOURCE_GROUP rg);
i nt KheLimtldleTi mesConstraint ResourceG oupCount (
KHE_LI M T_| DLE_TI MES_CONSTRAI NT c);
KHE_RESOURCE_GROUP KhelLi mit1dl eTi mesConstrai nt Resour ceG oup(
KHE_LIM T_| DLE_TI MES_CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLimit1dleTi mesConstrai nt AddResour ce(
KHE_LIM T_I DLE_TI MES_CONSTRAI NT ¢, KHE RESOURCE r);

i nt KheLintldleTi msConstraint ResourceCount (
KHE_LIM T_I DLE_TI MES_CONSTRAI NT c);

KHE_RESOURCE KheLi m tIdl eTi mesConstrai nt Resour ce(
KHE_LIM T_I DLE_TI MES_CONSTRAINT ¢, int i);

in the usual way.

The constraint density of the limit idle times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.14. Cluster busy times constraints
A cluster busy times constraint is created and added to an instance by

bool KheC ust er BusyTi nesConst rai nt Make(KHE_| NSTANCE i ns, char =*id,
char =name, bool required, int weight, KHE COST_FUNCTI ON cf,
int mnimm int maxi num KHE CLUSTER BUSY TI MES CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting- CONSTRAI NT and calling the relevant
operation on that type; the exceptions are

i nt KheC ust er BusyTi mesConstrai nt M ni mumn(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c);

i nt KheC ust er BusyTi nesConst r ai nt Maxi mumn(
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c);

which are specific to this kind of constraint.
A cluster busy times constraint requires time groups, which are added and visited by

3.7. Constraints 51

voi d Khed ust er BusyTi mesConstrai nt AddTi neG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, KHE TIME_GROUP tQ);

i nt KheC ust erBusyTi nesConstrai nt Ti meG oupCount (
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT ¢);

KHE_TI ME_GROUP KheC ust er BusyTi mesConst r ai nt Ti neG oup(
KHE_CLUSTER BUSY_TI MES CONSTRAINT ¢, int i);

It also requires the resource groups and resources which define the points of application of the
constraint. Resource groups are added and visited by calling

voi d Khed ust er BusyTi mesConstrai nt AddResour ceG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE RESOURCE_GROUP rgQ);

i nt KheC ust er BusyTi nesConst rai nt Resour ceG oupCount (
KHE_CLUSTER _BUSY_TI MES_CONSTRAI NT c);

KHE_RESOURCE GROUP KheC ust er BusyTi mesConst r ai nt Resour ceG oup(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d Khed ust er BusyTi mesConst rai nt AddResour ce(
KHE_CLUSTER BUSY_TI MES_CONSTRAI NT ¢, KHE_RESOURCE r);

i nt KheC ust er BusyTi nesConst rai nt Resour ceCount (
KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT c¢);

KHE_RESOURCE Khed ust er BusyTi mesConst r ai nt Resour ce(
KHE_CLUSTER BUSY_TI MES_CONSTRAINT ¢, int i);

in the usual way.

The constraint density of the cluster busy times constraints of an instance (Section 3.3) is
the number of points of application divided by the number of resources.

3.7.15. Limit busy times constraints
A limit busy times constraint is created and added to an instance by

bool KheLi m t BusyTi mesConstrai nt Make(KHE_I NSTANCE i ns, char =«id,
char *name, bool required, int weight, KHE COST_FUNCTI ON cf,
KHE RESOURCE applies_to, int mninmm int nmaximm
KHE_LI M T_BUSY_TI MES_CONSTRAI NT *c);

Most of these attributes may be retrieved by upcastingH® CONSTRAI NT and calling the
relevant operation on that type. The exceptions are

i nt KheLi m t BusyTi mesConstrai nt M ni mun(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢)

i nt KheLi m t BusyTi mesConst rai nt Maxi mun(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢)

which are specific to this kind of constraint.
A limit busy times constraint requires time groups, which are added and visited by

52 Chapter 3. Instances

voi d KheLi m t BusyTi nesConst rai nt AddTi meG oup(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT ¢, KHE TIME_GROUP tg);
i nt KheLi m t BusyTi mesConst rai nt Ti meG oupCount (
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c);
KHE TI ME_GROUP KheLi m t BusyTi mesConst rai nt Ti meG oup(
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int i);

repeatedly. After the instance is complete, but not before, function

KHE_TI ME_GROUP KhelLi mi t BusyTi nesConst r ai nt Domai n(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT c¢):

returns the domain of (that is, the set union of the times in its time groups) as a single time
group. Thistime group may be used like any other.

A limit busy times constraint also requires the resource groups and resources which define
the points of application of the constraint. Resource groups are added and visited by calling

voi d KheLi mi t BusyTi mesConst r ai nt AddResour ceG oup(
KHE_LI'M T_BUSY_TI MES_CONSTRAI NT ¢, KHE RESOURCE_GROUP rg);
i nt KheLi m t BusyTi mesConst rai nt Resour ceGr oupCount (
KHE_LIM T_BUSY_TI MES_CONSTRAI NT c);
KHE_RESOURCE GROUP KheLi mi t BusyTi mesConst rai nt Resour ceGroup(
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLi m t BusyTi mesConst r ai nt AddResour ce(
KHE_LI M T_BUSY_TI MES_CONSTRAI NT ¢, KHE RESOURCE r);

i nt KheLi m t BusyTi mesConst rai nt Resour ceCount (
KHE_LI'M T_BUSY_TI MES_CONSTRAI NT c);

KHE_RESOURCE KheLi m t BusyTi mesConst rai nt Resour ce(
KHE_LIM T_BUSY_TI MES_CONSTRAINT ¢, int i);

in the usual way.

The constraint density of the limit busy times constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

3.7.16. Limit workload constraints

A limit workload constraint is created and added to an instance by

bool KheLi mi t Wor kl oadConst r ai nt Make(KHE_| NSTANCE i ns, char «id,
char *name, bool required, int weight, KHE_COST_FUNCTION cf,
int mnimm int maxi rum KHE LIM T_WORKLOAD_CONSTRAI NT *c);

Most of the attributes may be retrieved by upcasting-# CONSTRAI NT and calling the relevant
operation on that type. The exceptions are

3.7. Constraints 53

i nt KheLi m t Wor kl oadConst rai nt M ni mun{ KHE_LI M T_WORKLOAD_CONSTRAI NT ¢);
i nt KheLi m t Wor kl oadConst r ai nt Maxi mun{ KHE_LI M T_WORKLOAD_CONSTRAI NT ¢);

which return the resource thatpplies to, the minimum, and the maximum.

Limit workload constraints do not require time groups, because they always apply to the
entire cycle. As usual, they require the resource groups and resources which define the points of
application of the constraint. Resource groups are added and visited by calling

voi d KheLi m t Wor kl oadConst r ai nt AddResour ceGr oup(
KHE LI M T_WORKLOAD CONSTRAI NT ¢, KHE_RESOURCE GROUP rg);

i nt KheLi m t Wor kl oadConst r ai nt Resour ceG oupCount (
KHE_LIM T_WORKLOAD CONSTRAINT c);

KHE_RESOURCE GROUP KheLi m t Wor kl oadConst r ai nt Resour ceG oup(
KHE_LIM T_WORKLOAD CONSTRAINT ¢, int i);

and individual resources are added and visited by calling

voi d KheLi mi t Wor kl oadConst r ai nt AddResour ce(
KHE_LI M T_WORKLOAD_CONSTRAI NT ¢, KHE_RESOURCE r);
i nt KheLi m t Wor kl oadConst r ai nt Resour ceCount (
KHE_LI M T_WORKLOAD CONSTRAI NT c¢);
KHE_RESOURCE KheLi mi t Wr kl oadConst r ai nt Resour ce(
KHE_LIM T_WORKLOAD CONSTRAINT ¢, int i);

in the usual way.

The constraint density of the limit workload constraints of an instance (Section 3.3) is the
number of points of application divided by the number of resources.

Chapter 4. Solutions

4.1. Overview

A solution is represented by an object of tygp_SCLN (‘solution’is always abbreviated to ‘soln’

in the KHE interface). Any number of solutions may exist and be operated on simultaneously.
Instances are immutable after creation, and operations that change instances only assemble them,
they do not disassemble them. In contrast, each operation that changes a solution is paired with
one that changes it back. This supports not just the assembly of a fixed solution, such as one read
from a file, but also the changes and testing of alternatives needed when solving an instance.

Within each solution ar&HE_MEET objects representing meets (also called split events or
sub-events), each of which may be assigned a timeKHRdIASK objects representing the re-
source elements of meets, each of which may be assigned a resource. Although most meets are
derived from events and most tasks are derived from event resources, these derivations are op-
tional. Only meets and tasks that are so derived are considered part of the solution to the original
instance, but other meets and tasks may be present to help with solving. Several meets may be
derived from one event; these are the split events or sub-events of that event in the solution.

At all times, the solution (however incomplete it may be) has a definite numeosl
a 64-bit integer measuring the badness of the solution which is always available via function
KheSol nCost (Chapter 6). It may be used to guide the search for good solutions.

A solution must obey a condition called teelution invarianthroughout its lifetime; this is
an unbreakable constraint. A precise statement of the solution invariant appears in Section 4.12.
Every operation that changes a solution in a way that could violate the invariant is implemented
with two functions, which look generically like this:

bool KheQperationCheck(...);
bool KheOperation(...);

The two functions accept the same inputs and return the same value in a given solution state. The
first returnd r ue if the change would not violate the invariant, but itself changes nothing. The
second also returrig ue if the change would not violate the invariant, but in that case it also
makes the change. It changes nothing if the change would violate the invariant.

The relationship between the solution invariant and the constraints of the original instance is
rather subtle. Should a constraint be incorporated into the invariant, so that no solution (not even
a partial solution) will ever violate it? KHE leaves this question to the user. Some operations do
incorporate constraints into the solution invariant, but those operations are all optional.

Some aspects of solution entities that may be changed have operations of the form

voi d KheEntityAspect Fi x(ENTITY e);
voi d KheEntityAspect UnFi X(ENTITY e);
bool KheEntityAspect|sFixed(ENTITY e);

54

4.1. Overview 55

The first fixes that aspect of the entity—prevents later operations from changing it; the second
removes the fix; the third returngue when the fix is in place. Initially everything is unfixed.
Fixing a fixed aspect, and unfixing an unfixed aspect, do nothing. When the current value of
some aspect will remain unchanged for a long time, fixing that aspect may have a significant
efficiency payoff. This is because fixing detaches attached monitors (Chapter 6) whose cost is
0 and cannot change while the current fixes are in place, which can save a lot of time. Unfixing
attaches those unattached monitors which could have non-zero cost given the unfix.

There are three levels of operations. At the lowest levellasic operationswhich
carry out basic queries and changes to a solution, such as assigning or unassigning the time of
a meet. Above them areelper functionswhich implement commonly needed sequences of
basic operations, such as swaps. Some helper functions utilize optimizations that make them
significantly more efficient than the equivalent sequences of basic operations.

At the highest level arsolvers which make large-scale changes to solutions. A complete
algorithm for solving an instance is a solver, but so are operations with more modest scope, such
as assigning times to the meetings of one form, assigning rooms, and so on.

KHE supplies several solvers, documented in later chapters, and the user is free to write
others. As a matter of good design, solvers should not have behind-the-scenes access to KHE'’s
data structures; they should use only the operations described in this guide and made available
by header fil&khe. h. The solvers supplied by KHE follow this rule.

4.2. Solution objects
To create a solution for a given instance, initially with no meets or tasks, call
KHE_SOLN KheSol nMake(KHE_I NSTANCE i ns) ;

Khel nst anceMakeEnd must be complete befor¢heSol nMake is called. To deletsol n and
everything in it, and remove it from its solution groups, if any, call

voi d KheSol nDel et e(KHE_SCLN sol n);

The memory consumed Ispl n and everything in it will be freed.

A solution may lie in any number of solution groups. To add it to a solution group and delete
it from a solution group, use functioieSol nG oupAddSol n andKheSol nG oupDel et eSol n
from Section 2.2. To visit the solution groups contairsogn, call

i nt KheSol nSol nG oupCount (KHE_SCLN sol n);
KHE SOLN_GROUP KheSol nSol nGroup(KHE_SOLN soln, int i);

in the usual way.

A solution has an optional Description attribute which may contain arbitrary text saying
what is distinctive about the solution. This attribute may be set and retrieved by calling

voi d KheSol nSet Descri pti on(KHE_SOLN soln, char =description);
char xKheSol nDescri ption(KHE_SOLN sol n);

The default value iSULL, meaning no description.

56 Chapter 4. Solutions

A solution also has an optional RunningTime attribute giving the wall clock time to produce
the solution, in seconds. This attribute may be set and retrieved by calling

voi d KheSol nSet Runni ngTi me(KHE_SOLN sol n, float running tinme);
fl oat KheSol nRunni ngTi me(KHE_SCLN sol n);

The default value is1. 0, meaning that no running time is known. KHE makes no attempt to
ensure that the value stored in this field is honest.

Solution objects and their components have back pointers in the usual way. These may be
changed at any time. To set and retrieve the back pointer of a solution object, call

voi d KheSol nSet Back(KHE_SQOLN sol n, void *back);
voi d *KheSol nBack(KHE_SOLN sol n);

as usual. Function

KHE_I NSTANCE KheSol nl nst ance(KHE_SOLN sol n);

returns the instance that the solution is for.
Another way to create a solution is

KHE_SCLN KheSol nCopy(KHE_SOLN sol n);

which returns a copy afol n. The copy is exact except that it does not lie in any solution groups.
Immutable elements, such as anything from the instance, and time, resource, and event groups
created within the solution, are shared, as are back pointers.

Copying is useful when forking a solution process part-way through: the original solution
may continue down one thread, and the copy, which is quite independent, may be given to the
other thread. Care is needed in one respect, however: it is not safe to make two copies of one
solution simultaneously, even though the original solution is unaffected by copying it. This is
because the copy algorithm uses temporary forwarding pointers in the objects of the solution.

Even semantically unimportant things, such as the order of items in sets, are preserved by
KheSol nCopy. If the same solution algorithm is run on the original and the copy, and it does
not depend on anything peculiar such as elapsed time or the memory addresses of its objects,
it should produce the same solution. The author has verified thishkgiener al Sol ve2014
(Section 8.1). Diversity can be obtained by changing the copy'’s diversifier (Section 4.5).

The specification ofisor t states that when two elements compare equal, their order in the
finalresultisundefined. Sothe author hastried to eliminate all such casesinthe comparisonfunc-
tions packaged with KHE. Index numbers, returned by functions sughedéet Sol nl ndex
andKheTaskSol nl ndex, are useful for breaking ties consistently as a last resort.

To visit the meets of a solution, in an unspecified order, call

i nt KheSol nMeet Count (KHE_SOLN sol n);
KHE MEET KheSol nveet (KHE_SCLN soln, int i);

The meets visited include theycle meetslescribed in Section 4.8.3. To visit the meets of a
solution derived from a given event, call

4.2. Solution objects 57

i nt KheEvent Meet Count (KHE_SOLN sol n, KHE EVENT e);
KHE MEET KheEvent Meet (KHE SCLN soln, KHE EVENT e, int i);

The first returns the number of meets derived fo(possibly 0), and the second returnsitth
of these meets, in an unspecified order.
To visit the tasks of a solution, in an unspecified order, call

i nt KheSol nTaskCount (KHE_SOLN sol n);
KHE_TASK KheSol nTask(KHE_SOLN soln, int i);

To visit the tasks derived from a given event resource, call

i nt KheEvent Resour ceTaskCount (KHE_SOLN sol n, KHE EVENT_ RESOURCE er);
KHE_TASK KheEvent Resour ceTask(KHE SOLN sol n, KHE EVENT RESOURCE er,
int i);
There is one for each meet derived from the event contagting
A solution may also containodesandtaskings as explained in Chapter 5. To visit the
nodes in an unspecified order, call

i nt KheSol nNodeCount (KHE_SCLN sol n);
KHE_NCDE KheSol nNode(KHE_SOLN soln, int i);

To visit the taskings, call

i nt KheSol nTaski ngCount (KHE_SCLN sol n);
KHE TASKI NG KheSol nTaski ng(KHE_SOLN soln, int i);

in the usual way.
As an aid to debugging, function

voi d KheSol nDebug(KHE SOLN soln, int verbosity, int indent, FILE *fp);

prints information about the current solution onto file with the given verbosity and indent,

as described for debug functions in general in Section 1.3. Verbosity 1 prints just the instance

name and current cost, verbosity 2 adds a breakdown of the current cost by constraint type (only
constraint types with non-zero cost are printed), verbosity 3 adds debug prints of the solution’s

defects (Section 6.2), and verbosity 4 prints further details.

4.3. Complete representation and preassignment conversion
A solution is acomplete representatiomhen it satisfies the following two conditions:

. For each everd of the solution’s instance, the total duration of the meets derived ériam
equal to the duration of;

. For each event resouree of the solution’s instance, each meet derived from the event
containinger contains a task derived froen.

58 Chapter 4. Solutions

Complete representation does not rule out extra meets or tasks. It has nothing to do with being
a complete solution, in the sense of assigning a time to every meet and a resource to every task.

KHE does not require a solution to be a complete representation, since that would be too
restrictive when building and modifying solutions. However, the cost it reports for a solution is
correct only when that solution is a complete representation. Thisis because, behind the scenes,
KHE needs to be able to see a meet with no assigned time in order for it to realize that an assign
time constraint is being violated, and similarly for the other constraints.

There is a standard procedure, part of the XML specification, for converting a solution into
a complete representation:

1. Foreach everd of the solution’s instance, if there are no meets derived &pthen insert
one meet whose duration is the duratiorepfind whose assigned time is the preassigned
time of e, or is absent it has no preassigned time. Initially, this meet contains no tasks, but
that may be changed by the third rule.

2. If nowthereis an evemtsuch that the total duration of the meets derived feasnot equal
to the duration ok, then that is an error and the XML file is rejected.

3. For each event resouree of each everg of the instance, for each meet derived frenif
that meet does not contain a task derived feonpthen add one. Its assigned resource is the
preassigned resource @f if there is one, or is absentef has no preassigned resource.

This procedure, minus the conversions from preassignments to assignments, is implemented by

bool KheSol nMakeConpl et eRepresent ati on(KHE_SOLN sol n,
KHE EVENT =probl em event);

For each every, it finds the total duration of the meets derived fremif that is greater than

the duration ofe it returnsf al se with *probl em event set toe. If it is less, then one meet
derived frome is added whose duration makes up the difference. The domain of this meet
has the usual default value: the preassigned timeibany, or else the largest legal domain,
KheSol nPacki ngTi neG oup(sol n) (Section 4.8.3). Then, within each meet derived from an
event, just created or not, it adds a task for each event reseurce already represented. The
domain of this task has the usual default value: the preassigned resoarcé afy, or else the
largest legal domairheResour ceTypeFul | Resour ceG oup(rt) , wherert iser’s resource type.

KheSol nMakeConpl et eRepr esent ati on has two uses. The first is iKheAr chi veRead
(Section 2.3), which applies it to each solution it reads, as the XML specification requires, and
then calls these two public functions to convert preassignments into assignments:

voi d KheSol nAssi gnPr eassi gnedTi mes(KHE_SCLN sol n);
voi d KheSol nAssi gnPr eassi gnedResour ces(KHE_SOLN sol n,
KHE_RESOURCE_TYPE rt);

KheSol nAssi gnPr eassi gnedTi mes assigns the obvious time to each preassigned unassigned
meet.KheSol nAssi gnPr eassi gnedResour ces assignsthe obviousresourceto each preassigned
unassigned task of type (any type ifrt isNULL).

The second use fdtheSol nMakeConpl et eRepr esent ati on is to build a solution from

4.3. Complete representation and preassignment conversion 59

scratch, ready for solving. The solution returnedKineSol nMake has no meets except for

the initial cycle meet, and it has no taskéeSol nMakeConpl et eRepresent ati on is a very
convenient way to add both. When solving, it is usually called immediatelylfeSiol nVake

andKheSol nSpl it Cycl eMeet (Section 4.8.3). The solution changes as solving proceeds, but it
remains a complete representation throughout, except perhaps during brief reconstructions. A
call to KheSol nAssi gnPr eassi gnedResour ces is also a good idea, since it does no harm and
ensures that resource constraints involving preassigned resources will contribute to the cost of
the solution as soon as the meets they are preassigned to are assigned times. On the other hand,
it may be better not to assign preassigned times at this point; Section 10.4 has the alternatives.

4.4. Solution time, resource, and event groups

Groups are important in solving. A solver needs to be able to construct its own, since the ones
declared in the instance might not be enough. (Conceivably, a solver could need its own times
and resources as well, but that possibility is not currently supported.) Accordingly, the following
functions are provided for constructing a time group while solving:

voi d KheSol nTi mneG oupBegi n(KHE_SOLN sol n);

voi d KheSol nTi meGr oupAddTi me(KHE_SOLN sol n, KHE TIME t);

voi d KheSol nTi meG oupSubTi me(KHE_SOLN sol n, KHE TIME t);

voi d KheSol nTi meG oupUni on(KHE_SOLN sol n, KHE_TI ME_GROUP tg2);

voi d KheSol nTi meG oupl nt er sect (KHE_SOLN sol n, KHE_TI ME_GROUP tg2);
voi d KheSol nTi meG oupDi f f erence(KHE_SOLN soln, KHE_TI ME_GROUP tg2);
KHE_TI ME_GROUP KheSol nTi meG oupEnd(KHE_SOLN sol n);

The first operation begins the process; the next five do what the corresponding operations for
instance time groups do, and the last operation returns the finished time group. Its kind will be
KHE_TI ME_GROUP_KI ND_ORDI NARY, and its d andnane attributes will beNULL.

A similar set of operations constructs a resource group:

voi d KheSol nResour ceG oupBegi n(KHE_SCLN sol n, KHE_RESOURCE_TYPE rt);

voi d KheSol nResour ceGr oupAddResour ce(KHE_SCLN sol n, KHE_RESOURCE r);

voi d KheSol nResour ceG oupSubResour ce(KHE_SCLN sol n, KHE_RESOURCE r);

voi d KheSol nResour ceG oupUni on(KHE_SCLN sol n, KHE_RESOURCE_GROUP rg2);

voi d KheSol nResour ceG oupl nt ersect (KHE_SCOLN sol n, KHE_RESOURCE_GROUP rg2);
voi d KheSol nResour ceG oupDi f f er ence(KHE_SOLN sol n, KHE_RESOURCE_GROUP rg2);
KHE_RESOURCE_GROUP KheSol nResour ceG oupEnd(KHE_SOLN sol n);

and an event group:

voi d KheSol nEvent G oupBegi n(KHE_SOLN sol n);

voi d KheSol nEvent G oupAddEvent (KHE_SOLN sol n, KHE_EVENT e);

voi d KheSol nEvent G oupSubEvent (KHE_SOLN sol n, KHE_EVENT e);

voi d KheSol nEvent G oupUni on(KHE_SOLN sol n, KHE_EVENT_GROUP eg2);

voi d KheSol nEvent G oupl nt er sect (KHE_SOLN sol n, KHE_EVENT_GROUP eg2);
voi d KheSol nEvent G oupDi f f erence(KHE_SOLN sol n, KHE_EVENT_GROUP eg2);
KHE_EVENT_GROUP KheSol nEvent G- oupEnd(KHE_SCLN sol n);

60 Chapter 4. Solutions

All the usual operations may be applied to these groups. The functioruses a factory

object instead of the group itself, to ensure that groups are complete and immutable (apart from
their back pointers) by the time they are given to the user. Groups are deleted when their solution
is deleted. They know which instance they are for, but the instance, being immutable after
creation, is not aware of their existence.

Within one solution, when calls tgheSol nTi meG oupEnd return groups containing the
same elements, the objects returned are the same too. This is done using a hash table of time
groups. It allows the user to experiment with many time groups, without worrying about their
memory cost. Thisis not being done for resource and event groups yet; it should be.

4.5. Diversification

One strategy for finding good solutions is to find many solutions and choose the best. This only
works when the solutions are diverse, creating a need to find ways to produce diversity.

Each solution contains a non-negative intedjeersifier. Its initial value is 0, but it may be
set and retrieved at any time by

voi d KheSol nSet Di versifier(KHE SOLN soln, int val);
i nt KheSol nDi versifier(KHE_SOLN sol n);

When solutions are created that need to be diverse, each is given a different diversifier. When an
algorithm reaches a point where it could equally well follow any one of several paths, it consults
the diversifier when making its choice.

Suppose the diversifier has valdiand a point is reached where there @adternatives, for
somec > 1. A simple approach is to choose thi alternative (counting from 0), where

i =d %c;

We call a functiorD(d, c) which returns an integers.t.0 < i < c adiversification function

How should we choose diversifiers and diversification functions to ensure that we really
do get diversity? One possibility is to start with a random integer and change it using a random
number generator, passing the current value as seed, each time the diversifier is consulted. But
there is no way to analyse the effect of this, so instead we are going to examine what happens
when the diversifiers are fixed successive integers starting from O.

What we want is a little hard to grasp. Suppose that, at some points in the algorithm, it
is offered a choice between 1 alternative; at others, there are 2 alternatives, and so on, with a
maximum ofn alternatives. For a given diversifier, there araifferent functions of the number
of choices. Ideally we would want all of these functions to turn ug earies over its range.

Itis not obvious, but it is a fact that the modulus function above does turn up every function
whennis 1, 2 or 3, but whem is 4 it produces 12 distinct functions, only half the possible 24
functions, as the following tables, obtained by runrkhg - d4, show:

4.5. Diversification 61

d| 1 2 d|] 1 2 3 d| 1 3 4
T Fommmmeeee aoas o e e e e oo
0| 0 O 0Ol 0 0 O O] 0 0 0 O
1] 0 1 1] 0 1 1 1] 0o 1 1 1
ce e 2] 0 0 2 2] 0 0 2 2
3] 0 1 0 3] 0 1 0 3
4|1 0 0 1 4] 0 0 1 o0
5] 0 1 2 5] 0 1 2 1
e 6] 0 0 0 2
71 0 1 1 3
8] 0 0 2 O
9] 0 1 0 1
10| O 0 1 2
11] 0 1 2 3

12| 0 0 O O (sane as 0)

13] 0 1 1 1 (sanme as 1)

14| 0 0 2 2 (same as 2)

15| 0 1 0 3 (sane as 3)

16| O O 1 O (sane as 4)

171 0 1 2 1 (sane as b)

18| 0O 0O O 2 (sane as 6)

19| 0 1 1 3 (sanme as 7)

200 0 O 2 0 (sanme as 8)

21| 0 1 0 1 (same as 9)

221 0 0 1 2 (same as 10)

23] 0 1 2 3 (sanme as 11)

Each row is one value af, and each column is one value@fWhat this means is that if, during
the course of one run, no more than 4 choices are offered at any one point, then only 12 distinct
solutions can emerge, no matter how many are begun.

The most natural diversification function which produces distinct outcomes is probably
(d/ fact(c - 1)) %c

wheref act is the factorial function. (To avoid overflow, in practice one stops multiplying as
soon as the value exceetl} Each line is something like the binary representatiod,@nly in
a factorial number system rather than binary:

Chapter 4. Solutions

1 2 3 4

d |

62

2

1

d |
e

[%2]
s
D)
-
e
-
© O
)
D ©
— C
= S
=
Qo
e
= O
S 9
(D)
c u
= £
> O
c O
" n
g 2
CO000O0O0OAAAAATANNNNNNMNONOHM®O M , %..L T OHNMNMOAANMNMOANNMNMOANM MO ANMO
1 .IO 1 1
.
COdANNOOAAANNOOAANNOO o N A m.m M I OAddANOOAANNOOAAANNOOAANNO
CO '
OHOHOHAOAO A0 HAOHOHO A0 —HO HO — < = N 1 OHOHOHAO A0 A0 A0 AOHAOHAO —AO —H O .
1 u 1 1
= .
OO0 O0O00O00000O000O000O0O00O0OO0O | n_V.vO o 4 1 0000000000000 000000O0O00OO |
[aS [1
— e __ 4 <c oo =¥ S 1
'
OCHANMINONODNOANMIINONDDO A NM S_m — T I OANMNTINON~NDODOANMIEODONODDNO —ANM |
AdAdAdAdAdAAAANNNN n_Vpn — \ AddddAdAddAd A NNNN ,
.2 .s - , .
)
T2
cc
oo °
cCoHdANN = = = M OHdHdNNO |
[al [[
© Q
OHdOHO o = o © N 1 OHOHOH
1 at Y— 1 1
—_— 1
coocococo . ;Hw X 4 000000 .
1 1 1
i £ o i
oOHANMmS WO o= * " T odANMS O
' .
| 8a 5 g :
= QO (&)
[@ R . o]
o
o 2 (&) o
O - ”m ~ — N O
_ =g - <o _ _
. .
oo . nn o =2 4 loco.
1 n O — = 1 1
i = = i i
Il_ me -~ > |_||_
o - . o = T O
' o o c 1 1
1 hu N 1 1
=5 K=
o —
S5 9 3}
mn o o

4.5. Diversification 63

and is diverse up to = 8at least. Function
i nt KheSol nDi versifierChoose(KHE_SOLN soln, int c);

implements this function, returning a non-negative integer lesscthan

It is quite reasonable fagveryalgorithm faced with an arbitrary choice to diversify. It is
easy to do, and it provides a continual prodding towards diversity that should drive solutions with
different diversifiers further and further apart as solving continues, always provided that there
are sufficiently many choices.

4.6. Visit numbers

Some algorithms, such as tabu search and ejection chains, need to know whether some part of
the solution has changed recently. KHE supports this with a systessibhumbers

A visit number is just an integer stored at some point in the solution. The KHE platform
initializes visit numbers (to 0) and copies them, but does not otherwise use them. The user is free
to set their values in any way at any time, using operations that look generically like this:

voi d KheSol nEntitySetVisitNun({KHE_SCLN ENTITY e, int nun;
i nt KheSol nEntityVisitNunm{ KHE_SOLN ENTITY e);

But there is also a conventional way to use visit numbers, as follows.

The solution object containggobal visit numbewhich is used differently from the others.
The following operations are applicable to it:

voi d KheSol nSet @ obal Vi si t Nun{ KHE_SCLN sol n, int num;
i nt KheSol nd obal Vi si t Num(KHE_SOLN sol n);
voi d KheSol nNewd obal Vi si t (KHE_SOLN sol n);

The first two operations are not usually used directly. The third increases the global visit number
by one. This new value has not previously been assigned to any visit number.

The visit numbers of other solution entities should never exceed the global visit number.
The operations for other solution entities look generically like this:

voi d KheSol nEntitySet Vi si t Num(KHE_SOLN_ENTITY e, int num;
int KheSol nEntityVisitNum KHE_SOLN_ENTITY e);

bool KheSol nEntityVisited(KHE_SOLN_ENTITY e, int slack);
voi d KheSol nEntityVisit(KHE_SOLN_ENTITY e);

voi d KheSol nEntityUnVisit(KHE_SCLN ENTITY e);

TypeSOLN_ENTI TY is fictitious and so are these functions; they just display the standard pattern.
The first two are the standard ones. The third returns the value of the condition

KheSol nVi sit Num{soln) - KheSol nEntityVisitNum(e) <= slack

wheresol n is the solution containing. The fourth sets’s visit number to its solution object’s
visit number, and the last sets it to one less than its solution’s visit number.

These operations may be used to implement tabu search efficiently as follows. Suppose for

64 Chapter 4. Solutions

example that a change to the assignmemteet is to remain tabu until at leastbu_| en other
changes have been made. The code for this is

i f(!'KheMeetVisited(neet, tabu_len))

{
KheSol nNewMi si t (KheMeet Sol n(neet)) ;

KheMeet Vi si t (meet) ;
change the assignnent of neet

}

To ensure that everything is visitable initially, call
KheSol nSet Vi si t Nun(sol n, tabu_len);

It is easy to generalize this code to other operations.

One form of the ejection chains algorithm requires that once a meet (or other entity) has
been changed during the current visit, it must remain tabu until a new visit is started in the outer
loop of the algorithm. The code for thisis

i f(!'KheMeetVisited(neet, 0))

{
KheMeet Vi si t (meet) ;

change the assignnent of neet

}

A variant of this idea makaset tabu to recursive calls, but not tabu for the entire remainder of
the current visit. The code for this is

i f(!'KheMeetVisited(neet, 0))

{
KheMeet Vi si t (meet) ;

change the assignnent of meet and recurse ...
KheMeet UnVi sit (neet);

}

Only meets in the direct line of the recursion are tabu.

4.7. Running times and time limits

Each solution contains a timer object of the kind defined in Section 8.5.1. It is initialized when
the solution is created, and copied when it is copied. A call to

f1 oat KheSol nTi meNow(KHE_SOLN sol n);

returns the number of seconds of wall clock time since the original creation, to a precision
much better than one second. As explained in Section 8.5.1, if the binary was compiled with the
KHE_USE_TI M NG preprocessor flag set @KheSol nTi meNow(sol n) will always return-1. 0.

Each solution also containd &oat value intended to hold the wall clock time in seconds
taken to complete the solution. It is initialized t4. 0, meaning undefined, and is set and

4.7. Running times and time limits 65

retrieved by the<heSol nSet Runni ngTi ne andKheSol nRunni ngTi ne operations described in
Section 4.2. The honest way to set the running time is to make the call

KheSol nSet Runni ngTi ne(sol n, KheSol nTi meNow(sol n));
at the end of the solve. Since wall clock time is measured, the stored value will be misleading if
the solve was part of a thread that had to wait for processor time.

Also stored is an optional soft time limit, which may be set and retrieved like this:

voi d KheSol nSet Ti meLi mit (KHE_SCOLN soln, float limt _in_secs);
fl oat KheSol nTi meLi ni t (KHE_SOLN sol n);

The default value of this limit is1. 0, a special value whose meaning is ‘no limit'. Setting a
time limit does not prevent a solve from exceeding it. Instead, the user who wishes to enforce it
must periodically calkheSol nTi neNow and compare its result with the time limit. We therefore
describe it as goft time limit A convenient way to make this comparison is to call

bool KheSol nTi neLi m t Reached(KHE_SOLN sol n);

which returng r ue whenkheSol nTi meLi mi t (sol n) is not- 1. 0, KheSol nTi meNow(sol n) is
not- 1. 0, andkheSol nTi meNow(sol n) >= KheSol nTi neLi nmit (sol n).

4.8. Meets

A meet is created by calling
KHE_MEET KheMeet Make(KHE_SCLN sol n, int duration, KHE_EVENT e);

This creates and addsgol n a new meet of the given duration, which must be at least &.idf
nonNULL, it indicates that this meet is derived from eventnitially the meet contains no tasks;
they must be added separately. A meet may be deleted from its solution by calling

voi d KheMeet Del et e(KHE_MEET neet);

Any tasks withinmeet are also deleted. Heet is assigned to another meet, or any other meets
are assigned to it, all those assignments are removed. The meet is also deleted from any node
(Section 5.2) it may lie in.

The back pointer of a meet may be set and retrieved by

voi d KheMeet Set Back(KHE_MEET meet, void xback);
voi d *KheMeet Back(KHE_MEET neet);

and the visit number by

voi d KheMeet Set Vi si t Nun{ KHE_MEET neet, int nunm;
i nt KheMeet Vi si t Num(KHE_MEET neet) ;

bool KheMeet Vi sited(KHE_MEET neet, int slack);
voi d KheMeet Vi si t (KHE_MEET neet);

voi d KheMeet UnVi sit (KHE_MEET neet);

66 Chapter 4. Solutions

as usual. The other attributes of a meet are accessed by

KHE_SOLN KheMeet Sol n(KHE_MEET neet) ;

i nt KheMeet Sol nl ndex(KHE_MEET neet);

i nt KheMeet Dur ati on(KHE_MEET neet) ;
KHE_EVENT KheMeet Event (KHE_MEET neet) ;

These return the enclosing solutioret ‘s index in that solution (that is, the valueiofor which

KheSol nMeet (sol n, i) returnsneet), its duration, and the event thetet is derived from
(possiblyNULL). Index numbers change when meets are deleted (the hole left by the deletion of
a meet, if not last, is plugged by the last meet), so care is needed. There is also

bool KheMeet | sPreassi gned(KHE_ MEET neet, TIME *tine);

which returns r ue whenkheMeet Event (nmeet) ! = NULL and that event has a preassigned time;
meet is called goreassigned medt that case. Ifime ! = NULL, then*ti ne is set to the event’s
preassigned time ifeet is preassigned, and MLL otherwise.

When deciding what order to assign meets in, it is handy to have some measure of how
difficult they are to timetable. Functions

i nt KheMeet Assi gnedDur ati on(KHE_MEET neet) ;
i nt KheMeet Demand(KHE_MEET neet);

attempt to provide thiskneMeet Assi gnedDur at i on is the duration ofreet if itis assigned, or 0
otherwise.KheMeet Denand(neet) isthe sum, overeet and all meets assignedrteet , directly

or indirectly, of the product of the duration of the meet and the number of tasks it contains. This
value is stored in the meet and kept up to date as solutions change, so aktelMest Denand

costs almost nothing.

A task is added to its meet when it is created, and removed from its meet when it is deleted.
To visit the tasks of a meet, call

int KheMeet TaskCount (KHE_MEET neet);
KHE_TASK KheMeet Task(KHE_MEET neet, int i);
bool KheMeet RetrieveTask(KHE_MEET meet, char *role, KHE TASK *task);
bool KheMeet Fi ndTask(KHE_MEET neet, KHE_EVENT_RESOURCE er,
KHE_TASK =+t ask);

The first two traverse the tasks. The order of tasks within meets is not significant, and it may
change astasks are created and delédeeleet Ret ri eveTask retrieves a task which is derived
from an event resource with the givesl e, if present.KheMeet Fi ndTask is similar, but it looks

for a task derived from event resoumae rather than for a role. There are also

bool KheMeet Cont ai nsResour cePr eassi gnment (KHE_MEET neet,
KHE RESOURCE r, KHE TASK =t ask);

bool KheMeet Cont ai nsResour ceAssi gnment (KHE_MEET neet
KHE RESOURCE r, KHE TASK =t ask);

which returnt r ue if meet contains a task preassigned or assignestting+t ask to one if so.
Here a task is considered to be preassigned if it is derived from a preassigned event resource.

4.8. Meets 67

A meet contains an optionalksignmentwhich assigns the meet to a particular offset in
another meet, thereby fixing its time relative to the starting time of the other meet,tand a
domainwhich restricts the times it may start at to an arbitrary subset of the times of the cycle.
These attributes are described in detail in later sections.

A meet may optionally be contained in one node (Chapter 5). Functions

KHE_NCDE KheMeet Node(KHE_MEET neet) ;
i nt KheMeet Nodel ndex(KHE_MEET neet) ;

return the node containinget , and the index ofreet in that node, oNULL and- 1 if none.
As an aid to debugging, function

voi d KheMeet Debug(KHE_MEET neet, int verbosity, int indent, FILE *fp);

printsneet ontof p with the given verbosity and indent (for which see Section 1.3). Verbosity 1
prints just an identifying name; verbosity 2 adds the chain of assignments leadingneet of

The name is usually the name m#et 's event, between quotes. If there is more than one
meet corresponding to that event, this will be followed by a colon and the nunfoemhich
KheEvent Meet (sol n, e, i) equalsreet. Alternatively,ifreet isa cycle meet(Section4.8.3),
the name is its starting time (a time name or else an index) between slashes.

4.8.1. Splitting and merging
A meet may be split into two meets whose durations sum to the duration of the original meet:

bool KheMeet Split Check(KHE_MEET neet, int durationl, bool recursive);
bool KheMeet Split(KHE_MEET neet, int durationl, bool recursive,
KHE MEET *neet1l, KHE MEET xneet 2);

These functions follow the pattern described earlier for operations that might violate the solution
invariant, in that both returtr ue if the split is permitted. The second actually carries out the
split, setting«neet 1 and=*neet 2 to the new meets if the split is permitted, and leaving them
unchanged if not. The original meeget , is undefined after a successful split, unlesst 1

or neet 2 is set to&neet (this may seem dangerous, but it does what is wanted whether the split
succeeds or not). The split meet may be a cycle meet, in which case so are the two fragments.

The first new meetsneet 1, has duratiordur ati onl, and the second,neet 2, has the
remaining duration. Parameten at i onl must be such that both meets have duration at least 1,
otherwise both functions abort. Their back pointers are set to the back poimiztofIf neet
Is assigned,neet 1 has the same target meet and offsetas , while* meet 2 has the same target
meet, but its offset igur at i on1 larger, making the two meets adjacent in time.

If recursiveistrue,any meets assignediteet that span the split point will also be split,
into one meet for the part overlappinrgeet 1 and one for the part overlappingeet 2. This
process proceeds recursively as deeply as required.

The two split functions returtr ue if these two conditions hold:

« Eitherrecursive istrue, or else no meets assignedet span the split point.

68 Chapter 4. Solutions

* The meets resulting from each split have copies of the meet bounds (Section 4.8.4) of the
meets they are fragments of. Nevertheless their domains usually change, owing to meet
bounds with specifidur at i on attributes. This must cause no incompatibilities with the
domains of other meets connected to them by assignments, allowing for offsets. When a
cycle meet (Section 4.8.3) splits, the two fragments have the appropriate singleton domains.
Domain incompatibilities cannot occur in that case.

If these conditions holdeet is said to besplittableatdur ati onl.

When a meet splits, its tasks split too. This produces what is typically required when
assigning rooms: the fragments are free to be assigned different resources. The other possibility,
where the fragments are required to be assigned the same resource, can be obtained by assigning
the fragmentary tasks to each other. This must be done separately.

The next two functions are concerned with merging two meets into one:
bool KheMeet Mer geCheck(KHE_MEET neet 1, KHE MEET neet 2);

bool KheMeet Merge(KHE_MEET neet 1, KHE MEET neet 2, bool recursive,
KHE_MEET *neet) ;

Parameterseet 1 andneet 2 become undefined after a successful merge, untssis set to
&mreet 1 or &neet 2.

If recursive istrue, after mergingreet 1 andneet 2, KheMeet Mer ge searches for pairs of
meets, one formerly assigned to the endmedt 1, the other formerly assigned to the beginning
of neet 2, which are mergeable accordingiioeMeet Mer geCheck, and merges each such pair.
This process proceeds recursively as deeply as requihedieet Mer geCheck hasna ecur si ve
parameter because its result does not depend on whether the merge is recursive.

The functions returmr ue if all these conditions hold:
. The two meets are distinct.

* The two meets have the same valu&kioéMeet | sCycl eMeet (Section 4.8.3).
* The two meets have the same valu&loéMeet Event , possiblyNULL.
* The two meets have the same valu&ioéMeet Node, possiblyNULL.

* The two meets are both either assigned to the same meet, or not assigned. If assigned, the
offset of one (it may be either) must equal the offset plus duration of the other, ensuring they
are adjacent in time. Cycle meets, although never assigned, must also be adjacent in time.

* Thetwo meets have the same number of tasks, and the order of their tasks may be permuted
so that corresponding tasks are compatible. Two tasks are compatible when they have the
same taskings, domains, event resources, and assignments.

4.8. Meets 69

* The result meet takes over the meet bounds (Section 4.8.4) of one of the meets being
merged. Nevertheless its domain usually changes, owing to meet bounds with non-zero
dur ati on attributes. This must cause no incompatibilities with the domains of other meets
connected to it by assignments, allowing for offsets. When cycle meets (Section 4.8.3)
merge, the result meet has the singleton domain of the chronologically first meet. Domain
incompatibilities cannot occur in that case.

If all these conditions holdyeet 1 and meet 2 are said to bemergeable These conditions
usually hold trivially when merging the results of a previous split. The merged meet’s attributes
(including its meet bounds and the order of its tasks) may come from e#bet or neet 2; the
choice is deliberately left unspecified, and the user must not depend on it.

It is now clear whykheMeet Mer geCheck does not need eecur si ve parameter: because
none of the conditions just given depend on whether the merge is recursive. Recursive merges
are only attempted whetheMer geCheck says they will succeed. So instead of preventing the
top-level merge, an unacceptable recursive merge simply does not happen.

4.8.2. Assignment

KHE’s basic operations do not include assigning a time to a meet. A meetis either unassigned or
else assigned to another meet at a given offset, fixing the starting times of the two meets relative
to each other, but not assigning a specific time to either. For exampie,i$f assigned to?

at offset 2, then whatever timm® eventually starts atil will start two times later. Of course,
ultimately meets need to be assigned times. This is done by assigning them to special meets
calledcycle meet§Section 4.8.3).

Assigning one meet to another suppdrisrarchical timetablingin which several meets
are timetabled relative to each other, then the whole group is timetabled into a larger context, and
so on. One simple application is in handling link events constraints. Assigning all the linked
events except one to that exception guarantees that the linked events will be simultaneous; the
time eventually assigned to the exception becomes the time assigned to all.

The fundamental meet assignment operations are

bool KheMeet MoveCheck(KHE _MEET neet, KHE MEET target neet, int offset);
bool KheMeet Move(KHE_MEET neet, KHE MEET target neet, int offset);

KheMeet Move changes the assignment ofet from whatever it is now td arget _neet at
of fset. If target _neet iSNULL, the move is an unassignment arid set is ignored.

These functions follow the usual pattern, returriinge if the move can be carried out, with
KheMeet Move actually doing it if so. They returtr ue if all of the following conditions hold:

e KheMeet Assi gnl sFi xed (see below) returnisal se.
* Theneet parameter is not a cycle meet.

* The move actually changes the assignment: eitlweget _meet iSNULL andneet 's current
assignment is noRLLL, ort ar get _meet is nonNULL andneet ’'s current assignment is not
totarget _neet atof fset.

70 Chapter 4. Solutions

» Theoffset parameter is in range: ifarget _nmeet is nonNULL, thenoffset >= 0 and
of fset <= KheMeetDuration(target neet) - KheMeetDuration(neet);

. If target_neet is nonNULL, then the time domain (Section 4.8.4) tadr get _neet is a
subset of the time domain oket .

* The node rule (Section 4.12) would not be violated if the move was carried out.

If all these conditions hold, themeet is said to bemoveableto t arget _nmeet at of f set .
Returningf al se when the move changes nothing reflects the practical reality that no solver
wants to waste time on such moves.

KHE offers several convenience functions basedr@Meet MoveCheck andKheMeet Move.
For assigning a meet there is

bool KheMeet Assi gnCheck(KHE_MEET meet, KHE_MEET target _meet, int offset);
bool KheMeet Assi gn(KHE_MEET neet, KHE MEET target_neet, int offset);

Assigning is the same as moving except tregt is expected to be unassigned to begin with, and
KheMeet Assi gnCheck andKheMeet Assi gn returnf al se if not. For unassigning there is

bool KheMeet UnAssi gnCheck(KHE_MEET neet) ;
bool KheMeet UnAssi gn(KHE_MEET neet) ;

Unassigning is the same as moving\th L. For swapping there is

bool KheMeet SwapCheck(KHE_MEET neet1l, KHE MEET neet 2);
bool KheMeet Swap(KHE_MEET neet1l, KHE MEET neet 2);

A swap is two moves, one ofeet 1 to whatevemneet 2 is assigned to, and the otherrafet 2 to
whatevemeet 1 is assigned to. It succeeds whenever those two moves succeed.

KheMeet Swap has two useful properties. First, exchanging the order of its parameters never
affects what it does. Second, the code fragment

i f(KheMeet Swap(reetl, neet?2))
KheMeet Swap(eet 1, neet2);

leaves the solution in its original state whether the swap occurs or not.
A variant of the swapping idea calldédbck swappings offered:

bool KheMeet Bl ockSwapCheck(KHE_MEET neet 1, KHE MEET neet 2);
bool KheMeet Bl ockSwap(KHE_MEET neet 1, KHE MEET neet 2);

Block swapping is the same as ordinary swapping except that it treats one very special case in

a different way: the case when both meets are initially assigned to the same meet, at different

offsets which cause them to be adjacent, but not overlapping, in time. In this case, both meets

remain assigned to the same meet afterwards, and the later meet is assigned the offset of the
earlier one, but the earlier one is not necessarily assigned the offset of the later one. Instead, it

Is assigned that offset which places it adjacent to the other meet.

For example, when swapping a meet of duration 1assigned to the first time on Monday with

4.8. Meets 71

a meet of duration 2 assigned to the second time on Mottalget Bl ockSwap would move

the first meet to the third time on Monday, not the second time. Thisis much more likely to work
well when the two meets have preassigned resources in common. It is the same as an ordinary
swap when the meets have the same duration, but it is different when their durations differ. The
two useful properties of ordinary swaps also hold for block swaps.

A meet’s assignment may be retrieved by calling

KHE_MEET KheMeet Asst (KHE_MEET neet);
i nt KheMeet Asst O f set (KHE_MEET neet);

These return the meet thetet is assigned to, and the offset into that meet. If there is no
assignment, the values returned el and- 1.

Although a meet may only be assigned to one meet, any number of meets may be assigned
to a meet, each with its own offset. Functions

i nt KheMeet Assi gnedToCount (KHE_MEET target neet);
KHE_MEET KheMeet Assi gnedTo(KHE_MEET target _neet, int i);

visit all the meets that are assigned to a given meet, in an unspecified order which could change
when a meet is assigned to or unassigned franget _neet . (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.)

Given that a meet can be assigned to another meet at some offset, it follows that a chain of
assignments can be built up, from one meet to another and another and so on. Function

KHE_MEET KheMeet Root (KHE_MEET neet, int *offset_in_root);

returns theoot of neet : the last meet on the chain of assignments leading ooeif. It also
sets-of f set _i n_r oot to the offset ofreet in its root meet, which is just the sum of the offsets
along the assignment path. One function which testet Root is

bool KheMeet Overl ap(KHE _MEET neet 1, KHE MEET neet 2);

This returng rue if neet 1 andneet 2 can be proved to overlap in time, because they have the
same root meet, and their offsets in that root meet and durations make them overlap. Also,

bool KheMeet Adj acent (KHE_MEET neet 1, KHE MEET neet?2, bool *swap);

returnst rue if neet 1 andneet 2 can be proved to be immediately adjacent in time (but not
overlapping), because they have the same root meet, and their offsets in that root meet and
durations make them adjacent. If so, it also set&p totrue if meet 2 precedeseet 1, and to

fal se otherwise. Again, the meets are required to have the same root meet. This implies that
a meet assigned to the end of one cycle meet (Section 4.8.3) is not reported to be adjacent to a
meet assigned to the start of the next cycle meet. This is usually what is wanted in practice.

Meet assignments may be fixed and unfixed, by calling
voi d KheMeet Assi gnFi x(KHE_MEET neet) ;

voi d KheMeet Assi gnUnFi x(KHE_MEET neet) ;
bool KheMeet Assi gnl sFi xed(KHE_NMEET neet) ;

72 Chapter 4. Solutions

Any attempt to change the assignmenteét will fail while the fix is in place. When several
events are linked by a link events constraint, assigning the meets of all but one of them to the
meets of that one and fixing those assignments, or assigning the meets of all of them to some
other set of meets and fixing those assignments, has a significant efficiency payoff.

A call to KheMeet MoveCheck(neet, target_neet, offset) returnsfal se irrespective
of target _meet andof fset whenmeet is a cycle meet or its assignment is fixed. Function

bool KheMeet | sMovabl e(KHE_MEET neet);

returng r ue when neither of these conditions holds, so #ietveet MoveCheck can be expected
to returnt r ue for at least some target meets and offsets.

Two similar functions follow chains of fixed assignments:

KHE_MEET KheMeet Fi r st Movabl e(KHE_MEET neet, int xoffset _in result);
KHE_MEET KheMeet Last Fi xed(KHE_MEET neet, int *offset in_result);

KheMeet Fi r st Movabl e returns the first meeton the chain of assignments out mfet such

that KheMeet | sovabl e(m) holds. If there is no such meet it returldLL. It is used when
changing the time assigned teet : this can be done only by changing the assignment of
KheMeet Fi r st Movabl e(meet) , or of a movable meet further along the chain, and this is only
possible when the result is ndkkL. KheMeet Last Fi xed returns the last meet on the chain of
fixed assignments out afeet ; that is, it follows the chain of assignments outnekt until it
reaches a meet whose target me#tis. or whose assignment is not fixed, and returns that meet.
Its result is always noNULL, and could be a cycle meet. It is used to decide whether two meets
are fixed to the same meet, directly or indirectly. In both functions, the result couttbéself,
and+of f set _i n_resul t is set to the offset ofreet in the result, if norNULL.

4.8.3. Cycle meets and time assignment

Even if most meets are assigned to other meets, there must be a way to associate a particular
starting time with a meet eventually. Rather than having two kinds of assignment, one to a meet
and one to a time, which might conflict, KHE has a special kind of meet calbydla meet A

cycle meet has typ€HE_MEET as usual, and it has many of the properties of ordinary meets. But

it is also associated with a particular starting time (and its domain is fixed to just that time and
cannot be changed), and so by assigning a meet to a cycle meet one also assigns a time.

A cycle meet cannot be assigned to another meet; its assignment is fikéd nd cannot
be changed. Cycle meets may be split (their offspring are also cycle meets) and merged. They
may even be deleted, but that is not likely to ever be a good idea.

The user cannot create cycle meets directly. Instead, one cycle meetis created automatically
whenever a solution is created. The starting time ofithigl cycle meeis the first time of the
cycle, and its duration is the number of times of the cycle. When solving, it is usual to split the
initial cycle meet into one meet for each block of times not separated by a meal break or the end
of a day, to prevent other meets from being assigned times which cause them to span these breaks.
A function for this appears below. When evaluating a fixed solution, it is usual to not split the
initial cycle meet, since the other meets already have unchangeable starting times and durations,
and splitting the initial cycle meet might prevent them from being assigned to cycle meets.

4.8. Meets 73

To find out whether a given meet is a cycle meet, call

bool KheMeet | sCycl eMeet (KHE _MEET neet) ;

Cycle meets appear on the list of all meets contained in a solution. They are not stored separately
anywhere. So the way to find them all is

for(i = 0; i < KheSolnMeetCount(soln); i++)
{
neet KheSol nMeet (sol n, i);
i f(KheMeetlsCycl eMeet (neet))
visit_cycle_meet(meet);

}
However, cycle meets are usually near the front of the list, so this can be optimized as follows:

ti me_count = Khel nstanceTi meCount (KheSol nl nstance(sol n));
durn = 0;
for(i =0; i < KheSol nMeetCount(soln) && durn < time_count; i++)

{
nmeet = KheSol nMeet (soln, i);

i f(KheMeetlsCycl eMeet (neet))
{
visit_cycle_meet(meet);
durn += KheMeet Duration(meet);
}
}

The loop terminates as soon as the total duration of the cycle meets visited reaches the number
of times in the instance.

Solutions offer several functions whose results depend on cycle meets. They notice when
cycle meets are split, and adjust their results accordingly. Functions

KHE MEET KheSol nTi meCycl eMeet (KHE_SOLN soln, KHE TIME t);
i nt KheSol nTi neCycl eMeet O f set (KHE_SOLN soln, KHE TIME t);

return the unique cycle meet running at timend the offset of within that meet. Function
KHE_TI ME_GROUP KheSol nPacki ngTi meG oup(KHE_SOLN sol n, int duration);

returns a time group containing the times at which a meet of the given duration may begin. For
example, if the initial cycle meet has not been sfghigSol nPacki ngTi meG oup(sol n, 2) will
contain every time except the last in the cycle; if the initial cycle meet has been split into one
meet for each day, it will contain every time except the last in each day; and so on.

As mentioned earlier,when solving it is usual to split the initial cycle meet into one fragment
for each maximal block of times not spanning a meal break or end of day. The XML format
does not record this information, but solver

voi d KheSol nSplitCycl eMeet (KHE_SOLN sol n);

74 Chapter 4. Solutions

Is able to infer it, as follows. Say that two eventssof n’s instance are related if they share

a required link events constraint with non-zero weight. Find the equivalence classes of the
reflexive transitive closure of this relation. For each class, examine the required split events
constraints with non-zero weight of the events of the class to determine what durations the meets
derived from the events of this class may have. Also determine whether the starting time of the
class is preassigned, because one of its events has a preassigned time.

For each permitted duration, consult the required prefer times constraints of non-zero
weight of the events of the class to see when its meets of that duration could begin. Ifra meet
with duration 2 can begin at timie there cannot be a break after titméf a meetmwith duration
3 can begin at time, there cannot be a break after timer after the time following , if any;
and so on. Accumulating all this information for all classes determines the set of times which
cannot be followed by a break. All other times can be followed by a break, and the initial cycle
event is split at these times, and also at times where a break is explicitly allowed by function
KheTi neBr eakAf t er from Section 3.4.2.

These functions move a meet to a time, following the familiar pattern:

bool KheMeet MoveTi meCheck(KHE MEET neet, KHE TIME t);
bool KheMeet MoveTi me(KHE_MEET neet, KHE TIME t);

They work by converting into a cycle meet and offset, via functiokigeSol nTi neCycl eMeet
andKheSol nTi meCycl eMeet O f set above, and callingheMeet MoveCheck andKheMeet Move.
Meets may also be assigned to cycle meets directly, ubielget Move and the rest. The direct
route is more convenient in general solving, since time assignment is then not a special case.

The following functions are also offered:

bool KheMeet Assi gnTi meCheck(KHE_MEET meet, KHE TIME t);
bool KheMeet Assi gnTi me(KHE_MEET nmeet, KHE TIME t);

bool KheMeet UnAssi gnTi meCheck(KHE_MEET neet);

bool KheMeet UnAssi gnTi me(KHE_MEET neet) ;

KHE_TI ME KheMeet Asst Ti ne(KHE_MEET neet) ;

The first four are wrappers fdtheMeet Assi gnCheck, KheMeet Assi gn, KheMeet UnAssi gnCheck,
andkheMeet UnAssi gn. KheMeet Asst Ti ne follows the assignments oket as far as possible, and
if it arrives in a cycle meet, it returns the starting timeneét ; otherwise it returnsiULL.

4.8.4. Meet domains and bounds

Each meet contains a time group calleditenain retrievable by calling
KHE_TI ME_GROUP KheMeet Domai n(KHE_NMEET neet)

When a meet is assigned a time, that time must be an element of its domain.

More precisely, the solution invariant says thaét 's domain must be a superset of the
domain of the meet it is assigned to, if any, adjusted for offsets. So, given a chain of assignments
beginning atreet and ending at a cycle meet, the domaimeét must be a superset of the
domain of the cycle meet, adjusted for offsets. Since the domain of a cycle meetis a singleton set
defining a time, the time assignedneet by this chain of assignments liesiiaet 's domain.

4.8. Meets 75

Meet domains cannot be set directly. Insteaget boundbjects influence them. This
may seem unnecessarily complicated, but meet bounds have several major advantages over
setting domains directly, including allowing restrictions on domains to be added and removed
independently, and doing the right thing when meets split and merge.

When meets split and merge, their durations change, and this usually requires a change of
domain. For example,a meet of duration 2 cannot be assigned the last time on any day, but if itis
split, the fragments may be. Accordingly, a meet bound object stores a whole set of time groups,
one for each possible duration. Only one time group influences a meet’s domain at any moment:
the one corresponding to the meet’s current duration. But the others remain in reserve for when
the meet’s duration is changed by a split or merge.

To create a meet bound object, call

KHE MEET BOUND KheMeet BoundMake(KHE_SOLN sol n,
bool occupancy, KHE TIME GROUP dft _tq);

See below for theccupancy anddft _t g parameters. To delete a meet bound object, call

bool KheMeet BoundDel et eCheck(KHE_MEET BOUND mb) ;
bool KheMeet BoundDel et e(KHE_MEET_BOUND nb) ;

This includes deletingb from each meet it is added to, and is permitted when all of those
deletions are permitted, accordingdweMeet Del et eMeet BoundCheck, defined below.

To retrieve the attributes defined when a meet bound is created, call

KHE_SOLN KheMeet BoundSol n(KHE_MEET_BOUND nb) ;

i nt KheMeet BoundSol nl ndex(KHE_MEET _BOUND nb) ;

bool KheMeet BoundQccupancy(KHE MEET BOUND nb) ;

KHE_TI ME_GROUP KheMeet BoundDef aul t Ti neGr oup(KHE_MEET _BOUND nb) ;

These are rarely accessed in practice.

As mentioned above, a meet bound is supposed to define a time group for each possible
duration. These time groups can be set manually by making any number of calls to

voi d KheMeet BoundAddTi meG oup(KHE_MEET BOUND nb,
int duration, KHE TIME_GROUP tg);

Each declares that whe is applied to a meet of the givelur at i on, it restricts its domain to
be a subset dfg. They may be retrieved by

KHE_TI ME_GROUP KheMeet BoundTi mneG oup(KHE_MEET _BOUND nb, int duration);

In both functionsgdur ati on may be any positive integer, provided it is not unreasonably large.
Two calls toKheMeet BoundAddTi meG oup with the samedur ati on are pointless, but if they
occur, the second takes effect. There is no need to specify a time group for every possible
duration: durations other than those covered by call&ht\eet BoundAddTi meG oup are
assigned time groups using thecupancy anddft _t g arguments oKheMeet BoundMake. To
explain them we need to delve deeper.

There are really two kinds of domains. Those we have dealt with so far may be called

76 Chapter 4. Solutions

starting-time domain®ecause they restrict the starting times of meets. They are appropriate, for
example, when expressing prefer times and spread events constraints (which constrain starting
times) structurally. The others may be caltetupancy domainbecause they restrict the whole

set of times a meet occupies, not just its starting time. For example, a meet of duration 2 should
not start immediately before a time when one of its resources is unavailable: the complement of
a resource’s set of unavailable times is an occupancy domain, not a starting-time domain.

KHE works directly only with starting-time domains, not occupancy domains, so what is
needed is a function to convert an occupancy domain into a starting-time domain:

KHE_TI ME_GROUP KheSol nStartingTi meG oup(KHE_SCLN sol n, int duration,
KHE_TI ME_GROUP tQ);

This returns the set of times that a meet of the given duration could start without any part of
it lying outsidet g. In other words, it accepts occupancy domiagrand returns the equivalent
starting-time domain for a meet of the given duration. Wiherat i on is 1, the result is justg.

Asdur at i on increases the result shrinks, eventually becoming empty.

To return to meet bounds. Whencupancy is f al se, the time group used by the meet
bound for durations not set explicitlyat _t g. It may be best to set all durations explicitly in
this case. Whenccupancy istrue, the value used for any unspecified duration is

KheSol nSt arti ngTi meG oup(soln, duration, dft_tg);

These values could be passed explicitly, but this way they can be (and are) created only when
needed, and there is no need to know the maximum duration. For examaiej leabl e_t g be
the set of times that some resource is available. Then the meet bound created by

KheMeet BoundMake(sol n, true, available tg);

ensures that a meet lies entirely within this set of times, whatever duration it has.

A meetmmay have any number of meet bounds. Its domain is the intersection, over all
its meet boundsb, of KheMeet BoundTi meG oup(nb, KheMeet Duration(n)), or the full cycle if
none. A meet bound may be added to any number of meets. To add a meet bound, call

bool KheMeet AddMeet BoundCheck(KHE_MEET neet, KHE_MEET_BOUND nb) ;
bool KheMeet AddMeet Bound(KHE_MEET neet, KHE_MEET_BOUND mb) ;

These follow the usual form, returningue when the addition is permitted (when the change
in meet 's domain it causes does not violate the solution invariant), in#Meet AddMeet Bound
actually carrying out the addition in that case. To delete a meet bound from a meet, call

bool KheMeet Del et eMeet BoundCheck(KHE_MEET neet, KHE MEET _BOUND nb);
bool KheMeet Del et eMeet Bound(KHE_MEET neet, KHE MEET BOUND nb);

This too is not always permitted, because it may increase’s domain, which may violate the
solution invariant with respect to the domains of meets assignezkto

While a meet bound is added to at least one meet, it is not permitted to change its time
groups (that is, calls tsheMeet BoundAddTi neG oup are prohibited).

To visit the meet bounds added to a given meet, call

4.8. Meets 77

i nt KheMeet Meet BoundCount (KHE_MEET neet) ;
KHE_MEET BOUND KheMeet Meet Bound(KHE_MEET neet, int i);

as usual. To visit the meets to which a given meet bound has been added, call

i nt KheMeet BoundMeet Count (KHE_MEET_BOUND nb) ;
KHE_MEET KheMeet BoundMeet (KHE_MEET _BOUND b, int i);

The relationship between meets and meet bounds is a many-to-many one.

When a meet is split, its meet bounds are added to both fragments; and when two meets
are merged, one (either) of the two sets of meet bounds is used for the merged meet. Although
the meet bounds are the same, the durations change, so the domains may change too. Splits and
merges are only permitted when the new domains do not violate the solution invariant.

Adding a meet bound to a meet has some cost in run time, but is fast enough to use within
solvers. KHE intersects the bound’s time group’s bit set with the current domain’s bit set, looks
up the result in a hash table of all time groups known to the solution, and either uses an existing
time group returned by the lookup, or makes and uses a new one, which is then added to the table.
Deleting a meet bound is much the same, except that the bit sets of the remaining bounds’time
groups are intersected to obtain the new domain. Time groups are immutable during solving and
may be shared. Meet bound objects are obtained from free lists held in the solution object.

WhenkKheMeet Make makes a meet derived from an event with a preassigned time, it adds
to the meet a meet bound whose default time group is the singleton time group containing that
time. No other special arrangements are made for meets derived from preassigned events.

4.8.5. Automatic domains

Cycle meets have fixed singleton domains, and meets derived from events can also be assigned
fixed domains, based on their durations and the constraints that apply to them.

When solving hierarchically there may be other meets, lying at intermediate levels, for
which there is no obvious fixed domain. Instead, the domain of such a meet needs to be the
largest domain consistent with the domains of the meets assigned to it: the intersection of those
domains, allowing for offsets, or the full set of times if no meets are assigned to it.

As meets are assigned to and unassigned from such a meet, its domain changes automatical-
ly. Atany moment it does have a domain, however, defined by the rule just given, and thisdomain
must satisfy the solution invariant as usual.

A newly created meet has a fixed domain. To convert it to the automatic form, call

bool KheMeet Set Aut oDonai nCheck(KHE_MEET neet, bool automatic);
bool KheMeet Set Aut oDonmai n(KHE_MEET meet, bool automatic);

Assigningt r ue to aut omat i ¢ gives the meet an automatic domain. This will rettiahse if

meet is a cycle meet, or ifreet is derived from an event or contains tasks, as discussed below.
Assigningf al se returns the meet to a fixed domain. Meet bounds are not affected by automatic
domains; what is affected is whether they are used to construct the domain or not.

KheMeet Domai n returnsNULL when the meet has an automatic domain. It is important not
to mistake this for ‘having no domain,’a concept not defined by KHE. Function

78 Chapter 4. Solutions

KHE TI ME_GROUP KheMeet Descendant sDomai n(KHE_MEET neet) ;

returns the intersection of the domains of the descendamtzofincludingmeet itself, adjusted

for offsets, or the full time group if there are no such meets or they all have automatic domains.
It may thus be used to find the true domain of a meet Wiheiveet Donai n returnsNULL. It is
relatively slow and not intended for use during solving.

When a meet with an automatic domain is split, its two fragments have automatic domains.
When two meets are joined, they must both either have automatic domains or not; and if both do,
then the joined meet has an automatic domain.

A meet with an automatic domain may not be derived from an event, and it may not have
tasks. These two conditions are naturally satisfied by the kinds of meets that need automatic
domains. They are necessary, since otherwise KHE would be forced to maintain explicit
domains as meets are assigned and unassigned, which would not be efficient. Asitis, automatic
domains are implemented by having the domain test bypass meets whose domains are automatic,
as though each such meet was replaced by the collection of meets assigned to it.

4.9. Tasks

A task is a demand for one resource. It is created by calling

KHE_TASK KheTaskMake(KHE_SOLN sol n, KHE_RESOURCE_TYPE rt,
KHE_MEET neet, KHE_EVENT RESOURCE er):

The task lies irsol n and has resource type. When parametereet is nonNULL, the task

lies withinneet , representing a demand for one resource, of typat the times wheneet is
running. Whemeet isNULL, the task still demands a resource, but at no times, making it useful
only as a target for the assignment of other tasks, as explained below.

Parameteer may be norNULL only whenneet is nonNULL and derived from some event
e. Inthat casegr must be one oé’s event resources. Its presence causes the task to consider
itself to be derived from event resouree

When first created, a meet has no tasks. They must be created separately by calls to
KheTaskMake. FunctiorkheSol nMakeConpl et eRepr esent at i on (Section 4.3) doesthis. When
a task’s enclosing meet splits, the task splits too. And when two meets merge, their tasks must
be compatible and are merged pairwise, inversely to the split.

A task contains an optionassignmento another task, and sesource domairwhich
restricts the resources it may be assigned to an arbitrary subset of the resources of its type. These
attributes are described in detail in later sections.

A task may be deleted by calling
voi d KheTaskDel et e(KHE_TASK t ask) ;

This removes the task from its meet, if any, and unassigns any assignments involving the task.
The back pointer of a task may be set and retrieved by

voi d KheTaskSet Back(KHE_TASK task, void *back);
voi d *KheTaskBack(KHE_TASK t ask) ;

4.9. Tasks 79

as usual, and the usual visit number operations are available:

voi d KheTaskSet Vi si t Nun{ KHE_TASK task, int num;
i nt KheTaskVi si t Num(KHE_TASK t ask);

bool KheTaskVisited(KHE TASK task, int slack);
voi d KheTaskVi sit (KHE TASK t ask);

voi d KheTaskUnVi sit (KHE_TASK task);

The attributes of a task related to its meet may be retrieved by

KHE_MEET KheTaskMeet (KHE _TASK t ask);
i nt KheTaskMeet | ndex(KHE TASK t ask);
i nt KheTaskDurati on(KHE _TASK t ask);
fl oat KheTaskWorkl oad(KHE _TASK t ask);

If there is no meetkheTaskMeet returnsNULL andKheTaskDur ati on andKheTaskWr kl oad
return 0. If there is a meet and event resoukbeTaskWr kl oad returns the workload of the
task, defined in accord with the XML format’s definition to be

d(meejw(er)
w(task) = —————=
whered(meej is the duration of ask’s meetw(er) is the workload of the task’s event resource,
andd(e) is the duration of the task’s meet’s event. See below for the similar and more generally
usefulkheTaskTot al Dur ati on andKheTaskTot al Wr kI oad operations. Other attributes of a
task may be accessed by

KHE_SOLN KheTaskSol n(KHE_TASK t ask) ;

i nt KheTaskSol nl ndex(KHE TASK t ask);

KHE_RESOURCE TYPE KheTaskResour ceType(KHE_TASK t ask);
KHE_EVENT RESOURCE KheTaskEvent Resour ce(KHE TASK t ask);

These return the solution containingsk, the index oft ask in its solution (the value of for
whichKheSol nTask(sol n, i) returnd ask), the task’s resource type, and its event resource (if
any). Index numbers may change when tasks are deleted (what actually happens is that the hole
left by the deletion of a task, if not last, is plugged by the last task), so care is needed. Also,

bool KheTaskl sPreassi gned(KHE _TASK task, KHE_RESOURCE *r);

returnst rue when KheTaskEvent Resource(task) !'= NULL and that event resource has a
preassigned resourdesk is called goreassigned tasik that case. If != NULL, thenxr is set
to the event resource’s preassigned resourcasif is preassigned, and MJLL otherwise.

A task may lie in @asking which is an arbitrary set of tasks (Section 5.5). Functions

KHE TASKI NG KheTaskTaski ng(KHE _TASK t ask);
i nt KheTaskTaski ngl ndex(KHE_TASK t ask);

return the tasking containinigisk and the index of ask in that tasking, oNULL and- 1 if the
task does not lie in a tasking. Finally,

80 Chapter 4. Solutions

voi d KheTaskDebug(KHE TASK task, int verbosity, int indent, FILE *fp);

produces the usual debug printtafsk ontof p with the given verbosity and indent.

4.9.1. Assignment

Just as KHE assigns one meet to another meet, not to a time, so it assigns one task to another task,
not to a resource. Accordingly, the assignment operations for tasks parallel those for meets, the
main difference being that there is no offset.

The fundamental task assignment operations are

bool KheTaskMoveCheck(KHE_TASK task, KHE TASK target task);
bool KheTaskMove(KHE_TASK task, KHE TASK target_task);

KheTaskMve changes the assignmenttafsk totarget _task. If target_task is NULL, the
move is an unassignment. These operations follow the usual pattern, refuaineg@nd chang-
ing nothing if they cannot be carried out. Here is the full list of reasons why this could happen:

» task’sassignment is fixed,;
» task isacycletask (Section 4.9.2);
« the move changes nothingar get _t ask is the same asask’s current assignment;

e target_task is nonNULL and the resource domain (Section 4.9.3) afget _t ask is not
a subset of the resource domairt ebk.

As for meet moves, returnirigal se when the move changes nothing reflects the practical reality
that no solver wants to waste time on such moves.

KHE offers several convenience functions basedt@TaskMveCheck andKheTaskMve.
For assigning a task there is

bool KheTaskAssi gnCheck(KHE _TASK task, KHE TASK target task);
bool KheTaskAssi gn(KHE _TASK task, KHE TASK target task);

Assigning is the same as moving except thestk is expected to be unassigned to begin with, and
KheTaskAssi gnCheck andKheTaskAssi gn returnf al se if not. For unassigning there is

bool KheTaskUnAssi gnCheck(KHE_TASK t ask);
bool KheTaskUnAssi gn(KHE_TASK t ask);

Unassigning is the same as moving\tb L. For swapping there is

bool KheTaskSwapCheck(KHE TASK taskl, KHE TASK task2);
bool KheTaskSwap(KHE TASK taskl, KHE TASK task2);

A swap is two moves, one dfaskl to whatevett ask2 is assigned to, and the other todsk?2
to whatevet ask1 is assigned to. It succeeds whenever those two moves succeed. As for meet
swaps, exchanging the parameters changes nothing, and code fragment

4.9. Tasks 81

i f(KheTaskSwap(taskl, task2))
KheTaskSwap(taskl, task2);

leaves the solution in its original state whether the swap occurs or not.
A task’s assignment may be retrieved by calling

KHE_TASK KheTaskAsst (KHE_TASK task);

If there is no assignmemiLL is returned. Although a task may only be assigned to one task,
any number of tasks may be assigned to a task. Functions

i nt KheTaskAssi gnedToCount (KHE TASK target task);
KHE_TASK KheTaskAssi gnedTo(KHE_TASK target task, int i);

visit all the tasks that are assigned tw get _t ask, in an unspecified order which could change
when a task is assigned or unassigned ftamget _t ask. (What actually happens is that an
assignment is added to the end, and the hole created by the unassignment of any element other
than the last is plugged with the last element.) Functions

i nt KheTaskTot al Durati on(KHE_TASK t ask);
fl oat KheTaskTot al Wor kl oad(KHE_TASK t ask);

return the total duration and workloadtdsk and the tasks assigned to it, directly or indirectly.
These functions are usually more appropriate traTaskDur at i on andKheTaskWr ki oad.

Given that a task can be assigned to another task, a chain of assignments can be built up,
from one task to another and so on. Function

KHE_TASK KheTaskRoot (KHE_TASK t ask);

returns theoot of t ask: the last task on the chain of assignments leading ouésf, possibly
t ask itself. The resultis neveMULL, but it could be a cycle task (Section 4.9.2).

Task assignments may be fixed and unfixed as usual, by calling

voi d KheTaskAssi gnFi x(KHE_TASK t ask);
voi d KheTaskAssi gnUnFi x(KHE_TASK t ask) ;
bool KheTaskAssi gnl sFi xed(KHE _TASK t ask);

The assignment ofask cannot be changed while the fix is in place. When several tasks are
linked by an avoid split assignments constraint, assigning all but one of them to that one and fix-
ing those assignments, or assigning all of them to some other task and fixing those assignments,
has a significant efficiency payoff. Function

KHE_TASK KheTaskFi r st UnFi xed(KHE_TASK t ask);

returns the first task on the chain of assignments otuésf whose assignment is not fixed (pos-
siblyt ask), orNULL if none. A solver can change the resource assigneastoonly by changing
the assignment dfheTaskFi r st UnFi xed(t ask) , or of a task further along the chain.

82 Chapter 4. Solutions

4.9.2. Cycle tasks and resource assignment

Just as meets are assigned times by assigning them, directly or indirectly, to cycle meets, so tasks
are assigned resources by assigning them, directly or indirecttydie tasks A cycle task

has typeKHE_TASK as usual, and it has many of the properties of ordinary tasks. But it is also
associated with a particular resource (and its domain is fixed to just that resource and cannot be
changed), and so by assigning a task to a cycle task one also assigns a resource.

The user cannot create cycle tasks directly. Instead, one cycle task is created automatically
for each resource whenever a solution is created. Thekfissihst anceResour ceCount tasks
of a solution are its cycle tasks, in the order the resources appear in the instance. Function

bool KheTaskl sCycl eTask(KHE_TASK t ask);
returns r ue whent ask is a cycle task. Function
KHE TASK KheSol nResour ceCycl eTask(KHE_SOLN sol n, KHE RESOURCE r);

returns the cycle task representimm sol n.
These functions move a task to a resource, following the familiar pattern:

bool KheTaskMoveResour ceCheck(KHE_TASK task, KHE RESOURCE r);
bool KheTaskMoveResour ce(KHE _TASK task, KHE _RESOURCE r);

They work by converting into a cycle task, via functiokheSol nResour ceCycl eTask above,
and callingkheTaskMbveCheck andKheTaskMve. Tasks may also be assigned to cycle tasks
directly, usingkheTaskMove and the rest.

The following functions are also offered:

bool KheTaskAssi gnResour ceCheck(KHE TASK task, KHE RESOURCE r);
bool KheTaskAssi gnResour ce(KHE TASK task, KHE RESOURCE r);

bool KheTaskUnAssi gnResour ceCheck(KHE TASK t ask);

bool KheTaskUnAssi gnResour ce(KHE_TASK t ask) ;

KHE_RESOURCE KheTaskAsst Resour ce(KHE_TASK t ask) ;

The first four are wrappers fatheTaskAssi gnCheck, KheTaskAssi gn, KheTaskUnAssi gnCheck,
andkheTaskUnAssi gn. KheTaskAsst Resour ce followsthe assignments obsk as far as possible.
If it arrives at a cycle task, it returns the resource represented by that task, else itKeturns

To find the tasks assigned a given resource, either directly or indirectly via other tasks, call

i nt KheResour ceAssi gnedTaskCount (KHE_SCLN sol n, KHE_RESOURCE r);
KHE_TASK KheResour ceAssi gnedTask(KHE_SOLN sol n, KHE_RESOURCE r, int i);

When aresourceis assigned to a task, the task and all tasks assigned to it, directly or indirectly,
go on the end of 's sequence. Whenis unassigned from a task, the task and all tasks assigned
to it, directly or indirectly, are removed, and the gaps are plugged by tasks taken from the end.
The sequence does not include cycle task.

In practice, tasks are of three kindsycle taskswhich represent resourcesgnfixed tasks
which require assignment to cycle tasks; imdd taskswhose assignments are fixed to unfixed

4.9. Tasks 83

tasks, relinquishing responsibility for assigning a resource to those tasks. Resource assignment
algorithms are concerned with assigning or reassigning unfixed tasks.

4.9.3. Task domains and bounds

Each task contains a resource group calledatmain retrievable by calling
KHE_RESOURCE _GROUP KheTaskDomai n(KHE_TASK t ask) ;

When a task is assigned a resource, that resource must be an element of its domain.

More precisely, the solution invariant says thask’s domain must be a superset of the
domain of the task it is assigned to, if any. So, given a chain of assignments beginrasg at
and ending at a cycle task, the domain a§k must be a superset of the domain of the cycle task.
Since the domain of a cycle task is a singleton set defining a resource, the resource assigned to
t ask by this chain of assignments liestinask’s domain.

Task domains cannot be set directly. Instedadk boundobjects influence them. Task
bounds work in the same way as meet bounds, except that the complications introduced by meet
splitting are absent.

To create a task bound object, call
KHE_TASK BOUND KheTaskBoundMake(KHE_SOLN sol n, KHE RESOURCE _GROUP rg);
To delete a task bound obiject, call

bool KheTaskBoundDel et eCheck(KHE_TASK BOUND tb);
bool KheTaskBoundDel et e(KHE_TASK _BOUND tb);

This includes deletingb from each task it is added to, and is permitted when all of those
deletions are permitted, accordingdweTaskDel et eTaskBoundCheck, defined below.

To retrieve the attributes defined when a task bound is created, call

KHE_SOLN KheTaskBoundSol n(KHE_TASK BOUND t b);
i nt KheTaskBoundSol nl ndex(KHE_TASK BOUND t b);
KHE_RESOURCE_GROUP KheTaskBoundResour ceGroup(KHE_TASK BOUND tb) ;

These are rarely accessed in practice.

A task may have any number of task bounds. Its domain is the intersection, over all its task
bounds b, of KheTaskBoundResour ceG oup(t b) , or the full set of resources of its type if none.
A task bound may be added to any number of tasks. To add a task bound, call

bool KheTaskAddTaskBoundCheck(KHE TASK task, KHE TASK BOUND th);
bool KheTaskAddTaskBound(KHE TASK task, KHE TASK BOUND tbh);

These follow the usual form, returningue when the addition is permitted (when the change
in t ask’s domain it causes does not violate the solution invariant), #it#TaskAddTaskBound
actually carrying out the addition in that case. To delete a task bound from a task, call

bool KheTaskDel et eTaskBoundCheck(KHE TASK task, KHE TASK BOUND tb);
bool KheTaskDel et eTaskBound(KHE TASK task, KHE TASK BOUND tb);

84 Chapter 4. Solutions

This too is not always permitted, because it may incréask’s domain, which may violate the
solution invariant with respect to the domains of tasks assigneasta

To visit the task bounds added to a given task, call

i nt KheTaskTaskBoundCount (KHE TASK t ask);
KHE_TASK BOUND KheTaskTaskBound(KHE_TASK task, int i);

as usual. To visit the tasks to which a given task bound has been added, call

i nt KheTaskBoundTaskCount (KHE_TASK BOUND t b);
KHE_TASK KheTaskBoundTask(KHE_TASK BOUND th, int i);

The relationship between tasks and task bounds is a many-to-many one.

Adding a task bound to a task has some cost in run time, but is fast enough to use within
solvers. The implementation parallels the one described previously for meet bounds.

WhenKheTaskMake makes a task derived from an event resource which has a preassigned
resource, it adds to the task a task bound whose resource group is the singleton resource group
containing that resource. No other special arrangements are made for tasks derived from
preassigned event resources.

4.10. Marks and paths

Suppose you want to make the best time assignment for a meet. You try each assignmentin turn,
remembering the best so far and its solution cost, then finish off by re-doing the best one.

Now suppose the alternative operations are more complicated. For example, they might
be Kempe meet moves (Section 10.2.2), each consisting of an unpredictable number of time
assignments. The same program structure works, but undoing one alternative is much more
complicated. Marks and paths solve these kinds of problems.

A markis like a waymark on a journey: it marks a particular point, or state, that a solution
has reached. Itis created and deleted by

KHE_MARK KheMar kBegi n(KHE_SQOLN sol n) ;
voi d KheMar kEnd(KHE_MARK mar k, bool undo);

These operations must be called in matching pairs: for each ¢éiétdr kBegi n there must be
one later call t&neMar kEnd with the same mark object. Between these two calls there may be
other calls tdkheMar kBegi n andkheMar kEnd, and those calls must occur in matching pairs.

KheMar KEnd deletes the mark created by the correspondimgvar kBegi n. If its undo
parameter isr ue, it also undoes all operations enl n since the correspondirkheMar kBegi n,
returning the solution to its state when that call was made. Another way to undo is

voi d KheMar kUndo(KHE_MARK mar k) ;

It undoes all operations osol n since the call td<heMar kBegi n which returnedrar k, only
without removingrar k. It can only be called when it would be legal to déieMar kEnd with the
same value ofrar k: whennar k is the mark returned most recently by a calkt@Mar kBegi n,
apart from marks already completedfieMar KEnd.

4.10. Marks and paths 85

When undoing by either method, the resulting value of the solution may differ from the
original in its naturally nondeterministic aspects, such as the set of unmatched demand monitors
(but not their number), and the order of elements in arrays representing sets (of meets, etc.). But
as a solution it will be the same as the original. KHE objects deleted while doing and re-created
while undoing are re-created with the same memory addresses as the originals.

At any time betweeitheMar kBegi n and its correspondingheMar kEnd, functions

KHE_SCLN KheMar kSol n(KHE_MARK mar k) ;
KHE_COST KheMar kSol nCost (KHE_MARK nark) ;

may be called to obtaimar k’s solution and the solution cost at the tirdeeMar kBegi n was
called. Exploring the result dfheMar kSol n will reveal the solution as it is now, not as it was
whenKheMar kBegi n was called.

All mark objects share accessto one sequence, stored in the solution object, of records of the
operations performed on the solution since the first cadhtdvar kBegi n whose corresponding
KheMar kEnd has not occurred yet. When undoing, these operations are undone in reverse order
and removed from the sequence. All changes to solutions, including changes to back pointers,
are recorded, except changes to visit numbers, since undoing them would be inappropriate. A
mark object holds a pointer to the solution object, its cost wkrehar kBegi n was called, an
index into the sequence saying where to stop undoing, and a sequence of paths, described next.

A pathis like the route between two waymarks. A path is created by calling
KHE_PATH KheMar kAddPat h(KHE_MARK mar k) ;

and represents the route from the staterwfk’s solution represented byar k to the state of

that solution at the momeitheMar kAddPat h is called. Concretely, a path holds a copy of the
shared sequence of operations, taken at the mokhehtr kAddPat h is called, from its mark’s

index to the end. As well as being returned, a path is stored in its mark and deleted by that mark’s
KheMar KEnd, if it has not been deleted before then. A path is meaningless after its mark ends.

In practice, this helper function may be more useful tkisevar kAddPat h:
KHE_PATH KheMar kAddBest Pat h(KHE_MARK mark, int Kk);

It is written using the more basic functions given below. Its behaviour is equivalent to calling
KheMar kAddPat h(mar k) , then sortingrar k’s paths into increasing cost order, then deleting paths
from the end as required to ensure that not more khaaths are kept. But rather than following
this description literally, it uses an optimized method that only ddiévar kAddPat h(mar k)

when the resulting path would be one of those kept; it returns the new path in that cadé,land
otherwise. For exampl&heMar kAddBest Pat h(mark, 1) saves only the best path, and only
creates a path when it would be a new best.

Any number of paths may be stored in a mark, and they may be visited using

i nt KheMar kPat hCount (KHE_MARK mar k) ;
KHE_PATH KheMar kPat h(KHE_MARK nmark, int i);

as usual, and sorted by calling

86 Chapter 4. Solutions

voi d KheMar kPat hSort (KHE_MARK mar K,
i nt(xconpar)(const void =, const void *));

whereconpar is a function suited to passingdeor t when sorting an array ¢fHE_PATH objects.
One such functiorkhePat hl ncr easi ngSol nCost Cnp, is provided, such that after calling

KheMar kPat hSor t (mar k, &KhePat hl ncr easi ngSol nCost Cnp) ;

the paths will be sorted into increasing solution cost order, so that the path with the smallest
solution cost comes first. The following operations on paths are also available:

KHE_SCLN KhePat hSol n(KHE_PATH pat h);
KHE_COST KhePat hSol nCost (KHE_PATH pat h) ;
KHE_MARK KhePat hMar k(KHE_PATH pat h);

voi d KhePat hDel et e(KHE_PATH pat h) ;

voi d KhePat hRedo(KHE_PATH pat h);

KhePat hSol n returnspat h’s solution, andkhePat hSol nCost returns the solution cost at
the moment the path was created KheMar kAddPat h. KhePat hMar k returnspat h’s mark.
KhePat hDel et e deletespath, including removing it from its mark.KheMar kEnd calls
KhePat hDel et e for each of its paths; once a mark is deleted, its paths have no meaning.

WhenkKhePat hRedo(pat h) is called, the solution must be in the state it was in wharm’s
mark was created. It redopst h, without deleting or otherwise disturbing its mark, so that the
state after it returnsis the state at the engledth. Thisisthe only way toredo a path, and because
it checks that it starts from the same state that the path started from originally, it guarantees that
the operations executed while redoing the path cannot fail. KHE objects created along the path
and deleted during the undo (which must have occurred in order to return the solution to its
original state) are re-created during the redo with the same memory addresses as the originals.

One application of marks and paths is the conversion of a sequence of operations into an
atomic sequengene which is either carried out completely or not at all:

mar k = KheMar kBegi n(sol n);
success = SoneSequenceC Operations(...);
KheMar KEnd(mar k, !success);

If the sequence of operations is successful, it remains in place; otherwise the unsuccessful
sequence, or whatever part if it was completed before failure occurred, is undone. Similarly,

mar k = KheMar kBegi n(sol n);
SoneSequenceO Qperations(...);
KheMar KEnd(mar k, KheSol nCost (sol n) >= KheMar kSol nCost (nmark));

keeps the sequence of operations if it reduces the cost of the solution, but not otherwise.

Another application is the coordination of complex searches, such as tree searches, which
try many alternatives and keep the best. Before the search begins, create a mark, and pass it
to the search function, so that whenever it finds a worthwhile state it can record it in the mark
by calling KheMar kAddPat h or KheMar kAddBest Pat h. (If the initial state is a valid solution,
one that the rest of the search is trying to improve on,kedMar kAddPat h immediately after

4.10. Marks and paths 87

KheMar kBegi n.) Within the search function, create other marks as required so that subtrees can
be undone by callingheMar kEnd(sub_nark, true). Atthe end,allworthwhile states are paths
in the original mark, where they can be examined, sorted, or whatever—Iike this, perhaps:

i f(KheMarkPat hCount (nark) > 0)
KhePat hRedo(KheMar kPat h(mark, 0));
KheMar KEnd(mar k, fal se);

when only the best path is kept. If it is safe to redo that path, there can be nothing to undo.

Marks and paths have been implemented carefully, and their running time is small. Indeed,
it is usually faster to use marks and undoing to return a solution to a previous state, than to
use operations opposite to the originals. This is bec#biskar kBegi n andKheMar kEnd call
KheSol nMat chi ngMar kBegi n andKheSol nMat chi ngMar kEnd (Section 7.2), and because there
is no need to check that an undo is safe, as there is when carrying out an opposite operation.

4.11. Placeholder and invalid solutions

A solution can be converted tgdaceholder solutioty calling
voi d KheSol nReduceToPl acehol der (KHE_SOLN sol n);

This deletes everything belawl n: all its meets, all its tasks, and so on. It cannot be undone. It
reclaims a great deal of memory, which is the point of it, but it makés unusable except that
the following functions remain available and return their previous values:

char xKheSol nDescri pti on(KHE_SOLN sol n);

voi d =KheSol nBack(KHE _SOLN sol n);

KHE_| NSTANCE KheSol nl nst ance(KHE_SOLN sol n);
KHE_SOLN_GROUP KheSol nSol nGr oup(KHE_SOLN sol n) ;
voi d *KheSol nl mpl (KHE_SOLN sol n);

i nt KheSol nDi versifier(KHE_SOLN sol n);

i nt KheSol nVi si t Num(KHE_SOLN sol n);

fl oat KheSol nTi meNow(KHE_SOLN sol n);

voi d KheSol nSet Ti meLimt (KHE_SCOLN soln, float limt_in_secs);
float KheSol nTi meLi m t (KHE_SCLN sol n);

bool KheSol nTi meLi m t Reached(KHE_SOLN sol n);
KHE COST KheSol nCost (KHE_SCLN sol n);

The functions defined below within this section also remain available. For example, placeholder
solutions may be used to build a table of solutions showing their costs; but they cannot be used
to find cost breakdowns by constraint type, or to print timetables, and so on.

To find out whether a solution is a placeholder, function
bool KheSol nl sPI acehol der (KHE_SOLN sol n);

may be called. In practice this will usually be clear anyway from the algorithmic context.

A placeholder solution can also be @walid solution meaning that it was converted to a
placeholder because it was invalid. In practice, this would only happen when reading a solution

88 Chapter 4. Solutions

from an archive (Section 2.3). Function
bool KheSol nl sl nval i d(KHE_SCLN sol n);
returng r ue if sol n isinvalid, and function
KM._ERROR KheSol nl nval i dErr or (KHE_SCLN sol n);

returns the first error that rendersd! n invalid, or NULL if sol n is not invalid. For type
KM._ERRCR, see Appendix A.4.2.

Function

voi d KheSol nReduceTol nval i d(KHE_SOLN sol n, KM._ERRCR ke) ;

may be called to convert an ordinary solution, or a non-invalid placeholder solution, into an
invalid solution whose error ise. This function is offered only for completeness: there seems
to be no reason for the user to ever call it.

4.12. The solution invariant

Here is the condition, called the solution invariant, that every solution always satisfies. The last
three rules relate to data types introduced in Chapter 5.

1. Themeetrule if meet is assigned toar get _neet at offsetof f set , then:

(@) The value obf f set is at least 0 and at most the durationtaf get _neet minus the
duration ofneet ;

(b) The time domain of ar get _neet , shifted rightof f set places, is a subset of the time
domain ofneet ;

2. Thetask rule if task is assigned ta arget_task, then the resource domain of
target _task is a subset of the resource domairt aék.

3. Thecycle rule the parent links of nodes may not form a cycle.

4. Thenoderule if meetneet is assigned to meeétr get _neet and liesin node, thenn has
a parent node anchr get _neet lies in that parent node.

5. Thelayer rule every node of a layer has the same parent node as the layer.

No sequence of operations can bring a solution to a state that violates this invariant.

Chapter 5. Extra Types for Solving

This chapter introduces four types of objects that help with solvimadeslayers zonesand
taskings They are an integral part of a solution, being copied when it is copied and deleted when
itisdeleted. Butthey are not part of the XML model, so their use is optional. Nodes and layersto-
gether define thiayer tree a data structure invented by the author [7]for use in time assignment.
Zones help to make time assignments regular, and taskings are used in resource assignment.

5.1. Layer trees

The layer tree is a data structure for organizing solutions during time assignment. It supports
hierarchical timetablingin which meets are timetabled together into small timetables called
tiles, the tiles are timetabled together, and so on until a complete timetable is produced. Layer
trees are recommended when solving general instances, since they gracefully handle awkward
cases, such as linked events whose durations differ.

Layer trees are made ofodes which form a tree (actually, a forest). Each node has an
optionalparent node The nodes with a given parent aredtsldren

Within each node lie any number of meets. Tiaale rule part of the solution invariant
(Section 4.12), imposes a structure on how the meets of nodes may be assigmsst: i
assigned tovar get _nmeet and lies in node, thenn has a parent node amdr get _neet liesin
that parent node. A layer tree usually has a single root node containing the cycle meets, called the
cycle node If there is a cycle node, the node rule guarantees that if every non-cycle meet lying
in a node is assigned to some meet, then every such meet is assigned a time.

A meet may lie in at most one node. When using layer trees, it is conventional for every
meet to lie in a node except when it has received an assignment that is considered to be final.
Omitting these finalized meets from nodes hides them from time assignment algorithms, which
typically access meets via nodes.

When a meet splits, it is replaced in its node (if any) by the two fragments. When two meets
merge, they must lie in the same node (or none), and they are replaced by the merged meet.

A layeris a subset of the children of some node with the property that none of the meetsin
the nodes of the layer may overlap in time. This could be for any reason, but it is usually because
their meets all share a preassigned resource which possesses a required avoid clashes constraint.
The property is not enforced by KHE; it is merely a convention.

Here are some examples of layer trees. The first has four nhdag,n,, andn,. Then,
share a layer and are children f so their meets must be assigned to meets aihd should
not overlap in time:

89

90 Chapter 5. Extra Types for Solving

The nodes are shown as rectangles. The horizontal direction represents time. Thahtre
a layer is indicated by placing them alongside each other, and that they are childxers of
indicated by placing them vertically belaW:

In the next example\l has five children, lying in two layer§n,, n,, n;} and{m,, m.}:

N
n n, N

m, m,

This could arise when one group of students attends tivile another group attends thg
Finally, here is an example where a node lies in two layers (but still has only one parent):

N
nm, n, ks

m, m;

The two layer§ nm, n,,n;} and{nm, m,, m;} both contain nodem,. This case arises naturally
when an event (or a set of linked events) is attended by two groups of students, so that their
timetables coincide at that event but may differ elsewhere.

The key operation in hierarchical timetabling is the assignment of the meets of all the
children of a node to the meets of the node, so that meets that share a layer do not overlap. One
way to construct a timetable is to build a single layer tree containing every meet, whose root node
contains the cycle meets, and then apply this operation at each node in turn, visiting the nodes in
postorder (that is, from the bottom up).

5.2. Nodes

To create a layer tree node, initially with no meets, no parent, and no children, call
KHE_NCODE KheNodeMake(KHE_SCLN sol n);

Its back pointer may be accessed by

voi d KheNodeSet Back(KHE_NCDE node, void *back);
voi d *»KheNodeBack(KHE_NODE node);

and its visit number by

voi d KheNodeSet Vi si t Nunm{ KHE_NCDE n, int nunj;
i nt KheNodeVi si t Num(KHE_NODE n) ;

bool KheNodeVi sited(KHE _NODE n, int slack);
voi d KheNodeVi sit (KHE_NODE n) ;

voi d KheNodeUnVi si t (KHE_NCDE n);

as usual, and its other attributes may be retrieved by calling

5.2. Nodes 91

KHE_SOLN KheNodeSol n(KHE_NCDE node) ;
i nt KheNodeSol nl ndex(KHE_NODE node) ;

FunctionkheNodeSol nl ndex returns thendex numbebof node, that is, the value of for which

KheSol nNode(sol n, i), defined in Section 4.2, returnsde. The index number may change
when nodes are deleted (what actually happens is that the hole left by the deletion of a node, if
not last, is plugged by the last node) so care is needed if node index numbers are stored. To visit
the nodes of a solution in increasing index number order, use funétiessl nNodeCount and

KheSol nNode from Section 4.2. To delete a node, call

bool KheNodeDel et eCheck(KHE_NODE node);
bool KheNodeDel et e(KHE_NODE node);

This deletes all parent-child links involvimgde, and deletes all meets fromode (but does not
delete them). Itis permitted only when no meets assignedde’'s meets lie in a node.
To make one node the parent of another, call

bool KheNodeAddPar ent Check(KHE_NCDE chi | d_node, KHE NODE parent node);
bool KheNodeAddPar ent (KHE_NCDE chi | d_node, KHE NCDE parent _node);

These abort ithi | d_node already has a parent; they retdiai se and do nothing when adding
the link would cause a cycle. To delete a parent-child link, call

bool KheNodeDel et ePar ent Check(KHE_NODE chi | d_node);
bool KheNodeDel et ePar ent (KHE_NODE chi | d_node);

Deletion is permitted only when none of the meetslufl d_node is assigned. The gap created
in the list of child nodes of the parent node by the deletiophdfl d_node is filled by shuffling
the following nodes down one place. To retrieve the parent of a node, call

KHE_NCDE KheNodePar ent (KHE_NODE node) ;

ThisreturndULL whennode has no parent. Children are added and deleted, obviously, by adding
and deleting parents. Functions

i nt KheNodeChi | dCount (KHE_NCDE node) ;
KHE NODE KheNodeChi | d(KHE_NCDE node, int i);

visit a node’s children in the usual way. There are also

bool KheNodel sDescendant (KHE_NODE node, KHE_NODE ancest or _node);
bool KheNodel sProper Descendant (KHE_NODE node, KHE_NODE ancest or _node);

KheNodel sDescendant returnst rue whennode is a descendant afncest or _node, possibly
ancest or _node itself; KheNodel sProper Descendant returnstrue when node is a proper
descendant oéncest or _node, that is, a descendant other tharcest or _node itself. They
work in the obvious way, searching upwards froode for ancest or _node.

Several helper functions for rearranging nodes appear in Section 9.5. They are often more
useful tharkheNodeAddPar ent andkheNodeDel et ePar ent . Some of them call

voi d KheNodeSwapChi | dNodesAndLayer s(KHE_NCDE nodel, KHE NCDE node2);

92 Chapter 5. Extra Types for Solving

This function makes all the child nodes and child layersafel into child nodes and child
layers ofnode2 and vice versa. The child nodes and layers are the exact same objects as before,
stored in the same order as before; only their parent node is changed. Any assigned meets lying
in child nodes of either node are unassigned (otherwise the node rule would be violated).

A meet may lie in at most one node, and functiteMeet Node (Section 4.8) returns the
node containing a given meet, if any. To add a meet to a node and delete it, the operations are

bool KheNodeAddMeet Check(KHE_NODE node, KHE_MEET neet);
bool KheNodeAddMeet (KHE_NODE node, KHE MEET neet);

bool KheNodeDel et eMeet Check(KHE_NODE node, KHE MEET neet);
bool KheNodeDel et eMeet (KHE_NCDE node, KHE MEET neet);

KheNodeAddMeet Check andKheNodeAddMeet abort if meet already lies in a node, and return
fal se if it is already assigned to a meet not in the parentafe. KheNodeDel et eMeet Check
andKheNodeDel et eMeet abort if neet does not lie imode, and returrf al se if a meet from a
child of node is assigned taeet . Functions

i nt KheNodeMeet Count (KHE_NODE node) ;
KHE MEET KheNodeMeet (KHE _NCDE node, int i);

visit the meets of a node in the usual way. The order that meets are stored in nodes and returned
by these functions is arbitrary, and the user can change it by calling

voi d KheNodeMeet Sort (KHE_NODE node,
i nt(*conpar)(const void *, const void *))

whereconpar is a comparison function suitable for passingi$ort. Two such comparison
functions are supplied. One sorts the meets into decreasing duration order:

i nt KheMeet Decr easi ngburati onCnp(const void *pl, const void *p2);
Here is the implementation:

i nt KheMeet Decr easi ngburati onCmp(const void *pl, const void *p2)
{
KHE_MEET neetl = x (KHE_MEET *) pl;
KHE_MEET neet2 = x (KHE_MEET *) p2;
i f(KheMeetDuration(neetl) != KheMeetDuration(nmeet2))
return KheMeet Duration(meet2) - KheMeetDuration(neetl);
el se
return KheMeet | ndex(neetl) - KheMeet | ndex(neet2);

}

Ties are broken by referring to the meet index. The other sorts meets by increasing value of the
index of the target meet, breaking ties by increasing value of the target offset:

i nt KheMeet | ncreasi ngAsst Cnp(const void *pl, const void *p2)

This brings together meets whose assignments place them adjacent in time. Unassigned meets
appear after assigned ones, but are not themselves sorted into any particular order.

5.2. Nodes 93

Unlike cycle meets, which are different behind the scenes from other meets, cycle nodes are
just ordinary nodes whose meets happen to be cycle meets. Accordingly, function

bool KheNodel sCycl eNode(KHE_NODE node) ;

merely returnsr ue if node contains at least one meet, and its first meet is a cycle meet.
The total duration, assigned duration, and demand of the meetsi®fare returned by
i nt KheNodeDur at i on(KHE_NODE node) ;

i nt KheNodeAssi gnedDur at i on(KHE_NODE node) ;
i nt KheNodeDemand(KHE_NCDE node) ;

The durationis kept up to date and stored in the nodéhalgodeDur at i on costs almost nothing.
The other two have to sum values stored in the meets, which is slower but still fast.
Following the pattern laid down in Section 1.3, function

bool KheNodeSi mi | ar (KHE_NODE nodel, KHE_NODE node2);

returnst r ue whennodel andnode2 are similar: when they contain similar events. The exact

rule is as follows. Ifnodel andnode?2 are the same node, they are similar. A nodsdsiissible

if all of its meets are derived from events, and for each event found among those meets, all of the
meets of that event lie in the node. Thus, an admissible node can be considered as a set of events.
Two distinct nodes are similar if they are admissible and each event in one can be matched up
with a similar event in the other. The definition of similarity for events is as in Section 3.6.2.

A similar property igegularity(Section 5.4). Two nodes are regular when they are the same
node or contain meets of equal durations and equal time domains. Function
bool KheNodeRegul ar (KHE_NODE nodel, KHE NODE node2, int *regular_count);

returng r ue whennodel andnode? are regular, antial se otherwise. Either way, it reordersthe

meets of both nodes so that corresponding meets have equal durations and equal time domains,
as far as possibley egul ar _count is the number of such pairs. ($Soue is returned when

xregul ar _count equals the number of meets in both nodes.)

Another function useful to solvers is

i nt KheNodeResour ceDur ati on(KHE_NCDE node, KHE_RESOURCE r);

This returns the total duration of meetswde and its descendants that contain a preassignment
of r. If a meet contains two such preassignments, its duration is only counted once.

To make a debug print afode onto filef p with a given verbosity and indent, call
voi d KheNodeDebug(KHE _NODE node, int verbosity, int indent, FILE *fp);

Verbosity 1 prints just the node index number, verbosity 2 adds the duration and meets, verbosity
3 adds the node’s children, and verbosity 4 adds its segments. There is also

voi d KheNodePri nt Ti met abl e(KHE_NODE node, int cell _width,
int indent, FILE *fp);

which prints a timetable showing the meetsnofle across the top, and the assigned meets

94 Chapter 5. Extra Types for Solving

lying in child nodes ofnode on subsequent lines, one line per child layerndfie has child
layers when it is called, those layers are used; otherkisdodeChi | dLayer sMake and
KheNodeChi | dLayer sDel et e are called to create layers at the start and delete them at the end.
Parametecel | _wi dt h is the width of each cell, in characters.

5.3. Layers

A layer (not to be confused with the resource layer of Section 3.5.4) is a subset of the child
nodes of some node. The intention is that the meets of a layer's nodes should not overlap in time,
although this condition is not enforced.

For a given node there are two sets of layers of interest: the npalkeat layerswhich are
the layersit liesin (it may lie in several), anddsild layerswhich are subsets of its child nodes.
A node is a member of all of its parent layers and none of its child layers.

To create a layer of children of a given parent node, initially with no nodes, call
KHE_LAYER KhelLayer Make(KHE_NODE par ent _node);
It has a back pointer and a visit number, accessed by

voi d KhelLayer Set Back(KHE_LAYER | ayer, void *back);
voi d »KhelLayer Back(KHE_LAYER | ayer);

voi d KhelLayer Set Vi si t Num{ KHE_LAYER | ayer, int nunj;
i nt KheLayer Vi si t Nun{ KHE_LAYER | ayer);

bool KhelLayer Vi sited(KHE LAYER | ayer, int slack);
voi d KheLayer Vi sit (KHE_LAYER | ayer);

voi d KheLayer UnVi sit (KHE_LAYER | ayer);

as usual. Functions

KHE NODE KheLayer Par ent Node(KHE_LAYER | ayer);
i nt KheLayer Par ent Nodel ndex(KHE_LAYER | ayer);

return the parent node oflayer and the value of i for which
KheNodeChi | dLayer (KheLayer Par ent Node(| ayer), i) returnd ayer. For convenience the
solution containing it can be found by

KHE_SCLN KheLayer Sol n(KHE_LAYER | ayer);
To delete the layer (but not its nodes), call
voi d KhelLayer Del et e(KHE_LAYER | ayer);
To add and delete a child nodemdr ent _node from a layer, call

voi d KheLayer AddChi | dNode(KHE_LAYER | ayer, KHE_NODE node);
voi d KhelLayer Del et eChi | dNode(KHE_LAYER | ayer, KHE _NCDE node);

KheLayer AddChi | dNode aborts if node’s parent node antayer’s parent node are different,

5.3. Layers 95

andKheLayer Del et eChi | dNode aborts ifnode does not lie il ayer ; otherwise, both succeed.
When a child node is deleted from a layer, all later nodes are shuffled up one place to fill the gap.
To visit the child nodes of a layer, call

i nt KheLayer Chi | dNodeCount (KHE_LAYER | ayer);
KHE_NCDE KheLayer Chi | dNode(KHE_LAYER | ayer, int i);

To sort the child nodes of a layer, call

voi d KhelLayer Chi | dNodesSort (KHE_LAYER | ayer,
i nt(*conpar)(const void *, const void *));
whereconpar is a function suited to passinggeort when it sorts an array of nodes.

Although much about layers is taken on trust,ldeer ruleis enforced: the parent node of
each node of a layer equals the parent node of the layer. When the parent of a node is changed,
the node is deleted from all the layersiit lies in.

The usual reason why nodes are placed into a layer together is because their meets have one
or more preassigned resources in common, and the resources have hard avoid clashes constraints,
preventing the meets from overlapping in time. To document this reason when it applies, a layer
contains a set of resources. To add and delete a resource from this set, the functions are

voi d KheLayer AddResour ce(KHE LAYER | ayer, KHE RESOURCE r);
voi d KhelLayer Del et eResour ce(KHE_LAYER | ayer, KHE RESOURCE r);

To visit this set of resources, the functions are

i nt KhelLayer Resour ceCount (KHE_LAYER | ayer);
KHE RESOURCE KhelLayer Resour ce(KHE _LAYER | ayer, int i);

There is no check that these resources are actually preassigned to the layer's meets.

WhenkheLayer Make(par ent _node) is called, the resulting layer becomestald layerof
parent _node. To visit the child layers of a given node, call

i nt KheNodeChi | dLayer Count (KHE_NCDE par ent _node) ;
KHE_LAYER KheNodeChi | dLayer (KHE_NODE parent _node, int i);

Also,

voi d KheNodeChi | dLayer sSort (KHE_NODE par ent _node,
i nt(*conpar)(const void *, const void *));

sorts the child layers agfar ent _node, usingconpar (a function suited to passing tgort) as
the comparison function, and

voi d KheNodeChi | dLayer sDel et e(KHE_NCDE par ent _node) ;

deletes all the child layers ofar ent _node, without deleting any nodes.

WhenKheLayer AddChi | dNode(| ayer, node) is called] ayer becomes @arent layerof
node. To visit a node’s parent layers, call

96 Chapter 5. Extra Types for Solving

i nt KheNodePar ent Layer Count (KHE_NODE chi | d_node);
KHE LAYER KheNodePar ent Layer (KHE NODE chil d_node, int i);

It is important to allow multiple parent layers in this way. For example, suppose there is one
layer for the meets attended by Year 12 students and another for the meets attended by Year
11 students. If one of the Year 11 events is linked to one of the Year 12 events by a link events
constraint, then there will usually be a single node whose subtree contains the meets of both
events, and this node will appear in both layers. Function

bool KheNodeSanePar ent Layer s(KHE_NODE nodel, KHE NODE node2);

returng r ue whennodel andnode2 have the same parent layers.
Functions

i nt KheLayer Durati on(KHE_LAYER | ayer);
i nt KheLayer Meet Count (KHE_LAYER | ayer);

return the total duration dfayer’s child nodes and the number of meets in them. These values
are stored in the layer and kept up to date as it changes, in the expectation that they will be used
when sorting layers. Similarly,

i nt KheLayer Assi gnedDur ati on(KHE_LAYER | ayer);
i nt KheLayer Denand(KHE_LAYER | ayer);

return the total duration of the assigned meetkayfer 's child nodes, and their total demand.
These values are calculated on demand, not stored, so the functions are a bit slower. There are
also set operations, implemented efficiently using bit vectors of node indexes:

bool KheLayer Equal (KHE_LAYER | ayer1, KHE_LAYER | ayer2);
bool KheLayer Subset (KHE_LAYER | ayer1, KHE_LAYER | ayer2);
bool KheLayer D sj oi nt (KHE_LAYER | ayer1, KHE_LAYER | ayer?2);
bool KheLayer Cont ai ns(KHE_LAYER | ayer, KHE_NODE node);

These returnir ue if | ayer 1 andl ayer 2 contain the same nodes, if every node afer 1 is a
node ofl ayer 2, if | ayer 1 andl ayer 2 contain no nodes in common, anchifde liesinl ayer .

Three functions offer more complex comparisons between layers:

bool KheLayer Same(KHE_LAYER | ayer1, KHE LAYER |ayer2, int xsame_count);
bool KheLayer Si m | ar (KHE_LAYER | ayer1, KHE_LAYER | ayer 2,

int *simlar_count);
bool KheLayer Regul ar (KHE_LAYER | ayer1, KHE_LAYER | ayer 2,

int *regular_count);

These work in the same general way: they reorder the nodes in the two layers so that the first
*same_count (etc.) nodes ihayer 1 are equivalent in some way to the corresponding nodes in

| ayer 2, returningt r ue if this accounts for all the nodes in both layerhelLayer Sane aligns

nodes that are the identical same ndadielayer Si mi | ar aligns nodes that are similar, according

to KheNodeSi m | ar from Section 5.2; andheLayer Regul ar aligns nodes that are regular,
according tckheNodeRegul ar from Section 5.2. If ayer 1 andl ayer 2 are the same layer, all

5.3. Layers 97

three functions returtir ue and set their count variable to the number of nodes in the layer. If
some nodes are shared between the two layers, these are always considered equivalent and they
always appear first after the layers are ordered.

These functions are implemented by calls to a more general function:

bool KheLayer Al'i gn(KHE_LAYER | ayer1, KHE_LAYER | ayer 2,
bool (*node_equiv)(KHE_NODE nodel, KHE_NCDE node2), int *count);

which does the same kind of alignment, first bringing identical nodes to the front of both layers,
then ordering the other nodes, callimgie_equi v to decide whether two nodes are equivalent.

Two layers that share a common parent node may be merged:
voi d KheLayer Mer ge(KHE_LAYER | ayer1l, KHE_LAYER | ayer2, KHE LAYER =*res);

The layers are deleted and replaced by layes, containing the nodes and resourcesayfer 1
andl ayer 2. It makes sense to merge, for example, when one layer is a subset of the other.

As an aid to debugging, KHE offers function
voi d KheLayer Debug(KHE _LAYER | ayer, int verbosity, int indent, FILE *fp);

It sends a debug print défayer tof p in the usual way.

5.4. Zones

A regulartimetable is one which has a pattern that makes it easy to understand. For example, if
a train comes every 15 minutes, then that is a regular train timetable.

In high school timetabling, two forms of regularity are importaMeet regularityis
achieved when meets which overlap in time have the same starting times and durations. It is
automatic when all meets have duration 1, but not otherwise. For example, if there are two meets
of duration 2, and one starts at the first time on Mondays while the second starts at the second
time, that is not regular. Most instances seem to have meets of durations 1 and 2, with just a few
meets of higher durations, and under those circumstances meet regularity is easy to achieve.

Node regularityis achieved when the meets of two nodes which overlap in time have the
same starting times and durations. Node regularity makes a timetable easy to understand, and
simplifies resource assignment by reducing the number of pairs of events whose meets overlap
in time, by ensuring that they generally either overlap completely or not at all.

There seems to be little value in measuring regularity formally; the important thing is to
encourage it. Thisis what zones are for.

For any noden, consider the set of all pairs of the forim, 0), wheremis a meet lying im,
ando s a legal offset oim: if mhas duration 19 may only be 0; ifm has duration 20 may be
0 or 1; and so on. Such a pair is callethaet-offset of .nFor example, iin contains the cycle
meets, then there is a meet-offsetdbr each time of the cycle.

A zoneof noden s a subset of the meet-offsetsiof A zone may be created by calling

KHE ZONE KheZoneMake(KHE_NCDE node) ;

98 Chapter 5. Extra Types for Solving

Initially it contains no meet-offsets. Functions

KHE_NODE KheZoneNode(KHE_ZONE zone);
i nt KheZoneNodel ndex(KHE_ZONE zone);

returnzone’s node, which never changes, and the valuie fufr whichKheNodeZone(node, i)
returnszone. When a zone is deleted, the indexes of other zones in its node may change. (As
usual, the gap left by the deletion of the zone is plugged by moving the last zone into it, unless
the deleted zone was the last zone.) For convenience there is also

KHE_SOLN KheZoneSol n(KHE_ZONE zone) ;

which returns the solution containiagne’s node.
A zone has has the usual back pointer and visit number:

voi d KheZoneSet Back(KHE_ZONE zone, void xback);
voi d *KheZoneBack(KHE_ZONE zone) ;

voi d KheZoneSet Vi si t Nun(KHE_ZONE zone, int num;
i nt KheZoneVi sit Num KHE_ZONE zone);

bool KheZoneVisited(KHE ZONE zone, int slack);
voi d KheZoneVi sit (KHE ZONE zone);

voi d KheZoneUnVi sit (KHE ZONE zone) ;

A zone may be deleted by calling
voi d KheZoneDel et e(KHE_ZONE zone);

and all the zones of a node may be deleted by calling
voi d KheNodeDel et eZones(KHE_NCDE node) ;

Each meet-offset may lie in at most one zone. To add a meet-offset to a zone, and to delete a
meet-offset from a zone, the operations are

voi d KheZoneAddMeet O f set (KHE_ZONE zone, KHE MEET neet, int offset);
voi d KheZoneDel et eMeet OF f set (KHE_ZONE zone, KHE_MEET neet, int offset);

To retrieve the zone of a meet-offset, call
KHE_ZONE KheMeet O f set Zone(KHE_MEET neet, int offset);

All these functions abort ibf f set is not a legal offset ofreet . KheZoneAddMeet Of f set also
aborts if the meet-offset already lies in a zonezare is NULL, or neet does not lie in a node,
or zone is not a zone of the node containimget . KheMeet O f set Zone returnsNULL if the
meet-offset does not lie in any zone, as is the case by default.

The zones of a node may be accessed from the node in the usual way:

i nt KheNodeZoneCount (KHE_NODE node);
KHE ZONE KheNodeZone(KHE _NCDE node, int i);

5.4. Zones 99

They are returned in an arbitrary order. The meet-offsets of a zone may be accessed by calling

int KheZoneMeet O f set Count (KHE_ZONE zone) ;
voi d KheZoneMeet Of f set (KHE_ZONE zone, int i, KHE_MEET *neet, int xoffset);

They are returned in an arbitrary order. Function
voi d KheZoneDebug(KHE ZONE zone, int verbosity, int indent, FILE *fp);

produces a debug print @abne ontof p in the usual way.

When a meet is deleted from a node or deleted altogether, all the meet-offsets involving that
meet are removed from their zones. When a meet is split or merged, the meet-offsets mutate in
the appropriate way, but preserve their zones. For example, when amoédtration 3 is split
into a meem, of duration 1 and a meet, of duration 2, the meet-offsets mutate as follows:

(m, 0)1 (m! 1)! (m! 2) - (rnl’ O)! (rnZ’ 0)! (rnZ’ 1)

Nothing constrains a zone to hold any particular meet-offsets, and indeed nothing requires zones
to be created at all. The basic operations of KHE are not restricted in any way by zones. By
convention only, some solvers use zones to encourage meet and node regularity. See Section 9.6
for solvers that install zones.

A useful helper function when using zones is

bool KheMeet MovePreservesZones(KHE_MEET neet1, int offsetl,
KHE_MEET neet2, int offset2, int durn);

Assuming that a meet of duratialar n may be assigned treet 1 atof f set 1 and toneet 2 at
of f set 2, this function returnsr ue if that meet would be assigned to the same zones either way.
It treats theNULL value returned at times $heMeet Of f set Zone as though it was a zone.

Another useful function is

i nt KheNodel rregul arity(KHE_NODE node);

It returns thdrregularity of node: 0 if none of its meets is assigned, else the number of distinct
zones ofn’s parent node that the assigned meets afe assigned to (countifgyLL as a zone),

minus one. For example, whets parent node has no zones, or all of the meetsarke assigned

to the same zone,’s irregularity is 0. One reasonable way to preserve existing regularity is

to measure the irregularity of the nodes affected by an operation beforehand, measure it again
afterwards, and undo the operation if irregularity has increased.

5.5. Taskings

A taskingis an object of typ&HE_TASKI NGrepresenting a set of tasks. A task may lie in at most

one tasking at any one time. Taskings make useful parameters to resource solvers: the solver’s
job can be to assign resources to the tasks of the tasking—any subset of the tasks of a solution.
For a deeper analysis of the role of taskings, see Section 11.3.2.

To create a tasking, initially with no tasks, call

100 Chapter 5. Extra Types for Solving

KHE_TASKI NG KheTaski ngMake(KHE_SOLN sol n, KHE_RESOURCE_TYPE rt);

Whenrt is nonNULL, it signifies that all the tasks of the tasking have that type; but it may also
beNULL, in which case there is no restriction. To retrieve the two attributes, call

KHE SOLN KheTaski ngSol n(KHE_TASKI NG t aski ng) ;
KHE RESOURCE_TYPE KheTaski ngResour ceType(KHE_TASKI NG t aski ng) ;

To visit the taskings of a solution, call functiokiseSol nTaski ngCount andKheSol nTaski ng
from Section 4.2. To delete a tasking, without deleting its tasks, call

voi d KheTaski ngDel et e(KHE_TASKI NG t aski ng) ;
To add a task to a tasking, and to delete it from a tasking, call

voi d KheTaski ngAddTask(KHE _TASKI NG t aski ng, KHE TASK t ask);
voi d KheTaski ngDel et eTask(KHE_TASKI NG t aski ng, KHE TASK task);

KheTaski ngAddTask aborts ift ask already lies in a tasking, or if the resource type aski ng
IS nonNULL andt ask does not have that resource typéeTaski ngDel et eTask aborts ift ask
does not lie irt aski ng. Functions

i nt KheTaski ngTaskCount (KHE_TASKI NG t aski ng) ;
KHE_TASK KheTaski ngTask(KHE_TASKI NG t asking, int i);

visit the tasks of a tasking in the usual way, and

voi d KheTaski ngDebug(KHE_TASKI NG t aski ng, int verbosity,
int indent, FILE *fp);

produces a debug print ofski ng.

Chapter 6. Solution Monitoring

As a solution changes, it is continuoustypnitoredby a hand-tuned constraint network.

6.1. Measuring cost

KHE measures the badness of a solution as a single integral value caltabstioer sometimes

the combined cosbecause it includes the cost of both hard and soft constraint deviations.
Storing costs in this way is convenient, because it allows costs to be assigned, asidgd using

+, and compared usingand so on in the usual way. The hard cost is shifted left by 32 bits, to
ensure that it is more significant than any reasonable total soft cost, then added to the soft cost.

The type of a combined costh8E_COST, a synonym for the standard C 64-bit integer type
int64_t (afact best forgotten). To find the current combined cost of a solution, call
KHE_COST KheSol nCost (KHE_SCOLN sol n);
This value is stored explicitly imol n, so this function takes virtually no time to execute. Call
KHE COST KheCost (int hard _cost, int soft _cost);

to create a combined cost. The two components of a combined cost may be accessed by

i nt KheHar dCost (KHE_COST combi ned_cost);
i nt KheSoft Cost (KHE_COST combi ned_cost);

There is also the constaiteCost Max, which returns the maximum value storable in a variable
of typeKHE_COST (a synonym fott NT64_MAX) and the function

i nt KheCost Cnp(KHE _COST cost1, KHE COST cost2);

which returns an nt which is less than, equal to, or greater than zero if the first argument is
respectively less than, equal to, or greater than the second, as needed when sorting items by cost.
The implementation does not make the mistake of merely subtramigi@ from cost 1; the

result then would be BHE_COST which will usually overflow the nt result.

The suggested way to display a combined cost is as a decimal number with the hard cost
before the decimal point and the soft cost after. Five decimal places are displayed, allowing for
soft costs up to 99999. Larger soft costs are displayed as 99999. To assist with this, function

doubl e KheCost Show(KHE_COST conbi ned_cost);

returns a value which, when printed withi nt f format" % 5f ", prints the cost in this format.

These functions assume that both components of the cost are non-negative. There is no
problem with negative combined costs in themselves, but when a hard and soft cost are combined
together, if either is negative they may be different if they are separated again.

101

102 Chapter 6. Solution Monitoring

6.2. Monitors

A monitoris an object, of typ&HE_MONI TOR, that monitors one part of a solution: typically, one
point of application of one constraint. It contains the usual back pointer and visit number:

voi d KheMoni t or Set Back(KHE_MONI TOR m voi d *back) ;
voi d *KheMbni t or Back(KHE_MONI TOR) ;

voi d KheMonitorSetVisitNum KHE MONITOR m int num;
i nt KheMonitorVisitNum KHE_ MONI TOR) ;

bool KheMonitorVisited(KHE MONNTOR m int slack);
void KheMonitorVisit(KHE MONITOR m);

voi d KheMonitorUnVisit(KHE MONI TOR m) ;

Operations

KHE_SCLN KheMoni t or Sol n(KHE_MONI TOR m) ;
i nt KheMoni t or Sol nl ndex(KHE_MONI TOR) ;
KHE_COST KheMoni t or Cost (KHE_MONI TOR) ;
KHE_COST KheMoni t or Lower Bound(KHE_MONI TOR m) ;

return the enclosing solution, the indexwh that solution, the cost of whatis monitoring (kept
up to date by KHE as the solution changes), and a constant lower boufietidmi t or Cost ,
which is usually O but will be non-zero when KHE can prove the lower bound easily.

TypeKHE_MONI TOR is the abstract supertype of many concrete subtypes, with these tags:

t ypedef enum {
KHE_ASSI GN_RESOURCE_MONI TOR_TAG
KHE_ASSI GN_TI ME_MONI TOR_TAG,
KHE_SPLI T_EVENTS_MONI TOR_TAG,
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR_TAG
KHE_PREFER_RESOURCES_MONI TOR_TAG,
KHE_PREFER TI MES_MONI TOR TAG
KHE_AVO D_SPLI T_ASSI GNVENTS_MONI TOR_TAG,
KHE_SPREAD EVENTS_MONI TOR_TAG,
KHE_LI NK_EVENTS_MONI TOR_TAG
KHE_ORDER_EVENTS_MONI TOR_TAG,
KHE_AVO D_CLASHES_MONI TOR_TAG
KHE_AVO D_UNAVAI LABLE _TI MES_MONI TOR_TAG
KHE_LI M T_|I DLE_TI MES_MONI TOR_TAG
KHE_CLUSTER_BUSY_TI MES_MONI TOR_TAG,
KHE_LIM T_BUSY_TI MES_MONI TOR_TAG,
KHE_LIM T_WORKLOAD MONI TOR _TAG,
KHE_TI METABLE_MONI TOR_TAG,
KHE_TI ME_GROUP_NONI TOR_TAG,
KHE_ORDI NARY_DEMAND_MONI TOR TAG
KHE_WORKLOAD DENMAND _MONI TOR_TAG,
KHE_EVENNESS_MONI TOR_TAG
KHE_GROUP_MONI TOR_TAG,
KHE_MONI TOR_TAG_COUNT

} KHE_MONI TOR_TAG

6.2. Monitors 103

Each monitor object contains a tag identifying its subtype, returned by
KHE_MONI TOR_TAG KheMbni t or Tag(KHE_MONI TOR) ;

Monitors of the first sixteen types monitor one point of application of one constraint; their cost
is the total cost of deviations at that point. They are described in detail in later sections of this
chapter. Monitors of the last six types (frafhE_TI METABLE_MONI TOR_TAG onwards) do not
monitor constraints. Timetable monitors hold the timetables of resources and events (Section
6.7); time group monitors (Section 6.8) are used within them. Ordinary and workload demand
monitors monitor matchings, and evenness monitors monitor evenness (Chapter 7). Group
monitors group together other monitors (Section 6.9). The last value is not a tag; it is a count of
the number of monitor types, allowing code of the form

for(tag = 0; tag < KHE_MONI TOR_TAG COUNT; tag++)
do something for nonitors of type tag ...

For those monitors that monitor a point of application of a constraint, functions

KHE_CONSTRAI NT KheMoni t or Const r ai nt (KHE_MONI TOR m) ;
char =KheMoni t or Appl i esToName(KHE_MONI TOR) ;

return the constraint and the name of the point of application (if this point is an event resource,
the name of the enclosing event is returned). For other monitors they ifLirn Each con-
straint monitor also has functions which return the specific constraint and point of application.

The cost of a monitor is a function of iteviation which is a non-negative integer. This
value can be obtained by calling

i nt KheMonitorDeviation(KHE_ MONI TOR) ;
char xKheMonitor Devi ati onDescri ption(KHE_ MONI TOR m) ;

These functions are intended for reporting, not solvikgeMoni t or Devi ati on returns the
deviation, anckheMoni t or Devi at i onDescri pti on returns a description of it: an expression,
augmented with brief text, showing how it is calculated. The result string is stored in heap
memory and may be freed by passing iM@ ee (Appendix A.1) after use.

To visit the full set of monitors monitoringpl n, call

i nt KheSol nhoni t or Count (KHE_SOLN sol n);
KHE_MONI TOR KheSol nMbni t or (KHE_SOLN sol n, int i);

Although KHE does not fully specify the order in which these monitors appear, it does guarantee
that the monitors which monitor constraints will appear together in the list in the order that their
constraints appear in the input. Itis best to select these monitors by testing whether the result of
KheMoni t or Const rai nt above is norNULL.

To debug a monitomwith a given verbosity and indent, calll
voi d KheMoni t or Debug(KHE_MONI TOR m int verbosity, int indent, FILE =fp);

The output starts with & A or D indicating whether the monitor is a group monitor, an attached
non-group monitor, or a detached non-group monitor. This is followed by the number of paths

104 Chapter 6. Solution Monitoring

up from the monitor to the solution (Section 6.9), usually 0 or 1. Then comes the monitor’s tag
and cost, then other information depending on the monitor type and verbosity. There is also

char xKheMoni t or TagShow KHE_MONI TOR _TAG t ag) ;
which returns a string representationt@f. In practice a more useful function is
char *KheMoni t or Label (KHE_MONI TOR m) ;

This returnskheMoni t or TagShow(KheMoni t or Tag(n)) if mis not a group monitor, andis
subtag label ifnis a group monitor.

6.3. Attaching, detaching, and provably zero fixed cost

For a monitor to be updated when the solution changes, there must be linkages from the appro-
priate points within the solution to the monitor. When these linkages are present, the monitor is
said to beattached to the solutigior justattached Monitors are attached to begin with, but they

can be detached at any time, and even reattached later, by calling

voi d KheMbni t or Det achFr ool n(KHE_MONI TOR) ;
voi d KheMonitorAttachToSol n(KHE_MONI TOR m) ;

Even when detached, a monitor remembers which parts of the solution it is supposed to monitor,
so the attach operation does not have to tell the monitor where to attach itself. To find out whether
a monitor is currently attached or detached, call

bool KheMonit or Att achedToSol n(KHE_MONI TOR) ;

These three operations apply to all kinds of monitors except the group monitors of Section 6.9,
to which the concept of attachment to the solution does not apply. Another function, highly
recommended for calling at the end of a solve, is

voi d KheSol nEnsureO fici al Cost (KHE_SCLN sol n);

This ensures that all constraint monitors are both attached to the solution and reporting their
cost to the solution, directly or indirectly via group monitors, and that all demand and evenness
monitors are detached from the solution, guaranteeing that the solution cost is the official cost.

While a monitor is detached, it receives no information about changes to the solution, and,
by definition, its cost is 0. Detaching a monitor may therefore change its cost. If there isa change
in cost, it is reported to the monitor’s parents (if it has any) as usual. Conversely, attaching a
monitor brings it up to date with the current state of the solution, which again may change its
cost; and again, if there is a change in cost it is reported to its parents (if it has any).

There are two main reasons for detaching a monitor. First, the user might make a deliberate
choice to ignore some constraints. For example, a solver that works in two phases, first finding
a solution that satisfies the hard constraints, and then attacking the soft ones, might detach the
monitors for the soft constraints during its first phase. An example of this kind of deliberate
choice is KHE’s matching feature (Chapter 7), which is implemented with monitors. Unlike
other monitors, matching monitors are detached initially. KHE makes this choice deliberately,

6.3. Attaching, detaching, and provably zero fixed cost 105

on the grounds that the cost of the matching is not officially part of the cost function.

The second reason for detaching a monitor is that it may be clear that its cost will be zero
for along time. In that case, detaching it means that no time is spent keeping it up to date, yet it
still reports the correct cost. For example, if the meets of one point of application of a link events
constraint are assigned to each other and those assignments will not be removed, then it is safe
to save time by detaching the corresponding monitor.

This reasoning was formerly embodied in a function cak&eMbni t or At t achCheck,
which assumed that certain elements of the solution were unlikely to change, and detached mon-
itors accordingly.KheMoni t or At t achCheck has been withdrawn; the equivalent functionality is
now obtained, more reliably, by calling tikex andUnFi x functions, as follows.

A monitor hagprovably zero fixed cost enough of the solution is currently fixed (by calls
to KheMeet Assi gnFi x andKheTaskAssi gnFi x) to allow KHE to prove that the monitor must
have cost 0 while those fixes remain. For each kind of monitor, either a specific definition of
when that kind of monitor has provably zero fixed cost is given below, or else that kind never has
provably zero fixed cost.

When one of the fixing operations just listed is called, after doing the actual fixing KHE
ensures that all monitors which did not have provably zero fixed cost before but now do are
detached. When one of the corresponding unfix operations is called, after doing the actual
unfixing it ensures that all monitors which had provably zero fixed cost before but now do not
are attached. So there is no risk that detaching these monitors could lead to cost errors; as soon
as unfixes make a non-zero cost possible, they are attached again.

6.4. Event monitors

An event monitomonitors one or more events. The set of monitors (attached or unattached)
which monitor a given event may be found by calling

i nt KheSol nEvent Moni t or Count (KHE_SOLN sol n, KHE_EVENT e);
KHE_MONI TOR KheSol nEvent Moni t or (KHE_SOLN sol n, KHE_EVENT e, int i);

These return the number of monitors that mongtam sol n, and the th of these, as usual. The
timetable monitor for everd (Section 6.7) is not visited by these functions; it may be retrieved
by callingkheEvent Ti met abl eMbni t or .

The total cost of these monitors measures how wdltimetabled. Functions

KHE_COST KheSol nEvent Cost (KHE_SOLN sol n, KHE EVENT e);
KHE_COST KheSol nEvent Moni t or Cost (KHE_SOLN sol n, KHE_EVENT e,
KHE_MONI TOR_TAG tag);

return the total cost of all the monitors monitoreygnd the total cost of all monitors monitoring
e of a specific type, defined byag. KheSol nEvent Moni t or Cost returns 0 whenag does not
specify one of the monitor types in the following subsections.

Each point of application of a spread events constraint or link events constraint is one event
group, and a monitor of these kinds appears on the list of monitors of each of the events in its
event group. Similarly, an order events monitor appears on the list of monitors of both of the
events it monitors. IKheSol nEvent Cost (sol n, e) is summed over all events, the cost of such

106 Chapter 6. Solution Monitoring

monitors is counted repeatedly, and the total may exceed the total cost of all event monitors.

The following subsections list the various kinds of event monitors and the details specific
to each of them. Their type&HE_SPLI T_EVENTS_MONI TOR and so on) may be obtained by
downcasting fronikHE_MONI TOR after checking the type tag.

6.4.1. Split events monitors

A split events monitor has tagHE_SPLI T_EVENTS_MONI TOR_TAG and monitors an event which
is one point of application of one split events constraint. Functions

KHE_SPLI T_EVENTS_CONSTRAI NT KheSpl it Event shoni t or Constrai nt (
KHE_SPLI T_EVENTS_MONI TOR m) ;
KHE_EVENT KheSpl it Event sMonitor Event (KHE_SPLI T_EVENTS_MONI TOR) ;

return the split events constraint and event being monitored, and

voi d KheSplitEvent shonitorLinits(KHE_SPLI T_EVENTS MONI TOR m
int *min_duration, int *max_duration, int *nin_anount, int *max_amount);

sets the four last variables to the corresponding attributes of the monitor’s constraint.

6.4.2. Distribute split events monitors

A distribute split events monitor has t&E_DI STRI BUTE_SPLI T_EVENTS_MONI TOR_TAG and
monitors one point of application of a distribute split events constraint (one event). Functions

KHE_DI STRI BUTE_SPLI T_EVENTS_CONSTRAI NT
KheDi st ri but eSplitEvent shonitorConstraint (
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR) ;
KHE_EVENT KheDi stri but eSplitEvent shonitorEvent (
KHE_DI STRI BUTE_SPLI T_EVENTS_MONI TOR) ;

return the constraint and event being monitored, and

voi d KheDi stributeEvent sMonitorLimts(
KHE DI STRI BUTE_SPLI T_EVENTS _MONI TOR m
int *xduration, int *mnimm int xmaxi mum int *nmeet_count);

sets+duration, *m ni num and *nmaxi num to the corresponding attributes of the monitor’s
constraint, and neet _count to the number of meets derived from the monitored event whose
duration is+dur ati on (or to the total number of meetssfiur at i on is KHE_ANY_DURATI ON).

6.4.3. Assign time monitors

An assign time monitor has ta@iE_ASSI GN_TI ME_MONI TOR_TAG and monitors an event which
IS one point of application of one assign time constraint. Functions

6.4. Event monitors 107

KHE_ASSI GN_TI ME_CONSTRAI NT KheAssi gnTi meMoni t or Constrai nt (
KHE_ASSI GN_TI ME_MONI TOR m) ;
KHE_EVENT KheAssi gnTi meMoni t or Event (KHE_ASSI GN_TI ME_ MONI TOR) ;

return the assign time constraint and event being monitored.

An assign time monitor does not have provably zero fixed cost Whelket Assi gnFi x
has been called for each of the meets derived from the event it monitors and the monitor has
cost 0 when attached, because the assignments may be to other meets whose assignments are not
fixed. The full assignment paths leading out of the monitored meets would need to be fixed; but
that would be awkward to implement and give no efficiency payoff, because then the monitor
would never be updated anyway. So an assign time monitor never has provably zero cost.

6.4.4. Prefer times monitors

A prefer times monitor has tagiE_PREFER_TI MES_MONI TOR_TAG and monitors an event which
Is one point of application of one prefer times constraint. Functions

KHE_PREFER_TI MES_CONSTRAI NT KhePr ef er Ti mesMoni t or Const rai nt (
KHE_PREFER_TI MES_MONI TOR) ;
KHE_EVENT KhePr ef er Ti mesMoni t or Event (KHE_PREFER_TI MES MONI TOR) ;

return the prefer times constraint and event being monitored.

6.4.5. Spread events monitors

A spread events monitor has t&§E_SPREAD EVENTS_MONI TOR_TAG and monitors an event
group which is one point of application of a spread events constraint. It appears in the list of
monitors of all the events in its event group. Functions

KHE_SPREAD EVENTS CONSTRAI NT KheSpr eadEvent shoni t or Const r ai nt (
KHE_SPREAD_EVENTS_MONI TOR) ;

KHE_EVENT _GROUP KheSpr eadEvent shoni t or Event Gr oup(
KHE_SPREAD_EVENTS_MONI TOR) ;

return the spread events constraint and event group being monitored. There are also

i nt KheSpreadEvent shboni t or Ti meG oupCount (KHE_SPREAD_EVENTS MONI TOR m) ;
voi d KheSpreadEvent shboni t or Ti meG oup(KHE_SPREAD EVENTS MONITOR m int i,
KHE_TI ME_GROUP «time_group, int *mninmum int *maxi num int *incidences);

The first returns the number of time groups (as in the corresponding constraint). The second
returns the 'th time group and the minimum and maximum number of meets wanted there
(again, as in the constraint), plus the current number of meets incident on that time group. If
i nci dences is less thamm ni numor more tharn maxi num a cost is incurred.

6.4.6. Link events monitors

A link events monitor has tagHE_LI NK_EVENTS_MONI TOR_TAG and monitors an event group
which is one point of application of a link events constraint. It appears in the list of monitors of

108 Chapter 6. Solution Monitoring

all the events in its event group. Functions

KHE_LI NK_EVENTS_CONSTRAI NT KheLi nkEvent sMoni t or Constrai nt (
KHE_LI NK_EVENTS_MONI TOR m) ;

KHE_EVENT _GROUP KheLi nkEvent shoni t or Event Gr oup(
KHE_LI NK_EVENTS_MONI TOR m) ;

return the link events constraint and event group being monitored.

A link events monitor has provably zero fixed cost when following to the end the chains of
fixed assignments out of the meets of the events it monitors produces the same result for each
event: the same offsets and durations within the same final mleddket Assi gnFi x and
KheMeet Assi gnUnFi x may detach and attach link events monitors.

Detaching link events monitors is the most important service provided by fixing. Keeping
these monitors up to date is slow, despite the author’s best efforts to optimize. When the times of
a set of linked events change together, an attached link events monitor receives the changes one
by one, forcing it through a tedious sequence of cost changes beginning and ending with 0.

6.4.7. Order events monitors

An order events monitor has ta$E_ORDER_EVENTS_MONI TOR_TAG and monitors two events
which together constitute one point of application of an order events constraint. It appears in
the list of monitors of both events. Functions

KHE_ORDER_EVENTS_CONSTRAI NT KheOr der Event shoni t or Const r ai nt (
KHE_ORDER_EVENTS_MONI TOR m) ;

KHE_EVENT KheOr der Event sMoni t or Fi r st Event (KHE_ORDER _EVENTS_MONI TOR nj ;

KHE_EVENT KheOr der Event sMboni t or SecondEvent (KHE_ORDER_EVENTS_MONI TOR m) ;

i nt KheOrder Event shoni t or M nSepar at i on(KHE_ORDER_EVENTS_MONI TOR m) ;

i nt KheOrder Event shoni t or MaxSepar at i on(KHE_ORDER_EVENTS_MONI TOR m) ;

return the constraint being monitored and the four attributes of the monitor: the two events
monitored, and the minimum and maximum separations.

An order events monitor has provably zero fixed cost when both of its events are broken
into a single meet, following to the end the chains of fixed assignments out of those two meets
leads to the same final meet, and their separation (the offset into the final meet of the second
meet, minus the duration plus offset into the final meet of the first meet) is in the legal range.
KheMeet Assi gnFi x andKheMeet Assi gnUnFi x may detach and attach order events monitors.

6.5. Event resource monitors

An event resource monitanonitors one or more event resources. The monitors (attached or
unattached) which monitor a given event resource may be visited by

i nt KheSol nEvent Resour ceMoni t or Count (KHE_SOLN sol n, KHE EVENT RESOURCE er);
KHE_MONI TOR KheSol nEvent Resour ceMoni t or (KHE_SCLN sol n,
KHE_EVENT_RESOURCE er, int i);

The total cost of these monitors measures how wreit timetabled. Functions

6.5. Event resource monitors 109

KHE_COST KheSol nEvent Resour ceCost (KHE_SOLN sol n, KHE_EVENT RESOURCE er);
KHE_COST KheSol nEvent Resour ceMbni t or Cost (KHE_SOLN sol n,
KHE_EVENT_RESOURCE er, KHE_MONI TOR_TAG tag);

return the total cost of all the monitors monitorieg, and the total cost of all monitors
monitoringer of a specific type, defined byag. KheSol nEvent Resour ceMboni t or Cost returns
0 whent ag does not specify one of the monitor types in the following subsections.

Each point of application of an avoid split assignments constraint is a whole set of event
resources, and a monitor of this kind is attached to each of the event resources in its set. If
KheSol nEvent Resour ceCost (sol n, er) is summed over all event resources, such a monitor
is counted repeatedly, so the total may exceed the total cost of all event resource monitors.

The following subsections list the various kinds of event resource monitors and the details

specific to each of them. Their typesHE_ASSI GN_RESOURCE_MONI TOR and so on) may be
obtained by downcasting frokHE_MONI TCR after checking the type tag.

6.5.1. Assign resource monitors

An assign resource monitor has tdgE_ASSI GN_RESOURCE_MONI TOR_TAG and monitors an
event resource which is one point of application of one assign resource constraint. Functions

KHE ASSI GN_RESOURCE CONSTRAI NT KheAssi gnResour ceMoni t or Const rai nt (
KHE_ASSI GN_RESOURCE_MONI TOR m) ;

KHE EVENT RESOURCE KheAssi gnResour ceMoni t or Event Resour ce(
KHE_ASSI GN_RESOURCE_MONI TOR m)

return the assign resource constraint and event resource being monitored. Like assign time
monitors, assign resource monitors are never considered to have provably zero fixed cost.

6.5.2. Prefer resources monitors

A prefer resources monitor has t&fE_PREFER_RESOURCES_MONI TOR_TAG and monitors an
event resource which is one point of application of one prefer resources constraint. Functions

KHE_PREFER_RESOURCES_CONSTRAI NT KhePr ef er Resour cesMni t or Constrai nt (
KHE_PREFER _RESOURCES_MONI TOR m) ;

KHE_EVENT_RESOURCE KhePr ef er Resour cesMoni t or Event Resour ce(
KHE_PREFER _RESOURCES_MONI TOR m) ;

return the prefer resources constraint and event resource being monitored.

6.5.3. Avoid split assignments monitors

The operations for building avoid split assignments constraints accept a role and event groups,
as required when reading XML. However, they also accept a set of event resources, and these
are what are actually used. Accordingly, one avoid split assignments monitor monitors a set of
event resources, and appears in the list of monitors of each of those event resources. Functions

110 Chapter 6. Solution Monitoring

KHE_AVO D_SPLI T_ASSI GNVENTS_CONSTRAI NT
KheAvoi dSpl i t Assi gnment sMoni t or Const rai nt (
KHE_AVO D_SPLI T_ASSI GNMENTS_MONI TOR m)

i nt KheAvoi dSpl it Assi gnment shoni t or Event Gr oupl ndex(
KHE_AVO D_SPLI T_ASSI GNMENTS_MONI TOR m)

return the constraint and the index of the set of event resources being monitored, suitable
for passing to functiongheAvoi dSpl it Assi gnnent sConst r ai nt Event Resour ceCount and
KheAvoi dSpl i t Assi gnnent sConst r ai nt Event Resour ce (Section 3.7.7). There are also

int KheAvoi dSpl it Assi gnnment sMoni t or Resour ceCount (
KHE_AVQO D_SPLI T_ASSI GNVENTS_MONI TOR) ;

KHE_RESOURCE KheAvoi dSpl it Assi gnment shMoni t or Resour ce(
KHE_AVO D _SPLI T_ASSI GNVENTS_MONITOR m int i);

int KheAvoi dSpl it Assi gnment sMoni t or Resour ceMul ti plicity(
KHE_AVQO D _SPLI T_ASSI GNVENTS_MONITOR m int i);

The first returns the number of distinct resources currently assigned to tasks monitoreld by
mis a defect this number will be at least 2. The second and third retuirtiteé these distinct
resources (in an arbitrary order) and the number of tasks monitoreddoyhich that resource
Is currently assigned. The monitor does not record which tasks those are.

An avoid split assignments monitor has provably zero fixed cost when the paths of fixed
assignments leading out of the tasks it monitors have the same endigaméskAssi gnFi x
andKheTaskAssi gnUnFi x may detach and attach avoid split assignments monitors. Similarly
to link events monitors, the efficiency payoff is significant.

6.6. Resource monitors

A resource monitomonitors a resource. The set of monitors (attached or unattached) which
monitor a given resource may be visited by calling

i nt KheSol nResour ceMbni t or Count (KHE_SCLN sol n, KHE RESOURCE r);
KHE_MONI TOR KheSol nResour ceMboni t or (KHE_SCLN sol n, KHE_RESCURCE r, int i);

The total cost of these monitors measures how waltimetabled. Functions

KHE_COST KheSol nResour ceCost (KHE_SOLN sol n, KHE_RESOURCE r);
KHE_COST KheSol nResour ceMoni t or Cost (KHE_SCOLN sol n, KHE_RESOURCE r,
KHE_MONI TOR_TAG tag);

return the total cost of all the monitors monitoringaind the total cost of all monitors monitoring
r of a specific type, defined hyag. KheSol nResour ceMoni t or Cost returns O wherag does
not specify one of the monitor types in the following subsections.

The following subsections list the kinds of resource monitors and their features. Their types
(KHE_AVO D_CLASHES_MONI TOR etc.) may be obtained by downcasting fr&RE_MONI TOR after
checking the type tag. Monitors of typ&lE_WORKLOAD_DEMAND_MONI TCR, defined in Section
7.4, are also visited bykheSol nResour ceMbni t or Count and KheSol nResour ceNbni t or .
However, the timetable monitor for a resource is not visited by these functions; as explained in

6.6. Resource monitors 111

Section 6.7, it is retrieved by callirpeResour ceTi net abl eMoni t or .

6.6.1. Avoid clashes monitors

An avoid clashes monitor has t&gE_AvO D_CLASHES_MONI TOR_TAG and monitors a resource
which is one point of application of one avoid clashes constraint. Functions

KHE_AVO D_CLASHES CONSTRAI NT KheAvoi dC ashesMoni t or Const r ai nt (
KHE_AVO D _CLASHES MONI TOR m) ;

KHE RESOURCE KheAvoi dCl ashesMbni t or Resour ce(
KHE_AVO D CLASHES MONI TOR m) ;

return the avoid clashes constraint and resource being monitored.

An avoid clashes monitanmay have non-zerisheMoni t or Lower Bound(n) . Lett be the
total duration of the events to whictis resource is preassigned which either have preassigned
times or are subject to an assign time constraint of weight greatemthaveight. Then ift
exceeds the number of times in the cycle, the excess is a lower bound on the number of defects
that m must have in any reasonable solution (one in which violationsrafe preferred to
violations of the more expensive assign time constraints). Converting this number of defectsinto
a cost usingris cost function in the usual way gives the lower bound.

6.6.2. Avoid unavailable times monitors

This monitor has tagfHE_AVO D_UNAVAI LABLE_TI MES_MONI TOR_TAG and monitors a resource
which is one point of application of one avoid unavailable times constraint. Functions

KHE_AVA D_UNAVAI LABLE_TI MES_CONSTRAI NT
KheAvoi dUnavai | abl eTi mesMoni t or Const rai nt (
KHE_AVO D_UNAVAI LABLE TI MES_ MONI TOR m) ;

KHE RESOURCE KheAvoi dUnavai | abl eTi mesMoni t or Resour ce(
KHE_AVO D_UNAVAI LABLE TI MES_MONI TOR m) ;

return the avoid unavailable times constraint and resource being monitored.

An avoid unavailable times monitan may have non-zer&heMoni t or Lower Bound() .
Supposers resource is subject to an avoid clashes constraint of weight greaterishaeight.
Lett, be the total duration of the events to whigh resource is preassigned which either have
preassigned times or are subject to an assign time constraint of weight greates tvaight.
Lett, be the number of times to be avoided according t®hen ift, + t, exceeds the number of
times in the cycle, the excess is a lower bound on the number of defectsthet have in any
reasonable solution (one in which every meet is assigned a time, and violatroassgreferred
to violations of the more expensive assign time and avoid clashes constraints). Converting this
number of defects into a cost usimig cost function in the usual way gives the lower bound.

6.6.3. Limit idle times monitors

A limit idle times monitor has tagHE_LI M T_I DLE_TI MES_MONI TOR_TAG and monitors a
resource which is one point of application of one limit idle times constraint. Functions

112 Chapter 6. Solution Monitoring

KHE LIM T I DLE TI MES CONSTRAI NT KheLi mt1dl eTi mesMonitor Constraint (
KHE_LIM T_I DLE_TI MES_MONI TOR m) ;

KHE_RESOURCE KheLim t1dl eTi meshonit or Resour ce(
KHE_LIM T_I DLE_TI MES_MONI TOR) ;

return the limit idle times constraint and resource being monitored, and

int KheLimtldleTi meshonitorTi meG oupMonitor Count (
KHE_LIM T_I DLE_TI MES_MONI TOR M) ;

KHE Tl ME_GROUP_MONI TOR KheLi m t1dl eTi neshoni t or Ti meG oupMoni t or (
KHE LIMT_IDLE TIMES MONNTOR m int i);

visit the time group monitors (Section 6.8) tmamonitors, one for each time group in the limit
idle times constraint. These can be used to find out which time groups contain idle times.

6.6.4. Cluster busy times monitors

A cluster busy times monitor has t&gE_CLUSTER BUSY_TI MES_MONI TOR_TAG and monitors a
resource which is one point of application of one cluster busy times constraint. Functions

KHE_CLUSTER_BUSY_TI MES_CONSTRAI NT KheC ust er BusyTi nesMoni t or Const r ai nt (
KHE_CLUSTER _BUSY_TI MES_MONI TOR) ;

KHE_RESOURCE Khed ust er BusyTi mesMoni t or Resour ce(
KHE_CLUSTER_BUSY_TI MES_MONI TOR) ;

return the cluster busy times constraint and resource being monitored. Function

voi d Khed ust er BusyTi meshbni t or BusyG oupCount (
KHE_CLUSTER BUSY_TI MES_MONI TOR m
int *busy_group_count, int *mininum int *maxinmn;

setstbusy_group_count to the number of busy time groups, afd ni rumand*maxi numto
theM ni numandMaxi numattributes of the cluster busy times constraintmHas non-zero cost,
thenxbusy_group_count < *m ni numor*busy_group_count > *maxi num Functions

i nt KheC ust er BusyTi nesMoni t or Ti meG oupMoni t or Count (
KHE_CLUSTER BUSY_TI MES_ MONI TOR) ;

KHE_TI ME_GROUP_MONI TOR Khed ust er BusyTi meshbni t or Ti neG ouphbni t or (
KHE_CLUSTER BUSY TIMES MONNTOR m int i);

visit the time group monitors (Section 6.8) thanonitors, one for each time group in the cluster
busy times constraint. These can be used to find out which time groups are busy.
6.6.5. Limit busy times monitors

A limit busy times monitor has tagHE_LI M T_BUSY_TI MES_MONI TOR and monitors a resource
which is one point of application of one limit busy times constraint. Functions

6.6. Resource monitors 113

KHE LIM T _BUSY_TI MES _CONSTRAI NT KhelLi mi t BusyTi mesMoni t or Const rai nt (
KHE_LIM T_BUSY_TI MES_ MONI TOR n) ;

KHE_RESOURCE KheLi mi t BusyTi mesMbni t or Resour ce(
KHE_LIM T_BUSY_TI MES_ MONI TOR n) ;

return the limit busy times constraint and resource being monitored. Functions

i nt KheLi m t BusyTi meshoni t or Def ecti veTi meG oupCount (
KHE_LIM T_BUSY_TIMES MONITOR) ;

voi d KheLi mi t BusyTi mesMoni t or Def ecti veTi neG oup(
KHE LIM T _BUSY TIMES MONNTOR m int i, KHE TIME_GROUP *tg,
int *busy_count, int *mininum int *maximn;

visit the time groups monitored lmythat are currently defective, in unspecified order. For éach
*t g is set to one defective time growbusy_count is set to the number of timeds resource is
busy during:t g, and+m ni numand+ maxi numare set to the minimum and maximum values from
the constraint; so either the resource is underloaded duringnd+busy_count < *ni ni mum

or the resource is overloaded durirtgy and+busy_count > *maxi num

Limit busy times monitors containeei | i ng attribute, set and retrieved by

voi d KheLi m t BusyTi mesMni t or Set Cei | i ng(KHE_LI M T_BUSY_TI MES_MONI TOR m
int ceiling);
i nt KheLi m t BusyTi meshoni torCeiling(KHE_LIM T_BUSY_TI MES_ MONI TOR) ;

Whenbusy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 12.7.2. The default valu=eofi ng is | NT_MAX, which
effectively turnsit off. Ifmis attached whekheLi m t BusyTi mesMoni t or Set Cei | i ng is called,

it will be detached and reattached by the call.

A limit busy times monitommay have non-zergheMoni t or Lower Bound(m) . Supposeis
resource is subject to an avoid clashes constraint of weight greaterishvagight. Lett, be the
total duration of the events to whictis resource is preassigned which either have preassigned
times or are subject to an assign times constraint of weight greaterithasight. Lett, be the
number of times in the cycle minus the number of timesgsiconstraint’'s domain. Then at least
t, — t, of the times of the events preassignedigsresource must occur in time groups limited by
m If this exceeds the number of time groupsgisconstraint times it8hxi numattribute, then the
excess, converted into a cost usmigcost function in the usual way, gives the lower bound.

6.6.6. Limit workload monitors

A limit workload monitor has tagcHE_LI M T_WORKLCAD_MONI TOR and monitors a resource
which is one point of application of one limit workload constraint. Functions

KHE LIM T_WORKLQAD CONSTRAI NT KheLi mi t Wor kl oadMoni t or Const rai nt (
KHE LIM T_WORKLOAD MONI TOR) ;

KHE_RESOURCE KheLi m t Wor kIl oadMbni t or Resour ce(
KHE LIM T_WORKLOAD MONI TOR) ;

fl oat KheLi m t Wor kl oadMoni t or Wor kl oad(KHE_LI M T_WORKLOAD MONI TOR nj ;

114 Chapter 6. Solution Monitoring

return the limit workload constraint, the monitored resource, and its current workload; and

voi d KheLi mi t Wor kl oadNMoni t or Wor kl oadAndLi mi t s(
KHE LIM T _WORKLOAD MONI TOR m fl oat =worKkl oad,
int *minimum int *maxinmn;

also returns the workload, plus the minimum and maximum values from the constraint.
Limit workload monitors contain aei | i ng attribute, set and retrieved by

voi d KheLi mi t Wor kl oadMoni t or Set Cei | i ng(KHE_LIM T_WORKLOAD MONI TOR m
int ceiling);
i nt KheLi m t Wor kl oadMoni tor Cei li ng(KHE_LIM T_WORKLOAD MONI TOR) ;

Whenbusy_count > ceiling, the usual formula is overridden: the deviation is 0. For why
this might be useful, consult Section 12.7.2. The default valueeofi ng is | NT_MAX, which
effectively turns it off. Ifmis attached whekheLi mi t Wr k| oadMoni t or Set Cei | i ng is called,

it will be detached and reattached by the call.

A limit workload monitormmay have non-zerheMoni t or Lower Bound(m . Add up the
workloads of the tasks to whigtis resource is preassigned. If this exceeds the maximum of the
corresponding limit workload constraint, converting the excess into a costrdsicmgst function
in the usual way gives the lower bound.

6.7. Timetable monitors

A timetableis a record of what is going on at each time. As part of monitoring cost, KHE
monitors the timetable of each resource and each event. Function

KHE_TI METABLE_MONI TOR KheResour ceTi net abl eMoni t or (KHE_SOLN sol n,
KHE_RESOURCE r);

returns the timetable monitor of resourcexnd

KHE_TI METABLE_MONI TOR KheEvent Ti et abl eMoni t or (KHE_SOLN sol n,
KHE_EVENT e);

returns the timetable monitor of evesit Type KHE_TI METABLE_MONI TR is a subtype of type
KHE_MONI TOR with tag KHE_TI METABLE_MONI TOR TAG. The cost of a timetable monitor is
always 0, so it never appears in any list of defects.

When a timetable monitor is attached, a particular set of meetsis known to it at any moment.
For a resource timetable monitor it is the set of meets that are assigned a time and the resource.
For an event timetable monitor it is the set of meets derived from the event that are assigned a
time. The monitor offers these operations, which report which meets are running at each time:

i nt KheTi net abl eMoni t or Ti meMeet Count (KHE_TI METABLE MONI TOR t m
KHE_TI ME tine);

KHE_MEET KheTi et abl eMoni t or Ti meMeet (KHE_TI METABLE_MONI TOR t m
KHE TIME time, int i);

KheTi net abl eMoni t or Ti meMeet Count returns the number of known meets running ate,

6.7. Timetable monitors 115

andKheTi net abl eMbni t or Ti meMeet returns the th of these meets. Closely related to them is

bool KheTi met abl eMoni t or Ti neAvai | abl e(KHE_TI METABLE_MONI TOR t m
KHE_MEET meet, KHE_TIME tine);

which returng r ue if moving meet within t m or adding it ta m so that its starting time is ne,
would neither placeeet partly off the end of the timetable nor cause clashes.

A timetable monitor offers no operations which report its set of meets directly. For event
timetables one can use functiokiseEvent Meet Count and KheEvent Meet from Section 4.2
to obtain the meets derived from a particular event; the timetabled meets are just those with
an assigned time. For resource timetables one cakheResour ceAssi gnedTaskCount and
KheResour ceAssi gnedTask from Section 4.9.1to obtain all the tasks assigned the resource; the
timetabled ones are just those whose enclosing meet has an assigned time.

The conditionKheTi net abl eMoni t or Ti neMeet Count (tm tinme) >= 2 is true at each
time whent mhas a clash. To find out quickly which times these are, use

i nt KheTi met abl eMoni t or G ashi ngTi neCount (KHE_TI METABLE MONITOR tn) ;
KHE_TI ME KheTi met abl eMoni t or G ashi ngTi ne(KHE_TI METABLE MONITOR tm int i);

They return all times such thatmhas a clash at that time, not in chronological order.

As usual, timetable monitors are created K Sol nMake and exist for as long as the
solution does. There is one for each resource, and one for each event. Unlike other monitors,
however, timetable monitors are not attached initially. It is possible for the timetable returned by
KheResour ceTi net abl eMoni t or or KheEvent Ti met abl eMbni t or to be unattached and so not
up to date (it will be empty in that case). It can be brought up to date by attachingit.

Link events monitors (but not spread events monitors) depend on event timetable monitors.
All resource monitors except limit workload monitors depend on resource timetable monitors.
When a monitor is attached, any unattached timetable monitor(s) it depends on are also attached.
When the last monitor that depends on some timetable monitor is detached, that timetable
monitor is detached. Thus, unless the user chooses to attach a timetable monitor directly,
timetable monitors are attached only as needed by other monitors. Detaching a timetable monitor
causes KHE to abort unless no attached monitors depend on it.

Although it would make sense to treat a timetable monitor as a group monitor, that option
is not offered. The user who wants all the problems associated with a single resource or event to
be channelled through a single monitor must create a group monitor, separate from the timetable
monitor, and add the appropriate monitors to it in the usual way.

Timetable monitors may be debugged by calkhghbni t or Debug as usual. And

voi d KheTi met abl eMoni t or Print Ti met abl e(KHE_TI METABLE_MONI TOR t m
int cell_width, int indent, FILE *fp);

prints a conventional tabular timetable, usibays and possiblyéeks time groups from the
instance to determine its shape. Paramater_wi dt h is the width of each cell, in characters.

116 Chapter 6. Solution Monitoring

6.8. Time group monitors

A time groupmonitor is a monitor associated with one timetable monitor. It monitors what is
happening at the times of its time group within the timetable; specifically, it keeps track of how
many of the times of the time group are busy in that timetable (occupied by at least one meet). It
also keeps track of how many idle times the time group contains, but only if there is a limit idle
times monitor in the vicinity that needs to know.

Time group monitors are created and attached by KHE as required, and it is best not to
meddle with that. However, there is no problem with retrieving information from them:

KHE_TI METABLE_MONI TOR KheTi meG oupMbni t or Ti et abl eMoni t or (

KHE_TI ME_GROUP_NMONI TOR 1) ;
KHE_TI ME_GROUP KheTi meG ouphoni t or Ti meG oup(KHE_TI ME_GROUP_MONI TOR) ;
i nt KheTi meG oupMbni t or BusyCount (KHE_TI ME_GROUP_MONI TOR) ;

These returmis associated timetable monitor, the time group thatonitors, and the number of
busy times in that time group.

When a limit idle times monitor is attached which monitogsis time group withint gnis
timetable monitor, two other functions related to idle times calculations may be called:

i nt KheTi meG ouphbni torldl eCount (KHE_TI ME_GROUP_MONI TOR 1) ;
voi d KheTi meG oupMoni t or Fi r st AndLast BusyTi mes(
KHE_TI ME_GROUP_MONI TOR tgm KHE_TIME times[2], int *count);

The first returns the number of idle times. The second places the first and last busy times into
times, and setgcount tothe number of times it placed there. If there are no busy tincesnt

is O; if there is one busy timegount is 1; elsexcount is 2. This specification does not refer to

idle times, but nevertheless the function will abort if there is no limit idle times monitor nearby.

6.9. Group monitors

Sometimes the cost ofsainglemonitor is needed: for example, when reporting problems to the
user. And the total cost @ll monitors is always needed, since that is the cost of the solution.

Sometimes something in between these two extremes is needed: the cost of a set of related
monitors. To support this, the monitors of a solution are organized into a directed acyclic graph,
or dagfor short, of arbitrary depth. Each monitor reports its cost to its parent monitors. The dag
Is often a tree, in which case the picture looks like this:

6.9. Group monitors

Soln

-

™~

117

Group Group

monitor monitor
Non-group Non-group Non-group
monitor monitor monitor
/SN /SN /1N
Solution

The leaves are theon-group monitorghe various monitors described previously which monitor
the solution directly. The internal nodes are caligdup monitorsbecause they monitor a set
of monitors (their children). The cost of a group monitor is the sum of the costs of its children.

The solution object itself is a group monitor (initially, the only one). It supports all the
group monitor operations, plus the many other operations described earlier.

Group monitors have type€HE_ GROUP_MONI TOR, a concrete subtype ¢HE_MONI TCR, like
KHE_ASSI GN_TI ME_MONI TCR etc. KHE_GROUP_MONI TOR is a supertype ofHE_SOLN, so upcast

(KHE_GROUP_MONI TOR) sol n

is safe, although often unnecessary, since many operations olHizp@R0UP_MONI TOR have
KHE_SOLNversions. For example, sin€dE_GROUP_MONI TR is itself a subtype ofHE_MONI TOR,
the total cost of all monitors could be found by calling

KheMoni t or Cost ((KHE_MONI TOR) sol n)

but of course the equivalelHE_SOLN version KheSol nCost , is easier to use.

When the solution changes at some point, the change is reported to the non-group monitors
that monitor that point. Each updates its cost and reports any change to its parents, which update
their cost and report to their parents, and so on until there are no parents. The dag usually has
a single root, the solution object itself, but it does not have to be that way, because the links that
join non-group and group monitors to their parent monitors can be added and deleted at will.

6.9.1. Basic operations on group monitors

Unlike other types of monitors, group monitors other than the solution object can be freely
created and deleted. Function

KHE GROUP_MONI TOR KheGr oupMoni t or Make(KHE_SCLN sol n,
char *sub_tag | abel)

int sub_tag,

creates a new group monitor with no parents and no children. It is passed the solution as a
parameter, and it remembers it, but it is not made a child of it. Functions

118 Chapter 6. Solution Monitoring

i nt KheG oupMbni t or SubTag(KHE_GROUP_NMONI TOR gm) ;
char *KheG oupMoni t or SubTagLabel (KHE_GROUP_MONI TOR gm) ;

return thesub_t ag andsub_t ag_| abel attributes ofym These are used to distinguish kinds of

group monitors. Ifsub_t ag_| abel is nonNULL, it is printed when debugging. The values of

these attributes in solution objects afleand" Sol n". The term ‘sub-tag’is used because group
monitors already have a tag attribute, whose vallélis GROUP_MONI TOR_TAG.

A group monitor other than the solution object may be deleted by calling
voi d KheG ouphoni t or Del et e(KHE_GROUP_MONI TOR gm) ;

Its children will no longer have it as a parent, and its parents will no longer have it as a child. For
each parent ofm the hole in the parent’s list of child monitors is plugged by moving the last
child monitor tognis position. For each child afm the hole in the child’s list of parent monitors

Is plugged by moving the last parent monitogtds position.

Every group monitor can have any number of child monitors, and every monitor (group or
non-group) can have any number of parent monitors. Even the solution object can have parents,
allowing monitoring of the total cost of a set of solutions. The operations for adding children to
a group monitor and removing them are

voi d KheG oupMoni t or AddChi | dvoni t or (KHE_GROUP_MONI TOR gm KHE_MONI TOR) ;
voi d KheG oupMoni t or Del et eChi | dMoni t or (KHE_GROUP_MONI TOR gm KHE _MONI TOR m) ;

Heremcould be a non-group monitor or a group monitireG oupMoni t or AddChi | d\Voni t or
makesna child ofgm andgma parent ofm It aborts if this would create a cycle in the dag (only
possible whemis a group monitor)KheG oupMoni t or Del et eChi | d\bni t or removesnfrom

gm leavingmwith one less parent arginwith one less child. The resulting holes are plugged as
described above for deleting group monitors. It abortsigf not a child ofgm There is also

bool KheG oupMoni t or HasChi | dvoni t or (KHE_GROUP_MONI TOR gm KHE_MONI TOR) ;
which returng r ue whenmis a child ofgm It is useful whermmay already be a child afm

i f(!KheG oupMonitorHasChil dMonitor(gm m)
KheG oupMoni t or AddChi | dMoni tor(gm m;

No-one is checking that one monitor does not become the child of another twice over; and if it
does, its cost will be counted twice in the cost of its parent.

For a group monitom KheLower Bound(n is the sum of the lower bounds o children.
It may increase when a descendant is added, and decrease when a descendant is removed.

Initially, all non-group monitors are made children of the solution object, and all of them
except demand monitors are attached to the solution, sé&tltb&tl nCost is the total cost of all
non-demand monitors, which is indeed the cost of the solution. Care is needed when grouping
not to inadvertently disconnect monitors from the solution, since then their costs will not be
counted, or to connect them via multiple paths, since then their costs will be counted multiple
times. Itis usually best to make a new group monitor a child of the solution immediately:

6.9. Group monitors 119

gm = KheG oupMoni t or Meke(sol n, sub _tag, sub tag |abel);
KheG oupMbni t or AddChi | dvbni t or ((KHE_GROUP_MONI TOR) sol n,
(KHE_MONI TOR) gm);

And when deleting a group monitor, the best option may be helper function
voi d KheG oupMoni t or BypassAndDel et e(KHE_GROUP_MONI TOR gm) ;

It callsKheG oupMoni t or Del et e, but first it makegnis children into children ofynis parents,
if any, thus keeping them linked in. There is also

voi d KheSol nBypassAndDel et eAl | Gr oupMoni t or s(KHE_SOLN sol n);
which appliesheG oupMoni t or BypassAndDel et e to every group monitor ofol n.
Functions

i nt KheG oupMoni t or Chi | dMoni t or Count (KHE_GROUP_MONI TOR g ;
KHE_MONI TOR KheG oupMoni t or Chi | dvoni t or (KHE_GROUP_MONI TOR gm int i);

visit the child monitors of group monit@min the usual way. Ifgmis the solution object, these
versions of the functions allow the user to avoid the upcast:

i nt KheSol nChi | dhvoni t or Count (KHE_SOLN sol n) ;
KHE _MONI TOR KheSol nChi | dvoni t or (KHE_SOLN soln, int i);

Functions

i nt Kheloni t or Par ent Moni t or Count (KHE_MONI TOR m) ;
KHE GROUP_MONI TOR KheMbni t or Parent Monitor (KHE MONITOR m int 1);

visit the parent monitors afi There is also
bool KheMoni t or Descendant (KHE_MONI TOR ml, KHE MONI TOR nR);

which returng rue if nl is a descendant o2, including when the two are equal.

6.9.2. Defects

Informally, a defect is a specific problem with a solution. In KHE, the word has a formal meaning
as well: adefectis a monitor whose cost is non-zero.

It can be helpful to target defects directly, rather than wasting time changing parts of the
solution where there are no defects. This is especially the case near the end of the solve process,
when there may be thousands of monitors but only a handful of defects. To support this, KHE
offers fast access to those child monitors of a group monitor which are defects:

i nt KheG oupMoni t or Def ect Count (KHE_GROUP_MONI TOR gnj ;
KHE_MONI TOR KheGr oupMoni t or Def ect (KHE_GROUP_MONI TOR gm int i);

When a monitor’s cost changes from zero to non-zero, the monitor is added to its parents’ defect
lists; and when its cost changes from non-zero to zero it is removed. These updates take a
constant and negligible amount of time per parent. When the group monitor is the solution object

120 Chapter 6. Solution Monitoring

there are convenience versions:

i nt KheSol nDef ect Count (KHE_SQLN sol n);
KHE_MONI TOR KheSol nDef ect (KHE_SCLN sol n, int i);

Thereis also

voi d KheG oupMbni t or Def ect Debug(KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

which is likeKheMoni t or Debug applied togm except that it prints only the defective children.

If a solution is changed and then changed back again to its original state, its cost returns
to its original value, but there are two ways in which its defects can be different. First, they may
appear in a different order. Second, although the number of defects which are demand monitors
(Chapter 7) must return to its original value, the demand monitors that make up that number
may change. Thisis because there are many maximum matchings in general, and KHE does not
guarantee to find any particular one of them.

In practice, one wants to traverse a list of defects and try to repair them. Quite commonly,
an attempt to repair a defect will remove it temporarily and then reinstate it if the repair was
not successful. This will cause the defect to be shifted to the end of the defect list. A simple
traversal of the defects from first to last will visit some defects more than once, and others not at
all. To handle this problem, it is necessary to make a copy of the defects and traverse the copy.
Although every defect will have non-zero cost at the time it is copied, as the list is traversed,
after the solution changes or if the list includes demand monitors, one cannot assume that every
monitor on the copy list will have non-zero cost.

To find the total cost of all monitors of a given type in the descendargsafall

KHE_COST KheG oupMoni t or Cost By Type(KHE_GROUP_MONI TOR gm
KHE_MONI TOR_TAG tag, int =defect_count);

It returns the number of defects,def ect _count , as well as the cost. It traverses the whole
sub-dag of monitors ofm (actually, just the defects), so it is slow: it is intended for reporting,
not for solving. It return® whent ag is KHE_GROUP_MONI TOR_TAG, because it attributes cost to
the monitors that originally generated it. Version

KHE_COST KheSol nCost By Type(KHE_SOLN sol n, KHE MONI TOR TAG t ag,
int xdefect _count);

may be called when the group monitor is the solution object. The values returned by these
functions are displayed in a convenient tabular form by functions

voi d KheG oupMoni t or Cost By TypeDebug(KHE_GROUP_MONI TOR gm
int verbosity, int indent, FILE *fp);

voi d KheSol nCost By TypeDebug(KHE_SOLN sol n,
int verbosity, int indent, FILE *fp);

which print one line for each kind of monitor undgnor sol n for which there are defects.

6.9. Group monitors 121

6.9.3. Tracing
Sometimes a solver needs to know which monitors have experienced a change in cost recently.
Ejection chain solvers, for example, need this information randitor tracingprovides it.

Tracing involves objects of typéHE_TRACE. To create one, call

KHE_TRACE KheTr aceMake(KHE_GROUP_MONI TOR gm) ;
wheregmis the group monitor to be traced. The solution may be traced by upcasting it:
t = KheTraceMake((KHE_GROUP_MONI TOR) sol n);
The group monitor that a trace object is for can be found by calling
KHE_GROUP_MONI TOR KheTr aceG ouphbni t or (KHE_TRACE t);
To delete a trace object, call
voi d KheTraceDel et e(KHE_TRACE t);
This will call KheTraceEnd(t) below if needed. KHE keeps a free list of trace objects in the
solution object, so many trace objects can be created and deleted at virtually no cost.
Actual tracing is initiated and ended by calling

voi d KheTraceBegi n(KHE_TRACE t);
voi d KheTraceEnd(KHE _TRACE t);

These must be called in matching pairheTr aceBegi n removes any information left over
from any preceding trace, and attaches its group monitor so that it can record what happens.
KheTr aceEnd detaches$ from its group monitor. Different trace objects may be attached and
detached quite independently of each other, even when they have the same group monitor.

After the trace ends, the following functions may be called:

KHE_COST KheTracel ni t Cost (KHE_TRACE t);

i nt KheTraceMonit or Count (KHE TRACE t);

KHE_MONI TOR KheTraceMonitor (KHE TRACE t, int i);
KHE_CCST KheTraceMonitorlnitCost(KHE TRACE t, int i);

KheTracel ni t Cost returns the initial cost of 's group monitor (at the time the trace began);
KheTraceMni t or Count returns the number of child monitors ¢fs group monitor whose
cost changed during the tradéieTr aceMoni t or returns the th of these child monitors; and
KheTraceMnitorlnitCost(t, i) returnsthe initial cost okheTraceMnitor(t, i).

These functions may be called during a trace as well as after it, returning values as though
the trace had just ended. While it is not an error to KB#G oupMoni t or AddChi | d\oni t or
or KheGr oupMoni t or Del et eChi | dMoni t or while tracing the group monitor concerned, it is not
recommended. A solution cannot be copied while one of its group monitors is being traced.

Chapter 7. Matchings and Evenness

Suppose a decision is made to run five Music meets simultaneously, when the school has only two
Music teachers and two Music rooms. Clearly, when teachers and rooms are assigned later, there
will be major problems, but until then the usual cost function will not reveal any problems.

More subtly, suppose there are eight teachers, and that three of them teach English only,
three teach History only, and two teach both. Suppose a decision is make to run five English
meets and five History meets simultaneously. Then there are enough English teachers to teach
the five English meets, and there are enough History teachers to teach the five History meets, but
there are not enough English and History teachers, taken together, to teach the ten meets.

Matchinggofficially, unweighted bipartite matchinpgetect such problems. Although not
compulsory, they are often helpful. This chapter describes them in general, how they apply to
timetabling, and how to use them in KHE. Getting started can be as simple as calling

KheSol nMat chi ngBegi n(sol n) ;

KheSol nMat chi ngSet Wi ght (sol n, KheCost (1, 0));

KheSol nMat chi ngAddAl | Wor kI oadRequi renent s(sol n);
KheSol nMat chi ngAtt achAl | Or di nar yDemandMoni t or s(sol n);

after the solution is made a complete representation.

7.1. The bipartite matching problem

A bipartite graphis an undirected graph whose nodes are divided into two sets, such that every
edge connects a node of one set to a node of the othenatghingis a subset of the edges
such that no two edges touch the same nodenakimum matching a matching containing as
many edges as possible. Tiipartite matching problens the problem of finding a maximum
matching in a bipartite graph. For example, here is a bipartite graph (at left), and the same graph
with a maximum matching shown in bold (at right):

There is a standard polynomial-time algorithm for this problem.

In timetabling, where bipartite matching has been used for many years [2, 4, 13], it is usual
for one of the two sets of nodes to represent variables (slots, events, etc.) demanding something

122

7.1. The bipartite matching problem 123

to be assigned to them, while the other set represents values (times, resources, etc.) which are
available to supply these demands. Accordingly, these two sets will be referred talagtéed
nodesand thesupply nodes A maximum matching assigns supply nodes to as many demand
nodes as possible, given that each demand node requires any one of the supply nodes it is
connected to, and each supply node may be assigned to at most one demand node. Although the
problem is formally symmetrical between the two kinds of nodes, since each edge touches one of
each, in timetabling it is not symmetrical. For example, it does not matter if some supply nodes
are not matched, but it does matter if some demand nodes are not matched.

It is usually not a good idea to make the assignments indicated by a maximum matching,
because there are other constraints not modelled by the matching, and it is desirable to find, not
just any maximum matching, but one that satisfies these other constraints. The better way to use
a maximum matching is as a monitor of the current state. Because the matching is maximum,
it indicates that there must be at least a certain number of problems, in the form of unassigned
demand nodes, in any solution incorporating the decisions already made, and that is valuable
information when evaluating those decisions.

Some applications of matching to timetabling utilize the ideatofed, the author’s term for
one resource at one time (the name recallptkel of computer graphics). For example, teacher
Smith during the first time on Mondays is one tixel; it may be represented by the ordered pair

(SmithMon1)

This is also called aupply tixe] because it can supply the demands of events for teachers. The
events are said to contademand tixels For example, an event of duration 2 which requests
student grou@A, one English teacher, and one room, is said to contain six demand tixels. This
Is shorthand for saying that it demands six supply tixels.

Underlying the high school timetabling problem is a matching that the author calls the
global tixel matching Its supply nodes are the supply tixels, one for each resource of the instance
ateachtime. Itsdemand nodes are the demand tixels of the events of the instance. Edges connect
demand tixels to those supply tixels that are suited to them. For example, a demand for student
group 8A would be connected to supply tixels whose resource is 8A, and a demand for an English
teacher at timéMonlwould be connected to those supply tixels whose resource is an English
teacher and whose timeldonl Each demand tixel wants to be assigned one supply tixel, and
each supply tixel may only be assigned to one demand tixel, since otherwise there would be a
timetable clash. So a matching is indeed what is required, and a maximum matching will have
the least possible number of problems.

As decisions are made, in the form of assignments of times to meets or resources to tasks
(or domain reductions, for example from the set of all qualified resources to a smaller set of
preferred resources), the demand tixels affected by these decisions become connected to fewer
supply tixels. When the maximum matching is recalculated (and fortunately there is an efficient
algorithm for doing this incrementally as the graph changes) there may be more unmatched
nodes than previously, suggesting that the decisions made may have been poor ones, and that
alternatives should be explored.

The global tixel matching is useful for evaluating instances before solving begins. It can
reveal, for example, that the supply of computer laboratories is insufficient to cover the demand,
and other problems of that kind. It turns out to be very powerful late in the solve process, when

124 Chapter 7. Matchings and Evenness

resources are being assigned after times have been assigned, provided it is enhanced with tixels
expressing resource unavailabilities and workload limits (Section 7.4). However, it is quite weak
before times are assigned, because it does not understand that the supply tixels assigned to events
must be correlated in time: it does not perceive the contradiction in assigning, say, the two supply
tixels (SmithMon1) and(Lab6, Wed§ to an event of duration 1.

An example given earlier, of scheduling five Music events simultaneously when there are
only two Music teachers and two Music rooms, shows that useful checks can be made when de-
ciding to run events simultaneously, even though their actual time remains undecided. Whatever
time is ultimately assigned to simultaneous events, each resource of the instance can supply at
most one tixel to satisfy their demands. Sothe demand tixels for one time of the events concerned
may be matched with a set of supply nodes, one node for each resource of the instance. Thisis
calledlocal tixel matchingdoy the author. The tixels are somewhat different, in that they share a
common generic time rather than holding a variety of true times.

7.2. Setting up

By default, a solution contains no matching. To add a matching, call
voi d KheSol nMat chi ngBegi n(KHE_SCLN sol n);

To take it away again, call
voi d KheSol nMat chi ngEnd(KHE_SOLN sol n) ;

KheSol nMat chi ngEnd can be omitted if the matching is needed for the lifetime of the solution,
since the matching is deleted when its solution is deleted. There is also

bool KheSol nHasMat chi ng(KHE_SOLN sol n);

which returng r ue whensol n has a matching. Most of the other operations of this chapter are
undefined when no matching is present. Some may abort, others may do nothing.

KheSol nMat chi ngBegi n adds exactly one matching to the solution. It is kept up to date
thereafter as the solution changes, UfitdSol nMat chi ngEnd is called or the solution is deleted.
Adding a matching includes adding its demand nodes, each of which is represented by a monitor
called ademand monitar Removing a matching includes removing all demand monitors. A
demand monitor contributes a cost to the solution just like other monitors do. The costis 0 when
the node is matched, and some non-negative value, set by the user, when it is unmatched.

Demand monitors may be attached and detached individually as usual. Detaching a demand
monitor removes its node from the matching graph. Immediately lsfteSol nMat chi ngBegi n
returns, the demand monitors it makes are all detached, so the matching graph has no demand
nodes. Convenience functions defined below may be used to attach the demand monitors.

Rather than fiddling around callifdjeSol nHasMat chi ng, it is conventional to assume that
a matching is present when KHE is being used for solving, but not when it is being used only to
evaluate solutions. The rationale for this is that by comparison with the overall cost of a solve, it
costs virtually nothing, and helps to make the solve environment uniform, if a matching is always
present. If it isn’t actually wanted, its demand monitors can be detached. On the other hand,

7.2. Setting up 125

when evaluating solutions, at least when just their cost is required, matchings have no use, and
if there are many solutions it is best to avoid the memory cost of the demand and supply nodes.

Behind the scenes, a lazy implementation is used: no matching is done until a query
operation (for example, a request for the current cost of a demand monitor, or a debug print)
occurs, allowing the time spent matching to be amortized over all operations carried out since
the previous query. There is no way for the user to observe the laziness. The key operation, of
bringing the matching up to date (making it maximum) runs in time roughly proportional to the
number of unmatched nodes in the graph when it is called.

The cost of one unmatched node is set and retrieved by

voi d KheSol nivat chi ngSet Wi ght (KHE_SCOLN sol n, KHE_COST wei ght);
KHE_COST KheSol nMat chi ng\Wei ght (KHE_SOLN sol n);

For example, a call to
KheSol nMat chi ngSet Wi ght (sol n, KheCost (1, 0));

gives each unmatched node a hard cost of 1. The initial weight is 0. A change of weight is
reflected immediately in the cost reported by all demand monitors.

Although it would be trivial to allow the user to set the cost of each demand monitor
individually, this has not been done, because it might suggest that the matching algorithm is
capable of finding the matching which minimizes the total cost of unmatched nodes. In reality,
there is no way to make the cost depend on which nodes are unmatched, nor on how appropriate
the matching’s assignments are. Those would be useful features, since then the cost of assign
resources and prefer resources constraints could be reflected in the matching cost, but then a
different problem, calledeighted bipartite matchingvould have to be solved, whose algorithm
the author considers to be too slow for solving.

In the absence of weighted matching, choosmigght is not easy. The simple choice is
KheCost (1, 0), and it may well be the best. Another choice is one which guarantees that the
weighted cost of the matching is a lower bound on the ultimate total cost of the violations of
all relevant constraints, assuming that more assignments are added without changing the current
ones. Each unassigned tixel in the matching must ultimately correspond with either a missing
resource assignment at one time, or a resource clash at one time. So a suitable weight is the
minimum of the following quantities: for each event resource, the sum of the combined weights
of the assign resource constraints that apply to it; and for each resource, the sum of the combined
weights of the avoid clashes constraints that apply to it. (Fortunately, both of these constraints
incur a cost for each violating tixel.) Function

KHE_COST KheSol nM nMat chi ngWei ght (KHE_SOLN sol n);

works out this value. If there are no event resources and no resources, it returns 0.
The matching hasypethat may be changed at any moment:

KHE_MATCHI NG _TYPE KheSol nivat chi ngType(KHE_SOLN sol n);
voi d KheSol nivat chi ngSet Type(KHE_SOLN sol n, KHE MATCHI NG TYPE nt);

KHE_MATCHI NG_TYPE is the enumerated type

126 Chapter 7. Matchings and Evenness

t ypedef enum {
KHE_MATCHI NG _TYPE_EVAL_| NI TI AL,
KHE_MATCHI NG _TYPE_EVAL_TI MES,
KHE_MATCHI NG_TYPE_EVAL_RESOURCES,
KHE_MATCHI NG_TYPE_SOLVE

} KHE_MATCHI NG _TYPE;

A full explanation of these values is given in the following section. Just briefly, however,
KHE_MATCHI NG_TYPE_SCOLVE implements an enhanced local tixel matching and is the best choice
when solving; it is also the default value. The others are variants of global tixel matching. A
change of type is reflected immediately in the cost reported by all attached demand monitors.

For the most part, matchings work quietly behind the scenes without attention from the user.
However, there is an important optimization that only the user can invoke. Suppose that some
changes are made to the solution as an experiment, then either retained or undone. Then KHE
will run faster if that part of the program is bracketed by calls to these functions:

voi d KheSol nMat chi ngMar kBegi n(KHE_SCLN sol n);
voi d KheSol nMat chi ngMar KEnd(KHE_SOLN sol n, bool undo);

Calls to these operations must occur in matching pairs, possibly nesteadolis t r ue, then

KheSol nMat chi nghMar kEnd assumes without checking that all changesdbn since the cor-
responding call t&heSol nMat chi ngMar kBegi n have been undone. It uses this information to
bring the matching up to date more quickly than could be done without it. To encourage their use,
both functions are well-defined even when there is no matching: in that case, they do nothing.

As an aid to debugging, function

voi d KheSol nvat chi ngDebug(KHE_SOLN sol n, int verbosity,
int indent, FILE *fp);

ensures that the matching is up to date, then prints its current stateponterbosity 1 prints just
the number of unmatched demand monitors, verbosity 2 prints those monitors, and verbosity 3
prints all demand monitors and the supply nodes they are matched with.

7.3. Ordinary supply and demand nodes

This section explains how most of the supply and demand nodes of the matching, the ones
associated with meets, are defined. Since they are linked together with edges that depend on the
type of the matching, this section also explefHE_MATCH NG_TYPE in detalil.

For each offset of a meetet (for each integer between 0 inclusive and the duration of
meet exclusive), the matching contaiRsordinary supply nodesvhereR is the total number of
resourcesin the instance.net has duratioml, thisisdRsupply nodes altogether. Each models
the supply of one resource at one offset. These supply nodes cannot be accessed by the user.

Each task ofreet containkheMeet Dur at i on(meet) demand nodes, which will be called
ordinary demand nodet® distinguish them from the workload demand nodes to be defined
later. Each models the demand made by its task at one offset. Ordinary demand nodes have type
KHE_ORDI NARY_DEMAND_MONI TOR and may be accessed by

7.3. Ordinary supply and demand nodes 127

i nt KheTaskDenmandMoni t or Count (KHE_TASK t ask) ;
KHE_ORDI NARY_DEMAND _MONI TOR KheTaskDemandMoni t or (KHE_TASK task, int i);

as usual. The first function’s value is always equal to the duration of the enclosing meet. Like
most monitors, these ones cannot be created or deleted by the user. They are created when
the task is created, split and merged when it is split and merged, and deleted when it is deleted.
Unlike other monitors, they are detached initially. Thisis so that, by default, KHE monitors only
the official cost, not this extra stuff.

In addition to the operations applicable to all monitors, ordinary demand monitors offer

KHE_TASK KheOr di nar yDermandMoni t or Task(KHE_ORDI NARY_DEMAND MONI TOR) ;
i nt KheOrdi nar yDemandMoni t or O f set (KHE_ORDI NARY_DEMAND MONI TOR) ;

returning the task thawmonitors, and its offset within that task. Helper functions

voi d KheSol nMat chi ngAt t achAl | Or di nar yDemandMoni t or s(KHE_SOLN sol n) ;
voi d KheSol nMat chi ngDet achAl | Or di nar yDemandMoni t or s(KHE_SOLN sol n) ;

ensure that all ordinary demand monitors are attached or detached; they visit every ordinary
demand monitor of every task of every meesof n, check whether it is currently attached, then
attach or detach it if required.

Although the list of monitorsin a task is fixed, each may be attached or detached individual-
ly, and they may be linked by edges to supply nodes in different ways, depending on the matching
type, as will now be explained.

An ordinary demand node®~n meets the meet its task lies in. Iteot meets the meet
reached by following the chain of assignments (possibly empty) out of its own meet to a meet
that contains no assignment. tt&n offsets its offset in its own meet, and iteot offsetis its
offset in its root meet (the sum of its own offset and the offsets along the assignment path).

When linking an ordinary demand node to ordinary supply nodes, there are at least two ways
to take time into account:

A. Link it only to ordinary supply nodes lying in cycle meets at offsets that represent the times
of the time domain of its own meet, shifted by its own offset.

B. Linkit only to ordinary supply nodes lying in its root meet at its root offset.

Informally, (A) evaluates the initial state of time assignment, whereas (B) evaluates its current
state in a way that ensures that simultaneous demands compete for the same supply nodes, as in
local tixel matching. And there are at least two ways to take resources into account:

1. Link it to supply nodes representing the resources of its task’s domain.

2. Link it to supply nodes representing the resources of its task’s root task’s domain. If the
root task is a cycle task, this will link only to supply nodes representing that resource.

Informally, (1) evaluatesthe initial state of resource assignment, whereas (2) evaluates the current
state. The four non-empty matching types produce the four conjunctions of these conditions:

128 Chapter 7. Matchings and Evenness

A B
T KHE_MATCHI NG_TYPE_EVAL_I NI TI AL KHE_MATCHI NG_TYPE_EVAL_TI MES
2 KHE_MATCHI NG TYPE_EVAL_RESOURCES KHE_MATCHI NG TYPE_SOLVE

Type (B2) is suited to solving; the others are suited to evaluation before or after solving.

7.4. Workload demand nodes

In addition to ordinary demand nodes, matchings may comtankload demand nodgessed to

take account of avoid unavailable times constraints, limit busy times constraints, and limit work-
load constraints, collectively calledorkload demand constraintere. For example, suppose
the cycle contains 40 times, and teacBerithhas a required workload limit of 30 times and is
unavailable at tim&onl Then ten workload demand nodes should be created, one demanding
supply tixel(SmithMon1), and the other nine demandiBgnithat one unrestricted time.

Itisimportant to include workload demand nodes, since otherwise the problems reported by
the matching will be unrealistically few. They are the same for all matching types, and in most
casesi it is enough to call helper function

voi d KheSol nMat chi ngAddAl | Wor kI oadRequi r enent s(KHE_SCLN sol n);

This may be done at any time, and does what is usually wanted. However, it is partly heuristic,
so KHE offers the option of controlling the details.

For the purposes of matchings onlywarkload requiremenis a requirement imposed on
a resource that it be occupied attending meets for at most a given number of the times of some
time group. Within a solution at any moment, a sequence of workload requirements is associated
with each resource. They may be visited in order by calling

i nt KheSol nMat chi ngWor kl oadRequi r ement Count (KHE_SOLN sol n,
KHE_RESOURCE r);

voi d KheSol nMat chi ngWor kI oadRequi r enment (KHE_SCLN sol n, KHE_RESCURCE r,
int i, int *num KHE_TIME_GROUP *tg, KHE MONI TOR *nj;

The first returns the number of workload requirements associated wt$ol n, and the second
returns the 'th requirement, in the form of a number of times and a time group. If the third
return parameterm is nonNULL, it is the originating monitor the monitor that gave rise to

this requirement. The originating monitor is stored in workload demand monitors created as a
consequence of this requirement, to assist in analysing defects; it is not otherwise used.

Each resource has no requirements initially. To change the requirements of resource
begin with a call to

voi d KheSol nMat chi ngBegi nWr kl oadRequi r enent s(KHE_SCLN sol n,
KHE_RESOURCE r) ;

continue with any number of calls to

voi d KheSol nMat chi ngAddWor kI oadRequi r enent (KHE_SCLN sol n,
KHE_RESOURCE r, int num KHE_TIME_GROUP tg, KHE_MONITOR n);

7.4. \Workload demand nodes 129

wheremmay beNULL, and end with a call to

voi d KheSol nivat chi ngEndWr kl oadRequi r ement s(KHE_SOLN sol n,
KHE RESOURCE r);

All three functions must be called, in order. The first cleagsvorkload requirements, the sec-

ond appends a requirement thaittend events for at mostmof the times oft g (hummay not

exceed the number of timestig), and the third replaces any existing workload demand nodes
for r with new ones derived from the workload requirements. The new monitors are attached
automatically as they are createg¢heMat chi nghoni t or Set Al | Wor kI oadRequi renent s calls

these functions. The sections below describe the calls it makes, and how workload requirements
are converted into workload demand nodes.

The workload demand nodes createdHingSol nMat chi ngEndWr ki oadRequi r ement s
are monitors of typeKHE_WORKLOAD _DEMAND_MONI TOR. Like other monitors of resources,
they appear on the list of monitors visited by functiotieResour ceMoni t or Count and
KheResour ceMbni t or from Section 6.6.

In addition to the operations applicable to all monitors, workload demand monitors offer

KHE RESOURCE KheWor kl oadDenmandMoni t or Resour ce(
KHE_WORKLOAD DEVAND MONI TOR m) ;

KHE TI ME_GROUP KheWor kI oadDemandMoni t or Ti meGr oup(
KHE_WORKLOAD DEVAND MONI TOR m) ;

KHE MONI TOR KheWor kl oadDenmandMoni t or Ori gi nati nghoni t or (
KHE_WORKLOAD DEVAND MONI TOR m) ;

These return the resource that the workload demand monitor is for, the time group of the
workload requirement that led tp and the originating monitor (possibfLL) of the workload
requirement that led tm

7.4.1. Constructing workload requirements

This section explains hokheSol nMat chi ngAddAl | Wor kI oadRequi r enent s works. For each
resource , it first callsKheSol nMat chi ngBegi nWor kl oadRequi rement s(sol n, r), and then
visits each required workload demand monitof weight greater than 0 applicablertan order

of decreasing weight. What it does with each monitor is explained below. It then finishes its
work onr with a call tokheSol nMat chi ngEndWr kil oadRequi rement s(soln, r).

If mis an avoid unavailable times monitor, or a limit busy times monitor wiagenum
attribute is 0, then for each timtein nis constraint’s domain it calls

KheSol nMat chi ngAddWor kI oadRequi renment (soln, r, O,
KheTi meSi ngl et onTi meG oup(t), mM;

If mis a limit busy times monitor witlvaxi numgreater than 0, then for each time graggn nis
constraint it calls

KheSol nMat chi ngAddWor kl oadRequi rement (soln, r, k, tg);

wherek is theMaxi mumattribute. TheM ni numattribute is ignored.

130 Chapter 7. Matchings and Evenness

A limit workload monitor is like a limit busy times monitor whose time group contains all
the times of the cycle, séheSol nMat chi ngAddWr ki oadRequi r enent is called once with this
time group. The number passed to this call requires careful calculation, involving the workloads
of all events. The remainder of this section explains this calculation.

Let k be the integer eventually passeditmeSol nMat chi ngAddWor kI oadRequi r enent .
Initialize k to theMaxi numattribute of the limit workload constraint. For each event resoerce
let d(er) be its duration anev(er) be its workload. The basic idea is that ifs assigned ter,
thend(er) — w(er) should be added ta For example, a resource with workload limit 30 that is
assigned to an event resource with duration 3 and workload 2 needs a workload requirement of
31, not 30. And ifr is assigned to an event with duration 6 but workload 12, #weeeds to be
decreased by 6.

In some cases, preassignments or domain restrictions make it certaimilidte assigned
to some event, and in those cases the adjustment can be done safely in advance. For example,
if every staff member attends a weekly meeting with duration 1 and workload 0, then their
workload requirements can all be increased by 1 to compensate. Similarhyiif definitely
not be assigned to some event, then the event’s duration and workload have no eftect on

The residual problem cases are those event resoarcetose workload and duration
differ, whichr may be assigned to but not necessarily. In these cases, an inexact model is used
which preserves the guarantee that the number of unmatched nodes is a lower bound on the final
number, but the number is weaker (that is, smaller) than the ideal.

If w(er)>d(er), thener is ignored. This case can only make the problem harder, so
ignoring it means that the number returned will be smaller than the ideadelf) < d(er), then
d(er) —w(er) is added td, just as though was assigned ter. If r is ultimately assigned to
er, then this will be exact; if it is not, then again it will weaken the bound, by overestimasng
available workload.

These tests are actually applied to clusters of events known to be running simultaneously,
because of required link events constraints or preassignments and other time domain restrictions.
Each resource can be assigned to at most one of the event resources of the events of a cluster, so
only one of the events, the one whose modelling is least exact, needs to be taken account of.

7.4.2. From workload requirements to workload demand nodes

KHE converts workload requirements to workload demand nodes automatically, during the call
to KheSol nMat chi ngEndWr ki oadRequi rement s (defined above). The following explanation
of how this is done, adapted from [9], is included for completeness.

When converting workload requirements into workload demand nodes, the relationships
between the requirements’ sets of times affect the outcome. In general, an exact conversion
seems to be possible only when these sets of times satisfyliset tree conditioreach pair of
sets of times is either disjoint, or else one is a subset of the other.

For example, suppose the cycle has five days of eight times each, and regeuecgiired
to be occupied for at most thirty times altogether and at most seven on any one day, and to be
unavailable at timeBri6, Fri7, andFri8. These requirements form a tree (in general, a forest):

7.4. \Workload demand nodes 131

30Time

77k \W

|OFri6| |OFri7| |OFri8|

|7Mon|~ [7Tue] |7Wed|

A postorder traversal of this tree may be used to deduce that workload demand nadasefor
needed for ondontime, oneTuetime, oneWedtime, oneThutime, oneFri6 time, oneFri7

time, oneFri8 time, and three arbitrary times. In general, each tree node contributes a number of
demand nodes equal to the size of its set of times minus its number minus the number of demand
nodes contributed by its descendants, or none if this number is negative.

The tree is built by inserting the workload requirements in order, ignoring requirements
that fail the subset tree condition. For example, a failure would occur if, in addition to the above
requirements, there were limits on the number of morning and afternoon times. The constraints
which give rise to such requirements are still monitored by other monitors, but their omission
from the matching causes it to report fewer unmatchable nodes than the ideal. Fortunately, such
overlapping requirements do not seem to occur in practice, at least, not as required constraints.

7.5. Diagnosing failure to match

KHE’s usual methods of organizing monitors, such as grouping and tracing, may be applied to
demand monitors. This section offers three other ways to visit unmatched demand monitors.

7.5.1. Visiting unmatched demand nodes
The unmatched demand nodes may be visited by functions

i nt KheSol nMat chi ngDef ect Count (KHE_SOLN sol n) ;
KHE _MONI TOR KheSol nMat chi ngDef ect (KHE_SCOLN soln, int i);

Each monitor is either an ordinary demand monitor or a workload demand monitor; a call to
KheMoni t or Tag followed by a downcast will produce the specific type. Then functions defined
earlier give access to the part of the solution being monitored by these monitors.

Unmatched demand nodes with higher indexes tend to have become unmatched more
recently than demand nodes with lower indexes. When the number of unmatched demand nodes
Increases, it is reasonable to take the last unmatched demand node as an indication of what went
wrong. However, it will usually be better to use grouping and tracing to localize problems.

7.5.2. Hall sets

Hall setsare the definitive method of diagnosing failure to match. They are fine for occasional
use, such as for generating a report to the user, but too slow for repeated use during solving.

Suppose there is a detof demand nodes, whose outgoing edges all lead to nodes in some
setSof supply nodes. Then every nodddrmust be matched with a node$hor not matched at
all. If ID| > |S| then at leagD| - |S|nodes ofD will be unmatched in any maximum matching.

132 Chapter 7. Matchings and Evenness

It turns out that every case of an unmatched node can be explained in this way, often
utilizing setsD andSthat are small enough to understand in user terms: they might represent
the demand and supply of Science laboratories, for example. ShamdS, with every edge
out of D leading toS, and|D| > |S| is called aHall setafter the mathematician P. Hall. Given a
maximum matching, every unmatched demand node lies in a Hall set.

The following functions examine the Hall sets of a matching. They all begin by building
the Hall sets if the ones currently stored are not up to date. This means that any change to the
solution invalidates everything returned by all previous calls to these functions.

The number of Hall sets is returned by
i nt KheSol nMat chi ngHal | Set Count (KHE_SCLN sol n);

This is not usually the same as the number of unmatched demand nodes, since there may be
several of those in one Hall set. No node lies in two Hall sets. The number of supply and demand
nodes in the 'th Hall set may be found by calling

i nt KheSol nMat chi ngHal | Set Suppl yNodeCount (KHE_SOLN soln, int i);
i nt KheSol nMat chi ngHal | Set DemandNodeCount (KHE_SOLN sol n, int i);

By the way that Hall sets are definédieSol nMat chi ngHal | Set DemandNodeCount (sol n, i)
must be larger thakheSol nMat chi ngHal | Set Suppl yNodeCount (sol n, i).

Thej 'th supply node of thé’th Hall set can only be an ordinary supply node, but, in case
other kinds of supply nodes are added in future, the following function is used to find the meet
it lies in, its offset within that meet, and the resource it represents:

bool KheSol nMat chi ngHal | Set Suppl yNodel sOr di nar y(KHE_SOLN sol n,
int i, int j, MEET =neet, int xneet_offset, KHE RESOURCE =*r);

At present this always returhsue. Areportto the user should distinguish the cases wineat
is and is not a cycle meet. Th&h demand node of thieth Hall set is returned by

KHE_MONI TOR KheSol niat chi ngHal | Set DemandNode(KHE_SOLN sol n,
int i, int j);
It will be either an ordinary demand node or a workload demand node as usual. Finally,

voi d KheSol nMvat chi ngHal | Set sDebug(KHE_SOLN sol n,
int verbosity, int indent, FILE *fp);

prints the Hall sets ofiis matching ontd p with the given verbosity and indent. The verbosity
must be at least 1 but otherwise does not affect what is printed.

7.5.3. Finding competitors

Given an unmatched demand monitoreturned bykheSol nMat chi ngHal | Set DemandNode or

KheSol nMat chi ngDef ect , a competitorof that monitor is eithemitself or a monitor whose
removal would allowmto match. Competitors are similar to the demand nodes of Hall sets, ex-
cept that they relate to a single unmatched demand node. They are themselves always matched.
Finding competitors amounts to redoing the search for an augmenting path for the failed node

7.5. Diagnosing failure to match 133

and noting the demand nodes that are visited along the way.
Functions

voi d KheSol nMat chi ngSet Conpetitors(KHE _SOLN sol n, KHE_MONI TOR nj;
i nt KheSol nMat chi ngConpet it or Count (KHE_SOLN sol n);
KHE_MONI TOR KheSol nMat chi ngConpetitor (KHE_SOLN soln, int i);

may be used together to visit the competitors of unmatched demand nmanitor

KheSol nMat chi ngSet Conpetitors(soln, m;
for(i =0; 1 < KheSol nMatchingConpetitorCount(soln); i++)
{
conpetitor_m = KheSol nMat chi ngConpetitor(soln, i);
visit conpetitor_m...

}

The competitors are visited in breadth-first order, beginning w(tlthich the user may choose
to skip by initializingi in the loop above td rather thar0). There may be any number of
competitors other tham including none, and they may be ordinary demand monitors and
workload demand monitors.

The solution contains one set of competitors which remains constant except when reset by

a call tokheSol nMat chi ngSet Conpetitors. If the solution changes, this set of competitors
remains well-defined as a set of monitors, but becomes out of date as a set of competitors.

Competitors are useful because they can be found quickly, but they are not definitive in
the way that Hall sets are: in unusual cases, a given unmatched monitor may have different
competitors in different maximum matchings. For example, consider these two matchings:

A

Both are maximum, since all three supply nodes are matched in each; but the compeftitors of
in the first matching ar@ andB, while the competitors o€ in the second arB andE.

Itis important not to change the solution when traversing competitors. Even if itis changed
back again, the unmatched demand nodes may be different afterwards. In the usual case where
the aim is to move one meet that is competing for some scarce resources, the right approach is to
use the loop to find those meets, store them, and move them after it ends.

In applications such as ejection chains it is important to understand what the defect really

134 Chapter 7. Matchings and Evenness

is. In the case of unmatched demand nodes, the true defect is the Hall set. This may be
approximated in practice by the set of competitors. Thus, a repair should operate on the set of
competitors independently of their order or which one happens to be the unmatched one.

7.6. Evenness monitoring

Suppose that a school has seven Mathematics teachers, and that at some time there are seven
Mathematics lessons running simultaneously. All seven teachers must be utilized at that time,
which, although feasible, will restrict the options for resource assignment later.

Unless the teachers are very overworked, there must be other times when few Mathematics
lessons are running. The Mathematics lessons are distributed unevenly through the cycle.

KHE offers a kind of monitor, of typ&HE_EVENNESS_MONI TOR, which monitors this kind
of evenness. These work similarly to demand monitors; they are created and removed by

voi d KheSol nEvennessBegi n(KHE_SCLN sol n);
voi d KheSol nEvennessEnd(KHE_SOLN sol n);

although the call t&heSol nEvennessEnd may be omitted when evenness monitoring is wanted

for the lifetime of the solution. Evenness monitors are createhbgol nEvennessBegi n but

not attached initially. There is one evenness monitor for each resource partition of the instance
and each time of the cycle, which keeps track of how many tasks whose domains lie within
that partition (as determined bheResour ceG oupParti ti on) are running at that time. The
monitor reports a deviation when this number exceeds some limit, which is usually set at one
less than the number of resources in the partition. Thus, the deviation would be zero when six
Mathematics teachers are needed, and one when seven are needed. Function

bool KheSol nHasEvenness(KHE_SOLN sol n);

returng r ue when evennness monitors are present.

Like demand monitoring, evenness monitoring depends on the resources demanded at each
time. Unlike demand monitoring, however, domains that cross partition boundaries are not taken
into account, and evenness is only monitored at the root level of the layer tree. Despite these
simplifications, evenness monitoring is potentially useful for giving early warning of demand
problems, especially when used in conjunction with domain tightening (Section 11.3.3).

When present, evenness monitors may be found in the list of all monitors kept in the
solution, and attached and detached in the usual way. More useful in practice are functions

voi d KheSol nAtt achAl | EvennessMoni t or s(KHE_SOLN sol n);
voi d KheSol nDet achAl | EvennessMoni t or s(KHE_SOLN sol n);

which visit each evenness monitor and ensure that it is attached or detached. The usual
operations on monitors may be carried out by upcasting toKi#fseMONl TOR as usual. There
are also operations specific to evenness monitors:

KHE_RESOURCE_GROUP KheEvennessMoni torPartiti on(KHE_EVENNESS MONI TOR m) ;
KHE_TI ME KheEvennesshoni t or Ti me(KHE_EVENNESS MONI TOR) ;
i nt KheEvennessMni t or Count (KHE_EVENNESS_MONI TOR m) ;

7.6. Evenness monitoring 135

These return the partition being monitored, the time being monitored, and the number of tasks
whose domains lie within that partition that are currently running at that time (ornQisf
unattached). It would be useful to be able to retrieve the specific tasks that go to make up this
count, but that information is not kept. If it is needed, it is necessary to search the cycle meet
overlapping the time, and all the meets assigned to that cycle meet directly or indirectly, to find
the tasks running at the monitored time whose domains lie within the monitored partition.

Each evenness monitor also contains a limit, such that when the count goes above that limit
a deviation is reported. This limit can be retrieved and changed at any time by calling

i nt KheEvennessMonitorLimt(KHE EVENNESS MONI TOR m);
voi d KheEvennessMonitorSetLimt(KHE EVENNESS MONNTOR m int limt);

Its default value is the number of resources in the partition, minus this same number divided by
six and rounded down. Thus, when there are less than six resources, the value is the number of
resources; when there are between six and eleven resources, the value is one less than the number
of resources; and so on. This seems to work reasonably well in practice. Another way to ignore
unevenness in small partitions would be to detach their monitors.

The deviation i&heEvennessMni t or Count (m) - KheEvennesshonitorLimt(m,or0
if this number is negative. This is converted into a cost by multiplying by a weight (there is no
choice of cost function). The weight may be retrieved, and set at any time, by

KHE_COST KheEvennesshbni t or Vi ght (KHE_EVENNESS_MONI TOR m) ;
voi d KheEvennessMoni t or Set Wi ght (KHE_EVENNESS_MONI TOR m KHE_COST wei ght) ;

The default weight is the smallest non-zero weighgCost (0, 1). Helper function
voi d KheSol nSet Al | EvennesshMbni t or Wi ght s(KHE_SOLN sol n, KHE _COST wei ght);

sets the weights of all evenness monitors at once.

Evenness is not monitored in the current versionKbéGener al Sol ve (Section 8.1),
because tests run by the author showed run time increases of about 20%, for little or no gain.
Although it has some beneficial effects, evenness monitoring tends to disrupt node regularity and
reduce diversity, since it causes very similar solutions to have slightly different costs.

Part B

Solving

A solver is an operation that makes large-scale changes to a solution. Solvers operate at a high
level and should not be cluttered with implementation details: their source files will include
khe. h as usual, but should not include headerkHte_i nt er ns. h which gives access to KHE’s
internals. Thus, the user of KHE is as well equipped to write a solver as its author.

Many solvers are packaged with KHE. They are the subject of this part of the manual, all of
which is implemented usinighe. h but notkhe_i nterns. h.

136

Chapter 8. Introducing Solving

This chapter introduces solving. It defines an interface for solvers, presents a few high-level ones,
and explains some general concepts, including setting options and gathering statistics.

8.1. General solving

A solveris a function that finds solutions, or partial solutions, to instancegereral solver
solves an instance completely, unlike, satinge solvewhich only finds time assignments, or a
resource solvewhich only finds resource assignments.

The recommended interface for general solvers, definkdenh, is

typedef KHE_SOLN (*KHE_GENERAL_SOLVER) (KHE_SOLN sol n,
KHE_OPTI ONS options);

A general solver may split meets, build layer trees and task trees, assign times and resources, and
so on without restriction. It will usually return the solution it is given, but it may return a different
solution to the same instance, in which case it should delete the solution it is given.

Its second parameteapt i ons, is a pointer to a set of options which may be used to vary
the behaviour of the solver. Options are the subject of Section 8.4.

The main general solver distributed with KHE is
KHE_SOLN KheGener al Sol ve2014(KHE_SOLN sol n, KHE_OPTI ONS opti ons);

This is a single-threaded general solver which works by calling functions defined elsewhere in
this guide. It returns the solution it is given.

The author’s intention is that the best solver (all things considered) that he creates in any
given year, if better than his previous solvers, should be c&leGener al Sol ve with the year
appended, and that KHE’s main program should call it, either directly or as the solver passed to
some parallel solverkheGener al Sol ve2014 is the first of these solvers.

KheGener al Sol ve2014 assumes thabl n is as returned bigheSol nMake, so it begins with
KheSol nSpl it Cycl eMeet and KheSol nMakeConpl et eRepresentati on. Then it calls other
solvers defined elsewhere in this guide: it builds a layer tree and task tree, attaches demand
monitors, call&heCycl eNodeAssi gnTi mes to assign times, angheTaski ngAssi gnResour ces
to assign resources. Finally, it callseSol nEnsureO fi ci al Cost and returns.

KheGener al Sol ve2014 is affected indirectly by many options, via the functions it calls.
The only options it consults directly ameni t or _evenness, which it uses to decide whether to
install evenness monitors (Section 7.6), ande_assi gnment _onl y, which when set causes it
to exit early, immediately after time assignment.

137

138 Chapter 8. Introducing Solving

8.2. Parallel solving

Function

voi d KheAr chi veParal | el Sol ve(KHE_ARCHI VE ar chive, int thread_count,
i nt make_sol ns, KHE _GENERAL_SOLVER sol ver, KHE_OPTI ONS opti ons,
i nt keep_sol ns, KHE SOLN_GROUP sol n_group);

creates a pool afhr ead_count threads and uses them to solve the instancesdfi ve. They
include the thread that callétieAr chi vePar al | el Sol ve, sot hr ead_count must be at least 1.

KheAr chi vePar al | el Sol ve createsmake_sol ns solutions for each instance af chi ve,
by creating that many solutions and callaug ver on each solution with a copy opti ons. The
solutions passed &l ver are identical except that the diversifier of the first is 0, the diversifier
of the second is 1, and so on. The solver may use these values to create diverse solutions.

If sol n_group isnonNULL, KheAr chi vePar al | el Sol ve keeps the begeep_sol ns out of
themake_sol ns solutions it made for each instance, and adds thesnlto_gr oup, deleting the
others. Otherwise it deletes all the solutions it made.

A variant ofKheAr chi vePar al | el Sol ve that may sometimes be more convenient is

KHE_SOLN Khel nst ancePar al | el Sol ve(KHE | NSTANCE ins, int thread count,
int make sol ns, KHE GENERAL SOLVER sol ver, KHE OPTI ONS options);

Behind the scenes it is the same, but it solves a single instance rather than an entire archive, and
it returns any one best solution rather than storing a set of best solutions in a solution group.

Parallelism is obtained via functior® hread_create and pthread_join from the
Posix threads library. KHE has been carefully designed to ensure that operations carried out in
parallel on distinct solutions cannot interfere with each other. If you do not have Posix, a simple
workaround documented in KHE’s makefile will allow you to compile KHE without it. The only
difference is thakheAr chi vePar al | el Sol ve andKhel nst ancePar al | el Sol ve will find their
solutions sequentially rather than in parallel.

8.3. Benchmarking
For benchmarking (that is, for gathering statistics while a solver runs), KHE offers

voi d KheBenchmar k(KHE_ARCHI VE ar chi ve, KHE_GENERAL_SOLVER sol ver,
char =xsol ver_nane, char =author _nane, char test | abel,
KHE_STATS TABLE TYPE tabl e_type);

It solvesar chi ve, possibly several times, usisgl ver , writing the results into files in directory
"stats" of the current directory. Some files are archives, others contain tables of statistics
recording the performance ebl ver , printed by KHE'’s statistics functions (Section 8.5).

Parametesol ver nane is a brief name fosol ver, suited for use in the header of a table
column;aut hor _nane is the name of the author of the solver; ara$t _| abel (a character
betweeri A and’ Z') determines which tests are performed and which files are written. These
may change from time to time. See the top of fike_sm benchmar k. ¢ for current details.

8.3. Benchmarking 139

Parameterabl e_t ype determines the format of any tables written. Its values are

typedef enum {
KHE_STATS TABLE_PLAI N,
KHE_STATS_TABLE_LQUT,
KHE_STATS TABLE_LATEX

} KHE_STATS_TABLE_TYPE;

which request plain text, Lout, or LaTeX format.

KheBenchmar k takes it upon itself to skip some instances of the archive it is given. To see
which are skipped, consult functidtheBenchmar kTryl nst ance in file khe_sm benchnark. c.
If it comes upon such an instance, it includes a row for it in the tables it prints, but it does not
attempt to solve it, and it leaves the entries for that row blank.

8.4. Options

All solvers take arpt i ons parameter of typ&HE_OPTI ONS, a pointer to a set of options which
can be used to vary their behaviour. Function

KHE_OPTI ONS KheQpt i onsMake(voi d);

returns a new options object whose options all have their default values. For each option, there is
one function to retrieve the option and another to set it. These functions are documented along-
side the solvers that their options affect, and the full list of options appears below. Some simple
solvers do not use any options; in that caseptiié ons argument may bBULL. Function

voi d KheOpti onsDel et e(KHE_OPTI ONS opti ons);

may be called to delete an options object when it is no longer needed.

Options can be classified into two kinds, although the distinction between them is not
absolute. One kind is there for the convenience of the end user, to allow him to try out different
possibilities. Options of this kind are not set by any of KHE'’s solvers. The other kind is there
because some of KHE's solvers need to vary the behaviour of other solvers that they call. These
ones are set by KHE's solvers.

Because options (especially the second kind) can change, when solving in parallel different
options objects must be passed to each solve. These can be created by copying using
KHE_OPTI ONS KheOpt i onsCopy(KHE_OPTI ONS opti ons);

It will call KnheEj ect or Copy to copy any ejectors stored inside it. This is necessary because a
single ejector cannot safely be accessed by two solvers in parallel. Split analysers also cannot be
used in parallel, sgheOpt i onsCopy creates a new split analyser object for the copy.

The following subsections present the complete list of options. Only brief indications of
their meaning are given here, with references to the places where they are described in detail.

140 Chapter 8. Introducing Solving

8.4.1. General options

This subsection describes options used widely or by KHE’s general solvers.

Thedi versi fy option determines whether some solvers consult the solution’s diversifier
(Section 4.5), and so produce a different result for different solutions when their diversifiers are
different. Itis retrieved and set by

bool KheOpti onsDi versify(KHE _OPTI ONS options);
voi d KheQptionsSet Di versify(KHE_OPTI ONS options, bool diversify);

Its default value isrue. Many of the solvers packaged with KHE consult this option.

Thenoni t or _evenness option determines wheth&heGener al Sol ve2014 (Section 8.1)
installs evenness monitors (Section 7.6). It is retrieved and set by

bool KheOpti onsMonitor Evenness(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Moni t or Evenness(KHE_OPTI ONS opti ons,
bool nonitor_evenness);

Its default value i$ al se.

Thetime_assi gnnent _onl y option determines wheth&heCener al Sol ve2014 (Section
8.1) exits early, leaving the solution in its state after time assignment. It is retrieved and set by

bool KheOpti onsTi meAssi gnnment Onl y(KHE_OPTI ONS opti ons);
voi d KheQpti onsSet Ti meAssi gnnment Onl y(KHE_OPTI ONS opt i ons,
bool tinme_assignnent_only);

Its default value i$ al se.

8.4.2. Structural solver options

This subsection describes options used by KHE's structural solvers.

Thestructural _tinme_equi v option holds a time-equivalence object (Section 9.2). Itis
retrieved and set by

KHE_TI ME_EQUI V KheOpti onsStruct ural Ti meEqui v(KHE_OPTI ONS options);
voi d KheOptionsSet Structural Ti neEqui v(KHE_OPTI ONS opti ons,
KHE TIME_EQUIV structural _time_equiv);

The default value is a time-equivalence object created HKheOptionsMake or
KheOpt i onsCopy and deleted bytheOpt i onsDel et e. There seems to be no reason to ever call
KheOpt i onsSet St ruct ural Ti meEqui v, but the user of the time-equivalence object will need to
call KheTi meEqui vSol ve at some point.

Thestructural _split_anal yser option holds a split analyser object (Section 9.7.1). It
Is retrieved and set by

KHE_SPLI T_ANALYSER KheOptionsStructural SplitAnal yser (KHE OPTI ONS opti ons);
voi d KheOptionsSet Structural SplitAnal yser (KHE_OPTIONS opti ons,
KHE _SPLIT_ANALYSER structural split_anal yser);

8.4. Options 141

The default value is a split analyser object createimOpt i onsMake or KheOpt i onsCopy
and deleted byKheOptionsDelete. There seems to be no reason to ever call
KheOpt i onsSet Struct ural Split Anal yser .

8.4.3. Time solver options

This subsection describes options used by KHE’s time solvers, except for ejection chain time
repair algorithms, whose options appear in Section 8.4.5.

Theti me_cl ust er_meet _domai ns option determines wheth&neCycl eNodeAssi gnTi nes

(Section 10.8.3) clusters meet domains ugimeSol nCl ust er AndLi mi t Meet Domai ns (Section
10.3.3) before assigning times and unclusters them afterwards. It is retrieved and set by

bool KheOptionsTi meC ust er Meet Donmai ns(KHE_OPTI ONS opti ons);
voi d KheQptionsSet Ti med ust er Meet Domai ns(KHE_OPTI ONS opti ons,
bool time _cluster meet domains);

Its default value i$ al se.

The time_tighten_domai ns option determines whethetheCycl eNodeAssi gnTi nmes
(Section 10.8.3) tightens resource domains (Section 11.3.4). Itis retrieved and set by

bool KheOpti onsTi meTi ght enDonai ns(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Ti neTi ght enDomai ns(KHE_OPTI ONS opt i ons,
bool tinme_tighten_domains);

Its default value i$r ue.

Theti nme_node_repai r option determines wheth&heCycl eNodeAssi gnTi nes (Section
10.8.3) ends by callingheEj ect i onChai nNodeRepai r Ti nes (Section 10.7.2). If so, it calls it
twice, before and after removing regularity-enhancing features. It is retrieved and set by

bool KheOpti onsTi meNodeRepai r (KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Ti meNodeRepai r (KHE_OPTI ONS opti ons,
bool time _node repair);

Its default value i$r ue.
Thetinme_node_regul arity option determines whethé&heNodeLayer edAssi gnTi mes
(Section 10.8.2) tries for node regularity. Itis retrieved and set by

bool KheOpti onsTi meNodeRegul arity(KHE_OPTI ONS opti ons);
voi d KheQptionsSet Ti meNodeRegul arity(KHE_OPTI ONS opti ons,
bool time_node regularity);

Its default value i r ue.
Thetine_|l ayer _swap option determines whether or nidteNodeLayer edAssi gnTi nmes
(Section 10.8.2) tries more than one ordering of its layers. It is retrieved and set by

bool KheOpti onsTi meLayer Swap(KHE_OPTI ONS opti ons);
voi d KheQptionsSet Ti meLayer Swap(KHE_OPTI ONS opti ons,
bool time_|ayer_swap);

142 Chapter 8. Introducing Solving

Its default value i$ al se.
Theti me_| ayer _repai r option determineswhether or nteNodeLayer edAssi gnTi mes

(Section 10.8.2) repairs its assignment of times to each layer immediately after assigning the
layer. Itis retrieved and set by

bool KheOpti onsTi meLayer Repai r (KHE_OPTI ONS opti ons);
voi d KheQptionsSet Ti meLayer Repai r (KHE_OPTI ONS opt i ons,
bool time |ayer repair);

Its default value i$r ue.

If tine_layer_repair istrue, then optiontime_| ayer_repair_backoff determines
whether exponential backoff is used to decide which layers to repair. It is retrieved and set by

bool KheOpti onsTi meLayer Repai r Backof f (KHE_OPTI ONS opti ons);
voi d KheQptionsSet Ti meLayer Repai r Backof f (KHE_OPTI ONS opti ons,
bool time_|ayer_repair_backoff);

Its default value i$ al se, meaning to repair every layer.

The tine_l ayer_repair_|long option affectskheE ecti onChai nLayer Repai r Ti nes
(Section 10.7.2), determining whether it targets just the current layer, or every layer up to and
including the current layer. Itisretrieved and set by

bool KheOpti onsTi meLayer Repai r Long(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Ti meLayer Repai r Long(KHE_OPTI ONS opti ons,
bool time_|layer_repair_long);

Its default value i$ al se, meaning to target just the current layer.

The time_kenpe_stats option holds an object of typ&HE_KEMPE_STATS, used for
recording statistics about Kempe meet moves (Section 10.2.2). Itisretrieved and set by

KHE_KEMPE_STATS KheOpti onsTi meKenpeSt at s(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Ti neKenpeSt at s(KHE_OPTI ONS opt i ons,
KHE_KEMPE_STATS time_kenpe_stats);

Its default value is a neWHE_KEMPE_STATS object, both when an options object is created and
when itis copied. So there is not usually any need toktelpt i onsSet Ti neKenpeSt at s.

8.4.4. Resource solver options

This subsection describes options used by KHE's resource solvers, except for ejection chain
resource repair algorithms, whose options appear in Section 8.4.5.

Theresour ce_i nvari ant option determines whether resource solvers limit themselves to
producing results that preserve tlgsource assignment invaria(®ection 11.2), which states
that the number of unmatched demand tixels may not increase. It is retrieved and set by

bool KheOptionsResourcel nvari ant (KHE_OPTI ONS opti ons);
voi d KheQpti onsSet Resour cel nvari ant (KHE_OPTI ONS opti ons,
bool resource_invariant);

8.4. Options 143

Its default value i al se. Many resource solvers consult this optiokheTaskTr eeMake,
KheTaski ngMakeTaskTr ee, KheTaski ngTi ght enToPartition, KheResourcePair Reassi gn,
KheResour cePai r Repai r Spl i t Assi gnnent's, and KheEj ecti onChai nRepai r Resour ces. It
would be ideal if they all did, but they don’t at present.

The resource_rematch option tells KheTaski ngAssi gnResour ces whether to call
KheResour ceRemat ch. It is retrieved and set by

bool KheOpti onsResour ceRemat ch(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Resour ceRemat ch(KHE_OPTI ONS opt i ons,
bool resource_renatch);

It has default valuér ue.

The resource_pair option affectskheResour cePai r Repair as explained in Section
11.9.2. Itisretrieved and set by

KHE_OPTI ONS_RESQURCE_PAI R KheOpt i onsResour cePai r (KHE_OPTI ONS opti ons);
voi d KheQpti onsSet Resour cePai r (KHE_OPTI ONS opti ons,
KHE_OPTI ONS_RESOURCE_PAIR resource_pair);

It has default valu&HE_OPTI ONS_RESOURCE_PAI R_SPLI TS. Some rudimentary statistics are
gathered in three integer valuesesource_pair_cal | s, resource_pair_successes, and
resour ce_pai r_truncs. These may be retrieved and set as usual:

i nt KheQOptionsResourcePair Cal | s(KHE_OPTI ONS options);

voi d KheQpti onsSet Resour cePai r Cal | s(KHE_OPTI ONS opti ons,
int resource_pair_calls);

i nt KheQptionsResourcePair Successes(KHE_OPTI ONS options);

voi d KheQpti onsSet Resour cePai r Successes(KHE _OPTI ONS opti ons,
int resource_pair_successes);

i nt KheQOptionsResourcePair Truncs(KHE_OPTI ONS opti ons);

voi d KheQptionsSet Resour cePai r Truncs(KHE_OPTI ONS opt i ons,
int resource_pair_truncs);

See Section 11.9.2 for the details.

8.4.5. Ejection chain options
This section describes options relevant to ejector objects and ejection chain repair algorithms.
For full details, consult Chapter 12.

Functions

KHE_EJECTOR KheQpti onsEj ect or (KHE _OPTI ONS options, int index);

voi d KheOptionsSet Ej ect or (KHE_COPTI ONS options, int index,
KHE_EJECTCR €j) ;

retrieve and set one ejector object for each non-negatilex. At each index the default value
ISNULL. Functions

144 Chapter 8. Introducing Solving

char *KheOpti onsEj ect or Schedul esStri ng(KHE_OPTI ONS options);
voi d KheOpti onsSet Ej ect or Schedul esSt ri ng(KHE_OPTI ONS opti ons,
char xejector_schedul es_string);

retrieve and set a string describing the schedules to apply to an ejector. For the default value,
consult Section 12.6. Functions

bool KheOpti onsEj ect or Pronot eDef ect s(KHE_OPTI ONS opt i ons);
voi d KheQpti onsSet Ej ect or Pronot eDef ect s(KHE_OPTI ONS opti ons,
bool ejector_pronote_defects);

retrieve and set thej ect or _pronot e_def ect s option of ejectors. Its default value s ue.
Functions

bool KheOpti onsEj ect or FreshVi sit s(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Ej ect or FreshVi si t s(KHE_OPTI ONS opti ons,
bool ejector _fresh_visits);

retrieve and set thej ect or _fresh_vi si ts option of ejectors. Its default valuefisl se.

Theej ector _repair_tines option determines whether augment functions are permitted
to change the assignments of meets. Itis retrieved and set by

bool KheOpti onsEj ect or Repai r Ti mes(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Ej ect or Repai r Ti mes(KHE_OPTI ONS opt i ons,
bool ejector repair_tinmnes);

It is set by the various ejection chain functions, so setting by the caller of those functions will
have no effect. Its default valuetisue.

Optionej ect or _vi zi er _node determines whethéheEj ect i onChai nNodeRepai r Ti nes

andKheEj ect i onChai nLayer Repai r Ti nes (Section 10.7.2) insert a vizier node (Section 9.5.4)
temporarily while they run. It is retrieved and set by

bool KheOptionsEj ector Vi zi er Node(KHE_OPTI ONS opti ons);
voi d KheQptionsSet Ej ect or Vi zi er Node(KHE_OPTI ONS opt i ons,
bool ejector _vizier_node);

Its default value i$al se.
Theej ect or _nodes_bef or e_neet s option determines whether augment functions that try
both node swaps and meet moves try the node swaps first. It is retrieved and set by

bool KheOpti onsEj ect or NodesBef or eMeet s(KHE_OPTI ONS opti ons);
voi d KheQpti onsSet Ej ect or NodesBef or eMeet s(KHE_OPTI ONS opti ons,
bool ejector_nodes_before neets);

Its default value i$ al se.

Theej ect or _use_kenpe_noves option determines whether augment functions that move
meets use Kempe meet moves in addition to ejecting and basic ones (Section 10.2.2). It is
retrieved and set by

8.4. Options 145

KHE_OPTI ONS_KEMPE KheQpt i onsEj ect or UseKenpeMoves(KHE_OPTI ONS opti ons);
voi d KheQpti onsSet Ej ect or UseKenpeMves(KHE _OPTI ONS opt i ons,
KHE _OPTI ONS_KEMPE ej ect or _use_kenpe_noves);

where typeKHE_OPTI ONS_KEMPE is

t ypedef enum {
KHE_OPTI ONS_KEMPE_NO,
KHE_OPTI ONS_KEMPE_AUTO,
KHE_OPTI ONS_KEMPE_YES
} KHE_OPTI ONS_KEMPE;

KHE_OPTI ONS_KEMPE_NO means to not use them, aktlE_OPTI ONS_KEMPE_YES means to use
them wherever possible (thisis the default valué_OPTI ONS_KEMPE_AUTOmeansto use them
only when moving meets that lie in nodes that lie in layers of large duration relative to the cycle
duration, reasoning that swaps are virtually always needed when such meets are moved.

Theej ect or _use_fuzzy_noves option determines whether augment functions that move
meets try fuzzy meet moves (Section 10.7.4) in addition to the other kinds of meet moves. If
they do, to conserve running time they only do so at depth 1 on the ejection chain, i.e. only
when repairing a defect of the current best solution, not when repairing a defect introduced by a
previous repair. The option is retrieved and set by

bool KheOpti onsEj ect or UseFuzzyMves(KHE _OPTI ONS opti ons);
voi d KheQptionsSet Ej ect or UseFuzzyMoves(KHE _OPTI ONS opt i ons,
bool ejector_use fuzzy noves);

Its default value isfal se. At present thew dth, depth, and max_neets parameters of
KheFuzzyMeet Move are fixed constants.

Theej ect or _use_split_noves option determines whether augment functions that move
meets try split meet moves in addition to the other kinds of meet moves. The option is retrieved
and set by

bool KheOpti onsEj ectorUseSplitMves(KHE _OPTI ONS options);
voi d KheOpti onsSet Ej ect or UseSpl i t Moves(KHE_OPTI ONS opti ons,
bool ejector_use_split_noves);

Its default value i$ al se, but some of the solvers change it on their own authority.

The ej ect or _ej ecting_not _basi ¢ option determines whether augment functions that
assign and move meets use ejecting assignments and moves, not basic ones (Section 10.2.2). It
is retrieved and set by

bool KheOpti onsEj ect or Ej ecti ngNot Basi c(KHE_OPTI ONS opti ons);
voi d KheOpti onsSet Ej ect or Ej ect i ngNot Basi ¢c(KHE_OPTI ONS opt i ons,
bool ejector_ejecting_not_basic);

Its default value i$r ue.

Theejector_linit_node option holds a node. When it is ndWkLL, it causes augment
functions that assign and move meets to limit their repairs to the descendants of that node. Itis

146 Chapter 8. Introducing Solving

retrieved and set by

KHE_NCDE KheOpti onsEj ect orLi mit Node(KHE _OPTI ONS opti ons);
voi d KheQptionsSet Ej ectorLi m t Node(KHE_OPTI ONS opti ons,
KHE NCDE ejector _|inmt_node);
Its default value i®ULL.

The ej ector_repair_resources option determines whether augment functions are
permitted to change the assignments of tasks. Itis retrieved and set by

bool KheOpti onsEj ect or Repai r Resour ces(KHE_OPTI ONS opti ons);
voi d KheQpti onsSet Ej ect or Repai r Resour ces(KHE_OPTI ONS opti ons,
bool ejector _repair_resources);

It is set by the various ejection chain functions, so setting by the caller of those functions will
have no effect. Its default valuetisue.

Theejector_limt_defects option is an integer limit on the number of defects handled
by the main loop of the ejector. Each time the main list of defectsis copied and sorted, if its size
exceeds this limit, defects are dropped from the end until it doesn't. It is retrieved and set by

i nt KheQOptionsEjectorLimntDefects(KHE_OPTI ONS options);
voi d KheOpti onsSet Ej ect or Li mi t Def ect s(KHE_OPTI ONS opt i ons,
int ejector_limt_defects);

Its default value i$ NT_MAX,

8.5. Gathering statistics

KHE offers a module for gathering statistics. It can calculate running times and generate files
containing tables in several formats, and graphs in Lout format.

8.5.1. Running time and date

To find out how long something takes to run, objects of tgiiie STATS_TI MER (the usual pointer
to a private record) are used. Each records one moment in time. To create and delete these timer
objects, the functions are

KHE_STATS TI MER KheSt at sTi mer Make(voi d) ;
voi d KheSt at sTi mer Del et e(KHE_STATS TI MER st);

KheSt at sTi mer Make returns a new timer, initialized by callingpeSt at sTi ner Reset on it, and
KheSt at sTi mer Del et e deletest , reclaiming the memory it used. There is also

KHE_STATS_TI MER KheSt at sTi mer Copy(KHE_STATS_TI MER st) ;
which copiest , producing a new timer holding the same timeas The other functions are

voi d KheSt at sTi mer Reset (KHE_STATS_TI MER st);
fl oat KheStatsTi mer Nowm(KHE_STATS TI MER st);

8.5. Gathering statistics 147

KheSt at sTi mer Reset resetsthe time held withst to the time wherheSt at sTi mer Reset was
called. KheSt at sTi mer Now compares the time recordedsin (whenkhesSt at sTi ner Reset was

last called) with the time now and reports the difference in seconds. Both functions may be called
any number of times on the same timer. Any number of timers may be used independently.

Because wall clock times are used, times measured within one thread of a parallel solve
will not in general measure the time consumed by that thread. However, a parallel solver can
be called betweekheSt at sTi mer Reset andKheSt at sTi ner Now, and then they will reliably
measure the elapsed time of the parallel solve.

Also offered is

char +KheSt at sDat eToday(voi d);

which returns the current date as a string in static memory.

For the sake of compilations that do not have the Unix system functions called by these
functions, filekhe. h has akHE_USE_TI M NG preprocessor flag. Its default value is 1; changing
it to O will turn off all calls to Unix timing system functions. If that is done, all functions
will still compile and run without error, bukheSt at sTi mer Now will always return- 1. 0, and
KheSt at sDat eToday will return™ ?" .

8.5.2. Files of tables and graphs

The main thing that the stats module does is generate files of tables and graphs. Any number of
files may be generated simultaneously (not in parallel, because the stats module has no locking,
but by one thread). One file may contain any number of tables and graphs, although only one

may be generated at a time within any one file.

To begin and end a file, call

voi d KheStatsFil eBegi n(char «file_name);
voi d KheStatsFil eEnd(char *file_nane);

This writes a file calledi | e_nane in sub-directoryst at s of the current directory (which the
user must have created previously). The file is openekhb$t at sFi | eBegi n and closed by
KheSt at sFi | eEnd. To generate the actual tables and graphs, see the following subsections.

8.5.3. Tables

To generate tables, make matching pairs of calls to the following functions in between the calls
toKheSt at sFi | eBegi n andKheSt at sFi | eEnd:

voi d KheSt at sTabl eBegi n(char «file_name, KHE STATS TABLE TYPE table_type,
int col _width, char xcorner, bool with_average_row, bool with_total row,
bool highlight_cost_minim, bool highlight_tine_n ning,
bool highlight_int_mnim);

voi d KheSt at sTabl eEnd(char *file_nanme);

Only one table at a time can be generated into a given file, so a table is not identified separately
from its file. The table is begun b§heSt at sTabl eBegi n, and finished, including being written
out to the file, bykheSt at sTabl eEnd. Where the file format permits, a label will be associated

148 Chapter 8. Introducing Solving

with the table: the file name for the first table, the file hame followed by an underscore and
2 for the second table, and so on. The value of the table is created in between these two calls,
by calling functions to be presented shortly. Because the entire table is saved in memory until
KheSt at sTabl eEnd is called, these other calls may occur in any order. In particular it is equally
acceptable to generate the table row by row or column by column.

The format of the table is specified bgbl e_t ype:

typedef enum {
KHE_STATS TABLE_PLAI N,
KHE_STATS TABLE_LOUT,
KHE_STATS TABLE_LATEX

} KHE_STATS TABLE_TYPE;

The choices are plain text, Lout, or LaTeX. Parametér wi dt h determines the width in char-
acters of each columnin plain text; itisignored by the other formats. Parameter is printed
in the top left-hand corner of the table. 1t must be mbht, but it can be the empty string.

Each entry in the table has a type, which may be eigitieng, cost time (really just an
arbitraryf | oat), orint. If with_average_rowistrue, the table ends with an extra row. Each
entry in this row contains the average of the non-blank, non-string entries above it, if they all have
the same type; otherwise the entry is blankwilf h_t ot al _rowistrue, the effect is the same
except that totals are printed, not averages.

If hi ghlight_cost_nini naistrue, the minimum values of typeostin each row appear
in bold font, or marked by an asterisk in plain text. Parametegsl i ght _ti me_mi ni ma and
hi ghl i ght _i nt _mi ni na are the same except that they highlight values of typeor int.

A caption can be added by calling
voi d KheStat sCapti onMake(char *file_nane, char =fnmt, ...);

at any time betweeKheSt at sTabl eBegi n andKheSt at sTabl eEnd, as often as desired. This
does whapri ntf would do with the arguments aftérl e_nane. The results of all calls are
saved and printed as a captionkheSt at sTabl eEnd.

In any given table, each row except the first (header) row must be declared, by calling
voi d KheSt at sRowAdd(char =file_nane, char xrow_| abel, bool rule_below);

The rows appear in the order of the calls. Parameter | abel both identifies the row and
appearsin the first (header) column of the table.ulfe_bel owist r ue, the row will have a rule
below it. The header row always has a rule below it, and there is always a rule below the last row
(not counting any average or total row).

In the same way, non-header columns are declared, in order, by calls to
voi d KheStat sCol Add(char =file_nane, char =col | abel, bool rule_ after);

wherecol _| abel both identifies the column and appears in the first (header) row of the table,
and settingul e_after totrue causes a rule to be printed after the column.

To add an entry to the table, call any one of these functions:

8.5. Gathering statistics 149

voi d KheStatsAddEntryString(char =file_name, char *row | abel,
char =col | abel, char =str);

voi d KheStat sAddEntryCost (char *file_name, char *row | abel,
char =col | abel, KHE COST cost);

voi d KheStatsAddEntryTi ne(char *file_name, char *row | abel,
char =col | abel, float time);

voi d KheStatsAddEntrylnt(char =file_name, char *row | abel,
char =col | abel, int val);

These add an entry fo | e_nane’s table at rowr ow_| abel and columrcol _| abel , aborting if
these are unknown or an entry has already been added there. If no entry is ever added at some
position, the table will be blank there. The entry’s format depends on the call. For example,

KheSt at sAddEnt ryCost (file_name, row_| abel, col _| abel, KheSol nCost(soln));

adds a solution cost to the table which will be formatted in the standard way.

All strings passed to these functions that require long-term storage are copied, so mutating
strings are not a concern. On the other hand, there is no locking, so calls which create tables
should be single-threaded, as should calls which modify the same table.

8.5.4. Graphs

To generate graphs in Lout format, make matching pairs of calls to the following functions in
between the calls téheSt at sFi | eBegi n andKheSt at sFi | eEnd:

voi d KheSt at sG aphBegi n(char *file_name);
voi d KheStat sG aphEnd(char *file_name);

As for tables, only one graph can be generated into a given file at a time, and so the graph is iden-
tified by the file name. To set options which control the overall appearance of the graph, call

voi d KheStat sGaphSetWdth(char =file_nane, float width);

voi d KheSt at sG aphSet Hei ght (char *file_name, float height);
voi d KheSt at sG aphSet XMax(char +file_name, float xmax);

voi d KheSt at sG aphSet YMax(char +file_name, float ymax);

voi d KheSt at sG aphSet AboveCapti on(char =file_name, char xval);
voi d KheSt at sG aphSet Bel owCapti on(char =file_name, char xval);
voi d KheStat sGaphSet Left Caption(char *file_name, char =*val);
voi d KheSt at sG aphSet Ri ght Caption(char *file_nane, char *val);

These determine the width and height of the graph (in centimetres), the maximum x and y values,
and the small captions above, below, to the left of, and to the right of the graph. If calls to these
functions are not made, the options remain unspecified, causing Lout’s graph package to substi-
tute default values for them in its usual way. The caption values must be valid Lout source.

A caption can be added by calling the same function as for tables:
voi d KheStatsCapti onMake(char =file_name, char *fnt, ...);

at any time betweekheSt at sG aphBegi n andKheG aphTabl eEnd.

150 Chapter 8. Introducing Solving

Any number ofdatasetsamay be displayed on one graph; each dataset is a sequence of
points. Often there is just one dataset. To create a dataset, call

voi d KheSt at sDat aSet Add(char =file_name, char xdataset | abel,
KHE_STATS_DATASET TYPE dat aset _type);

wheredat aset _| abel is used to identify the dataset, adat aset _t ype determines how the
data are presented. At present the stats module offers just one choice:

t ypedef enum {
KHE_STATS DATASET_HI STO
} KHE_STATS_DATASET_TYPE;

but the Lout graph package offers many others, so it would not be difficult to expand the choices
here.KHE_STATS_DATASET_H STOprints a histogram. The x values of the dataset’s points should
be increasing integers; the y values are the frequencies. Function

voi d KheSt at sPoi nt Add(char =file_nane, char =dataset | abel,
float x, float y);

adds a point to a dataset. The points are generated in the order received, so in practice, successive
calls tokheSt at sPoi nt Add on the same dataset should have increasing x values.

8.6. Exponential backoff

One strategy for making solvers faster is to do a lot of what is useful, and not much of what isn’t
useful. When something is always useful, it is best to simply do it. When something might be
useful but wastes a lot of time when it isn't, it is best to try it, observe whether it is useful, and
do more or less of it accordingly. Solvers that do this are said twagtive

For example, suppose there is a choice of two or more methods of doing something. In
that case, information can be kept about how successful each method has been recently, and the
choice can be weighted towards recently successful methods.

However, this section is concerned with a different situation, involving just one method.
Suppose there is a sequencepportunitieso apply this method, and that as each opportunity
arrives, the solver can choose to apply the method or not. Typically, the method will be a repair
method: repairis optional. If the solvacceptshe opportunity, the method is then run and either
succeedg¢does something useful) daiils (does nothing useful). Otherwise, the soldeclines
the opportunity. So opportunities are classified as successful, failed, or declined.

Exponential backoffrom computer network implementation is a form of adaptation suited
to this situation. It works as follows. If the solver applies the method and it is successful, then it
forgets all history and will accept the next opportunity. But if the solver applies the method and
it fails, then it remembers the total number of failed opportunfgscluding this one) since
the last successful opportunity, and does not accept another opportunity until after it has declined
2F'1opportunities. Declined opportunities do not count as failures.

Here are some examples. Each character is one opportsisitysuccessful opportunity (or
the start of the sequence)is a failed one, and is a declined one. Each successful opportunity

8.6. Exponential backoff 151

makes a fresh start, so the examples all begin &dhd contain only and. thereafter:

S

SF.

SF. F..

SF.F..F. ...
SF.F..F...F.......

and so on. Every complete trace of exponential backoff can be broken &t edolsub-traces
like these. Methods that always succeed are tried at every opportunity. Methods that always fall
are tried only about logn times, wheran is the total number of opportunities.

Other rules for which opportunities to accept could be used, rather than waitinQFu‘ﬁtiI
opportunities have been declined. For example, every opportunity could be accepted, which
amounts to having no backoff at all. The principles are the same, only the rule changes.

KHE offers four operations which together implement exponential backoff:

KHE_BACKOFF KheBackof f Begi n(KHE_BACKOFF_TYPE backoff _type);
bool KheBackof f Accept Qpport unity(KHE_BACKOFF bk);

voi d KheBackof f Resul t (KHE_BACKOFF bk, bool success);

voi d KheBackof f End(KHE_BACKOFF bk) ;

KheBackof f Begi n creates a new backoff object, passingbackoff _type value which
determines which rule is used, of type

t ypedef enum {
KHE_BACKOFF_NONE,
KHE_BACKOFF_EXPONENTI AL

} KHE_BACKOFF_TYPE;

The two values select no backoff and exponential backaitBackof f Accept Opportunity is
called when an opportunity arises, and retunnge if that opportunity should be accepted. In
that case, the next call must beteBackof f Resul t , reporting whether or not the method was
successfulkheBackof f End reclaims the memory consumed by the backoff object.

Suppose that the program pattern without exponential backoff is

while(...)
{

i f(opportunity_has_arisen)
success = try_repair_method(soln);

}

Then the modified pattern for including exponential backoff is

152 Chapter 8. Introducing Solving

bk = KheBackof f Begi n(KHE_BACKOFF_EXPONENTI AL) ;
while(...)
{

i f(opportunity has_arisen && KheBackof f Accept Qpportunity(bk))
{

success = try _repair_nethod(soln);

KheBackof f Resul t (bk, success);

}

}
KheBackof f End(bk) ;

Each successfitheBackof f Accept Oppor t uni ty is followed by a call tckheBackof f Resul t .

All backoff objects hold a few statistics, kept only for printing KiyeBackof f Debug
below, and a boolean flag whichtisue if the next call must be t&heBackof f Resul t . When
exponential backoff is requested, a backoff object also maintains two int€jarglM. C is
the number of declines since the last accept (or since the backoff object was créhisdhe
maximum number of opprtunities that may be declined, defined by

uo ifF=0

M =g,
=t ifF>1

whereF is the number of failures since the last success (or since the backoff object was
created). The next call tgheBackof f Accept Opportunity will returntrue if C>M. The
implementation will not increadd if that would cause an overflow. Overflow is very unlikely,
since an enormous number of opportunities would have to occur first.

Function

char xKheBackof f ShowNext Deci si on(KHE_BACKOFF bk) ;

returns' ACCEPT" when the next call theBackof f Accept Qppor t uni ty will returntrue, and
"DECLI NE" when it will returnf al se. There is also

voi d KheBackof f Debug(KHE_BACKCOFF bk, int verbosity, int indent, FILE *fp);

Verbosity 1 prints the current state, including avhen the flag is set, on one line. Verbosity 2
prints some statistics: the number of opportunities so far, and how many are successful, failed,
and declined, in a multi-line format. A function for testing this module apped«sanh.

Chapter 9. Structural Solvers

This chapter documents the solvers packaged with KHE that modify the structure of a solution:
split and merge its meets, add nodes and layers, and so on. These solvers may alter time and
resource assignments, but they only do so occasionally and incidentally to their structural work.

9.1. Layer tree construction
KHE offers a solver for building a layer tree holding the meets of a given solution:
KHE_NCDE KheLayer Tr eeMake(KHE_SOLN sol n);

The root node of the tree, holding the cycle meets, isreturned. The function has no special access
to data behind the scenes. Instead, it works by calling basic operations and helper functions:

» ltcallskheMeet Split to satisfy split events constraints and other influences on the number
and duration of meets, as far as possible. It is usual tkoellayer Tr eeMake when each
eventis representedsnl n by a single meet of the full duration (that is, aftéeSol nMake
andkheSol nvakeConpl et eRepr esent at i on), but some meets may be already split. In any
caseKheLayer Tr eeMake does not create, delete, or merge meets.

* ItcallskheMeet BoundMVake with aNULL meet bound group to set the time domains of meets
to satisfy preassigned times, prefer times constraints, and other influences on time domains,
as far as possible. For each meet, one cahtdket BoundMake is made for each possible
duration. It is usual to calkheLayer Tr eeMake at a moment when the time domains of
the meets are not restricted by meet bounds, but some meets may already have bounds. In
any casekhelLayer Tr eeMake only adds bounds, never removes them, so it either leaves a
domain unchanged, or reduces it to a subset of its initial value.

* It callskheMeet Assi gn in trivial cases where there is no doubt that the assignments will be
final. Precisely, if there are two events of equal duration linked by a link events constraint
and split into meets of equal durations, and the algorithm places one in a parent node and
the other in a child of that parent, then, provided the child node itself has no children (which
would render the case non-trivial), the meets of the child node will be assigned to meets of
the parent node, and the child node will be deleted in accordance with the convention given
in Chapter 10, that meets whose assignments will never change should not lie in nodes.

» It calls KheMeet Assi gnFi x to fix all the assignments it makes (as defined immediately
above). These can be unfixed afterwards if desired.

153

154 Chapter 9. Structural Solvers

» It callskheNodeMake andKheNodeAddMeet to ensure that for each event there is one node
holding the meets of that event, unless these meets receive the trivial assignments just de-
scribed. Thereisalso a node (the root node returnétidlyayer Tr eeMake, also accessible
asKheSol nNode(sol n, 0)) holding the cycle meets. Any other meets (usually none) are
not placed into nodes<heLayer Tr eeMake requiressol n to contain no nodes initially.

* |t callsKheNodeAddPar ent to reflect link events constraints (even between events whose
durations differ), as far as possible, and the need to ultimately assign every meet to a cycle
meet. WherkhelLayer Tr eeMake returns, every node is a descendant of the root node.

e Some instances contain events which have already been split, with the fragments presented
as distinct events. lItis best if the nodes holding the meets derived from these fragments are
merged. So for each pair of distinct events which appear to be part of one course because
they share a spread events constraint or avoid split assignments constraint, if certain other
conditions (Section 9.1.5) are satisfied, the nodes holding the meets of those two events are
merged by a call t&heNodeMer ge.

These elements interact in ways that make most of them impossible to separate. For example,
the splitting of an event into meets needs to be influenced not just by the event’'s own split events

constraints and distribute split events constraints, but also by the constraints of the events that it
is linked to by link events constraints.

Logically, order events constraints should also affect the construction of layer trees. In the
version of KHE documented here they are not consulted, but this will change.

AlthoughKheLayer Tr eeMake does not calkheLayer Make, resource layers (sets of events
that share a common preassigned resource which has a hard avoid clashes constraint) strongly
influence its behaviour. It ensures that the events of each layer are split into meets which can be
packed into the cycle meets without overlapping in time, except in the unlikely case where the
total duration of the events of the layer exceeds the total number of times in the cycle.

For eachreet with a pre-existing assignment to sotrer get _neet , KneLayer Tr eeMake
tries to placereet into a child node of ar get _nmeet 's node. In exceptional circumstances, this
may not be possible, and then the pre-existing assignment is removéelayer Tr eeMake.
Suppose there is an event with two meets, both assigned to other meets. If those two other meets
are both derived from the same event, or if they are both cycle meets, then all is well; but if not,
one of the original meets will be unassigned. This is done bedtes@yer Tr eeMake tracks
relations between events, not meets, and cannot cope with the idea of one event being assigned
partly to one event and partly to another. A meet will also be unassigned when there is a cycle
of assignments, but that should never occur in practice.

The above attempts to be a complete specificatiokhef.ayer Tr eeMake, sufficient for
using it. For the record, the following subsections explain how it works in detail.

9.1.1. Overview

KheLayer Tr eeMake uses a constructive heuristic which runs quickly. It works by examining the
relevant constraints and taking actions to satisfy them, giving priority to those with higher weight.

It does not search through a large space of possible solutions to find the best. Thisis appropriate,
because in practice good solutions are easyto find. The problem is more about giving due weight

9.1. Layer tree construction 155

to the many influences on the solution than about real solving.

KheLayer Tr eeMake begins by unassigning meets to remove cases where two meets derived
from a single event are assigned to meets not both derived from the same event or both cycle
meets, and splitting meets whose duration exceeds the number of times in the instance into meets
of duration within that bound. This allows the remainder of the algorithm to assume that each
event is preassigned to at most one other event, and that there are no oversize meets.

In practice, it is likely that the constraints of an instance will cooperate harmoniously, but
for completenessit is necessary to handle cases where they do not. For example, there is nothing
to prevent a link events constraint from linking two events, one of which is required by a split
events constraint to split into three meets, while the other is required to split into one.

There isa data structure, described in the following sections, which embodies all the require-
ments that the final layer tree must satisfy, including how events are to be split into meets, and
how meets are to be grouped into nodes. Itis an invariant that at least one layer tree must satisfy
all these requirements. Initially, the data structure embodies no requirements at all. Along series
of jobsis then applied to it, each inspired by some constraint or other feature of the instance to
request that the data structure add some new requirements to the ones it currently embodies. If
no layer trees would satisfy both the old and new requirements, thergjecsed(it is ignored);
otherwise, it isacceptedits requirements are added). There are also cases in which some of the
requirements of a job are accepted but others have to be rejected. The jobs are sorted by decreas-
ing priority, which is usually the combined weight of the constraint that inspired the job. In this
way, contradictory requests are resolved by giving preference to requests of higher priority.

Here is the full list of job types, with brief descriptions. How each job modifies the data
structure will be explained later. The jobs not derived from constraints have high priority.

Pre-existing splitsEach already split evemtgenerates a job requiring the meets that
ultimately split into to be packable into (created by further splitting of) the pre-existing meets.

Preassigned times{HSTT specifies that a meet derived from an event with a preassigned
time must be assigned that time. Several simultaneous meets derived from one event are unlikely
to be wanted, so this job requests that a preassigned event be not split further than its pre-existing
splits, and that the meets’time domains be set to singleton domains.

Pre-existing assignments and link events constraifitese are interpreted as requests to
create parent-child links between nodes.

Avoid clashes constraint€£ach resource subject to a required avoid clashes constraint
gives rise to a job which requests that the layer tree recognize that the events to which the
resource is preassigned cannot overlap in time.

Split events constraints and distribute split events constrairfiese request restrictions on
the number of meets that an event may be split into, and their durations.

Spread events constraintH. the events of an event group of a spread events constraint
are split into too many or too few meets, then a non-zero number of deviations of the constraint
becomes inevitable. The job tries to tighten the requirements on the number of meets of the
events concerned, to the point where this problem cannot arise.

Prefer times constraintsThis kind of job requests that the time domain of the meets of an
event which have a certain duration be reduced to satisfy a prefer times constraint. Thismay lead
to an empty domain for meets of that duration; if so, then there can be no meets of that duration

156 Chapter 9. Structural Solvers

at all, which may prevent the job from being accepted.

After all jobs have been applied, the data structure is traversed and a layer tree is built.
Finally,KheLayer Tr eeMake examines each pair of events connected by a spread events or avoid
split assignments constraint, and if those events’ nodes satisfy the conditions given in Section
9.1.5), it merges them by callirpeNodeMer ge.

9.1.2. Linking

The data structure used BireLayer Tr eeMake must be close enough to the layer tree to make
it straightforward to derive an actual layer tree at the end. In fact, it needs to represent the set of
layer trees that satisfy the requirements of all the jobs accepted so far. This section explains how
this is done for linking, and later sections explain the parts that handle splitting and layering.

If meets, can be assigned to mesat offseto,, ands, can be assigned Kat offseto,, then
it is always possible to assigndirectly tos; at offseto, + 0,. Thus, the relation of assignability
between meets is transitive. Although it is not safe to assign a meet to itself, it does no harm to
pretend here that assignability is reflexive as well.

In some cases, two meets are assignable to each other. They must have equal durations
and time domains, but that is not unusual. By a well-known fact about reflexive and transitive
relations, two-way assignability is an equivalence relation between meets.

Similar relations can be defined between events A(et e,) hold when the meets & can
be assigned to the meets@fat non-overlapping offsets. Define

(&, &) = A€, &) UA(e,)

Again,Ais reflexive and transitive, arfslis an equivalence relation.

The data structure used for linking events includes a representation of reltoTsS,
The equivalence classes defined3gre represented by nodes of a graph, containing the events
of the class and connected to other equivalence classes by directed edges repr&sAictindd
be an arbitrary directed acyclic graph, but in fact it is limited to a tree: each equivalence class is
recorded as assignable to at most one other equivalence class. Relational nodes will always be
called classes, to avoid confusion with layer tree nodes.

The child classes of each equivalence class are organized into layers. That additional
structure is not needed for linking, however, so its description will be deferred to Section 9.1.4.

Initially, each event lies in its own class, plus there is one class with no events, representing
the cycle meets. Every event class is a child of the cycle meets class. Thus, initially r8ligtion
empty, and relatioArecords only the basic fact that every event is assignable to the cycle meets
to begin with. This s quite true, since, at this initial stage, before any jobs are accepted, the data
structure believes that each event's domain is the entire cycle, that each event is free to split into
meets of duration 1, and that there are no layers.

Basing the data structure on events, rather than on meets, seemsto be right, but it does cause
differences between the meets of one event to be overlooked. For example, the data structure
believes that all meets derived from the same event have the same time domain.

Jobs that link events together do so by proposing elememisaofiSto the data structure,
which accepts them when it can. Aproposal is a request to merge the equivalence classes

9.1. Layer tree construction 157

containing its two events into one (if they are not already the samé)paoposal is a request to
replace one parent link by another (which must still imply the first by transitivity). A proposal
could be rejected for various reasons: it might lead to a directed acyclic graph which is not a
tree, or cause events from the same layer to overlap in time, or lead to unacceptable restrictions
on how events are to be split (as in the example at the start of this chapter), and so on.

Pre-existing assignments are proposed first as eleme§tand if that fails as elements of
A. The second proposal at least cannot fail to be accepted, because these jobs have maximum
priority and do not contradict each other. A link events constraint job first proposes all pairs
of linked events of equal duration as element§adind then all pairs regardless of duration as
elements ofA. In general, amA proposal could require that the whole set of classes lying on a
cycle of Alinks be evaluated for merging, but this particular way of making proposals ensures
that, in fact, only pairwise merges need to be evaluated.

Each equivalence class hadass leaderone of its own events. When an equivalence class
is created, its leader is the sole event it initially contains, and when two classes are merged, one
of the two leaders is chosen to be the leader of the merged class. For convenience, we pretend
that the cycle meets are derived from a sirgyele eventvhich is the leader of their class.

If classC contains an evergwhich is assigned to an event outsidethen the evengis
assigned to lies in the parent class<bf There may not be two such eventrunless they are
assigned to the same event at the same offset. The leader must be one of these events. The data
structure only becomes aware of assignments when the jobs representing them are accepted.

If C does not contain an event which is assigned to another event outside the class, then
it must contain at least one event which is not assigned at all, since otherwise there would be a
cycle of assignments within the class. Any such unassigned event may be the leader.

These conditions are trivially satisfied when a class is created, by making its sole event the
leader. When two classes are merged, there are various possibilities, including failure to merge
when the two leaders are assigned to distinct events outside both classes.

When constructing the final layer tree, all the unassigned events of each class except
the leader are placed in layer tree nodes which are made children of the node containing the
leader. Similarly, the nodes containing the leaders of child classes become children of the node
containing the leader of the parent class. In reality, of course, it is the meets derived from these
events by the splitting algorithm to be described next that are placed into these nodes.

9.1.3. Splitting

Given an evengof durationd, any mathematical partition afis a possible outcome of splitting
e. For example, ife has duration 6, the possible outcomes are the eleven partitions

6 42 33 3111 2211 111111
51 411 321 222 21111
One element of a partition is callegpart, and is the duration of one meet.

Any condition that limits how an event is split defines a subset of this set of partitions. For
example, if a split events constraint states that an event of duration 6 should be split into exactly
four meets, that is equivalent to requiring the partition to be either3111or22 11

Each equivalence class holds a set of events of equal duration that are assignable to each

158 Chapter 9. Structural Solvers

other. These will eventually be partitioned into meets in the same way. In addition to the events,
the class holds the requirements that the final partition must satisfy. These define a subset of the
set of all partitions of the duration, but it is not possible to store the subset directly, because for
large durations it may be very large. One partii®stored, however: the lexically minimum one
satisfying the requirements. (A lexically minimum partition has minimum largest part, and so
on recursively. For example, 11111 1isthe lexically minimum partition of 6.) Itis an invariant
that the set of partitions satisfying the requirements may not be empty.

In the special case of the equivalence class that represents the cycle meets, the requirements
are fixed to allow exactly one partition: the one representing the durations of the cycle meets.

The requirements on partitions are of two kinds. First, there aréottad requirements
These are mainly lower and upper bounds on the total number of parts, and on the number of
parts of each possible duration, modelled on the corresponding fields of the split events and
distribute split events constraints. Another kind of local requirement arises when a pre-existing
split job is accepted: if an event of duration 6 is already split into meets of duration 4 and 2,
say, when the algorithm begins, then, to be acceptable, a partition must be packable into partition
4 2. One partition ipackableinto another if splitting some parts of the second partition and
discarding others can produce the first. For example, 2 11is packable into 2 2 2, but neither of
3111and2211is packable into the other.

Second, there are ttstructural requirementsEach parent class has an arbitrary number
of child classes, whose events will eventually be assigned to the parent class’s events. So the
lexically minimum partition of each child class must be packable into the parent class. In
these calculations the constraint always flows upwards: the child’s lexically minimum partition
Is taken as given, and the parent’s minimum partition is adjusted (if possible) to ensure that
the child’s is packable into it. When a child class’s minimum partition changes, the parent’s
requirements must be re-tested. In this way, a change to a partition propagates upwards through
the structure until it either dies out or causes some class to have no legal partitions. In the second
case, the job which originated the changes must be rejected.

Some of the child classes may be organized into layers. In that case, each layer’s classes,
taken together, must be packable into the parent class. Each layer is represented by a split layer
object, as explained in detail in the next section. That object contains a minimum partition which
must be packable into the parent class, just like the minimum partitions of child classes.

Deciding whether any partitions satisfy even the local requirements is non-trivial: is it
safe to place two events into one class, when one is already split into partition 4 2 and the other
is already split into partition 32 1? Some simple checks are made, then a full generate-and-test
enumerationis begun and interrupted at the first success. The enumeration produces the lexically
minimum acceptable partition first, which is then stored and propagated upwards. Fortunately,
packability can be tested very quickly in practice, despite being an NP-complete bin packing
problem, because event durations are usually small.

At the end, after the last job is processed, each event of each class is split into meets whose
durations form the lexically minimum partition of that class.

9.1.4. Layering

The relation between meets and layers (sets of events that share a common preassigned resource

9.1. Layer tree construction 159

with a required avoid clashes constraint) is a many-to-many relation: a layer may contain any
number of meets, and a meet may lie in any number of layers.

Suppose that mesf lies in layerl and is assigned to megt KHE enforces the rule that
any assignment of, may not be such as to causeo overlap in time with any other meet bf
In a senses, (actually, that part of it assignes) becomes a member bfvhile s, is assigned to
it. We say thas, liesdirectlyin |, ands, liesindirectlyin I.

An event lies directly in a layer if any of its meets lie directly in the layer. An equivalence
class lies directly in a layer if any of its events lie directly in the layer, and it lies indirectly in the
layer if any of its child classes lie in the layer, either directly or indirectly. This is because the
events of child classes will eventually be assigned to the events of the class.

The layering aspect dtheLayer Tr eeMake is based on an object calledplit layer, which
represents one element of the many-to-many relation between equivalence classes and layers. In
other words, there is one split layer object for each case of an equivalence class lying in a layer,
directly or indirectly. Its attributes are the class, the resource defining the layer, the set of all child
classes of the class that lie in the layer, and a partition, whose value will be defined shortly.

When an equivalence class lies directly in a layer (when it contains an event that lies directly
in the layer), none of its child classes can lie in the layer, since that would mean that two events
of the same layer overlap in time. Soin that case the set of child classes must be empty. To keep
it that way, the partition contains as many 1's as the duration of the class. This makesit clear that
there is no room for any child classes in the layer, without constraining the division of the class’s
events into sub-events in any way.

When an equivalence class lies indirectly in a layer, some of its child classes lie in the layer.
Their total duration must not exceed the duration of the class, and their meets, taken together,
must be packable into the class, since they are disjoint in time. So in this case the set of child
classes may be (in fact, must be) non-empty, and the partition holds the multiset union of the
lexically minimum partitions of the child classes.

The job which adds a layer to the data structure adds its events one by one. In the unlikely
event that the duration of the layer exceeds the number of times in the cycle, or bin packing
problems prevent an event being added, the job rejects the event, which amounts to ignoring the
presence of the preassigned resource in that event.

Adding an event to a layer means that the event’s class and all its ancestors must get split
layer objects for the layer. For all these classes, moving upwards until either there are no more
ancestorsor a class already has a split layer object for the layer, either add a new split layer object
holding just the current child class, or add the child class to an existing split layer object.

While the upward propagation adds new split layer objects, there is no possibility of failure,
since a layer containing a single event is no more constraining than the event alone (the event is
already present, only its membership of a layer is changing). But if an existing split layer object
Is reached, the class must be added to it, and so its partition grows, possibly leading to an empty
set of acceptable partitions in the parent, causing rejection of the request.

9.1.5. Merging

As mentioned earlier, when instances contain events which have already been split, it is best to
merge the nodes containing those events. The advantages include ensuring that how the instance

160 Chapter 9. Structural Solvers

Is presented does not affect the way it is solved, exposing symmetries which could be expensive
if left hidden, and taking a step towards regularity.

Node merging is carried out after the main part of the layer tree construction algorithm
iIs complete and a layer tree is present. For each pair of events that share a spread events or
avoid split assignments constraint, the first meet of each event is found and the chain of fixed
assignments is followed to the first unfixed meet and from there to the node. The two nodes thus
found are candidates for merging. If they both exist, and they are distinct, and the first meet in
each contains the same preassigned resources (counting resources in meets assigned to the meet,
directly or indirectly, as well as resources in the meet itself), then the nodes are merged.

Only nodes which share at least one preassigned resource are merged. Thisensuresthatitis
right to assign non-overlapping times to the meets of a node, which is what solvers usually do.

Requiring the same preassigned resources turns out to be important, because of the way that
layers are built from nodes, not from meets. If some of the meets of a node contain a resource
but others do not, then when the nodes containing that resource are formed into a layer later, the
layer’s duration may be longer than the cycle length, making it awkward to timetable.

9.2. Time-equivalence

Two sets of meets aténe-equivalenif it can be shown, by following fixed meet assignments,
that each set of meets must occupy the same set of times as the other while fixed assignments
remain in place. This may be true even when none of the meets is assigned a time.

Two events are time-equivalent if their sets of meets are time-equivalent. Usually, this
is because they are joined by a link events constraint which is being handled structurally, for
example byheLayer Tr eeMake (Section 9.1).

Two resources are time-equivalent if they have the same resource type (ca)l it
KheResour ceTypeDemandl sAl | Preassi gned(rt) (Section 3.5.1) isrue, and the sets of meets
containing their preassigned tasks are time-equivalent. Time-equivalent resources are busy at the
same times. They are usually students who choose the same courses.

It is clear that time-equivalence between sets of meets is an equivalence relation, as is
time-equivalence between events and between resources. So the events and resources of an
instance can be partitioned into time-equivalence classes. These classes are calculated by a
time-equivalence solvewhich can be created and deleted by calling

KHE_TI ME_EQUI V KheTi meEqui vMake(voi d);
voi d KheTi meEqui vDel et e(KHE TIME_ EQUIV te);

However, a call t&kheOpt i onsSt ruct ur al Ti meEqui v (Section 8.4.2) is the usual way to obtain
a time-equivalence object. To perform the calculation for a particular, call

voi d KheTi meEqui vSol ve(KHE TIME EQUI V te, KHE_SOLN soln);
The equivalence classes of events are event groups which can be visited by

i nt KheTi neEqui vEvent G oupCount (KHE TIME EQUIV te);
KHE_EVENT _GROUP KheTi meEqui vEvent Group(KHE_TIME EQUIV te, int i);

9.2. Time-equivalence 161

in the usual way. The equivalence class for a given event is returned efficiently by

KHE_EVENT _GROUP KheTi meEqui vEvent Event Group(KHE _TI ME_ EQUI V te,
KHE_EVENT e);

If e is not time-equivalent to any other event, a singleton event group containsgturned.
There is also

i nt KheTi neEqui vEvent Event Groupl ndex(KHE TIME EQUIV te, KHE EVENT e);

which returns the valuie such thakheTi neEqui vEvent G oup(te, i) contains.
Similarly, the equivalence classes of resources are resource groups which can be visited by

i nt KheTi neEqui vResour ceGroupCount (KHE_TI ME_ EQUIV te);
KHE_RESOURCE GROUP KheTi neEqui vResour ceGroup(KHE_TIME EQUIV te, int i);

in the usual way. The equivalence class for a given resource is returned efficiently by

KHE_RESOURCE_GROUP KheTi neEqui vResour ceResour ceG oup(KHE_TI ME_EQUI V te,
KHE_RESOURCE r);

If r is not time-equivalent to any other resource, including the case when its resource type is not
all preassigned, a singleton group contairing returned. Again,

i nt KheTi meEqui vResour ceResour ceG oupl ndex(KHE TI ME_EQUI V te,
KHE_RESOURCE r);
returns the value such thakheTi meEqui vResour ceG oup(te, i) containg .

All of these results reflect the state of the solution at the time of the most recent call to
KheTi neEqui vSol ve(t e) ; they are not updated as the solution changes.

9.3. Layers

Layers were introduced in Section 5.3, but no easy way to build a set of layers was provided.
This section remedies that deficiency and adds some useful aids to solving with layers.

9.3.1. Layer construction

The usual rationale for the existence of a layer is that its nodes’ meets must not overlap in time
because they contain preassignments of a common resource. Function

KHE LAYER KheLayer MakeFr onResour ce(KHE_NCDE parent node,
KHE_RESOURCE r);

builds a layer of this kind. It callsheLayer Make to make a new child layer gfar ent _node,
andKhelLayer AddResour ce to addr to this layer. Then, each child nodepafr ent _node which
contains a meet preassignedeither directly within the node, indirectly within descendant
nodes, or in meets assigned, directly or indirectly, to those meets) is added to the layer.

The layering of nodeparent _node is a particular set of layers which is useful when

162 Chapter 9. Structural Solvers

assigning times to the child nodespaT ent _node, created by calling function
voi d KheNodeChi | dLayer sMake(KHE_NODE par ent _node) ;

This will delete any existing child layers pfr ent _node and add the layers of the layering.

The layering is built as follows. First, for each resource of the instance that possesses a
required avoid clashes constraint, one layer is built by cakimg-ayer MakeFr onResour ce
above. If it turns out to be empty, it isimmediately deleted again. Each pair of these layers such
that one’s node set is a subset of the other’s is mergeddivetbay er Mer ge. Finally, each child
of par ent _node not in any layer goes into a layer (with no resources) by itself.

The layers emerge froheNodeChi | dLayer sMake in whatever order they happen to be.
The user will probably need to sort them, by callikiggNodeChi | dLayer sSort (Section 5.3),
passing it a user-defined comparison function. Section 10.8.2 has an example of a comparison
function that seems to work well in practice.

After sorting, there may be value in calling
voi d KheNodeChi | dLayer sReduce(KHE_NCDE par ent _node) ;

This merges some layers of marginal utility into others, as follows. Suppose there is & layer
whose nodes all appear in earlier layers. Then if the meets of the nodes are assigned layer by
layer,L’s nodes will all be assigned before time assignment realchégguably,L could be
deleted without harm. However, it does contain one piece of useful information: it knows that
the meets to which its resources are preassigned will all be assigned timésisfissigned. If

this information is to be preservelds resources need to be moved forwards to the first earlier
layer that is true of. For each nodieof L, find the minimum over all layers containimg of

the index of the layer. This is the index of the layer during whose time assigriherit be
assigned. Then find the maximum, over all noNes L, of these minima. This is index of the
layer whose assignment will complete the assignment of all the nodedithis is smaller than

L's index,KheNodeChi | dLayer sReduce deleted. and moves its resources to this earlier layer.

Two important facts about layers and layerings must be borne in mind. First, they reflect
the state of the layer tree at a particular moment. If, after they are built, the tree is restructured (if
nodes are moved, etc.) they become out of date and useless. Second, building a layering is slow
and should not be done within the inner loops of a solver.

Altogether, it seems best to regard layers as temporary structures, created when required by
KheChi | dLayer sMake and destroyed bigheChi | dLayer sDel ete. In between these two calls,
nodes may be merged and split, but it is best not to move them. A useful convention, supported
by several of KHE's solvers that use layers, is to assume that if child layers are present, then they
are up to date. Such solvers begin by callthgChi | dLayer sMake if there are no layers, and
end by callingknheChi | dLayer sDel et e, but only if they calleckheChi | dLayer sMake.

9.3.2. Layer coordination

High schools usually contaiformsor years which are sets of students of the same age who
follow the same curriculum, at least approximately. These students may be grouped into classes,
each represented by one student group resource. At some times, the student group resources of
one form might attend the same events, or linked events. For example, they might all attend a

9.3. Layers 163

common Sport event, or they might all attend Mathematics at the same times so that they can be
regrouped by ability at Mathematics. At other times, they might attend quite different events,
but over the course of the cycle they all attend the same amount of each different kind of event:
so many times of English, so many of Science, so many of a shared elective, and so on.

As an aid to producing a regular timetable, it might be helpfuldordinatethe timetables
of student groups from the same form: run all the form’s English classes simultaneously, all
its Mathematics classes simultaneously, and so on. Where resources are insufficient to support
this, changes can be made later. In this way, a regular timetable is produced to begin with, and
irregularities are introduced only where necessary.

The XML format does not explicitly identify forms, or even say which resource type
contains the student group resources. This is in fact an advantage, because it forces us to look
for structure that aids regularity. We then coordinate the timetabling of resources that possessthe
useful structure, without knowing or caring whether they are in fact student group resources.

Coordination will only work when the chosen resources attend similar events. This was
the rule when inferring resource partitions (Section 3.5.5), so we take the resource partition as
the structural equivalent of the form. The events should occupy all or most of the times of the
cycle, otherwise coordination eliminates too many options for spreading them in time. ‘Forms’
of teachers and rooms are rarely useful, just because they do not satisfy these conditions.

After KheLayer Tr eeMake returns, it is the nodes lying directly below the root node that need
to be coordinated, not events or meets. Two child nodes may be coordinated by moving one of
them so that it is a child node of the other. KHE offers solver function

voi d KheCoor di nat eLayer s(KHE_NODE parent _node, bool with_donination);

which carries out such moves on some of the childregeoent _node, as follows.

KheCoor di nat eLayers is only interested in resources whose layers have duration at
least 90% of the duration gfar ent _node. For each pair of such resources lying in the same
resource partition, it checks whether their two layers are similar by building the layers with
KheLayer MakeFronResource and calling KheLayer Sim | ar (Section 9.3). If so, it uses
KheNodeMove (Section 9.5.3) to make each node of the second layer a child of the corresponding
node of the first, unless the two nodes are the same, forcing these nodes to be simultaneous. It
does not assign meets, or remove them from nodes. Finally, it removes the two layers it made.

If wi th_domi nation isfal se,the behaviour is as describedwift h_dom nati on istr ue,
a slight generalization is used. Suppose that one of the two layers has duration equal to the
duration ofpar ent _node, and all but one of its nodes is similar to some node in the other layer.
Then the dissimilar nodes of the other layer (possibly none) might as well be made children of
the one dissimilar node of that layer, since if the other nodes are coordinated they must run
simultaneously with it anyway. (The durations of their meets may be incompatible; that is not
checked at present, although it should be.) So that is done.

In unusual cases the duration of a layer can be larger after coordinating than before. At the
end, if any layers have duration larger than the parent node’s duritie®gor di nat eLayer s
tries to reduce the duration of those layers to the parent node’s duration, by finding cases where
one node of a layer can be safely moved to below another.

164 Chapter 9. Structural Solvers

9.4. Runarounds

Layer coordination can lead to problems assigning resources. For example, suppose that the five
student groups of the Year 7 form each attend one Music event, and that the school has two Music
teachers and two Music rooms. Each event is easily accommodated individually, but when the
Year 7 layers are coordinated, they run simultaneously and exceed resource limits.

These problems do not arise in large faculties with sufficient resources to accommodate an
entire form at once. Thus they do not invalidate the basic idea of node layer coordination. What
is needed is a local fix for these problems. This is whatroundsprovide: a way to spread the
events concerned through the times they need, without abandoning coordination altogether.

9.4.1. Minimum runaround duration

Consider the case above where there are not enough Music resources to run the Year 7 Music
events simultaneously. If these eventslie in nodes that are children of acommon parent (one may
lie in the parent itself), it is easy to detect this problem: carry out a time assignment at the parent,
and see whether the cost of the solution increases. This is assuming that the matching monitors,
which detect unsatisfiable resource demands, are attached.

More generally, we can ask how large the duration of the parent node has to be in order to
ensure that there is no cost increase. This quantity is calleshithienum runaround duration
of the node. It will be equal to the duration when there is no problem, and larger when there is a
problem. It can be calculated as follows. While a time assignment of the child nodes produces
a state of higher cost than the unassigned state, add new meets to the parent node. The duration
of the parent node when this process ends is its minimum runaround duration. Function

bool KheM ni munRunar oundDur at i on(KHE_NCDE par ent _node,
KHE TI ME_SCOLVER tinme_sol ver, KHE TIME_OPTI ONS options,
int =duration);

setstdur ati on to the minimum runaround duration pér ent _node and returnsr ue, except
in an unlikely case, documented below, when it retdiaise with «dur at i on undefined.

KheM ni nunRunar oundDur at i on first unassigns all the child meets and saves the unas-
signed cost. It then carries out the time assignment trials just described. For each trial after the
firstit adds one fresh meetpar ent _node for each of its original meets, utilizing their durations
and time domains, but with no event resources. So the result’s duration must be a multiple of the
duration ofpar ent _node. Before returning, it unassigns all the children and removes the meetsit
added, leaving the tree in its initial state, unless some child meets were assigned to begin with.

Parameteri me_sol ver is a time assignment solver which is called to carry out each trial.
A simple solver, such aheSi npl eAssi gnTi mes from Section 10.4, should be sufficient here.

Increasing the duration at each trial by the full duration of the node may seem excessive, and
there are cases where fewer additional meets would be enough. However, those cases require the
child nodes’ assignments to overlap in ways that do not work out well in practice, because they
may lead to split assignments in the tasks affected.

How many trials are needed? In reasonable instances, each child node’s duration should
be no greater than the parent node’s duration. Thus, after as many trials as there are child nodes
plus one, there should be enough room in the parent node to assign every child meet at an offset

9.4. Runarounds 165

which does not overlap with any other, or with the original parent meets. This is the number of
trials thatkheM ni munRunar oundDur at i on carries out. It stops early if one succeeds with cost
no greater than the unassigned cost. It retbiahse only when each trial either did not assign

all the child meets (that is, the call ohme_sol ver returned al se) or did assign them all, but

at a higher cost than the unassigned cost.

9.4.2. Building runarounds

Nodes may be classified into three typedix&d nodédnas no child nodes. There is no possibility

of spreading the events of a fixed node and its descendants through more times than the node’s
duration. Aproblem nodehas minimum runaround duration larger than its duration, like the
node of Music events used as an example above. It must have child nodes, and timetabling them
simultaneously is known to be inferior to spreading them out further. The remaining nodes are
free nodesthey have child nodes which may run simultaneously, or not, as convenient.

UsingKheNodeMer ge to merge problem nodes with other problem nodes and free nodes can
eliminate problem nodes without greatly disrupting regularity. For example, merging a Music
problem node of duration 2 and minimum runaround duration 6 with a free node of duration 4
produces a merged node of duration 6 which can usually be timetabled without problems.

If a merged node can be timetabled without the cost of the solution increasing, it may be
kept, and is then calledranaround node (The termrunaroundis used by manual timetablers
known to the author to describe this kind of timetable, where events like the Music events are
‘run around’ with other events.) Otherwise it must be split up again and some other merging
tried instead. It only remains, then, to decide which sets of nodes to try to merge.

Regularity is easier to attain when nodes have the same duration, so if there are already many
nodes of a certain duration, it is helpful if a merged node also has that duration. Nevertheless,
a node should not be added to a merge merely to make up some duration: merging limits the
choices open to later phases of the solve, so it should be done only when necessary.

A minimum runaround duration could be very large, close to the duration of the whole
cycle. For example, suppose there is a single teacher, the school chaplain, who gives each of
the five Year 7 student groups 6 times of religious instruction per week. Those events have a
minimum runaround duration of 30. When the minimum runaround duration of a node is larger
than a certain value, the algorithm given below ignores the node: its events will be awkward to
timetable, but runarounds as defined here are not the answer.

To build runaround nodes from the child nodegefent _node, call

voi d KheBui | dRunar ounds(KHE_NCDE par ent _node,
KHE NCDE Tl ME_SOLVER nrd_sol ver, KHE TIME_CPTIONS nrd_opti ons,
KHE _NCDE_TI ME_SCLVER runar ound_sol ver,
KHE _TI ME_OPTI ONS runaround_opti ons);

where nrd_solver and nrd_options are passed toKheM ni nunRunaroundDuration

when minimum runaround durations need to be calculated, ramdr ound_sol ver and
runaround_opt i ons are used to timetable merged nodiiseSi npl eAssi gnTi nes is sufficient
for nrd_sol ver , andkheRunar oundNodeAssi gnTi mes works well ag unar ound_sol ver. All

nodes are unassigned afterwards.

166 Chapter 9. Structural Solvers

It would not do to merge (for example) a node that includes both Year 7 and Year 8 events
with a node that includes only Year 7 ones. $eBui | dRunar ounds first works out which
resources are preassigned to events in or below which nodes (taking account only of preassigned
resources which have required avoid clashes constraints, and whose events occupy at least 90%
of the duration ofpar ent _node), and partitions the child nodes pér ent _node into disjoint
subsets, such the nodes in each subset have the same preassigned resources.

For each disjoint subset independerthgBui | dRunar ounds tries to build a merged node
around each of the subset’s problem nodes in turn, largest minimum runaround duration first.
When doing this, it prefers to build a node of a particular duraticand it prefers to use other
problem nodes (again, largest minimum runaround duration first), but it will also use free nodes
(minimum duration first). It is heuristic, but it usually works well. It is not limited to sequences
of pairwise mergings, as clustering algorithms often are. Here is the algorithm in detail:

1. Theinputisa set of nodés(one disjoint subset as above), pliia desirable duration for a
merged node, ang a maximum duration for a merged node. The outpi ,ishe final set
of nodes. Writed(n) for the duration of node, r (n) for its minimum runaround duration,
andd(X) for the total duration of the set of nod¥s

2. InitializeM to empty. Sort to put free nodes first, in decreasing duration order, problem
nodes next, in increasing minimum runaround duration order, and fixed nodes last.

3. If Nis empty, stop. Otherwise delete the last elemer ahd call itn.
4. If nisfixed, problem wittr (n) > v, or free, move it tdM and return to Step 3.

5. Heren must be a problem node satisfyin(n) <v. Within each of the following cases,
some non-empty subsetof N are defined. In each casén) < d(n) + d(X), so a merged
node consisting oh merged withX is likely to work well. For each case in turn, and for
each seX defined within each case in turn, remo¢&om N, mergen andX, and timetable
the resulting merged node. If that is successful (all events timetabled with no increase in
solution cost), add the merged nodeMaand return to Step 3. If it fails, split the merged
node up again, return the nodesXfo their former places ilN, and try the next seX; or
if there are no more sets, addo M and return to Step 3.

Case 1. For eachJN from last to first such that(n) < d(n) +d(x) =u < v, letX = {x}.

Case 2. For eadtfrom 1to |N|such thaiX, the last elements oN, satisfies the condition
r(n)<d(n)+d(x) <v, letX =X,

KheBui | dRunar ounds calls KheM ni nunRunar oundDurati on to find minimum runaround
durations, passing d_sol ver toit. It callskneNodeMer ge to merge nodesunar ound_sol ver

to timetable merged nodes, aKkideNodeSpl i t to undo failed merges. It uses one-fifth of the
duration ofpar ent _node for v. Foru, it builds a frequency table of the durations of child nodes
of parent _node. It then chooses the duration for which the frequency times the duration is
maximum. This weights the choice away from small durations, which are not very useful.

9.5. Rearranging nodes 167

9.5. Rearranging nodes

Earlier sections of this chapter contain the major solvers which work with nodes. This section
contains a miscellany of smaller helper funtions which rearrange nodes.

9.5.1. Node merging
Two nodes may be merged by calling

bool KheNodeMer geCheck(KHE_NODE nodel, KHE NODE node2);
bool KheNodeMer ge(KHE _NODE nodel, KHE NODE node2, KHE NODE *res);

The nodes may be merged if they have the same parent node, po&kibly

The meets of the resufy es, are the meets afodel followed by the meets afode2, and
the child nodes otfres are the child nodes afodel followed by the child nodes ofiode2.
The two nodes must either lie in the same layers and have the same parent, or have no parent,
otherwiseKheNodeMer ge aborts. This implies that node merging cannot violate the cycle rule,
or any rule. As usual with mergingpdel andnode2 are undefined afterwards (actuaflygdel
IS recycled asr es andnode? is freed), but one may write, for example,

KheNodeMer ge(nodel, node2, &nodel);

to re-use variableodel to hold the result.

Merging permits the meets of the child nodes of the two nodes to be assigned to the meets
of either node, rather than to just one as before. For example, suppose the layer tree rooted at
nodel contains the Science events of several groups of Year 7 students, and the layer tree rooted
atnode2 contains the Music events of the same groups of students. Then originally the Science
events must be simultaneous and the Music events must be simultaneous, but afterwards the two
kinds of events may intermingle. This may be useful if there are few Music teachers and Music
rooms, so that the Music events must be spread out in time. This kind of arrangement is well
known to manual timetablers; it has various names, includinground

There is no operation to split a node into two nodes. Howed{rexfNodeMer ge may be
undone using marks and paths as usual.

9.5.2. Node meet splitting and merging

Node meet splitting and merging (not to be confused with node merging above) split the meets
of a node as much as possible, and merge them together as much as possible:

voi d KheNodeMeet Spl it (KHE_NODE node, bool recursive);
voi d KheNodeMeet Mer ge(KHE_NODE node, bool recursive);
Both operations always succeed, although they may do nothing.

For every offset of every meet obde, KheNodeMeet Spl it callskheMeet Split, passing
it ther ecur si ve parameter. In this way, the meets become as split up as possible.

KheNodeMeet Mer ge sorts the meets so that meets assigned to the same target meets are
adjacent, with their target offsets in increasing order, ukhegeet | ncr easi ngAsst Cmp from

168 Chapter 9. Structural Solvers

Section 5.2. Unassigned meets go at the end. It then tries to merge each pair of adjacent meets.
Any calls tokheMeet Mer ge it makes are passed thecur si ve parameter.

9.5.3. Node moving
A node may be made the child pér ent _node, instead of its current parent, by calling

bool KheNodeMoveCheck(KHE _NCDE chil d_node, KHE NCDE parent node);
bool KheNodeMove(KHE_NCDE child_node, KHE NCDE parent node);

This does the same as the sequence

KheNodeDel et ePar ent (chi |l d_node) ;
KheNodeAddPar ent (chi | d_node, parent _node);

except that this sequence will fail if any ohi | d_node’s meets are assigned initially, whereas
KheNodeMve deals with such assignments and can fail only the cycle rule.

In most caseskheNodeMve begins by deassigning those meetsbifl d_node that are
assigned. However, there is one interesting exception. Supposithdt node’s new parent
node is an ancestor ohi | d_node’s current parent node:

par ent _node parent _node

chil d_node

child_node

In each case where a complete chain of assignments reaches frommeeteet chi | d_node

to a meet opar ent _node, neet will be assigned afterwards, to the meet at the end of the chain,
with offset equal to the sum of the offsets along the chain. This is valid (it does not change the
timetable). Where there is no complete chaagt will be unassigned afterwards.

For example, suppose nopdias accumulated children to make the timetable regular, but
now the children’s original freedom to be assigned elsewhere needs to be restored:

whi | e(KheNodeChi | dCount (p) > 0)
KheNodeMove(KheNodeChi | d(p, 0), KheNodeParent(p));

KheNodeMve preserves the current timetable during these relinkings.

9.5.4. Vizier nodes

A vizier (Arabic wazir) is a senior official, the one who actually runs the country while the
nominal ruler gets the adulation. In a similar wayjzer nodesits below another node and does
what that other node nominally does: act as the common parent of the subordinate nodes, and
hold the meets that those nodes’ meets assign themselves to.

Any node can have a vizier, but only the cycle node really has a use for one. By connecting
everything to the cycle node indirectly via a vizier, it becomes trivial to try time repairs in

9.5. Rearranging nodes 169

which the meets of the vizier node change their assignments, effecting global alterations such as
swapping everything on Tuesday morning with everything on Wednesday morning. Function

KHE_NCDE KheNodeVi zi er Make(KHE_NCDE par ent _node) ;

inserts a new vizier node directly belgar ent _node. Afterwardsparent _node has exactly

one child node, the vizier; it may be accessed uBirgNodeChi | d(parent _node, 0) as usual,

and it is also the return value. For every mpetof the parent node, the vizier has one meet
vmwith the same duration agnand assigned tpmat offset 0. The domain ofmis NULL; its
assignment is not fixed. Each child nodepaf ent _node becomes a child of the vizier; each
child layer ofpar ent _node becomes a child layer of the vizier; each meet assigned to a meet of
the parent node becomes assigned to the corresponding meet of the vigaeentf_node has
zones, the vizier is given new corresponding zones, and the parent node’s zones are removed.

All this leaves the timetable unchanged, including constraints imposed by domains and
zones. The vizier takes over without affecting anyone’s existing rights and privileges. A vizier
node is not different from any other node; only its role is special.

KheNodeSwapChi | dNodesAndLayer s (Section 5.2) is used to move the child nodes and
layers to the vizier node, so they are the exact same objects after the call as before. But although
the zones added to the vizier correspond exactly with the original zones, they are new objects.

To remove a vizier node, call
voi d KheNodeVi zi er Del et e(KHE_NODE par ent _node);

Herepar ent _node must have no child layers, no zones, and exactly one child node, assumed
to be the vizier. It call&heNodeSwapChi | dNodesAndLayer s again, to make the child nodes of

the vizier into child nodes gfar ent _node, and the child layers of the vizier into child layers of

par ent _node. Any assignments to meets in the child nodes of the vizier must be to meetsin the
vizier, and they are converted into assignments to megts ient _node where possible (when

the target meet in the vizier is itself assigned). New zones are cregteckeim _node based on

the zones and meet assignments in the vizier. Finally the vizier and its meets are deleted.

Zones are not preserved across callgheNodeVi zi er Make andKheNodeVi zi er Del et e
in the exact way that child nodes and child layers are. The zones added to the vizier node by
KheNodeVi zi er Make are new objects, although they do correspond exactly with the zones in
parent _node. The zones added fm@r ent _node by KheNodeVi zi er Del et e are also new, and
there will be a zone in a given parent meet at a given offset only if there was a meet in the vizier
which was assigned that parent meet and was running (with a zone) at that offset. If vizier meets
overlap in time (not actually prohibited), that will further confuse the reassignment of zones. It
may be best to followheNodeVi zi er Del et e by a call to some function which ensuresthat every
offset of every parent meet has a zone, for exaripddlodeExt endZones (Section 9.6).

FunctionkheNodeMeet Spl it (Section 9.5.2) is useful with vizier nodes. Splitting a vizier's
meets non-recursively opens the way to fine-grained swaps, between half-mornings instead of
full mornings, and so on. A wild idea, that the author has not tried, is to have an unsplit vizier
with its own split vizier. Then the larger swaps and the smaller ones are available together.

170 Chapter 9. Structural Solvers

9.5.5. Flattening

Although layer coordination and runaround building are useful for promoting regularity, there
may come a point where these kinds of voluntary restrictions prevent assignments which satisfy
more important constraints, and so they must be removed.

What is needed is to flatten the layer tree. Two functions are provided for this. The firstis
voi d KheNodeBypass(KHE_NCDE node) ;

This requiresiode to have a parent, and it moves the childremade so that they are children
of that parent. The second is

voi d KheNodeFl att en(KHE_NCDE par ent _node) ;

It moves nodes as required to ensure that all the proper descendpatstf_node initially are
children ofpar ent _node on return.

Both functions us&heNodeMve to move nodes. They cannot fail, becaseNodeMove
fails only when there is a problem with the cycle rule, which cannot occur here. Both functions
are ‘interesting exceptions’ (Section 9.5.3) where assignments are preserved. By convention
(Chapter 10), meets with fixed, final assignments should not lie in nodes. If that convention is
followed, these functions do not affect such meets.

9.6. Adding zones

Suppose a layer of child nodes of noddas its meets assigned to the meets @t various
offsets. Define one zone for each child nadef the layer, whose meet-offsets are the ones at
which c's meets are running. Helper function

voi d KheLayer | nstal | Zonesl nParent (KHE _LAYER | ayer);

installs these zones, first deleting any existing zones of the parent nbdgeof then installing

one zone for each child node bbdyer containing at least one assigned meet. Such zones form

an image of how one child layer (the first to be assigned, usually) is assigned. An algorithm can
use them as a template when assigning the other child layers, or when repairing the assignments
of any child layers, including the first layer.

KheLayer | nst al | Zonesl nPar ent installs zones representing the assignments of one layer
into the layer’s parent node. If the duration of the parent node exceeds the duration of the layer,
some offsets in some parent node meets will not be assigned any zone. This seems likely to be a
problem, or at least a lost opportunity. What to do about it is not clear.

Arguably, zones should be derived from all layers, not just one, in a way that gives every
offseta zone. Butthatis not easyto do, even heuristically. Anyway, there are advantagesin using
zones derived from a good assignment of some layer, since the assignment proves that those
zones work well. This suggests taking the zones installéthblyayer | nst al | Zones| nPar ent
and extending them until every offset has a zone. Accordingly, function

voi d KheNodeExt endZones(KHE_NCDE node) ;

ensures that every offset of every meenofle has a zone, by assigning onerafde’s existing

9.6. Adding zones 171

zones to each offset in each meenofle that does not have a zone—unlesdge has no zones
to begin with, in which case it does nothing.

For each (zone, meet) pair where the meet has at least one offset without a zone, the
algorithm finds one option for adding some of the zone to the meet (how much to add, and
where), and assigns a priority to the option. Then it selects an option of minimum priority, carries
it out, and repeats. It runs out of options only when every offset in every meet has a zone.

An option for adding some of a given zone to a given meet is found as follows. If the zoneis
already presentin the meet, it is best to add it at offsets adjacent to the offsets it already occupies,
if possible. If the zone is not already present, it is best to add it adjacent to existing offsets or the
ends of the meet, in a continuous run, to avoid fragmentation of the offsets it occupies as well as
the offsets it doesn’t occupy. Constraints on zone durations arise either way. Within the limits
imposed by them, it is best to aim for an ideal zone duration, which in a completely unoccupied
meet is the meet duration divided by the total number of zones, but which is adjusted to take
account of existing zone durations, with higher being a better option than lower. As the option
Is decided on, it is assigned a priority based on whether it utilizes an underutilized zone, avoids
fragmentation, and approximates to the ideal zone duration.

9.7. Meet splitting and merging

This section presents features which modify the meet splits made by layer tree construction.

9.7.1. Analysing split defects

Given a defect (a monitor of non-zero cost), it is usually easy to see what needs to be done to
repair it: if there is a clash, move one of the clashing meets away; if there is a split assignment,
try to find a resource to assign to all the tasks; and so on.

Split defectsthat is, split events and distribute split events monitors of non-zero cost, are
awkward to analyse in this way, partly because split events monitors monitor both the number
of meets and their durations, and partly because several split events and distribute split events
monitors may cooperate in constraining how a given event is split into meets.

KHE offers asplit analyserwhich analyses the split events and distribute split events
monitors of a given event, and comes up with a sequence of suggestions as to how any defects
among those monitors could be repaired using splits or merges (or both: for example, if there are
too few meets of a given duration, that could be corrected by splitting larger meets or by merging
smaller ones). To create and subsequently delete a split analyser object, call

KHE_SPLI T_ANALYSER KheSpl it Anal yser Make(voi d);
voi d KheSplitAnal yserDel et e(KHE SPLI T_ANALYSER sa);

In practice, it is better to obtain a split analyser object fromsthaict ural _spl it _anal yser
option (Section 8.4.2). To carry out the analysis for a particular solution and event, call

voi d KheSplitAnal yser Anal yse(KHE_SPLI T_ANALYSER sa,
KHE_SCOLN sol n, KHE_EVENT e);

After doing this, the sequence of suggestionsfarhich are splits may be retrieved by calling

172 Chapter 9. Structural Solvers

i nt KheSplitAnal yserSplitSuggestionCount (KHE SPLI T_ANALYSER sa);
voi d KheSplitAnal yserSplitSuggestion(KHE SPLI T _ANALYSER sa, int i,
int *merged durn, int *splitl durn);

fori betweerD andKheSpl it Anal yser SuggestionSplitCount(sa) - 1asusual. Each split
suggestion suggests splitting any meet of duratian ged_dur n into two fragments, one with
duration+spl i t 1_durn. Similarly, the sequence of merge suggestions may be retrieved by

i nt KheSplitAnal yser Mer geSuggesti onCount (KHE SPLI T_ANALYSER sa);
voi d KheSplitAnal yser MergeSuggesti on(KHE SPLI T_ANALYSER sa, int i,
int xsplitl durn, int *split2_durn);

Each suggests merging any two meets with duratiepki t 1_durn and+spl it 2_durn.

Each suggestion is distinct from the others. No notice is taken of constraint weights,
except that constraints of weight zero are ignored. The suggestions are updated only by calls to
KheSpl i t Anal yser Anal yse;they are unaffected by later changes to the solution. Sothey go out
of date after a split or merge, but become up to date again if that split or merge is undone.

Function

voi d KheSplitAnal yser Debug(KHE_SPLI T_ANALYSER sa, int verbosity,
int indent, FILE *fp);

places a debug print afa ontof p with the given verbosity and indent, including suggestions.

9.7.2. Merging adjacent meets

It sometimes happens that at the end of a solve, two meets derived from the same event are
adjacent in time and not separated by a break. If the same resources are assigned to both, they
can be merged, which may remove a spread defect and thus reduce the overall cost. Function

voi d KheMer geMeet s(KHE_SCLN sol n);

unfixes meet splitsin all meets derived from events and carries out all merges that reduce solution
cost. For each event it takes the meets derived fromthat have assigned times and sorts them
chronologically. Then, for each pair of adjacent meets in the sorted order, Kitei=et Mer ge,
keeping the merge if it succeeds and reduces cost.

KheMer geMeet s can be called at any time. The best time to call it is probably at the very
end of solving, or possibly after time assignment.

9.8. Monitor attachment and grouping

Sometimes, how monitors are grouped and attached is important: when using ejection chains
(Chapter 12), for example, or Kempe and ejecting meet moves (Section 10.2.2). This section lays
out some general concepts and conventions for monitor attachment and grouping.

Solutions often contain structural constraints: nodes, restricted domains, fixed assignments,
and soon. Asolverisexpected torespect such constraints, unlessits specification explicitly states
otherwise. They are part of the solution, and every solver should be able to deal with them. In

9.8. Monitor attachment and grouping 173

the same way, a solver may find that some monitors have been deliberately detached before it
starts running. For example, all monitors of soft constraints may have been detached, because
the caller wants the solver to concentrate on hard constraints. A solver should not change the
attachments of monitorsto the solution, unlessits specification explicitly states otherwise. Itsaim
Is to minimizeKheSol nCost (sol n) , however that is defined ®pl n’s monitor attachments.

There are two ways to exclude a monitor from contributing to the solution cost: by detaching
it usingKheMoni t or Det achFr onSol n, and by ensuring that there is no path from it to the solution
group monitor. The first way should always be used, because it is the efficient way.

Some solvers need specific groupings. The Kempe meet move operation (Section 10.2.2)
Is an example: its precondition specifies that a particular group monitor must be present. Thisis
permissible, and as with all preconditions it imposes a requirement on the caller of the operation
to ensure that the precondition is satisfied when the operation is called. But such requirements
should not prohibit the presence of other group monitors. For example, the implementation
of the Kempe meet move operation begins with a tiny search for the group monitor it requires.
If other group monitors are present nearby, that is not a problem. If this example is followed,
multiple requirements for group monitors will not conflict.

There is a danger that group monitors will multiply, slowing down the solve and confusing
its logic. Itis best if each function that creates a group monitor takes responsibility for deleting
it later, even if this means creating the same group monitors over and over again. Timing tests
conducted by the author show that adding and deleting the group monitors used by the various
solvers in this guide takes an insignificant amount of time.

Two monitors (or defects) amorrelatedwhen they monitor the same thing, not formally
usually, but in reality. For example, if two events are joined by a link events constraint, and one
is fixed to the other, then two spread events monitors, one for each event, will be correlated.

Correlated defects are bad for ejection chains. The cost of each defect separately might not
be large enough to end the chain if removed, causing the chain to terminate in failure, whereas
if it was clear that there was really only one problem, the chain might be able to repair it and
continue. So correlated monitors should be grouped, whenever possible. These groups are
the equivalence classes of the correlation relation, which is clearly an equivalence relation. A
grouping of correlated monitors is callegpamary grouping

A function which creates a primary grouping works as follows. Monitors not relevant to
the grouping remain as they were. Relevant monitors are deleted from any parents they have, and
partitioned into groups of correlated monitors. For each group containing two or more monitors,

a group monitor called primary group monitolis made, the monitors are made children of it,

and it is made a child of the solution object. For each group containing one monitor, that monitor
is made a child of the solution, and no group monitor is made. Any group monitors other than
the solution object which lose all their children because of these changes are deleted, possibly
causing further deletions of childless group monitors.

A function which deletes a primary grouping visits all monitors relevant to the grouping and
deletesthose parents of those monitors wisabet ag indicates that they are part of the primary
grouping. The deleting is done by callsdize G oupMoni t or BypassAndDel et e.

FunctiorkheEj ect i onChai nPr epar eMoni t or s (Section 12.7.3) creates primary groupings
of some correlated monitors, and detaches others, in preparation for ejection chain repair.

174 Chapter 9. Structural Solvers

Secondary groupingare useful groupings that are not primary groupings (that do not
group monitors which monitor the same thing). Instead, they group diverse sets of monitors for
particular purposes, such as efficient access to defects.

Secondary groupings are often built on primary groupings: if a monitor that a secondary
grouping handles is a descendant of a primary group monitor, the primary group monitor goes
into the secondary grouping, replacing the individual monitors which are its children.

A secondary grouping makes one group monitor, calls@@ndary group monitpnot
many. The secondary group monitor is not made a child of the solution object, nor are its children
unlinked from any other parentsthat they may have. Soitdoes not disturb existing calculationsin
any way; rather, it adds a separate calculation on the side. A secondary grouping can be removed
by passing the secondary group monitoKiteG oupMbni t or Del et e.

It is convenient to have standard values for the sub-tags and sub-tag labels of the group
monitors created by grouping functions, both primary and secondary. So KHE defines type

typedef enum {

KHE_SUBTAG SPLI T_EVENTS, /* "SplitEvent sGouphbnitor" *|
KHE_SUBTAG DI STRIBUTE _SPLI T_EVENTS, /* "DistributeSplitEventsG ouphonitor” */
KHE SUBTAG ASSI GN_TI ME, [* " AssignTi meG ouphoni tor" */
KHE_SUBTAG PREFER TI MES, [* "PreferTi mesG oupMoni t or" *|
KHE_SUBTAG_SPREAD EVENTS, [* " SpreadEvent sG oupMoni t or" *|
KHE_SUBTAG LI NK_EVENTS, I* "LinkEvent sG ouphbni tor" *|
KHE_SUBTAG ORDER EVENTS, [* "OrderEvent sG ouphbnitor" *|
KHE SUBTAG ASSI GN_RESOURCE, I* " Assi gnResour ceG ouphbni t or" */
KHE SUBTAG PREFER RESOURCES, I* "PreferResourcesG ouphnitor" */
KHE_SUBTAG AVO D_SPLI T_ASSI GNVENTS, /* "Avoi dSpl it Assi gnment sGroupMbnitor" */
KHE SUBTAG AVO D CLASHES, [* "Avoi dd ashesG ouphbni t or" *|
KHE SUBTAG AVO D UNAVAI LABLE TIMES, /* "Avoi dUnavail abl eTi mnesG ouphonitor" */
KHE SUBTAG LIM T_I DLE TI MES, [* "Limtldl eTi mesG ouphonitor" *|
KHE SUBTAG CLUSTER BUSY TI MES, [* "C usterBusyTi mesG oupMoni t or" */
KHE_SUBTAG LI M T_BUSY_TI MES, [* "LinitBusyTi mesG oupMonitor" x|
KHE SUBTAG LI M T_WORKLOAD, [* "LimtWrkl oadG oupMoni tor" *|
KHE_SUBTAG_ORDI NARY DEMAND, [* "Ordi nar yDemandG ouphbni t or " *|
KHE_SUBTAG WORKLCAD DEMAND, I'* "Wor kl oadDenandG ouphbni t or " *|
KHE_SUBTAG_KEMPE DEMAND, I'* "KenpeDemandG ouphbni tor" *|
KHE SUBTAG NODE TI ME_REPAI R, I* "NodeTi neRepai r G ouphoni t or " */
KHE_SUBTAG LAYER TI ME_REPAI R /* "Layer Ti meRepai r G- oupNbni t or " x|
KHE_SUBTAG TASKI NG, [* "Taski ngG ouphbni tor" *|
KHE SUBTAG ALL_DEMAND [* "A'l DemandG ouphbni t or" *|

} KHE_SUBTAG_STANDARD_ TYPE;

for the sub-tags, and the strings in comments, obtainable by calling
char x*KheSubTaglLabel (KHE _SUBTAG STANDARD TYPE sub_tag);

for the corresponding sub-tag labels. There is also
KHE_SUBTAG_STANDARD_TYPE KheSubTagFr onifag(KHE_MONI TOR_TAG t ag) ;

which returns the appropriate sub-tag for a group monitor whose children have the ggven

9.8. Monitor attachment and grouping 175

Functions for creating secondary groupings appear elsewhere in this guide. They include
KheKenpeDemandG oupMbni t or Make, needed by Kempe and ejecting meet moves (Section
10.2.2), and several functions used by ejection chain repair algorithms (Section 12.7.4).

When building secondary groupings, these public functions are often helpful:

bool Kheloni t or HasParent (KHE_ MONI TOR m int sub_tag,
KHE GROUP_MONI TOR *res_gm ;

voi d KheMbnit or AddSel f Or Parent (KHE MONITOR m int sub_tag,
KHE_GROUP_MONI TOR gm) ;

voi d KheMbni t or Del et eAl | Par ent sRecur si ve(KHE_ MONI TOR) ;

Consult the documentation in the source code to find out what they do.

Chapter 10. Time Solvers

A time solverassigns times to meets, or changes their assignments. This chapter presents a
specification of time solvers, and describes the time solvers packaged with KHE.

10.1. Specification

If time solvers share a specification, where possible, it is easy to replace one by another, pass one
as a parameter to another, and so on. This section recommends such a specification.

In hierarchical timetabling, ‘time assignment’ means the assignment of the meets of child
nodes to the meets of a parent node, so the recommended interface is

t ypedef bool (*KHE_NODE_TI ME_SOLVER) (KHE_NODE parent _node,
KHE_OPTI ONS options);

Thistypedef appearskhe. h. The recommended meaning is that suobde time solveshould

assign or reassign some or all of the meets of the proper descendpatsaf_node: it might

assign the unassigned meets of the child nodesrmdnt _node, or reassign the meets of proper
descendants gfar ent _node, and so on. It is free to reorganize the tree bepawent _node,
provided that every descendantpafr ent _node remains a descendant. It must not change any-
thing in or abovepar ent _node. In the tree belowpar ent _node it may add, delete, split, and
merge meets. Some solvers (e.g. ejection chains) do actually do this, so the caller must take care
to avoid the error (very easily made, as the author can testify) of assuming that the set of meets
after a time solver is called is the same as before. 6pheons parameter is as in Section 8.4.

A solver should returfir ue when it has changed the solution (usually for the better, but not
necessarily), and when it is not sure whether it did or not. It should rétlise when it did not
change the solution. The caller may use this information to evaluate the helpfulness of the solver,
or to decide whether to follow it with a repair step, and so on.

A second time solver type is definedkhe. h:

t ypedef bool (*KHE_LAYER TIME_SOLVER) (KHE_LAYER | ayer,
KHE_OPTI ONS options);

Instead of assigning or reassigning meets in the proper descendants of some parenapede, a
time solverassigns or reassigns meets in the noddsapér and their descendants, like a node
time solver for the parent node béyer, but limited tol ayer. The solver is free to reorganize
the layer tree below the nodes lodyer (but not to alter the nodes dfyer), provided every
descendant of each nodelafyer remains a descendant of that node.

If all time solvers follow these rules, then meets that do not lie in nodes will never be visited
by them. The recommended convention is that meets should not lie in nodes if and only if they
already have assignments that should never be changed.

176

10.1. Specification 177

Time assignment solvers (and solvers generally) are free to use the back pointers of the
solution entities they target. However, since there is potential for conflict here when one solver
calls another, the following conventions are recommended.

If solverS does not use back pointers (if it never sets any), then this should be documented,
and solvers that call may assume that back pointers will be unaffected by itS lises back
pointers (if it sets at least one), then this should be documented, and solvers tisamcesi
assume that back pointers in the solution objects target8avilynot be preserved. As a safety
measure, solvers should set the back pointers that they have udéd toefore returning.

10.2. Helper functions

The functions presented in this section assign and unassign meets, but are not complete time
solvers in themselves. Instead, they are helper functions that time solvers might find useful.

10.2.1. Node assignment functions

This section presents several functions which affect the assignments of the meets of one node.
These functions swap the assignments of the meets of two nodes:

bool KheNodeMeet SwapCheck(KHE_NODE nodel, KHE NODE node2);
bool KheNodeMeet Swap(KHE_NODE nodel, KHE NODE node2);

Both nodel andnode2 must be noNULL. Both functions returrir ue if the nodes have the
same number of meets, and a sequencihefieet Swap operations applied to corresponding
meets would succeedheNodeMeet SwapCheck just makes the check, whikheNodeMeet Swap
performs the meet swaps as well. niddel andnode2 are the identical same node| se is
returned. As usual when swapping, the code fragment

i f(KheNodeMeet Swap(nodel, node2))
KheNodeMeet Swap(nodel, node2);

is guaranteed to change nothing, whether the first swap succeeds or not.
To maximize the chances of success it is naturally best to sort the meets before calling these
functions, probably like this:

KheNodeMeet Sort (nodel, &KheMeet Decreasi ngDurati onCnp);
KheNodeMeet Sort (node2, &KheMeet Decreasi ngDurati onCnp);

This sorting has been omitted fromheNodeMeet SwapCheck and KheNodeMeet Swap for
efficiency, since each node’s meets need to be sorted only once, yet the node may be swapped
many times. The user is expected to sort the meets of every relevant node, perhaps like this:

for(i =0; i < KheSolnNodeCount(soln); i++)
KheNodeMeet Sort (KheSol nNode(sol n, i), &KheMeet Decreasi ngDurati onCnp);

before any swapping begins. Some other functions, for exakhphedeRegul ar (Section 5.2),
also sort meets, so care is needed.

178 Chapter 10. Time Solvers

These functions propagate one node’s assignments to another:

bool KheNodeMeet Regul ar Assi gnCheck(KHE_NODE node, KHE NODE si bl ing_node);
bool KheNodeMeet Regul ar Assi gn(KHE_NODE node, KHE NODE si bl i ng_node);

KheNodeMeet Regul ar Assi gnCheck callsKheNodeMeet Regul ar (Section 5.2) to check that the
two nodes are regular, and if they are, it goes on to check that each nmedt img_node is
assigned, and that each meenofie is either already assigned to the same meet and offset that
the corresponding meet of bl i ng_node is assigned to, or else may be assigned to that meet
and offset.KheNodeMeet Regul ar Assi gn makes all these checks too, and then carries out the
assignments if the checks all pass.

To unassign all the meets oéde, call
voi d KheNodeMeet UnAssi gn(KHE_NODE node) ;

Even preassigned meets are unassigned, so some care is needed here.

10.2.2. Kempe and ejecting meet moves

The Kempe meet movs a well-known generalization of moves and swaps. It originates as a
move of one meet, say from tinbgto timet, (in reality, from one meet and offset to another meet
and offset). If thisinitial move creates clashes with other meets, then they are movedtodm

If that in turn creates clashes with other meets, then they are moved ftoty, and so on until

all clashes are removed. The result is usually a move or swap, but it can be more complex.

Curiously, the Kempe meet move is not unlike an ejection chain algorithm. Instead of
removing a single defect at each step, it removes an arbitrary number, but it tries only one repair:
moving tot, on odd-numbered steps andfon even-numbered steps.

Suppose the original mest, has duratior,. Usually, the Kempe meet move only moves
meets of duratioul,, and only fromt, tot, (on odd-numbered steps) and frésot, (on even-
numbered steps). However, whenis being moved to a different offset in the same target meet,
the Kempe meet move does not commit itself to this until it has examined the first meetygall it
which has to be moved on the second stepnjfvas immediately adjacent to, in time before
m, was moved on the first step, it is acceptablefigto have a duratiod, which is different from
d,. Inthat case, all meets moved on odd-numbered steps must have ddratiod all meets
moved on even-numbered steps must have duratjoend each meet is moved to the opposite
end of the block of adjacent times tirafandm, were together assigned to originally.

Kempe meet moves need to know what clashes they have caused, and this is done via the
matching, partly because it is the fastest way, and partly because it works at any level of the
layer tree, unlike avoid clashes monitors, which work only at the root. Accordingly, preassigned
demand monitors must be attached, and grouped (directly or indirectly) under a group monitor
with sub-tag<HE_SUBTAG_KEMPE_DEMAND, by calling

KHE_GROUP_MONI TOR KheKenpeDemandG oupMoni t or Make(KHE_SOLN sol n) ;

before making any Kempe meet moves. This is a secondary grouping, as defined in Section
9.8. The group monitor’s children are the ordinary demand monitors of the preassigned tasks
of sol n. (As usual in KHE, apreassigned tasks a task derived from a preassigned event

10.2. Helper functions 179

resource.) No primary groupings are relevant here so primary group monitors never replace the
ordinary demand monitors. The operation will abort if it cannot find a group monitor with this

sub-tag among the parents of the first demand monitor of the first preassigned task of the meet it
moves. If that meet has no preassigned tasks, it will search the meets assigned to it, directly and
indirectly. There may be no preassigned tasks at all, in which case there can be no clashes. In
that case, the Kempe meet move operation does exactly what an ordinary meet move would do.

Use of the matching raises the question of whether Kempe meet moves should try to remove
demand defects other thaimple clashesvhere a resource which possesses a hard avoid clashes
constraint is preassigned to two meets which are running at the same time. The author’s view is
that it should not. When there is a simple clash caused by one meet moving to a time, the only
possible resolution is for the other to move away. With demand defects in general, there may be
multi-way clashes which can be resolved by moving one of several meets away, and that is not
what the Kempe meet move is about.

Assuming that the grouping is done correctly, then, a call to

bool KheKenpeMeet Move(KHE_MEET neet, KHE MEET target neet,
int offset, bool preserve regularity, int *demand, bool =basic,
KHE_KEMPE_STATS kenpe_stats);

will make a Kempe meet move. It is similarkbeMeet Move in moving the current assignment

of neet totarget _neet atof fset, but it requiresreet to be already assigned so that it knows
where to move clashing meets back to. It does not use back pointers or visit numbers. It sets
+demand to the total demand of the meets it moves, to give the caller some idea of the disruption
it caused, and it setdasi c tot r ue if it did not find any meets that needed to be moved back the
other way, so that what it did was just a basic meet move.kKEhpe_st at s parameter is used

for collecting statistics about Kempe meet moves, as described below; it mhalylbi statistics

are not wanted. There is also

bool KheKenpeMeet MoveTi me(KHE_MVEET meet, KHE_TIME t,
bool preserve_regularity, int xdemand, bool +basic,
KHE_KEMPE_STATS kenpe_stats);

which movesreet to the cycle meet and offset representing time

If preserve_regularity isfal se, these functions ignore zones. One way to take zones
into account is to cakheMeet MovePr eser vesZones (Section 5.4) first. In theory this is inade-
guate when meets of different durations are moved, but the inadequacy will virtually never arise
in practice. The other way is to sgteserve_regul ari ty totrue, and then the functions will
usekheNodel rregul ari ty (Section 5.4) to measure the irregularity of the nodes affected, before
and after; the operation will fail if the total irregularity of the nodes affected has increased.

KheKenmpeMeet Move succeeds, returning ue, if it movesneet tot arget _nmeet atof f set,
possibly moving other meets as well, to ensure that the final state has no new simple clashes and
no new cases of a preassigned resource attending a meet at a time when it is unavailable. It fails,
returningf al se, in these cases:

* Some calltkheMeet Move, which is used to make the individual moves, retdraise. This
includes the case whereet is already assigned t@r get _neet atof f set , which, as pre-
viously documented, is defined to fail for the practical reason that the move accomplishes

180 Chapter 10. Time Solvers

nothing and pursuing it can only waste time.
Moving some meet makes some preassigned resource busy when it is unavailable.

A meet which needs to be moved is not currently assigned to the expected target meet
(either neet ’s original target meet ot ar get _neet, depending on whether the current
step is odd or even), or has the wrong duration or offset. This prevents the changes from
spreading beyond the expected area of the solution.

» preserve_regul arity istrue butthe operation increases irregularity (discussed above).

* Some meet needs to be moved, but it has already moved during this operation, indicating
that the classical graph colouring reason for failure has occurred.

If KheKenpeMeet Move fails, it leaves the solution in the state it was in at the failure point. In prac-
tice, it must be enclosed kheMar kBegi n andKheMar kEnd (Section 4.10), so that undoing can
be used to clean up the mess. This could easily have been incorporatdtkeampeMeet Move,
producing a version that left the solution unchanged if it failed. However, the caller will probably
want to enclose the operationkheMar kBegi n andKheMar kEnd anyway, since it may need to

be undone for other reasons, so cleanup is left to the caller.

The kenpe_st at s parameter is an object (the usual pointer to a private record) used to
record statistics about Kempe meet moves. If statistics are wanted, then to create and delete a
Kempe stats object, call

KHE_KEMPE_STATS KheKenpeSt at sMake(voi d) ;
voi d KheKenmpeSt at sDel et e(KHE_KEMPE_STATS kenpe_stats);

Actually the usual way to obtain HE_KEMPE_STATS object is from the i me_kenpe_stat s
attribute of KHE_OPTI ONS (Section 8.4.3), which is initialized bkheKenpeSt at sMake. Each
time the object is passed to a successful cafheXenpeMeet Move or KheKenpeMeet MoveTi ne,
its statistics are updated. They can be retrieved at any time using the following functions.

A stepof a Kempe meet move is a move of one meet. The statistics include a histogram
of the number of successful Kempe meet moves stitip_count steps, for eacht ep_count ,
retrievable by calling

i nt KheKenpeSt at sSt epHi st ovax(KHE_KEMPE_STATS kenpe_stats);

i nt KheKenpeSt at sSt epHi st oFr equency(KHE_KEMPE_STATS kenpe_st at s,
int step_count);

i nt KheKenpeSt at sSt epHi st oTot al (KHE_KEMPE_STATS kenpe_stats);

fl oat KheKenpeSt at sSt epHi st oAver age(KHE_KEMPE_STATS kenpe_stats);

These return the maximust ep_count for which there is at least one Kempe meet mové), or

if none; the number of Kempe meet moves witrep_count steps; the total number of steps
over all Kempe meet moves; and the average number of steps. This last is only safe to call if
KheKempeSt at sSt epHi stoTotal > 0.

A phaseof a Kempe meet move is a move of one or more meets in one direction. For
example, a Kempe move that turns out to be an ordinary move has one phase; one that turns out
to move one meet in one direction, then two in the other, has two phases; and so on. The statistics

10.2. Helper functions 181

include a histogram of the number of successful Kempe meet moveghagh_count phases,
for eachphase_count , retrievable by calling

i nt KheKenpeSt at sPhaseH st oMax(KHE_KEMPE STATS kenpe_stats);

i nt KheKenpeSt at sPhaseH st oFr equency(KHE_KEMPE_STATS kenpe_stat s,
i nt phase_count);

i nt KheKenpeSt at sPhaseHi st oTot al (KHE_KEMPE_STATS kenpe_stats);

fl oat KheKenpeSt at sPhaseHi st oAver age(KHE_KEMPE_STATS kenpe_stats);

These return the maximuphase_count for which there is at least one Kempe meet move, or

if none; the number of Kempe meet moves witlase_count phases;the total number of phases
over all Kempe meet moves; and the average number of phases. This last is only safe to call if
KheKenpeSt at sPhaseHi st oTotal > 0.

Functions

bool KheEj ecti ngMeet Move(KHE_MEET meet, KHE_MEET target _neet,

int offset, bool preserve_regularity, int *demand, bool =*basic);
bool KheEj ecti ngMeet MoveTi me(KHE_MEET meet, KHE_TIME t,

bool preserve_regularity, int xdemand, bool +basic);

offer a variant of the Kempe meet move called épecting meet moveT his begins by moving

meet totarget _neet atoffset, and then finds the meets that need to be moved back the other
way exactly as for Kempe meet moves (using the same group monitor), but instead of moving
them, it unassigns them and stopbeEj ect i ngMeet Move does not requireeet to be assigned
initially (the move may be an assignment), not does it carry out any checking of the durations and
offsets of the meets it unassigns. All other details are as for Kempe meet moves. Similarly,

bool KheBasi cMeet Move(KHE_MEET neet, KHE MEET target neet,
int offset, bool preserve regularity, int *demand);

bool KheBasi cMeet MoveTi me(KHE_MEET neet, KHE_TIME t,
bool preserve_regularity, int xdemand);

are variants in which even the unassignments are omitted. They are the sémbtasMove
and KheMeet MoveTi ne as far as changing the solution goes, differing from them only in
optionally preserving regularity, and in reporting demand. No group monitor is needed.

The rest of this section describigsKenpeMeet Mve’s implementation. It is an important
operation, so its implementation must be robust, and must squeeze every drop of utility out of
the basic ideakheEj ect i ngMeet Move is just a cut-down version dfheKenpeMeet Mve.

A frameis a set of adjacent positions in a target meet, defined by the target meet, a start
offset into the target meet, and a stop offset, which may equal the duration of the target meet, but
be no larger. The set of positions runs from the start offset inclusive to the stop offset exclusive.
A meetlies ina frame when it is assigned to that frame’s target meet, and the set of positions it
occupies in that target meet is a subset of the set of positions defined by the frame.

The Kempe meet move operation defines four frames. On odd-numbered steps, including
the move of the original meet, every move is of a meet lying in a frame callagtithérom frame
to a frame called thedd-to frame Similarly, every meet move on even-numbered steps is from
theeven-from framéo theeven-to frame

182 Chapter 10. Time Solvers

The odd-from frame and the odd-to frame have the same duration, and the even-from frame
and the even-to frame have the same duration. When a meet is moved, its new target meet is the
target meet of the to frame of its step, and its offset in that target meet is defined by requiring
its offset in its to frame to equal its former offset in its from frame. This completely determines
where the meet is moved to, and ensures that the timetable of moved meets is replicated in the to
frame exactly as it was in the from frame.

The implementation will now be described, assuming that the four frames are given. How
they are defined will be described later.

First, if there are no preassigned tasks wittgat or within meets assignedweet , directly
or indirectly, thenkheKenpeMeet Move callsKheMeet Move and returns its result. Otherwise, it
finds the group monitor it needs as described above and begins to trace it. It then carries out a
sequence of steps. As each step begins, there is a given set of meets to move, and the step tries
to move them. An empty set signals success.

On odd-numbered stepkheKenmpeMeet Move moves the given set of meets from their
offsets in the odd-from frame to the same offsets in the odd-to frame. This will fail if any of
the meets do not lie entirely within the odd-from frame, and if any cadhtvkeet Move returns
fal se. Even-numbered steps are the same, using the even-from frame and even-to frame.

The set of meets to move on the first step containsiest. At the end of each step, the set
of meets for the next step is found, as follows. The monitor trace is used to find the preassigned
demand monitors whose cost increased during the current step. For each of these monitors,
KheMoni t or Fi r st Conpet i t or and KheMoni t or Next Conpetitor (Section 7.5.3) are used to
find the demand monitors competing with them for supply. These can be of four kinds:

1. A workload demand monitor derived from an avoid unavailable times monitor signals that
a preassigned resource has moved to an unavailable time, so fail.

2. Any other workload demand monitor signals a workload overload other than an unavailable
time, so ignore it. At a higher level, this defect might cause failure, but, as explained above,
the Kempe meet move itself only takes notice of simple clashes and unavailabilities.

3. A demand monitor derived from an unpreassigned task does not signal a simple clash, so
ignore it, on the same reasoning as the previous item.

4. A demand monitor derived from a preassigned task signals a simple clash. The appropriate
enclosing meet of the task (the one on the chain of assignments leading out of the task’s
meet just before the expected target meet) is found. If there is no such meet, or it was moved
on a previous step, fail. If it was moved on the current step, or is already scheduled to move
on the next step, ignore it. Otherwise schedule it to be moved on the next step.

A task is taken to be preassigned when a calliteTask!| sPr eassi gned (Section 4.9.3), with
as_in_event _resource settof al se, returngd r ue.

It remains to explain how the four frames are defined.

Given the calkheKenmpeMeet Move(neet, target_meet, offset, ...),thetarget meet
of the odd-from frame and the even-to fram&hsMeet Asst (neet) , and the target meet of the
even-from frame and the odd-to frame & get _neet . These may be equal, or not.

10.2. Helper functions 183

The odd frames have the same duration, and the even frames have the same duration.
Usually, all frames have the same duration, the odd-from frame and the even-to frame are equal,
and the even-from frame and the odd-to frame are equal. Thisseffeate case

odd-numbered steps

odd-from frame odd-to frame

even-numbered steps
even-to frame - even-from frame

But there is another possibility, theombined case Suppose the odd-from frame and the
even-from frame are adjacent in time (suppose they have the same target meet, and the start
offset of either equals the stop offset of the other). Call the union of their two sets of offsets the
combined blocklIn that case, the durations of the odd-from frame and the even-from frame may
differ. The odd-to frame occupies the opposite end of the combined block from the odd-from
frame, and the even-to frame occupies the opposite end from the even-from frame:

odd-from frame | even-from frame

even-to frame odd-to frame

B combined block

Four diagrams could be drawn here, showing cases where the odd-from frame has shorter and
longer duration than the even-from frame, and where it appears to the left and right of the
even-from frame. But in all these cases, meets move between the frames in the same way.

To find these frames, first make the initial movereét tot ar get _nmeet atof fset. Thisis
an odd-numbered move, so it moves a meet from the odd-from frame to the odd-to frame. But it
is defined by the caller, so no frames are needed. If it fails, then fail. Otherwise, find the resulting
clashing meets. This may cause failure in various cases, as explained above; if successful, all
the clashing meets will currently be assignetidoget _neet at various offsets. If there are no
clashing meets, the initial move suffices, so return success. Otherwise jtetitielash frame
be the smallest frame enclosing the clashing meets. The even-from frame will be a superset of
this frame, to allow all the clashing meets to move legally on the second step.

Next, see whether the separate case applies, as follows. The initial meet must lie inside
the odd-to frame after it moves. Since the even-from frame must equal the odd-to frame in the
separate case, let the even-from frame be the initial clash frame, enlarged as little as possible to
include the initial meet after it moves. Then the odd-from frame is defined completely by the
requirements that its duration must equal the duration of the even-from frame, and that the offset
of the initial meet in the odd-from frame before it moves must equal its offset in the odd-to frame,
and so in the even-from frame, after it moves. Once the odd-from frame is defined in this way,
check that it does not protrude out either end of its target meet, nor overlap with the even-from
frame. If it passes this check, set the odd-to frame equal to the even-from frame, and set the
even-to frame equal to the odd-from frame. The separate case applies.

Otherwise, see whether the combined case applies, as follows. If the initial meet’s original
target meet is ndtar get _neet , or its original position overlaps the initial clash frame, then the
combined case does not apply, and so the entire operation fails. Otherwise, set the even-from
frame to the initial clash frame, and set the odd-from frame to the smallest frame which both

184 Chapter 10. Time Solvers

includes the initial meet’s original position and also abuts the even-from frame. This frame
must exist; no further checks are needed. Set the odd-to frame to occupy the opposite end of the
combined block from the the odd-from frame, and set the even-to frame to occupy the opposite
end of the combined block from the even-from frame. The combined case applies.

10.3. Meet bound groups and domain reduction

The functions described in this section do not assign meets. Instead, they reduce meet domains.

10.3.1. Meet bound groups

Meet domains are reduced by adding meet bound objects to meets (Section 4.8.4). Frequently,
meet bound objects need to be stored somewhere where they can be found and deleted later. The
required data structure is trivial—just an array of meet bounds—but it is convenient to have a
standard for it, so KHE defines a tyggE_MEET_BOUND_GROUP with suitable operations.

To create a meet bound group, call
KHE_MEET BOUND GROUP KheMeet BoundGr oupMake(voi d) ;
To add a meet bound to a meet bound group, call

voi d KheMeet BoundG oupAddMeet Bound(KHE_MEET BOUND GROUP nhg,
KHE_MEET_BOUND nb) ;

To visit the meet bounds of a meet bound group, call

i nt KheMeet BoundG oupMeet BoundCount (KHE_MEET _BOUND_GROUP nbg) ;
KHE_MEET_BOUND KheMeet BoundGr oupMeet Bound(KHE_MEET_BOUND_GROUP nbg, int i);

To delete a meet bound group, including deleting all the meet bounds in it, call
bool KheMeet BoundGr oupDel et e(KHE_MEET BOUND GROUP nhg) ;

This function returnsr ue when every call it makes t¢heMeet BoundDel et e returng r ue.

10.3.2. Exposing resource unavailability

If a meet contains a preassigned resource with some unavailable times, run times will be reduced
if those times are removed from the meet’s domain, since then futile time assignments will be
ruled out quickly. Thisidea is implemented by

voi d KheMeet AddUnavai | abl eBound(KHE_MEET neet, KHE_COST mi n_wei ght,
KHE_MEET_BOUND_GROUP nhg) ;

This makes a meet bound based on the available times of the resources preassiegtednd
to meets with fixed assignmentsieet , directly or indirectly. It adds this bound teet , and to
mbg if mbg is nonNULL.

The meet bound is an occupancy bound whose default time group is the full cycle minus
KheAvoi dUnavai | abl eTi mesConst r ai nt Unavai | abl eTi nes(c) for each avoid unavailable

10.3. Meet bound groups and domain reduction 185

times constraint for the relevant resources whose combined weight is atdeastei ght . For
example, settingi n_wei ght to 0 includes all constraints; setting it kbeCost (1, 0) includes

hard constraints only. Each time group is adjusted for the offsetdh of the meet containing

the preassigned resource. If the resulting time group is the entire cycle, as it will be, for example,
whenneet ’s preassigned resources are always available, then no meet bound is made.

There is also

voi d KheSol nAddUnavai | abl eBounds(KHE_SOLN sol n, KHE_COST ni n_wei ght,
KHE_MEET_BOUND GROUP mhg) ;

which callskheMeet AddUnavai | abl eBound for each non-cycle meet #ol n whose assignment
is not fixed, taking care to visit the meets in a safe order (parents before children).

10.3.3. Preventing cluster busy times and limit idle times defects

This section presents a function which reduces the cost of cluster busy times and limit idle times
monitors, by reducing heuristically the domains of the meets to which the monitors’resources are
preassigned, before time assignment begins. For example, suppose teacher Jones s limited by a
cluster busy times constraint to attend for at most three of the five days of the week. Choose any
three days and reduce the time domains of the meets that Jones is preassigned to to those three
days. Then those meets cannot cause a cluster busy times defect for Jones.

But first, we need to consider the alternatives. One is to do nothing special during the
initial time assignment, and repair any defects later. But there are likely to be many defects then,
casting doubt on the value of the initial assignment, since repairing cluster busy times defects is
time-consuming and difficult. Repairing limit idle times defects is easier, but it still takes time.

A second alternative is to take these monitors into account as part of the usual method of
constructing an initial assignment of times to meets. The usual method is to group the meets into
layers (sets of meets which must be disjoint in time, because they share preassigned resources)
and assign the layers in turn. Some monitors are handled during layer assignment, including
demand and spread events monitors. Cluster busy times monitors can be too, as follows.

Suppose there is a cluster busy times monitor for resauregquiring thatr be busy on at
most four of the five days of the cycle. Create a meet with duration equal to the number of times
in one day, whose domain is the set of first times on all days. Add a task preassignibis
meet. Then, in the course of assignirgylayer, this meet will be assigned a time, and if there
are no clashes, the other meets preassignétlibe limited to at most four days as required. At
the author’s university, this method is used to give most students two half-days off.

There are a few detailed problems: a whole-day meet may not be assignable to any cycle
meet, and the author’s best method of assigning the meets of one layer (Section 10.6) works best
when there are several meets of each duration, whereas here there may be only one whole-day
meet. These problems can be surmounted by reducing the domains of the other meets instead
of adding a new meet. But there are other problems—problems that may be called fundamental,
because they arise from handling clustering one layer at a time.

A resource idightly loadedwhen it is preassigned to meets whose total duration is much
less than the cycle’s duration. Cluster busy times monitors naturally apply to lightly loaded
resources, because heavily loaded ones don’t have the free time that makes clustering desirable.

186 Chapter 10. Time Solvers

In university problems, each layer is a set of meets preassigned just one resource: a lightly loaded
student. The layers are fairly independent, being mutually constrained only by the capacities of
class sections. Under these conditions, handling clustering one layer at a time works well.

But now consider the situation, common in high schools, where each meet contains two
preassigned resources, one student group resource and one teacher resource. Suppose the student
group resources are heavily loaded, and the teacher resources are lightly loaded and subject
to cluster busy times constraints. It is best to timetable the meets one student group layer at a
time, because the student group resources are heavily loaded, but this leaves no place to handle
the teachers’ cluster busy times monitors. Even if the meets were assigned in teacher layers,
those layers are often not independent: electives, for example, have several simultaneous meets,
requiring several teachers to have common available times.

This brings us to the third alternative, the subject of this section. Before time assignment
begins, reduce the domains of meets subject to cluster busy times and limit idle times monitors
to guarantee that the monitors have low (or zero) cost, whatever times are assigned later. Use the
global tixel matching to avoid mistakes which would make meets unassignable. Function

voi d KheSol nd ust er AndLi ni t Meet Domai ns(KHE_SOLN sol n,
KHE COST min_cluster weight, KHE COST min_idle weight,
float slack, KHE MEET BOUND GROUP nbg, KHE OPTI ONS options);

does this. It adds meet bounds to meets, anthgoif nbg is nonNULL, based on cluster busy
times monitors with combined weight at leasin_cl ust er _wei ght , and on limit idle times
monitors with combined weight at leasitn_i dl e_wei ght . M ni rumlimits are ignored. See
below for precisely which monitors are included.KieOpt i onsDi ver si fy(options) istrue,

the result is diversified by varying the order in which domain reductions for limit idle times
monitors are tried.

Carrying out all possible domain reductions is almost certainly too extreme; it gives other
solvers no room to move. Parameténck is offered to avoid this problem. For each resource
r, functionKheSol nCl ust er AndLi i t Meet Donmai ns keeps track ofp(r), the total duration of
the events preassignedanda(r), the total duration of the times available to these events, given
the reductions made so far. Clearly, it is important for the function to ersuye p(r), since
otherwise these events will not have room to be assigned. But, Istiadhe value ofl ack,
the function actually ensuregr) = s [p(r), or rather, it does not apply any reduction that makes
this conditionf al se. The minimum acceptable value gifack is 1. 0, which is almost certainly
too small. A value arountl. 5 seems more reasonable.

The remainder of this section describes the issues involved in reducing domains, and how
KheSol nCl ust er AndLi mi t Meet Domai ns works in detail.

A set of resources may hiene-equivalentsure to be busy at the same times. There would
be no change in cost if all the cluster busy times and limit idle times monitors of a set of time-
equivalent resources applied to just one of them: their costs depend only on when their resource
is busy. So although for simplicity the following discussion speaks of individual resources, in
factkheSol nC ust er AndLi mi t Meet Domei ns deals with sets of time-equivalent resources, taken
from thestructural _ti me_equi v option of itsopt i ons parameter. These must have been set
previously by a call t&kheTi neEqui vSol ve (Section 9.2).

A cluster busy times monitor for a resouncés included when its combined weight is at

10.3. Meet bound groups and domain reduction 187

leastmi n_cl ust er _wei ght , its Maxi numlimit is less than its number of time groups, and each
time group is either disjoint from or equal to each time group of each previously included monitor
forr. Alimitidle times monitor for a resourgeof typert isincluded when its combined weight

is at leastmi n_i dl e_wei ght , rt satisfieskneResour ceTypeDenandl sAl | Preassi gned(rt),

its time groups are disjoint from each other, and each time group is either disjoint from or equal
to each time group of each previously included monitor for that resource. The time groups are
usually days, so the disjoint-or-equal requirement is usually no impediment.

An exclusion operationor just exclusion is the addition of an occupancy meet bound
(Section 4.8.4) to each meet preassigned a given resource, ensuring that those meets do not
overlap a given set of times. An exclusionsisccessfuif its calls toKheMeet AddMeet Bound
succeed and do not increase the number of unmatched demand tixels in the global tixel matching.
KheSol nd ust er AndLi mi t Meet Donmai ns keeps only successful exclusions; unsuccessful ones
are tried, then undone. It repeatedly tries exclusions until for each monitor, either a guarantee
of sufficiently low cost is obtained, or no further successful exclusions are available. Exclusions
based on cluster busy times monitors are tried first, since they are most important. After they
have all been tried, the algorithm switches to exclusions based on limit idle times monitors.

Build a graph with one vertex for each resource. For each resource, the aim is to exclude
some of its cluster busy times monitors’ time groups from its meets, enough to satisfy those
monitors’Maxi mumlimits. Thinking of each time group as a colour, the aim is to assign a given
number of distinct colours from a given set to each vertex.

If some meet (or set of linked meets) has several preassigned resources, those resources
should exclude some of the same time groups, to leave others available. Linked meets with
preassigned teacheash, ¢, d, ande must not be excluded from Mondays ayfrom Tuesdays
by b, and so on. The global tixel matching test prevents this extreme example, but we also need
to avoid even approaching it. So when two resources share meets, this evidence that they should
have similar exclusions is recorded by connecting their verticegdog#ive edgevhose cost is
the total duration of the meets they share.

Even when two resources share no meets, they may still influence each other’s exclusions,
when there is an intermediate resource which shares meets with both of them. Two teacherswho
teach the same student group are an example of this. If some time group is excluded by one of
the teachers, it would be better if it was not excluded by the other, since that again limits choice.
In this case the two resources’ vertices are joined me@ative edgevhose cost is the total
duration of the meets they share with the intermediate resource. If there are several intermediate
resources, the maximum of their costs is used.

Negative edges produce a soft graph colouring problem: a good result gives overlapping
sets of colours to vertices connected by positive edges, and disjoint sets of colours to vertices
connected by negative edges. This connection with graph colouring rules out finding an
optimum solution quickly, but it also suggests a simple heuristic which is likely to work well,
since it is based on the successful saturation degree heuristic for graph colouring.

A vertexisopenwhena(v) > s[p(Vv) (as explained above), and it has at least one untried ex-
clusion with at least one cluster busy times monitor which would benefit from that exclusion. If
there are no open vertices, the procedure ends. Otherwise an open vertex is chosen for colouring
whose total cost of edges (positive and negative) going to partly or completely coloured vertices
is maximum, with ties broken in favour of vertices of larger degree.

188 Chapter 10. Time Solvers

Once an open vertex is chosen, the cost of each of its untried colours is found, and the
untried colours are tried in order of increasing cost until one of them succeeds or all have been
tried. The cost of a colowris the total cost of outgoing negative edges to vertices contaming
minus the total cost of outgoing positive edges to vertices contaming

The numbers used by the heuristic are adjusted to take account of the idea that one vertex
requiring several colours is similar to several vertices, each requiring one colour, and connected
in a clique by strongly negative edges. In particular, being partly coloured increases a vertex's
chance of being chosen for colouring, as does requiring more than one more colour.

Saturation degree heuristics are often initialized by finding and colouring a large clique, but
nothing of that kind is attempted here. A time group which is a subset of the unavailable times
of its resource should always be excluded. This is done, wherever applicable, at the start, after
which there may be several partly coloured vertices.

When handling limit idle times monitors, individual times are excluded instead of entire
time groups. The time groups of limit idle times monitors are compact, and the excluded times
lie at the start or end of one of these time groups. Exclusions which remove a last unexcluded
time are tried first, followed by exclusions which remove a first unexcluded time.

Whether an idle exclusion is needed depends on the following calculation. As above, let
thepreassigned duration(p) of a vertexv be the total duration of the meets tiwsresource is
preassignedto. Let travailability a(v) of vertexv be the number of times that these same meets
may occupy. Initially this is the number of times in the cycle, but as time groups are excluded
during the cluster busy times phase it shrinks, and then as individual times are excluded during
the limit idle times monitor phase it shrinks further.

As explained above, when an exclusion would caa(sg=> s [p(v) to becomd al se, it is
prevented. Assuming this obstacle is not present, consider limit idle times monitdhin v.
A worst-case estimate of its number of deviatidiis)) can be found as follows.

Leta(m), theavailability of m, be the total number of unexcluded timesis time groups.
Since time groups are disjoirgi(m) < a(v). The worst case fom occurs when as many meets
as possible are assigned times outside its time groups, leaving many unassigned and potentially
idle times inside. The maximum duration of meets that can be assigned autstdae groups
isa(v) —a(m), leaving a minimum duration of

MD(m) = max(0,p(v) - (a(v) - a(m)))
to be assigned withim's time groups. This assignment leaam) — MD(m) of m's available

places unfilled. A little algebra shows that this difference is non-negative, givgz p(v).

Let M (m) bem's Maxi mumattribute. The worst-case deviatid(m) is the amount by which
the number of unfilled places exceadg¢m), that is,

d(m) = max(0,a(m) — MD(m) — M(m))

If d(m) is positive, an exclusion which reducagn) further may be tried, and multiplyingd(m)
by w(m), the combined weight af's constraint, gives a priority for trying such an exclusion.

Limit idle times monitors are tried in decreasigfgn)w(m) order, updated dynamically, and
modified by propagating exclusions across positive edges. Negative edges are not used.

10.4. Some basic time solvers 189

10.4. Some basic time solvers

This section presents some basic time solvers. The simplest are

bool KheNodeSi npl eAssi gnTi mes(KHE_NCDE par ent _node, KHE_OPTI ONS opti ons);
bool KhelLayer Si npl eAssi gnTi mes(KHE_LAYER | ayer, KHE_OPTI ONS options);

They assign those meets of the child nodegasfent _node (or of the nodes of ayer) that are

not already assigned. For each such meet, in decreasing duration order, they try all offsets in all
meets of the parent node. HfieMeet Assi gnCheck permits at least one of these, the best is made,
measuring badness by callikgeSol nCost ; otherwise the meet remains unassigned, and the
result returned will béal se. These functions do not use options or back pointers.

There is one wrinkle. When assigning a meet which is derived from an eyehése
functions will not assign the meet to a meet which is already the target of an assignment of some
other meet derived from. This is because if two meets from the same event are assigned to the
same meet, they are locked into being adjacent, or almost adjacent, in time, undermining the only
possible motive for splitting them apart.

These functions are not intended for serious timetabling. They are useful for simple
tasks: assigning nodes whose children are known to be trivially assignable, finding minimum
runaround durations (Section 9.4.1), and so on.

The logical order to assign times to the nodes of a layer tree is postorder (from the bottom
up), since until a node’s children are assigned to it, its resource demands are not clear. Function

bool KheNodeRecur si veAssi gnTi mes(KHE_NCDE par ent _node,
KHE_NCDE_TI ME_SOLVER sol ver, KHE OPTI ONS options);

appliessol ver to all the nodes in the subtree rootedbat ent _node, in postorder. It returns
t rue when every call it makes vl ver returng rue. It uses options and back pointers if and
only if sol ver uses them. For example,

KheNodeRecur si veAssi gnTi nes(parent _node, &KheNodeSi npl eAssi gnTi mes, NULL);
carries out a simple assignment at each node, and
KheNodeRecur si veAssi gnTi nes(par ent _node, &KheNodeUnAssi gnTi nes, NULL);

unassigns all meets in all proper descendangsoént _node.
Functions

bool KheNodeUnAssi gnTi mes(KHE_NODE parent _node, KHE OPTI ONS options);
bool KhelLayer UnAssi gnTi mes(KHE _LAYER | ayer, KHE OPTI ONS options);

unassign any assigned meetgafent _node’s child nodes (or of ayer 's nodes). They do not
use options or back pointers. Also,

bool KheNodeAl | Chi | dMeet sAssi gned(KHE_NODE par ent _node) ;
bool KheLayer Al | Chi | dMeet sAssi gned(KHE_LAYER | ayer);

returnt r ue when the meets of the child nodespair ent _node (or of | ayer) are all assigned.

190 Chapter 10. Time Solvers

Preassigned meets could be assigned separately first, then left out of nodes so that they
are not visited by time assignment algorithms. The problem with this is that a few times may be
preassigned to obtain various effects, such as Mathematics first in the day, and this should not
affect the way that forms are coordinated. Accordingly, the author favours handling preassigned
meets along with other meets, as far as possible.

However, when coordination is complete and real time assignment begins, it seems best
to assign preassigned meets first, for two reasons. First, preassignments are special because
they have effectively infinite weight. There is no point in searching for alternatives. Second,
preassignments cannot be handled by algorithms that are guided by total cost, because they have
no assign time constraints, so there is no reduction in cost when they are assigned. Functions

bool KheNodePr eassi gnedAssi gnTi nes(KHE_NODE r oot _node,
KHE_OPTI ONS options);

bool KhelLayer Preassi gnedAssi gnTi nes(KHE_LAYER | ayer,
KHE_OPTI ONS options);

search the child nodes obot _node, which must be the overall root node, or the noddsagkr ,

whose parent must be the overall root node, for unassigned meets whose time domains contain
exactly one elemenkheMeet Assi gnTi ne is called on each such meet to attempt to assign that
one time to the meet. These functions do not use options or back pointers.

KHE's solvers assume that it is always a good thing to assign a time to a meet. However,
occasionally there are cases where cost can be reduced by unassigning a meet, because the cost
of the resulting assign time defect is less than the total cost of the defects introduced by the
assignment. As some acknowledgement of these anomalous cases, KHE offers

bool KheSol nTryMeet UnAssi gnment s(KHE_SCLN sol n) ;

for use at the end. It tries unassigning each meesbbh in turn. If any unassignment reduces
the cost ofsol n, it is not reassigned. The resultisue if any unassignments were kept.

10.5. Atime solver for runarounds
Time solver

bool KheRunar oundNodeAssi gnTi mes(KHE_NCDE par ent _node,
KHE_OPTI ONS opt i ons);

assigns times to the unassigned meets of the child nodes eft _node, using an algorithm
specialized for runarounds. It tries to spread similar nodes out thrgargint _node as much

as possible. By definition, some resources are scarce in runaround nodes, so it is good to spread
demands for similar resources as widely as possible. It works well on symmetrical runarounds,
but it can fail in more complex cases. If that happens, it undoes its work and makes a call to
KheNodeLayer edAssi gnTi mes(par ent _node, fal se) from Section 10.8.2. Thisis not a very
appropriate alternative, but any assignment is better than none.

KheRunar oundNodeAssi gnTi mes begins by finding the child layers par ent _node using
KheNodeChi | dLayer sMake (Section 9.3.1), and placing similar nodes at corresponding indexes
in the layers, usingtheLayer Si ni | ar (Section 5.3). It then assigns the unassigned meets of

10.5. Atime solver for runarounds 191

these nodes. lIts first priority is to not increase solution cost; its second is to avoid assigning two
child meets to the same parent meet (this would prevent them from spreading out in time); and
its third is to prevent corresponding meets in different layers from overlapping in time.

The algorithm is based on a procedure (let’'s caflatve) which accepts a set of child
layers, each accompanied by a set of triples of the form

(parent _nmeet, offset, duration)

meaning thapar ent _neet is open to assignment by a child meet of the layer, at the given offset
and duration. The task &bl ve is to assign all the unassigned meets of the nodes of its layers.

The initial call toSol ve is passed all the child layers. Each layer’s triples usually contain
one triple for each parent meet, with offset 0 and the duration of the parent meet for duration,
indicating that the parent meets are completely open for assignment. If any meets are assigned
already, the triples are modified accordingly to record the smaller amount of open space.

Sol ve begins by finding the maximum duratian], of an unassigned meet in any of its
layers. It assigns all meets with this duration in all layers itself, and then makes recursive calls to
assign the meets of smaller duration. For each layer, it takes the meets of duttatidime order
they appear in the layer and its nodes. It assigns these meets to consecutive suitable positions
through the layer, shifting the starting point of the search for suitable positions by one place in
the parent layer as it begins each layer. It never makes an assignment which increases the cost
of the solution, and it makes an assignment which causes two child meets to be assigned to the
same parent meet only as a last resort. If some meet fails to assign, the whole algorithm fails and
the problem is passed onkbeNodeChi | dLayer sAssi gnTi nes as described above.

As meets are assigned, the offsets and durations of the triples change to reflect the fact that
the parent meets are more occupied. After all assignments of meets of durkdiecomplete,
the layers are sorted to bring layers with equal triples together. Each set of layers with equal
triples is then passed to a recursive calbtbve, which assigns its meets of smaller duration.

The purpose of handling sets of layers with equal triples together in this way can be seenin
an example. Suppose the parent node has two doubles and each child node has one double. Then
there are two ways to assign the child’s double; half the child layers will get one of these ways,
the other half will get the other way. The layers in each half have identical assignments so far,
undesirably but inevitably. By bringing them together we maximize the chance that the recursive
call which assigns the singles will find a way to vary the remaining assignments.

10.6. Extended layer matching with EIm

A good way to assign times to meets is to group the meets into nodes, group the nodes into layers,
and assign times to the meets layer by layer. The advantage of doing it this way is that the meets
of one layer strongly constrain each other, because they share preassigned resources so must be
disjoint in time. Assigning times to the meets of one layer, then, is a key step.

Any initial assignment of times to the meets of one layer will probably require repair. But
repair is time-consuming, and it will help if the initial assignment has few defects—as a first
priority, few demand defects, but also few defects of other kinds. The method presented in this
section, calleéxtended layer matchingr EImfor short, is the author’s best method of finding
an initial assignment of times to the meets of one layer.

192 Chapter 10. Time Solvers

If all meets have duration 1 and minimizing ordinary demand defects is the sole aim, the
problem can be solved efficiently using weighted bipartite matching. Make each meet a node
and each time a node, and connect each meet to each time it may be assigned, by an edge whose
cost is the number of demand defects that assignment causes. Among all matchings with the
maximum number of edges, choose one of minimum cost and make the indicated assignments.

Elm is based on this kind of weighted bipartite matching, calégeér matchingby the
author, making it good at minimizing demand defects. éxendedvith ideas that heuristically
reduce other defects. Layer matching was caitegta-matchingn the author’s early work,
because it operates above another matching, the global tixel matching.

Elm can be used without understanding it in detail, by calling

bool KheEl nLayer Assi gn(KHE_LAYER | ayer,
KHE SPREAD EVENTS CONSTRAI NT sec, KHE OPTIONS options);

KheEl nLayer Assi gn finds an initial assignment of the meets of the child nodésgér to the

meets of the parent node béyer , leaving any existing assignments unchanged, and returning
true if every meet of ayer isassigned afterwards. It works well with the reduced meet domains
installed by solvers such asheSol nC ust er AndLi mi t Meet Domei ns (Section 10.3.3) for
minimizing cluster busy times and limit idle times defects. It tries to minimize demand defects,
and ifl ayer's parent node has zones, it also tries to make its assignments meet and node regular
with those zones, which should help to minimize spread events defects.difvtbresi f y option

of options (Section 8.4) ig r ue, it consults the solution’s diversifier, and its results may vary
with the diversifier. It does not repair its assignment, leaving that to other functions.

Parametesec is optional (may b&ULL); a simple choice for it would be any spread events
constraint whose number of points of application is maximakelf is present, the algorithm
tries to assign the same number of meets to easkd$ time groups. To see why, consider an
example of the opposite. Suppose the events are to spread through the days, and the Wednesday
times are assigned eight singles, while the Friday times are assigned four doubles. It’s likely
that some events will end up meeting twice on Wednesdays and not at all on FridaysecThe
parameter acts only with low priority. It is mainly useful on the first layer, when there are no
zones and the segmentation is more or less arbitrary.

10.6.1. Introducing layer matching

This section introduces layer matching. Later sections describe the implementation. Suppose
some layer has three meets of duration 2 and two meets of duration 1, like this:

I O N N e

Thesechild meetdhave to be assigned to non-overlapping offsets in the meets of the parent node
(theparent meeds Suppose there are three parent meets of duration 2 and three of duration 1:

T OO O

and suppose (for the moment) that assignments are only possible between meets of the same
duration. Then a bipartite graph can represent all the possibilities:

10.6. Extended layer matching with EIm 193

The child meets (the bottom row) are the demand nodes, and the parent meets (the top row) are the
supply nodes. Each edge representsone potential assignment of one child meet. Not alledgesare
present. some are missing because of unequal durations, others because of preassignments and
other domain restrictions. For example, the last child meet above appears to be preassigned.

When one of the potential assignments is made, there is a change in solution cost. Each
edge may be labelled by this change in cost. Suppose that a matching of maximum size (number
of edges) is found whose cost (total cost of selected edges) is minimum. There is a reasonably
efficient algorithm for doing this. This matching is tleer matchingit defines a legal assign-
ment for some (usually all) child meets, and its cost is a lower bound on the change in solution
cost when these meets are assigned to parent meets without any overlapping, as is required since
the child meets share a layer and thus presumably share preassigned resources.

The lower bound is only exact if each assignment changes the solution cost independently
of the others. This is true for many kinds of monitors, but not all, and it is one reason why the
lower bound produced by the matching is not exact. In fact, costs contributed by limit idle
times, cluster busy times, and limit busy times monitors only confuse layer matching. So for
each resource of the layer, any attached monitors of these kinds are detached at the beginning of
KheEl nLayer Assi gn and re-attached at the end.

Parent meets usually have larger durations than child meets, allowing choices in packing
the children into the parents. The parent node typically represents the week, so it might have,
say, 10 meets each of duration 4 (representing 5 mornings and 5 afternoons), whereas the child
meets typically represent individual lessons, so they might have durations 1 areegm&nof
parent meetar get _neet isatriple

(target _meet, offset, durn)

such that it is legal to assign a child meet of durationn to target _neet atoffset. A
segmentationf the parent meets is a set of non-overlapping segments that covers all offsets of
all parent meets. It is the segments of a segmentation, not the parent meets themselves, that are
used as supply nodes. There may be many segmentations, but the layer matching uses only one.
This is the other reason why the lower bound is not exact.

A layer matching graphs a bipartite graph with one demand node for each meet of a
given layer, and one supply node for each segment of some segmentation of the meets of the
layer’s parent node. For each unassigned child meet, there is one edge to each parent
segment whose duration equals the duratiomeet and to whichreet is assignable according
to KheMeet Assi gnCheck. The cost of the edge is the cost of the solution when the assignment
is made, found by making the assignment, calknesSol nCost , then unassigning again. (Using
the solution cost rather than the change in cost ensures that edge costs are always non-negative,
asrequired behind the scenes.) For each assigned childree¢ea parent segment witteet ’s
target meet, offset, and duration is the only possible supply node that the meet can be connected
to; if present, the edge cost is 0.

194 Chapter 10. Time Solvers

A layer matchings a set of edges from the graph such that no node is an endpoint of two
or more of the selected edges.b&st matchings a layer matching of minimuroost(sum of
edge costs) among all matchings of maximsize(number of edges).

The layer giving rise to the demand nodes consists of nodes, each of which typically
contains a set of meets for one course. This set of meets will typically want to be spread through
the cycle, not bunched together. Each meet generates a demand node, and a set of demand nodes
whose meets are related in this way is callettenand node group

There is also a natural grouping of supply nodes, with sapiply node grouponsisting of
those supply nodes which originated from the same parent meet. Thus, the supply nodes of one
group are adjacent in time.

It would be good to enforce the following rule: two demand nodes from the same demand
node group may not match with two supply nodes from the same supply node group (because
if they did, all chance of spreading out the demand nodes in time would be lost). There is no
hope of guaranteeing this rule, because there are cases where it must be violated, and because
minimizing cost while guaranteeing it appears to be an NP-complete problem. However, EIm
encouragesit. When finding a minimum-cost matching, it adds an artificial increment to the cost
of each augmenting path that would violate it, thus making those paths relatively uncompetitive
and unlikely to be applied. The approach is purely heuristic, but it usually works well.

The overall structure of the layer matching graph is now clear. There are demand nodes,
each representing one meet of the layer, grouped into demand node groups representing courses.
There are supply nodes, each representing one segment of one meet of the parent node, grouped
into supply node groups representing the meets of the parent node. Edges between supply
nodes and demand nodes are not defined explicitly; they are determined by the durations and
assignability of the meets and segments.

10.6.2. The core module

This section describes tlw®re modulewhich implements the layer matching graph, including
maintaining a best matching. Elm also hatper moduleglescribed infollowing sections. They
have no behind-the-scenes access to the graph; they use only the operations described here.

The core module follows the previous description closely, except that it uses ‘demand’ for
‘demand node’, ‘demand group’ for ‘demand node group’, and so on—for brevity, and so that
‘node’ always means an object of tyjdeE_NODE. This Guide will do this too from now on.

Elm’s types and functions (apart frakheEl nLayer Assi gn) are declared in a header file of
their own, calleckhe_el m h. So to access the functions described from here on,

#i nclude "khe. h"

#include "khe_el mh"
must be placed at the start of the source file.

We begin with the operations on tygeE_ELM representing one elm. An elm for a given
layer is created and deleted by functions

KHE_ELM KheEl mvake(KHE_LAYER | ayer, KHE_OPTI ONS options);
voi d KheEl mDel et e(KHE_ELM el m);

10.6. Extended layer matching with EIm 195

If the di versify option of options istrue, then the layer’'s solution’s diversifier is used to
diversify the elm. In addition to the elm itselfheEl mvake creates one demand group for each
child node ofl ayer, containing one demand for each meet of the child node. It also creates one
supply group for each meet of the layer’s parent node, containing one supply representing the
entire meet.KheEl nDel et e deletes all these objects along with the elm. The sets of meets in
the parent and child nodes should not change during the elm’s lifetime, although the state of one
meet (its assignment, domain, etc.) may change.

The layer and options may be accessed by

KHE_LAYER KheEl nLayer (KHE_ELM el m) ;
KHE_OPTI ONS KheEl nOpt i ons(KHE_ELM el m);

To access the demand groups, call

i nt KheEl nDemandG oupCount (KHE_ELM el m);
KHE_ELM DEMAND GROUP KheEl mDenmandG oup(KHE_ELM el m int i);

in the usual way. To access the supply groups, call

i nt KheEl nSuppl y& oupCount (KHE_ELM el) ;
KHE_ELM SUPPLY_GROUP KheEl nSuppl yG oup(KHE_ELM el m int i);

An elm also holds a best matching as defined above. The functions related to it are

i nt KheEl nBest Unnat ched(KHE_ELM el m) ;
KHE_COST KheEl nBest Cost (KHE_ELM el m) ;
bool KheEl nBest Assi gnMeet s(KHE_ELM el m) ;

KheEl nBest Unmat ched returns the number of unmatched demands in the best matching.
KheEl nBest Cost returns its cost—not a solution cost, but a sum of edge costs, each of which is
a solution costkheEl mDemandBest Suppl y, defined below, reports which supply a given demand

is matched with. To assign the unassigned mee¢s$ @t layer according to the best matching,
callkheEl nBest Assi gnMeet s; it returngt r ue if every meetis assigned afterwards. Elm updates
the best matching only when one of these four functions is called, for efficiency.

Elm has a ‘special node’which is begun and ended by calling

voi d KheEl mSpeci al ModeBegi n(KHE_ELM el m) ;
voi d KheEl mSpeci al ModeEnd(KHE ELM el m) ;

While the special mode is in effect, EIm assumes that edges can change their presence in the layer
matching graph but not their cost. So when updating edges in special mode, Elm only needs to
find whether each edge is present or not, which is much faster than finding costs as well.

To support splitting supplies so that their numbers in each time group of a spread events
constraint are approximately equal, these functions are offered:

voi d KheEl mnevennessTi neG oupAdd(KHE ELM elm KHE_TI ME_GROUP tg);
i nt KheEl mnevenness(KHE ELM el) ;

KheEl nnevennessTi meG oupAdd instructsel mto keep track of the number of supplies whose

196 Chapter 10. Time Solvers

starting times lie withirt g. KheEl mnevenness returns the sum over all these time groups of
a quantity related to the square of this number. For a given set of supplies, this will be smaller
when they are distributed evenly among the time groups than when they are not.

Function

voi d KheEl mDebug(KHE_ELM el m int verbosity, int indent, FILE «fp);

produces a debug print afl monto f p with the given verbosity and indent. Demands are
represented by their meets, and supplies are represented by their meets, offsets, and durations. If
verbosity >= 2, the print includes the best matching. Function

voi d KheEl nDebugSegnent ati on(KHE_ELM el m int verbosity,
int indent, FILE *fp);
is similar except that it concentrates@mis segmentation.
Demand groups have typé&E_ELM DEMAND_GROUP. To access their attributes, call
KHE_ELM KheEl nDemandG oupEl n{ KHE_ELM DEMAND GROUP dg):
KHE_NODE KheEl nDemandG oupNode(KHE_ELM DEMAND GROUP dg) ;

i nt KheEl nDemandG oupDemandCount (KHE_ELM DEMAND GROUP dg) ;
KHE_ELM DEMAND KheEl nDenandGr oupDemand(KHE_ELM DEMAND GROUP dg, int i);

These returnlg’s enclosing elm, the child node of the original layer that gave risigtalg’s
number of demands, and itth demand.

EIm maintains edges between demands and supplies automatically. But if a demand’s meet
changes in some way (for example, if its domain changes), EIm has no way of knowing that this
has occurred. When the meets of the demands of a demand group change, the user must call

voi d KheEl mDemandG oupHasChanged(KHE_ELM DEMAND GROUP dg);

to inform EIm that the edges touching the demanddgainust be remade before being used.

A demand group may contain any number of zones. If there are none, then zones have
no effect. If there is at least one zone, then the demand group’s demands may match only with
supplies that begin in one of its zones. The value. counts as a zone. Functions

voi d KheEl mDenandG oupAddZone(KHE_ELM DEMAND_GROUP dg, KHE_ZONE zone);
voi d KheEl mDenandG oupDel et eZone(KHE_ELM DEMAND _CGROUP dg, KHE_ZONE zone);

add and delete a zone frotg, including callingkheEl nDemandG oupHasChanged. The value
of zone may beNULL. To check whethettg contains a given zone, call

bool KheEl mDemandG oupCont ai nsZone(KHE_ELM DEMAND_GROUP dg, KHE _ZONE zone);
To visit the zones of a demand group, call

i nt KheEl nDemandG oupZoneCount (KHE_ELM DEMAND _GRCOUP dg) ;
KHE_ZONE KheEl mDemandG oupZone(KHE_ELM DEMAND GROUP dg, int i);

Function

10.6. Extended layer matching with EIm 197

voi d KheEl mDemandG oupDebug(KHE_ELM DEMAND GROUP dg,
int verbosity, int indent, FILE *fp);

sends a debug print dfy with the given verbosity and indent tp.

Demands have typéHE_ELM DEMAND. To access their attributes, call

KHE_ELM DEMAND GROUP KheEl mDemandDemandGr oup(KHE_ELM DEMAND d) :

KHE_NMEET KheEl nDemandMeet (KHE_ELM DEMAND d) ;
These return the enclosing demand group, and the meet that gave rise to the demand.

As explained above, when a demand’s meet changes in some way that affects the demand’s
edges, EIm must be informed. For a single demand, this is done by calling

voi d KheEl mDemandHasChanged(KHE_ELM DEMAND d) ;

Thisis called bykheEl nDemandG oupHasChanged for each demand in its demand group. To find
out which supplyd is matched with in the best matching, call

bool KheEl mDemandBest Suppl y(KHE_ELM DEMAND d,
KHE_ELM SUPPLY *s, KHE_COST *cost):

If d is matched with a supply in the best matchikiggEl mDemandBest Suppl y setss to that
supply and-cost to the cost of the edge, and retutmsie; otherwise it returnsal se. And

voi d KheEl mDemandDebug(KHE ELM DEMAND d, int verbosity,
int indent, FILE *fp);

sends a debug print afwith the given verbosity and indent tp.
Supply groups have typ¢HE_ELM SUPPLY_GROUP. To access their attributes, call
KHE_ELM KheEl nSuppl yG oupEl m{ KHE_ELM SUPPLY_GROUP sg);
KHE_MEET KheEl nSuppl yG oupMeet (KHE_ELM SUPPLY_GROUP sg);

i nt KheEl nSuppl y&G oupSuppl yCount (KHE_ELM SUPPLY_GROUP sg);
KHE_ELM SUPPLY KheEl nSuppl yG oupSuppl y(KHE_ELM SUPPLY_GROUP sg, int i);

These returng’s enclosing elm, the meet of the layer’s parent node that gave rise to it, its number
of supplies (segments), andith supply. And

voi d KheEl nSuppl yG oupDebug(KHE_ELM SUPPLY_GRCUP sg,
int verbosity, int indent, FILE *fp);
sends a debug print ey with the given verbosity and indent to.
Supplies have typeHE_ELM SUPPLY. To access their attributes, call
KHE_ELM SUPPLY_GROUP KheEl nSuppl ySuppl yG oup(KHE_ELM SUPPLY s);
KHE_MEET KheEl nSuppl yMeet (KHE_ELM SUPPLY s):

i nt KheEl nSuppl yO f set (KHE_ELM SUPPLY s);
i nt KheEl nSuppl yDur ati on(KHE_ELM SUPPLY s);

KheEl nBuppl ySuppl yG oup is the enclosing supply grouiheEl nSuppl yMeet is the enclosing

198 Chapter 10. Time Solvers

supply group’s meet, aniheEl nSuppl yOf f set andKheEl nSuppl yDur at i on return an offset
and duration within that meet, defining one segment.

To facilitate calculations with zones, each supply maintains the set of distinct zones that its
offsets lie in. These may be accessed by calling

i nt KheEl nSuppl yZoneCount (KHE_ELM SUPPLY s);
KHE_ZONE KheEl nBuppl yZone(KHE_ELM SUPPLY s, int i);

A NULL zone counts as a zone,deeEl nSuppl yZoneCount is always at least 1.
To facilitate the handling of preassigned and previously assigned demands, Elm offers

voi d KheEl nSuppl ySet Fi xedDenmand(KHE_ELM SUPPLY s, KHE_ELM DEVAND d);
KHE_ELM DEMAND KheEl nSuppl yFi xedDenmand(KHE_ELM SUPPLY s);

KheEl nSuppl ySet Fi xedDemand informsel mthatd is the only demand suitable for matching
with s, or if d is NULL (the default), that there is no restriction of that kind.dIf = NULL, d’s
duration must equal the duration ef A call to KheEl nDemandHasChanged(d) is included.
KheEl nBuppl yFi xedDenmand returnss’s current fixed demand, possib¥LL.

To facilitate the handling of irregular monitors, a supply can be temporarily removed from
the graph (so that it does not match any demand) and subsequently restored:

voi d KheEl nSuppl yRemove(KHE_ELM SUPPLY s);
voi d KheEl nSuppl yUnRenove(KHE_ELM SUPPLY s);

KheEl nBuppl yRenmove aborts if s has a fixed demand. A removed supply merely becomes
unmatchabled, it does not get deleted from node lists and so on. Function

bool KheEl nSuppl yl sRemoved(KHE_ELM SUPPLY s);

reports whethes is currently removed.

WhenkKheEl mvake returns, there is one demand group for each child node, one demand for
each child meet, one supply group for each parent meet, and one supply for each supply group,
with offset 0 and duration equal to the duration of the meet. All thisis fixed except that supplies
may be split and merged by calling

bool KheEl nBuppl ySpl it Check(KHE_ELM SUPPLY s, int offset, int durn,
int *count);

bool KheEl nBuppl ySplit(KHE ELM SUPPLY s, int offset, int durn,
int *xcount, KHE_ELM SUPPLY x|s, KHE_ELM SUPPLY xrs);

voi d KheEl nSuppl yMer ge(KHE_ELM SUPPLY |'s, KHE ELM SUPPLY s,
KHE_ELM SUPPLY rs);

KheEl nBuppl ySpl i t Check returnst rue whens may be split so that one of the fragments has
the given offset and duration. If so, it setunt to the total number of fragments that would

be produced, either 1, 2, or BheEl nSuppl ySpl i t is the same except that it actually performs
the split when possible, leavirsgwith the given offset and duration. Splitting is possible when

10.6. Extended layer matching with EIm 199

KheEl nSuppl yFi xedDemand(s) == NULL &&
KheEl nSuppl yOf fset (s) <= of fset &&
of fset + durn <= KheEl nSuppl yO fset(s) + KheEl nSuppl yDurati on(s)

This says thas is not fixed to some demand, and tlo&t set anddur n define a set of offsets
lying within the set of offsets currently covered Hy Otherwise it returngal se.

If KheEl mSuppl yOf fset (s) < of fset, then a supply! s is split off s at left, holding
the offsets fromkheEl nSuppl yOf f set (s) inclusive toof f set exclusive; otherwisel s is
set toNULL. If of fset + durn < KheEl nBuppl yO fset (s) + KheEl nBuppl yDuration(s),
then a supplyrs is split off s at right, holding the offsets frorof f set + durn inclusive to
KheEl mSuppl yOf f set (s) + KheEl nSuppl yDuration(s) exclusive; otherwisers is set to
NULL. The originak is left with offsets fromof f set inclusive toof f set + durn exclusive.

KheEl nSuppl yMer ge undoes the correspondilbeEl nSuppl ySpl i t. Either or both of s
andrs may beNULL. No meet splitting or merging is carried out by these operations.

Finally,

voi d KheEl nSuppl yDebug(KHE_ELM SUPPLY s, int verbosity,
int indent, FILE *fp);

sends a debug print afwith the given verbosity and indent tp.

10.6.3. Splitting supplies

The elm returned bitheEl mvake has only a trivial segmentation, with one segment per parent
meet. Few or no demands will match with these supplies, because only demands and supplies of
equal duration match. So the initial supplies have to be split ugieg nSuppl ySplit .

EIm has a helper module which splits supplies heuristically. It offers just one function:
voi d KheEl mSplit Supplies(KHE ELM el m KHE SPREAD EVENTS CONSTRAI NT sec);

If the di versi fy option of el mis opti ons attribute ist r ue, its result varies depending on the
layer’s solution’s diversifier. Theec parameter oKheEl nSpl it Suppl i es may beNULL. If
nonNULL, KheEl nSpl i t Suppl i es tries to find a segmentation in which each time groupesf
covers the same number of segments, as explainetéat m_ayer Assi gn above.

KheEl nBpl i t Suppl i es works as follows. Begin by handling demands whose meets are
preassigned or already assigned. For each such demand, split a supply to ensure that exactly
the right segment is present, and W&eEl nSuppl ySet Fi xedDemand to fix the supply to the
demand. If the required split cannot be made, the demand remains permanently unmatched.

Sort the remaining demands by increasing size of their meets’domains (in practice this also
sorts by decreasing duration), breaking ties by decreasing demandhé&bget Assi gnFi x to
ensure that these meets cannot be assigned. This removes them from the matching to begin with
(strictly speaking, it prevents them from having any outgoing edges in the matching graph).

For each demand in turn, unfix its meet and observe the effect of this on the best matching.
If the size of the best matching increases by one, proceed to the next demand. Otherwise, the
demand has failed to match, and this must be corrected (if possible) by splitting segments of
larger duration into smaller segments that it can match with. For each supply whose duration

200 Chapter 10. Time Solvers

Is larger than the duration of the demand, try splitting the supply in all possible ways into two
or three smaller segments such that at least one of the fragments has the same duration as the
demand. If there was at least one successful split, redo the best of them.

The best split is determined by an evaluation with five components:

1. The split must besuccessfulit must increase the size of the best matching by one. Only
successful splits are eligible for use; if there are none, the demand remains unmatched.

2. ltisbetter to splita segmentinto two fragments than into three. For example, when splitting
a double from a meet of duration 4, it is better to take the first two times or the last two,
rather than the middle two, since the latter leaves fewer choices for future splits.

3. If the parent node has zones, it is desirable to use a segment overlapping only one zone, to
produce meet regularity (Section 5.4) with the layer used to create the zones.

4. The split should produce a best matching whose cost is as small as possible.
5. If sec !'= NULL, the split should encourage the evennesssbast presence requests.

These are combined lexicographically: later criteria only apply when earlier ones are equal.
Meet regularity has higher priority than cost because cost can often be improved later, whereas
meet regularity once lost is lost forever.

After all demands are processed, if any supplies have duration larger than the duration of
all demands, split them into smaller pieces, preferably supplies regular with the zones, if any.
This adds more edges, and so may reduce the cost of the best matching, at norisk to its size. Itis
important when timetabling layers of small duration, such as layers containing staff meetings.

10.6.4. Improving node regularity

When the parent node has zorié®El nSpl i t Suppl i es produces good meet regularity but does
nothing to promote node regularity. This can be done by following it with a call to

voi d KheEl m nproveNodeRegul arity(KHE ELM el nj;

implemented by another ElIm helper module. It does nothing when there are no zones. When
there are, it removes edges from the matching graph to improve the node regularity of the edges
with respect to the zones. If requested bydheer si fy option of el mis opti ons attribute, it
consults the solution’s diversifier, and the edges it removes vary with the diversifier.

The problem of removing edges from a layer matching graph to maximize node regularity
with zones while keeping the matching cost low may seem obscure, but it is one of the keys to
effective time assignment in high school timetabling. Bin packing is reducible to this problem,
so it is NP-complete. Even the small instances (up to ten nodes in each layer, say) that occur
in practice seem hard to solve to optimality. The author tried a tree search which would have
produced an optimal result, but could not make it efficient, even with several pruning rules. So
KheEl m npr oveNodeRegul ari ty is heuristic.

Although many kinds of defects contribute to the edge costs that make up the matching
cost, in practice the cost is dominated by demand cost (including the cost of avoid clashes and

10.6. Extended layer matching with EIm 201

avoid unavailable times defects). Every unit of demand cost incurred when assigning a time
represents an unassignable resource at that time, implying that either the final solution will have
a significant defect, or else that the time assignment will have to be changed later.

However, not all demand costs are equally important. When the cost is incurred by a child
node with no children, all of the meets of that node at that time will have to be moved later, which
is very disruptive. An assignment scarcely deserves to be called node-regular if that is going to
happen. But when the cost is incurred by a child node with children, after flattening it is often
possible to remove the defect by moving just one meet, disrupting node regularity only slightly.
Soitis important to give priority to nodes with no children.

This is done in two ways. First, the cost of edges leading out of meets whose nodes have
no children is multiplied by 10. Second, when evaluating alternatives while improving node
regularity, the cost of the best matching is divided into two parts: the total cost of edges leading
out of meets in nodes with no children (tigthout-children cogtand the total cost of the
remaining edges (theith-children cosy, and without-children cost takes priority.

The heuristic sorts the child nodes by decreasing duration. Nodes with equal duration are
sorted by increasing number of children. Although it is important to minimize without-children
cost, even at the expense of with-children cost, it would be wrong to maximize without-children
node regularity at the expense of with-children node regularity. Node regularity is generally
harder to achieve for nodes of longer duration, so they are handled first.

For each child node in sorted order, the heuristic generates a sequence of sets of zones. For
each set of zones, it reduces the matching edges leading out of the meets of the child node so that
they go only to segments whose times overlap with the times of the zones. A best set of zonesiis
chosen, the limitation of the child node’s meets to those nodesis fixed, and the heuristic proceeds
to the next child node.

The best set is the first one with a lexicographically minimum value of the triple
(wi thout _children_cost, zones_cost, with_children_cost)

The wi t hout _chi | dren_cost andwi th_chi |l dren_cost components are as defined above.
Thezones_cost component measures the badness of the set of zones. Itis the number of zones
in the set (we are trying to minimize this number, after all), adjusted to favour zones of smaller
duration and zones already present in sets fixed on previously, to encourage the algorithm to use
up zones completely wherever possible.

The algorithm for generating sets of zones generates all sets of cardinality 1, then all sets of
cardinality 2, then one set containing every zone that the current best matching touches. Thislast
setisincluded to ensure that at least one set leading to a reasonable matching cost is tried. A few
optimizations are implemented, including skipping sets of insufficient duration, and skipping
zones known to be fully utilized already.

10.6.5. Handling irregular monitors

Each edge of the layer matching graph is assigned a cost by making one meet assignment and
measuring the solution cost afterwards. This amounts to assuming that the cost of each edge is
independent of which other edges are present in the best matching. Costs come from monitors,
and the truth of this assumption varies with the monitor type, as follows.

202 Chapter 10. Time Solvers

Assign time and prefer times castadependent when the cost functiorLisiear , which
it always is in practice for these kinds of monitors.

Split events and distribute split events codti®t changed by meet assignments.

Spread events costblon-independent. Previous sections have addressed this problem, by
varying path costs to discourage two demands from one demand group from matching with
two supplies from one supply group, and by improving node regularity.

Link events costdNot changed by meet assignments when handled structurally, which they
always are in practice.

Order events costdNon-independent when both events lie in the current layer.

Assign resource, prefer resources, and avoid split assignments d¥stschanged by
meet assignments.

Avoid clashes costdndependent, because clashes are never introduced within one layer.
Avoid unavailable times costéndependent when the cost functiorisear .

Limit idle times, cluster busy times, and limit busy times coltsn-independent when
present (when resources subject to them are preassigned in the layer's meets).

Limit workload costs Not changed by meet assignments.

Demand costsindependent when they monitor clashes and unavailable times. More subtle
interactions can be non-independent, but most layer matchings are built when the timetable
Is incomplete and subtle demand overloads are unlikely.

Order events, limit idle times, cluster busy times, and limit busy times monitors stand out as
needing attention. These will be callegegular monitors

At present, the author has no experience with order events monitors, so EIm does nothing
with them. The irregular monitors handled by Elm are those limit idle times, cluster busy times,
and limit busy times monitors of the resources of the layer match’s layer which are attached at the
time the elm is created. The EIm core module stores these monitors in an array, accessible via

int KheEl m rregul ar Moni t or Count (KHE_ELM el n ;
KHE_MONI TOR KheEl m rregul ar Monitor (KHE_ELM elm int i);
voi d KheEl nSort|rregul ar Monitors(KHE_ELM el m

i nt(*conpar)(const void *, const void *));

KheEl m rregul ar Moni t or Count andKheEl nl rregul ar Moni t or visit them in the usual way.
KheEl nBort | rregul ar Moni t ors sorts themgonpar is a function suited to passing ¢gort
when sorting an array of monitors. Core function

bool KheEl m rregul ar Moni t or sAtt ached(KHE_ELM el m);

returng r ue if all irregular monitors are currently attached. By definition, this is true initially.
As a first step in handling the irregular monitors of its layer, EIm offers functions

voi d KheEl mDet achl rregul ar Moni tors(KHE ELM el m) ;
voi d KheEl mAttachl rregul arMonitors(KHE ELM el m);

10.6. Extended layer matching with EIm 203

to detach any irregular monitors that are not already detached, and attach any that are not already
attached KheEl nLayer Assi gn uses them to detach irregular monitors at the start and reattach
them at the end. This ensures that the best matching never takes them into account. It would
only cause confusion if it did.

For improving its performance when irregular monitors are present, Elm offers
voi d KheEl nReducel rregul ar Moni t or s(KHE_ELM el m) ;

If irregular monitors are attached, it detaches them. It installs the best matching’s assignments,
attaches irregular monitors, and remembers the solution cost. Then for eachssulgtaches
irregular monitors, removesfrom the graph, installs the best matching’s assignments, attaches
irregular monitors, remembers the solution cost, and res®tedhe graph. If none of the
removals improves cost, it returns irregular monitors to their original state of attachment and
terminates. Otherwise, it permanently removes the supply that produced the best cost and repeats
from the start.

Some optimizations avoid futile work. If removirgywould reduce the total duration of
supply nodes to below the total duration of demand nodes, or reduce the number of supplies of
Ss duration to below the number of demandsssfduration, the removal of is not tried. And
the function returns immediately if the layer has no irregular monitors.

KheEl nReducel rregul ar Mni tors is a plausible way to attack limit idle times and limit
busy times defects, but it is not radical enough for cluster busy times defects. These are better
handled by other means, suchkasSol nCl ust er AndLi mi t Meet Donai ns (Section 10.3.3).

10.7. Time repair

This section presents the time solvers packaged with KHE that take an existing time assignment
and repair it (that is, attempt to improve it). However carefully an initial time assignmentis made,

it must proceed in steps, and it can never incorporate enough forward-looking information to
ensure that each step does not create problems for later steps. So a repair phase after the initial
assignment is complete seems to be a practical necessity.

10.7.1. Node-regular time repair using layer node matching

Suppose we have a time assignment with good node regularity, but with some spread and
demand defects. Repairs that move meets arbitrarily might fix some defects, but the resulting
loss of node regularity might have serious consequences later, during resource assignment. This
section offers one idea for repairing time assignments without sacrificing node regularity.

One useful idea is to make repairs which aoele swapsswaps of the assignments of (the
meets of) entire nodes. The available swaps are quite limited, because the nodes concerned must
lie in the same layers and have the same number of meets with the same durations.

For any parent node, take any set of child nodes lying in the same layers whose meets are
all assigned. Build a bipartite graph in which each of these child nodes is one demand node, and
the set of assignments of its meets is one supply node. An assignment is a triple of the form

(target _meet, offset, durn)

204 Chapter 10. Time Solvers

as for layer matchings (Section 10.6), but here a supply node is a set of triples, not one triple.

For each case where a child node can be assigned to a set of triples, because the number
of triples and their durations match the node’s number of meets and durations, add an edge to
the graph labelled by the change in solution cost when the corresponding set of assignments is
made. Find a maximum matching of minimum cost in this graph and reassign the child nodes
in accordance with it. The existing assignment is one maximum matching, so this will either
reproduce that or find something which has a good chance of being better. Function

bool KheLayer NodeMat chi ngNodeRepai r Ti mes(KHE_NCDE par ent _node,
KHE _OPTI ONS opti ons);

applies these ideas to the child nodesafent _node, returningt r ue if it considers its work to

have been useful, as is usual for time repair solvers. Firgariént _node has no child layers

it callsKheNodeChi | dLayer sMake to build them. Then it partitions the child nodes so that the
nodes of each partition lie in the same set of layers. Then, for each partition in turn, it builds
the weighted bipartite graph and carries out the corresponding reassignments. If the solution
cost does not decrease, the reassignments are undone. It continues cycling around the partitions
until nreassignments have occurred without a cost decrease, wisghe number of partitions.

Finally, if it made layers to begin with it removes them. A related function is

bool KheLayer NodeMat chi ngLayer Repai r Ti mes(KHE_LAYER | ayer,
KHE_OPTI ONS options);

It starts with the child nodes dfayer rather than all the child nodes of its parent.

On a real instanc&heLayer NodeMat chi ngNodeRepai r Ti nes found no improvements at
all after all layers were assigned. Applied after each layer after the first was assigned, it found
one improvement, which reduced the number of unassignable tixels by 1 or 2. Thisimprovement
was carried through to the final solution: the median number of unassigned tixels when solving
16 instances was reduced from about 9 to about 7, and there were modest reductions in spread
defects and split assignment defects as well. The extra run time was about 0.6 seconds.

10.7.2. Ejection chain time repair

Time solvers

bool KheEj ecti onChai nNodeRepai r Ti mes(KHE_NCDE par ent node,
KHE_OPTI ONS opti ons);

bool KheEj ecti onChai nLayer Repai r Ti mes(KHE_LAYER | ayer,
KHE_OPTI ONS opti ons);

use ejection chains (Chapter 12) to repair the assignments of the meets of the descendants of
the child nodes opar ent _node, or the assignments of the meets of the descendants of the child
nodes ofl ayer . For full details, consult Section 12.7.

10.7.3. Tree search layer time repair

Very large-scale neighbourhood (VLSN) search [1, 10] deassigns a relatively large chunk of the
solution, then reassigns it in a hopefully better way. If the chunk is chosen carefully, it may be

10.7. Time repair 205

possible to find an optimal reassignment in a moderate amount of time.

One well-known VLSN neighbourhood is the set of meets of one layer (a set of meets which
must be disjoint in time, usually because they have a resource in common). For example, finding
a timetable for one university student is a kind of layer reassignment, with the choices of times
for the meets determined by when sections of the student’s courses are running. Function

bool KheTreeSear chLayer Repai r Ti mes(KHE_SOLN sol n, KHE_RESOURCE r);

reassigns the meets &6l n currently assigned resourcgusing a tree search. Once the number
of nodes explored reaches a fixed limit, it switches to a simple heuristic, giving up the guarantee
of optimality to ensure that running time remains moderate. Function

bool KheTreeSear chRepai r Ti mes(KHE_SOLN sol n, KHE_RESOURCE TYPE rt,
bool with_defects);

callskheTr eeSear chLayer Repai r Ti mes for each resource isiol n’s instance (or each of type

rt,if rt isnonNULL). If with_defects istrue, these calls are only made for resources with

at least one resource defect, otherwise they are made for all resources. The rest of this section
describegheTr eeSear chLayer Repai r Ti mes in detail.

If atree search is given a high standard to reach, it will run quickly because many paths will
fail the standard and get pruned, and so it is quite likely to run to completion and reach that high
standard if it is reachable at all. If it is given a low standard, it will run more slowly and quite
possibly not run to completion. Either approach is legitimate, but a choice has to be made.

Because VLSN search is relatively slow, it seems best to use it near the end of a solve, when
there are few defects left to targetheTr eeSear chLayer Repai r Ti nes is intended to be used
as a last resort in this way, when there is likely to be just one or two defects related to the layer
beingtargeted. Accordingly, it aims high, for an assignment with no defectsat all. It prunes paths
whenever it can see that there is a defect that cannot be corrected by further assignments.

The meets are first sorted into decreasing duration order and unassigned. Each is given a
current domainwhich is initially its usual domain minus any starting times that would cause the
meet to overlap a time when any of its resources are unavailable. Then a traditional tree search
is carried out, which at each node of levaksigns a time from its current domain to ttiemeet
in the sorted list. The best leaf is remembered and replaces the original set of assignments if its
solution cost is smaller. Three rules are used for pruning the tree.

First, any assignment which returhal se or causes the number of unmatched demand
tixels to exceed its value in the initial solution is rejected.

Second, after a fixed number of nodes is reached, new nodes are still explored, but only the
first assignment that does not increase the number of unmatched demand tixels is tried therein.

Third, a form of forward checking is used. L& andm, be meets of the layer, and Igt
andt, be times. At the start, a set ekclusionss built, each of the form

(Myty) (. My, t)

This means that ifm, is assigned starting tintg, thenm, may not be assigned starting timye
While the search is running, whem is assigned, this exclusion is applied, removirigfrom the
domain ofm,. Whenm, is unassigned later, the exclusion is removegiust come later in the

206 Chapter 10. Time Solvers

list of meets to be assigned tham so that at the momem, is assignedn, is not assigned).
Following is a list of true statements about various situations:

* Since the meets all share a resource, no two of the meets may overlap in time.

* Two meets linked by a spread events constraint cannot be assigned within the same time
group of that constraint, when that time group hasd numattribute of 1.

» Two meets linked by an order events constraint must be assigned in a certain chronological
order, possibly with a given separation.

* Giventwo meets with the same duration and the same resources, and monitored by the same
event monitors, it is safe (and useful for avoiding symmetrical searches) to arbitrarily insist
that the first one in the assignment list should appear earlier in the cycle than the second.

Each statement gives rise to exclusions, and all these exclusions are added, except that at present
a couple of shortcuts are being used: order events constraints are not currently taken into account,
and the symmetry breaking idea of the last point is being applied to a different set of pairs of
meets, namely those which are linked by a spread events constraint and have the same duration.

Exclusions are used in two ways. First, when a meet’s turn comes to be assigned, only
times in its current domain (its initial domain minus any exclusions) are tried. Second, each meet
keeps a count of the number of times in its current domain. If this number ever drops to 0, the
assignment that caused that to happen is rejected immediately.

On instance IT-14-96, with limit 10000, this method improved the timetables of four
resources, reducing final cost from 0.00397 to 0.00390, and adding about 2 seconds to total run
time. There was wide variation in the completeness of the search: for some resources, every
possible timetable was tried; for others, there was only time to try timetables that assigned the
first meet to the first time. It did not reduce the 0.00067 cost of the best of 8 solutions, nor find
any improvements when solving instance AU-BG-98. A run with limit 2000000 improved a fifth
resource in IT-14-96, and showed that many searches do reach even this quite large limit.

10.7.4. Meet set time repair and the fuzzy meet move

Another VLSN idea is to use a tree search to repair the assignments of an arbitrary (but small)
set of meets. Given a set of meets, build the set of all target meets they are assigned to, and for
each target meet, the set of offsets within it that they are running. The aim isto reassign the meets
optimally within these same target meets and offsets. The only pruning rule is that the number
of unmatched demand tixels may not exceed its initial value.

The functions that implement this idea are

KHE MEET SET SCLVER KheMeet Set Sol veBegi n(KHE_SOLN sol n, int max_meets);
voi d KheMeet Set Sol veAddMeet (KHE_MEET _SET SOLVER nss, KHE MEET neet);
bool KheMeet Set Sol veEnd(KHE_MEET_SET SOLVER mnss) ;

KheMeet Set Sol veBegi n makes a meet-set solver object which coordinates the operation.
KheMeet Set Sol veAddMeet adds one meet to the solver, and may be called any number of times,
building up a set of meets. If the number of meets added reachesxtheeet s parameter of

10.7. Time repair 207

KheMeet Set Sol veBegi n, further calls tokheMeet Set Sol veAddMeet are allowed but ignored.
Finally,KheMeet Set Sol veEnd uses a tree search to find an optimal reassignment of the meets to
(collectively) their original target meets and offsets, returningg if it reduced the cost of the
solution, and frees the memory used by the solver object. If the number of nodes in the search
tree exceeds a given fixed limit, the search switches to a simple linear heuristic at each remaining
tree node, losing the guarantee of optimality but ensuring that run times remain moderate.

As a first application of these functions, KHE offers

bool KheFuzzyMeet Move(KHE_MEET neet, KHE MEET target _neet, int offset,
int width, int depth, int max_neets);

This may movereet totarget _meet atoffset, but not necessarily. Instead, it selects a set
of meets likely to be affected by that move, includiregt , and passes them all to the meet set
solver above for (hopefully) optimal reassignment. It retumse if and only if it changed the
solution, which will be if and only if it reduced the cost of the solution.

The point ofkheFuzzyMeet Move is that if the caller has identified this move as likely to be
useful, but with some uncertainty about its consequences, it allows the move to be tried, but with
adjustments in the neighbourhood to get the most out of it. These adjustments are not unlike
those made by Kempe meet moves, only more general and more costly in run time.

Two sets of meets are selected. To be in the first set, a meet has to be assigned to the same
target meet aseet , at an offset lying betweemeet 's current offset minusi dt h, andmeet ’s
current offset plusi dt h. Furthermore, idept h is 1 (the smallest reasonable value), a selected
meet has to share a resource (assigned or preassignedgetithif dept h is 2, a selected meet
has to share a resource with a meet that would be selected when the depth is 1, and so on: the
depth signifies the maximum length of a chain of shared resources that must connect a selected
meet toneet . The second set of meets is the same as the first, only defined aseg _reet
andof f set instead ofreet 's current target meet and offset.

As for meet set time repair, at mostx_neet s meets will be selected. #i dt h anddept h
are small, it is reasonable forx_neet s to bel NT_MAX,

10.8. Layered time assignment

The heart of time assignment when layer trees are used is to assign the meets of the child nodes
of a given parent node to the meets of the parent nodeyéred time assignmeig one which

groups the child nodes into layers and assigns them layer by layer. This is a good way to do it,
since the nodes of each layer strongly constrain each other (they must be disjoint in time).

KheEl nLayer Assi gn (Section 10.6) is KHE’s main solver for assigning the meets of the
child nodes of one layer. But there is work to be done to prepare the way for calling this function,
beyond the structural work of building the layer tree. This section presents KHE's functions for
carrying out this preparatory work and callikigeEl m_ayer Assi gn.

10.8.1. Layer assignments

When assigning layers it is useful to be able to record an assignment of the meets of a layer, for
undoing and redoing later. Marks and paths could do this, but they record every step. A layer

208 Chapter 10. Time Solvers

assignment algorithm could be very long and wandering, so it is better to record just its result.
Accordingly, KHE offers thdayer assignmenbbject, with typeKHE_LAYER_ASST:

KHE_LAYER ASST KhelLayer Asst Make(voi d);

voi d KhelLayer Asst Del et e(KHE_LAYER ASST | ayer asst);

voi d KhelLayer Asst Begi n(KHE_LAYER ASST | ayer _asst, KHE LAYER | ayer);

voi d KhelLayer Asst End(KHE_LAYER ASST | ayer asst);

voi d KheLayer Asst Undo(KHE_LAYER ASST | ayer _asst);

voi d KheLayer Asst Redo(KHE_LAYER ASST | ayer _asst);

voi d KhelLayer Asst Debug(KHE LAYER ASST | ayer _asst, int verbosity,
int indent, FILE *fp);

KheLayer Asst Make andKheLayer Asst Del et e make and delete on&khelLayer Asst Begi n is
called before some algorithm for assignirayer is run. It records which ofayer’s meets are
unassigned therkhelLayer Asst End is called after the algorithm ends. For each meet recorded
by KheLayer Asst Begi n, it records the assignment of that megteLayer Asst Undo undoes the
recorded assignments, akideLayer Asst Redo redoes themKhelLayer Asst Debug produces a
debug print oft ayer _asst ontof p.

10.8.2. A solver for layered time assignment

Time solver

bool KheNodeLayer edAssi gnTi mes(KHE_NODE parent _node, KHE OPTI ONS options);

assigns the meets of the child nodespaf ent _node to the meets opar ent _node, calling
KheEl m_Layer Assi gn (Section 10.6) to assign them layer by layer. Existing assignments of the
meets affected may change. The implementation is described at the end of this section.

If parent_node is the cycle nodekheNodePr eassi gnedAssi gnTi mes should be called
first, to give priority to demands made by preassigned meets.

KheNodeLayer edAssi gnTi mes is affected by three options. If théme_node_regul arity
option of opti ons istrue, it tries to make the assignments node-regular (Section 5.4). This
will usually be appropriate for the cycle node, but not for other nodes, since in practice they are
runaround nodes, and irregularity is wanted in them rather than regularity.

KheNodeLayer edAssi gnTi mes usually assigns each layer in turn, in a heuristically chosen
order. Butif the i ne_| ayer _swap optionist r ue, it does something more interesting. For each
layeri other than the first and last, it (a) tries assigning and repairing lafpdowed by layer
i + 1, then (b) tries assigning and repairing layerifollowed by layer. If the solution cost after
(a)islessthan after (b), it leaves (a)’s assignment of laiygulace and proceeds to the next layer;
otherwise it leaves (b)’s assignment of layerlin place and proceeds to the next layer. So one
layer is assigned on each iteration, as usual, but it could be either the usual one or the next one.

Thetinme_l ayer_repair option determines howheNodelLayer edAssi gnTi mes repairs
each layer after assigning it. Its type<tdE_OPTI ONS_TI ME_LAYER_REPAI R, defined by

10.8. Layered time assignment 209

t ypedef enum {
KHE_OPTI ONS_TI ME_LAYER_REPAI R_NONE,
KHE_OPTI ONS_TI ME_LAYER REPAI R_LAYER,
KHE_OPTI ONS_TI ME_LAYER_REPAI R_NODE,
KHE_OPTI ONS_TI ME_LAYER_REPAI R_LAYER BACKOFF,
KHE_OPTI ONS_TI ME_LAYER_REPAI R_NCDE_BACKOFF,
} KHE_OPTI ONS_TI ME_LAYER REPAI R;

The first three values request no repair, repair ugimgs| ect i onChai nLayer Repai r Ti mes
(Section 10.7.2), and repair usingheEj ecti onChai nNodeRepai r Times on the lay-

er's parent. The last two values add to the previous two the use of exponential
backoff (Section 8.6) to ration the number of layers repaired. The default value is
KHE_OPTI ONS_TI ME_LAYER REPAI R LAYER.

The rest of this section describes the implementatidthefNodeLayer edAssi gnTi mes.

If parent _node has no layerssheNodeLayer edAssi gnTi mes first makes them, by calling
KheNodeChi | dLayer sMake (Section 9.3.1). Itthen sortsthe layers, assigns and optionally repairs
them, and ends witkheNodeChi | dLayer sDel et e if it called KheNodeChi | dLayer sMake.

When sorting the layers, the first priority is to ensure that already assigned layers come
first. These are marked by assigning visit number 1to them. Among unvisited layers, a heuristic
rule is used: decreasing value of the sum of the duration and the duration of meets that have
already been assigned, minus the number of meets. The reasoning here is that layers with
larger durations are harder to assign, and they become even harder when many of their meets’
assignments are already decided on (since